二 流 体 噴 射 弁 の 現 状*

根 矢 清**

Twin-fluid Atomizers-A Review

By

Kiyoshi Neya

Twin-fluid atomizer is a kind of atomizers in which the liquid is atomized by a high velocity gas stream, and air or steam is commonly used as the gaseous medium.

The outstanding feature of this type of atomizer is that the amount of energy available for atomization can be varied independently irrespective of the liquid flow-rate. Consequently, even with very viscous liquid, satisfactory atomization can be accomplished by using twin-fluid atomizers under moderate injection pressure of the liquid over a wide range of its flow-rate. On the other hand, twin-fluid atomizer needs necessarily an air- or steam source.

Twin-fluid atomizers may be classified from various points of view. In this paper, they are divided into two groups by the configuration of the liquid with which it encounters with the gas stream; the first is the cylindrical liquid jet type, and the second, the liquid sheet type. In the latter type, the liquid sheet is generated by a swirl atomizer, rotary cup, narrow gap and so on. Then, the design features and the spray characteristics of typical twin-fluid atomizers, which have mostly been developed for the combustion of liquid fuels, are described according to this classification.

主要目次

1. ま	えがき	4. 液	膜微粒化式二流体噴射弁34
2. 量	記 号	4.1	液体自身の旋回による液膜34
3. 液	柱微粒化式二流体噴射弁30	4.2	隙間から流出する液膜35
3.1	平行気流によるもの30	4.3	回転コップからの液膜36
3•2	傾斜気流によるもの32	4•4	旋回気流による液膜36
3•3	直角気流によるもの	5. む	・す び36
3•4	逆向き気流によるもの	文	献37

1. まえがき

二流体噴射弁とは,液体を第二の流体によって微粒 化する噴射弁をいい,第二の流体としては,圧縮性で 多量のエネルギを貯えることができる気体一多くの場 合,空気または蒸気一が用いられる。二流体噴射弁の おもな長所は、微粒化に利用できるエネルギの量が液 体の流量に無関係に変えられることであり、これによ って、例えば、液体の粘度が高い場合でも比較的低い 噴射圧力の下で広い流量範囲にわたり良好な噴霧を得

* 船舶技研第10回研究発表会(昭 43-5-13~15)および日本燃焼研究会見学会(昭 43-5-25)において講演

** 機関開発部第1部

(197)

ることができる。一方,短所は,空気または蒸気源が 必要なことである。

当所で開発研究中の, ガスタービンと蒸気タービン とを組み合わせた新形式の複合機関¹⁾では, 燃料に高 粘度の重油を用いる予定であるが, これの微粒化は, 燃料の性状と利用しうる蒸気源の点から蒸気微粒化式 の二流体噴射弁によることにした。筆者はこのことに 関連し,二流体噴射弁の現状を調べる機会を得た。

二流体噴射弁は種々の観点から分類することができ るが,本文ではこれを,気体と液体とが会合するとき の液体の形態によって液柱微粒化式と液膜微粒化式と に大別し,代表的噴射弁の構造と噴霧特性の概要につ いてのべる。

2.量記号

本文で用いるおもな量記号はつぎの通りで,微粒化 用気体および液体についての量は,それぞれ添字gお よびしを用いて表わす。

D: 粒の直径

D_M: 重量メジアン粒径

- D_{max}: 最大粒径
 - d: 噴射弁各部の直径
 - g: 重力の加速度
 - *n*: 直径 *D* なる粒の数
 - P: 圧力
 - Q: 容積流量
 - V: 速度
 - W: 重量流量
 - µ: 粘性係数
 - ν: 動粘性係数
 - ₽: 密度
 - **σ**: 表面張力

以上のほか,噴霧粒群の平均粒径は,式(1)で定義 した Das で表わす。

 $(D_{ab})^{a-b} = \sum n D^a / \sum n D^b$ ……(1) 例えば、 $D_{10} [= \sum n D / \sum n]$ は算術平均粒径, $D_{82} [= \sum n D^8 / \sum n D^2]$ は Sauter 平均粒径 (S.M.D.) である。

3. 液柱微粒化式二流体噴射弁

液流に対する気流の向きによって,これをさらに数 種に分けてのべる。

3.1 平行気流によるもの

1) 抜山・棚沢の研究2)

