ら37に掲げた。また記録から, 携み S_0 と現象時間 t_0 を読みとった値を表16に示す。

計器の検定は実験の都度行なった。12日の実験を除 いては、電磁オシログラフの読みと実長との比は、大 体1:1であった。

表16において,欄外の理論値と実験値を比較すれば 明らかなように,現象時間,撓み,接岸力の実験値と 理論値はほとんど一致している。それゆえ縦方向の衝 撃においては,便宜的付加質量は無視してよいこと, また,バネ常数の小さい場合は水の抵抗があることが わかる。

したがって、防舷材に対して、接線方向の速度を有 して接岸する場合は、この(8)式による力と法線に直 角な速度による接岸力に防舷材と舷側の間の摩擦係数 を乗じた力が接線方向に働く力となる。

6. 実船測定について

10万 t 級船舶用ドルフィンの柔軟な例として, 川崎 港沖で筆者が測定した。1964年12月21日霧島丸の接岸 時の測定値について,本文の考察の結果を適用してみ

表 16

NO	K=2	28.8 gr/	<u>cm(1,1</u>	2,1967)	NO.	K = 102.5gr/cm(1,19,1967)			
	V.	s.	t.	S.		ν.	s.	t.	S.
45	2.30	i. 83	1.28	0.796	66	2.07	2.53	1.90	1.221
46	2.31	1.79	1.30	0.777	67	2.08	2.45	1.88	1.177
47	1.90	1.42	1.29	0.745	68	1.84	2.11	1.91	1.148
49	3.02	2.43	1.25	0.804	69	2.88	3.51	1.92	1.218
50	2.33	1.88	1.21	0.808	70	2.93	3.53	1.92	1.204
51	3.65	2.93	1.30	0.803	71	2.91	3.39	1.90	1.165
52	3.80	3.10	1.30	Q 793	72	3.46	4.13	1.91	1. 193
53	3.16	2.51	1.31	0.795	73	377	4.54	1.92	1.204
	L				74	3.58	4.13	1.90	1.154
			l. 28	0.8 16				192	1. 2 20
NO	K=593 gr/cm(1.13,1967)			NO	K = 26.0 gr/cm (1,17, 1967)				
	ν.	s.	ΰ.	S.	NO.	ν.	1.	t,	S.
26	1.97	2.56	2.36	1. 300	36	2.07	4.39	3.47	2121
27	2.00	2.64	2.39	1. 320	37	2.15	4 69	3.52	2.180
28	2.27	3.11	2.53	1.372	38	1.86	3.81	3.57	2.048
29	2.89	3.99	2.50	1.389	39	2.7 8	5.95	3.57	2.141
30	2.76	4.33	2.49	1.570	40	2.88	6.09	3.50	2.151
31	3.01	4.59	2.47	1.515	41	2.78	6.01	3.62	2.161
32	4.16	614	2.50	1.476	42	3.96	8.03	3.57	2.030
33	4.12	6.04	2.52	1.465	43	4.13	8.22	3.57	1.993
34	3,95	6.04	2.50	1.529	44	3.67	771	3.49	2.101
			2 5 2	16.04				380	2 422

U: 接岸速度 (cm/sec) ム: 受衝バネの撓み (cm) t.: 現象時向 (sec) S: ム/U: (sec)

糠外の数値は理論値を示す

写真34

21

る。

22

6.1 霧島丸接岸時の測定値

このドルフィンの構造は、バース水深16.0m, 鋼管 杭(直杭) HITEN 50, 径 1000mm, 厚さ16mm, バ ース法線に対し直角方向に 3 列に, それぞれ 3 本, 4 本, 3 本の10本構成で, 列間隔は 5 m, 各杭間隔は 4 m である。杭頭部は H型鋼を取付けて剛結し,上下に配 筋して, コンクリートを打設した。その天端高は+ 5.5m, 下端は+1.0mである。その前面に,中空,筒 型ゴムフェンダー,外径 100 cm, 内径 58.7 cm, 長 2.4m のもの6本を,上下 2 段3本ずつ水平に鎖をも って吊り下げた。そのバネ常数(荷重特性)は 672 t /m である。(図11参照)

鋼管杭のバネ常数は未知であった。

接岸時の霧島丸は,排水トン数 W=120,560 ton, 船の長さ l=249.7 m,船巾 b=40.5 m,きつ水 hは, 船首で 14.75 m,船尾で 14.82 m であり,水深は 17.0 m であった。接岸速度,偏心距離などは表 17の 通りであった。