種々の形状の気孔から常温の空気を大気中へ噴出 し、気孔と同心にとりつけた液孔から気流と平行に流 出する、水・アルコール・グリセリン系の種々の溶液を 微粒化したときの粒の大きさを浸漬受止法³⁾で調べ, つぎの結果を得た。

① 平均粒径は式(2)で与えられる。

$$D_{32}\left[\mu\right] = \frac{585}{V_r} \sqrt{\frac{\sigma}{\rho_l}} + 597 \left(\frac{\mu_l}{\sqrt{\sigma\rho_l}}\right)^{0.45} \left(\frac{1000Q_l}{Q_g}\right)^{1.5} \dots (2)$$

記号と実験範囲はつぎの通り。なお,式(2) は次元 的には正しくないので,単位も併記する。 $V_r(=V_g - V_i)$:相対速度 [m/s, 100~音速], $V_g = Q_g / \left\{ \frac{\pi}{4} (c_o \times d_g)^2 \right\}$, $V_i = Q_i / \left\{ \frac{\pi}{4} d_i^2 \right\}$, c_o は縮流係数で,先細気 孔では1,薄刃および円筒気孔では0.8 とした。 μ_i [poise, 0.01~0.25], ρ_i [gr/cm³, 0.8~1.2], σ [dyne/ cm, 30~73]。

なお式(2)は,液管が気孔外に突き出している場合 でも,管の先端が気流の縮流の範囲内にある限り,適 用できる。

② 噴霧流内の任意の位置における時間的粒度分布 は,式(3)で表わされる。

 $dN = aD^p \exp(-bD^q) \cdot dD$ (3)

N は粒の総数, a, b, p, q は定数で, $Q_0/Q_i > 5,000$ でかつ $V_r > 180$ m/s のときは p=2, q=1 になる。な おaの値は, 粒の総数によっても変化する。

2) Lewis らの研究⁴⁾

スロート直径 2.6 および 12.7 mm の大小 2 つのベ ンチュリ管から種々の気体を大気中へ噴出して,スロ ート入口部に開口した円管からの液流を微粒化し,粒 の大きさを直接受止法で調べた。

このうち,小形ベンチュリ管を用い, $\rho_{l}=1.04$ gr/cm³, $\mu_{l}=9$ cp, $\sigma=34$ dyne/cm の液体 (種類は不明) を微粒 化したときの結果は,つぎの通りである。

① *V_g* および *W_g/W_i* が等しい場合には, *H_g* が大きいほど *D*₃₂ が大きくなる (図 1)。

② ρ_{g} の小さな H_{e} (0.17 gr/l) を用いたときの粒 径は, ρ_{g} の大きな N_{2} (1.2 gr/l) のときの約2倍であ る。この際 V_{g} は, H_{e} では 330 m/s, N_{2} では 213 m/s であったので,両者の V_{g} を等しくした場合には, この傾向がさらに著しくなるであろう。

これは、 ρ_g の影響についての数少ない研究の一つ であるが、試みに、 $\rho_g \ge Q_g \ge 0$ 、 を求め D_{32} を W_g/W_l で整理してみたのが 図 2 で、この図によ

(198)

図 2 Pg の影響 の, Wg/Wi による整理

り、③項の結果はつぎのように換言される。すなわち、 "たとえ P_{g} が異なっても W_{g}/W_{l} が等しければ、 V_{g} が大きいほど粒が細かくなる"。したがって、 P_{g} その ものの影響についてはさらに研究する必要があろう。

他方,大形ベンチュリ管を用い,Fog oil (約 43°C における $\rho_l=0.89$ gr/cm³, $\mu_l=97$ cp, $\sigma=27$ dyne/cm) を約 480°C のエンジン排気で微粒化したときの結果

は,つぎの通りである。

 実測値は,式(2)による計算値に比べ著しく小 さい。ただし計算に当っては, Fog oil の温度を約 43°C とした。

 ④ 粒度分布は式 (3) にしたがう。ただし 10 µ 以 下の粒を除く。

3) 前沢らの研究5)

図 3 の噴射弁を用い大気中でとけた「ろう」を微 粒化し、粒度分布は Rosin-Rammler の式にしたがう ことを示すとともに、粒径についてのつぎの実験式を 得た。

 $D_M[\mu] = 34(W_g/W_l)^{-0.65}$ (4)