表17 接岸状態

	接岸の 回 数	<u>船</u> 接岸速度 <i>v</i> 。	 偏心距離 r	船 	尼 7
	1回目	cm/sec 4.35	64. 43 ^m	cm/sec 1.11	m 36. 56
2回目		1.15	64.65	1.16	41.65
	3回目	1.15	50.79	1.82	50.13

m = W/g = 12,300 [t.sec²/m]

 $\alpha = h^2 l/m \sqrt{gH} = 0.3562 \text{ [sec}^{-1}\text{]}$

 $I_z = m(l^2 + b^2)/12$

$$=12,300 \times 5,332.528$$
 [t.m.sec²]

 $\beta = 1 + mr^2/I_z$

表 18 βの値

接岸回数	船首β	船尾β
1回目	1.7785	1.2508
2回目	1.7838	1. 3253
3 回 目	1.4838	1. 4713

 β は表18の通りであるが、以下本文の計算において は、ほぼ平均値をとって、船首の $\beta=1.78$ 、船尾の $\beta=1.35$ とする。

次に撓みの実測値は, I.T.V. による写真(写真38), オシログラフの記録 (写真39) などによって,表19の 値をうる。

この表によって、 $s_d/s_f \Rightarrow 4$ となる。 この s_f は径 100cm のゴムフェンダーの撓みで、 その荷重特性は 112 t/m である。6本使用されているので、 $K_f = 672$ t/m となる。したがって、 $K_a = 672/4 = 168$ t/m とな る。

ドルフィン構造全体としてのバネ常数 K。は,

$$K_0 = \frac{K_f K_d}{K_f + K_d} = \frac{672 \times 168}{672 + 168} = 134.4 \text{ [t/m]}$$

偏心距離rは,接岸の都度,舷側に白墨で接触点の 印をつけ,接岸操船が終ってから測定した。接岸速度 v_0 はオシログラフの記録(例えば写真39)によって測 ったものである。

フェンダーの撓みは、岩国港において使用した撓み 計³⁰をフェンダー上部に取り付けて測った。杭頭部の 変位は、中央荷役棧橋上に据えたトランシット、I.T. V.および渡棧橋とドルフィン頭部の間に取り付けた板 バネ(ストレンゲージ貼付)の歪を測定することによ って測ったものである。

6.2 測定結果について

この実船についての測定の結果から,杭のバネ常数 が,ゴムフェンダーのバネ常数の4分の1ということ がわかる。したがってドルフィン全体としての**k**およ

黒線はテレビ画面に引かれた基準線 (ドルフイン頭部の20cm間隔の縞紋様) (船が接近している,図中右側)

(接触, 撓み最大)

写真38 I.T.V. による携みの観測図 表 19 s_d, s_fの測定値

					-				
接岸回数		ドルフ	ィン頭部の	変位 <i>sa</i> [c	cm]	ゴムフェンダーの撓み <i>s</i> ƒ[cm]			
		トランシット	オシロ	スケール	\$d	オシロ	スケール	Sf	sa/sr
八直	1	18.0	19.5	19.7	19.5	4.8	3.8	4.8	4.07
	2	3.0	5.0	3.9	4.0	1.8	1.7	1.8	2.10
首	3	3.0	1.0	0.6	3.0	-	1.7	1.7	1.76
山	1	8.0		_	8.0	1.9	8.7	1.9	4.21
79123	2	7.8			7.8	1.8	8.7	1.8	4.33
尾	3	10.8	4.0	10.8	10.8	3.05	10.8	3.05	3.55

(65)

写真39

(66)

び βk を求めると, k=k/m=134.4/12300=0.0193 [sec⁻²] また船首では β=1.78, 船尾では β=1.35 であるか ら, β を k の中に含ませると, 船首接岸時の k=0.01946 [sec⁻²] 船尾接岸時の k=0.01476 [sec⁻²] で, α²-4k の値は, 船首の場合 0.12688-4×0.01946=0.04904>0 船尾の場合 0.12688-4×0.01476=0.06784>0

となる。

この場合のように、ゴム防舷材の撓みが、杭頭撓み の4分の1であることは、構造物の強度が信頼できる ものであるならば、防舷材のバネ常数をより小さくし て、構造物を防護する防舷材の効用を発揮させなけれ ばならないということである。

船は,非常に注意深く操縦され、ゴム防舷材と接触 寸前に,一時停止に近い状態となり,おもむろに接岸 した。そして,このように接岸速度が小さいにもかか わらず,現象時間は長く,船はフェンダーと接触した 姿勢のまま停っているのかと思われるほどであった。 以上のような状態についての測定結果に,2章の考察 結果を適用してみる。

2.2 の(8)式によって,

- (イ) 船首で接岸の場合は k = 0.01946 [sec⁻²] $\sqrt{k} = 0.1395$ [sec⁻¹]
- :. $S_0 = 1/\sqrt{k} = 7.168 \text{ [sec]}$ $t_0 = \pi/2\sqrt{k} = 11.26 \text{ [sec]}$
 - これに対する実測値は,
 - $S_0 = (19.5 + 4.8)/4.35$
 - =5.6<7.168 [sec]
 - $t_0 = 9.6 < 11.26$ [sec]

 $n = \pi/2 t_0 = 0.1635 > 0.1395 = \sqrt{k} [sec^{-1}]$

であるから、水圧は抵抗として働く状態であることが 理解される。またその接岸状況は、前述のように、一 旦停止してから、徐々に接触している状況 であるか ら、2.3 の(11) 式の場合に該当する。*Cv*を求めな ければならないが、その値は状況によることは、しば しば述べたとうりである。この場合は、仮りに

 $C_v \doteq \alpha / 10 = 0.03562 \text{ [sec}^{-1}\text{]}$

として計算してみると、次の通りである。 $C_v^2 - 4k = 0.03562^2 - 4 \times 0.01946 < 0$ $\zeta_{-}=0.1384 \text{ [sec}^{-1}\text{]}$ $2\zeta_{-}/C_{v}=7.7681$

:. $t_0 = \zeta_{-}^{-1} \tan^{-1}(2\zeta_{-}/G_v) = 10.43 \text{ [sec]} = 10$

 $S_0 = \zeta_{-1}^{-1} e^{a_0} / \sqrt{k} = 5.9536 \Rightarrow 5.6 \text{ [sec]}$

- $S = 7.228 e^{-0.01781t} \sin(7^{\circ}9297 t)$
- この式による計算表を表20に示す。
- この計算値と実測値を比較したものが表22である。

(ロ) 船尾で接岸の場合

前の(イ)の場合同様に,

 $\sqrt{k} = \sqrt{0.01476} = 0.1215$ [sec⁻¹]

- $S_0 = 1/0.1215 8.2305$ [sec]
- $t_0 = 3.1416/2 \times 0.1215 = 12.9284$ [sec]

実測値の S₀=9.9/1.11=8.92≈8.23 [sec]

表20 船首ドルフィン撓み計算表

	Π	Ш	m	V	স	সা	
t	- a t	e ^{-®} t	7.9297t	sin 🎟	S⊧ 722800⊽	Sf	Sd
0	0	1.0000	0	0	0	0	0
1	001781	0.98 23	7.56	01380	09798	0.1960	0.7838
2	003562	09650	15 52	0.2734	1.9070	0.381.4	1.8256
3	0.05343	0.9499	23. 47	04033	2.7690	0.5538	22152
4	0.07 124	09312	31. 44	0.5260	3.5404	0.7 08 1	28323
5	0.08 905	0.9148	39. 39	0.6381	42192	08438	3.3754
6	010686	0.8986	47. 35	0.7383	47 953	0.9591	3.8362
7	0.12467	0.8828	55. 30	0.8241	5.25.85	1.0517	42068
8	0.1 4248	08672	63. 26	08944	5.6062	1,1212	4.4850
9	0.16029	0.8519	71. 22	0.9476	5.8349	1.1670	4.6679
10	017810	08369	79. 18	0.9826	59439	1.1888	47551
10.43					5.9536	1.1907	4.7629
11	0.19591	08221	87. 14	0.9988	5.9350	1.1870	4,7480

表21 船尾ドルフィン撓み計算表

				Ш	∇	∇I
t	696141		sin 🛿	S= 8.230500	S _f	Sd
0	(2	0	0	0	0
1	6	58	0.1213	0.9984	0.1997	07987
_2	13	55	02405	1.9794	0.3959	1.5835
3	20	53	0.3565	2.9342	05868	2.3474
4	27	51	0.467.2	3.8453	0.7691	3.0762
5	34	48	0.5707	4.6971	0.9394	37577
6	41	46	0.6661	5.4823	1.0965	43858
7	48	44	0.7516	6.1860	1.2372	49488
8	55	42	0.8261	6.7992	1.3598	54394
9	62	39	0.8882	7.3103	1.4621	5.8482
10	69	37	0.9374	7.7152	1.5430	6.1722
11	76	35	0.9727	8.0058	1.6012	64046
12	83	32	09936	8.1778	1.6356	65422
13	90	30	1.0000	8.2305	1.6461	6.5844

表22 霧島丸接岸時の実測値と理論値の比較

接岸	#5-5	船首	方向ドル	フィン	船尾	方向ドル	フィン
回数	雙項	実測値a	計算值b	a/b(%)	実測値o	計算值b	a/b(%)
-	V. cm/sec	4.35	(実現S=5	5.59 sec)	1.11	(実)) S= 8	92 sec)
6	See cm	19.5	20.72	94.11	8.0	7.31	109.44
	S.f Cm	4.8	5.18	9266	1.9	1.83	103.83
E	S. CM	243	25.90	93.82	9.9	9.14	10832
	to sec	9.6	10.43	9204	95	1292	73.53
-	U. CTYSEC	1.15	(宝观iSa=)	5.9 sec)	1.16	(底) S= 8	3.27 sec)
m	S.d CE	5.0	5.48	91,24	7.8	7,64	10209
	5-4 CM	1.8	1.37	13139	1.8	1.91	94.24
E	S, cm	6.8	6.85	9927	9.6_	9.5.5	100.52
	t. sec	9.5	10.43	91.08	10.9	1292	8437
	U. cm/sec	1.15	(東測)S= 4	4.09 sec)	1.82	(** # S=	(.64 sec)
5	SH Cm	3.0	548	5474	10.8	11.98	90.15
回	Set cm	1.7	1.37	124.09	3.1	3.00	10333
🗉	S, cm	4.7	6.85	68.61	13.9	1498	9279
	to en	103	1043	98.75	11.0	1292	85.14

26

 $t_0 = 10 < 12.93$ [sec]

$$n = \sqrt{k} \ge U \subset$$

 $\sqrt{k} = 6.9614 \, [\text{deg} \cdot \text{sec}^{-1}]$

 $S = 8.2305 \sin 6.9614 t$

この式による計算値が表21である。

また、この計算値と実測値を比較したものを表22に 示す。

以上によって,この状態では,ドルフィン構造が非 常に小さいバネ常数をもっている特殊な場合というこ とができる。

7. 結 論

以上室内実験ならびに実船による測定値によって, 判別式 $\alpha^2 - 4k > 0$ の場合について 検討した 結果をま とめてみると,

1) α²-4k>0 の場合は,船が接岸してから止まる までのドルフィンの撓みが大きく,したがって現象時 間も長いので,船の運動に伴う水の流れの減衰がおこ る。

2) その減衰の形態は、初期条件および環境によっ てことなる。大体余弦の4分の1周期の形でも近似さ せうる。

3) その $\cos nt$ の n が \sqrt{k} に等しいときに,付加質量がゼロに近い状態となる。

n < √*k* のときは、水圧は船を加速する方向
 に働き、

5) $n > \sqrt{k}$ のときは、水圧は船を減速する方向 に働く。

6) この特殊な場合には、静水中を船が移動しはじ めた状態と等しく、水の抵抗が働く状態のときもあり うる。

これらのnおよび抵抗係数 C_v は, 状況によってこ となるから,より多くの実船実験,実測によって求め なければならない。

したがって係船施設の設計に当っては、n に期待せ ず, f(t)=1 の状態すなわち船が定速状態で接近し, 接岸現象時間中は,船の運動に伴う水の流速の減衰は ないものとして設計し,安全を期するのが妥当である と思われる。

8. 接岸力図

この章においては、第2章に述べた運動方程式の解 についての区分を判別し易いように図示し、さらにフ ェンダーの、もっとも一般的な荷重特性 F = Ks

 $F = K_0 = \text{const}$

の場合における接岸力,および現象時間を容易に求め うる図表を掲げる。

これらの図表は、既報の運研報告第11巻第10号,船 研報告第1巻第1号の報文および本報文の(7)式など によるものである。

8,1 接岸力の求め方

まず接岸水圧係数 α を計算しておく。概略の値は, Fig. 1 において船巾 bときつ水 hとの比nと横軸に おける船巾との交点から縦軸に α がえられる。

8.1.1 F=Ks の場合

 kの求め方 Fig. 2 において、 K と偏心距離
 r との交点から、縦軸について βK, さらに βK
 と屯数を示す斜線との交点から、左方横軸に k が 求まる。

ここに $\beta=1+mr^2/I_z$, $I_z=ml^2/12$ として計算 したものである。

このkは, 10,000 t 単位の値であるから, 1,000 t の船の場合は, 1.0 の斜線でもとめた k の値の 10 倍となり, 100,000 t の船の場合は, 10分の 1 が求める k である。

② 運動方程式の解の区分 Fig. 3 において、αと
 k の交点が、

判別線の上のA区域内にあるときは

$$\alpha^2 - 4k < 0$$

判別線の下のB区域内にあるときは

 $\alpha^2 - 4k > 0$

であることを知る。

 A区域内にある場合の接岸力Fの求め方 Fig. 4 において、k と α の交点の N の値を 求め、αと左の αS₀ 面に移した N との交点から 横軸に S₀ が求められる。

S₀ が求まれば接岸力 F は,

 $F=S_0\cdot v_0\cdot K$

で求められる。

現象時間 t_0 は、Fig. 5 において、 $\alpha \ge N$ の交 点で求められる。

④ B区域内にある場合 この区域は、F<mav₀の 区域で、船の周囲の水の状態によって、いろいろ の場合が生ずる。衝撃的現象は小さい。定速の状 態で接岸すると撓みが非常に大きいので、構造物 の強さに信頼性があるとき以外は、フェンダーの 前で一度船を止め、おもむろに接岸するなど、操

(68)

船は注意して行なう必要がある。

8.1.2 $F=K_0=$ const の場合

この場合は、フェンダーの構造上、一定反力 K_0 が 働く撓みの限界がある筈である。その範囲内で船を停 止させなければならない。

- k₀の求め方 Fig. 2 において, K を K₀ と読 みかえて, K₀ と r 直線との交点で, βK を縦軸に よって読み, 排水トン数を示す直線とその βK の 交点から,下の横軸において, k を求め, この k を v₀ で割って k₀ を求める。その k₀ を用いて, a/k₀ を計算しておく。
- - Fig. 7 によって、 α と α/k_0 との交点の横座標に よって、 t_0 が求まる。
- 3 k₀<α の場合 s₀=v₀/k₀
 で, 撓みの最大値が求められ, 使宜的仮想質量は
 - 2 **m**の形となっている。
 - 8.1.3 接岸圧力 f

Fが判れば、フェンダーの撓みに対応する接触面の 拡大された面積を **A** とすれば、

f = F/A

- で求められる。
 - 8.2 計算例

1964年3月17日の岩国港における東光丸接岸の例" について図表を用いて計算してみよう。

船の長さ *l* =213 m

船 巾 **b** = 30 m

- きつ水 h = 11.47 m
- 排水量 W=61,360 ton
- フェンダーのバネ常数 K=600t/m
- 接岸速度 $v_0 = 6 \text{ cm/sec}$
- 偏心距離 r = 41.5 m

が与えられている。

$$n = b/h = 30/11.47$$

≑2.6

Fig. 1 によって、 $\alpha = 0.43$ [sec⁻¹] をえる。 $r/l = 41.5/213 \Rightarrow 1/5$ であるから、Fig. 2 によって、W/10,000の3の線より少し小さく、k=0.3を読み、

$$\frac{60,000}{30,000} = 2$$

であるから, k は大体,

$$k = \frac{0.3}{2} = 0.15 \text{ [sec}^{-2}\text{]}$$

をうる。

Fig. 3 によって, α と k の交点は, A区域内にあ ることを知る。

Fig. 4 によって、k=0.15 と $\alpha=0.43$ との交点で、N=0.8 を知り、それを左の αS_0 面にうつして、 $S_0=3.5$ をうる。ゆえに、

接岸力 $F=3.5\times600\times0.06=126$ [ton] また Fig. 5 によって、 $\alpha=0.43$ と N=0.8 との交点 により、

現象時間 t₀=6.6 [sec]

をうる。

これに対する実測値³⁾ は、 $S_0=3.88[sec^{-1}], F=139$ [ton], $t_0=6.3$ [sec] である。

参考文献

 若系 納:船舶の接岸力について 運輸技術研究所報告 第11巻第10号
 2) 若系 納:船舶の接岸力について(偏心接岸の 場合)

> 船舶の接岸力について(防衝工のバ ネ常数との関係)

- 船舶技術研究所報告 第1巻第1号
- 若桑 納:スーパータンカー接岸実験 船舶技術研究所報告 第1巻第6号

28

(70)

Fig. 2

A, B 区域判别図 (A: α²- 4危<0 の区域) B: α²- 4 危>0 の区域)

Fig. 4

Fig. 5

(72)