ただし実験条件はつぎの通り。 $d_g=1\sim3 \text{ mm} (4 種)$, $d_l=1$, 1.5 mm, $P_g=0.8\sim4.3 \text{ kg/cm}^2 G$, $W_g=0.35\sim$ 12.7 kg/h, $W_l=6\sim18 \text{ kg/h}$, $W_o/W_l=0.06\sim2$, $\nu_l=$ $3\sim10 \text{ cst.}$

4) 宮坂の研究6)

薄刃気孔からの空気噴流により、気孔と同心にとり つけた液孔からの水を微粒化し、噴霧の拡がりに及ぼ す粒径と周囲空気の流動速度 Vs の影響を調べた。た だし、周囲空気は常温常圧で、その流動方向は噴霧流 と同じである。

① 微粒化が著しく悪いときは噴霧の拡がりが狭い

(199)

が, Wi の減少その他により微粒化が改善されるにつ れてこれが拡がり, 微細になれば再び狭くなる。

② 噴霧角 9s を 図 4 に示す。曲線1はもっとも 拡がったとき,2は粒が微細なときである。

5) その他

Conroy $ら^{\eta}$ は, スロート直径 6.4 mm のベンチュ リ気孔を用いてとけたイオウを予熱空気(144℃) で 微粒化し、つぎの実験式を得た。ただし、式(5)はス ロートにおける空気速度が亜音速の場合に, また式 (6) は音速の場合に、適用する。

$$D_{32}[\mu] = 337 \left(1 + \frac{W_l}{W_g} \right) / W_g^{0.9} \quad (\text{m} \neq \text{m}) \cdots (5)$$
$$D_{32}[\mu] = 8,240 \left(1.5 + \frac{W_l}{W_g} \right) / W_g^{1.53} \quad (\text{f} = \text{m})$$
$$\cdots \cdots (6)$$

両式中の Wg の単位は kg/h とする。

また Golitzine ら⁸⁾ は、 $d_g=3.2 \sim 7.5 \, \text{mm} \, \text{の} \, 3 \, \text{種} \, \text{0}$ 円筒気孔を用いて水を空気で微粒化し、粒径は dg0.4 に比例するとの結果を得た。

3.2 傾斜気流によるもの

1) Ingebo の研究⁹⁾

図 5 に示す要領により, 直径 2.3 mm の管から流 出するエタノールをその両側に設けた円管からの窒素 ガス流で微粒化し,酸化剤に液体酸素を用い約3.5 ata の下で燃焼中のエタノール粒を直接撮影法によって調 べ、つぎの結果を得た。

① Wg/Wi が約 0.57 のときの D30 は 176 µ で, W_0/W_l が小さいと D_{30} が大きくなる。

② 粒度分布は式(3)にしたがう。

2) 筆者らの研究10)

図 6a は、ボイラその他に広く用いられている Yjet 形噴射弁で, 液孔 1, 気孔 2 および混合室 3 は У 字形を形成し、混合室の数は通常4~6とする。筆者 らは, 図 6b の単孔式噴射弁を用い大気中で水を空 気で微粒化したときの噴霧特性を調べ、つぎの結果を 得た。なお粒試料は、浸漬受止法によって採取した。

図 8 最大粒径 Dmax¹⁰⁾

32

(200)

① 噴霧流は、ごく一部の作動条件下のほかは、粗 大な粒が密集した条(すじ)を伴なう。条の発生条件 と発生位置は、*Wo/Wi*の値によって決まり *Wi*には 無関係である(図 7)。

② 条がある場合には、粒が粗大になる。一例として、Wi=1gr/s のときの Dmax を、図 8 の曲線1で示す。

③ 液孔が混合室に接線的な場合には、噴霧流は常に条を伴ない、また $W_t=1$ gr/s のときの D_{\max} は図 8 の曲線 2 で表わされる。

④ 噴霧の拡がり角は約 20°, D_{max}/D₃₂≒3.3 である。

3.3 直角気流によるもの

1) Lewis らの研究⁴⁾

スロート直径 82 mm の大形ベンチュリ管を用い, スロートの円周上に設けた多数の孔から求心的に液体 を噴出し,これを高温のエンジン排気ガスで微粒化し た。粒径は直接受止法で調べたが,それによると, D_{32} は式 (2)による計算値にほぼ等しい。

ただし、用いた液体(種類は不明)の約 43°C にお ける性状は、 $\rho_t=1.03 \text{ gr/cm}^3$ 、 $\mu_t=6.3 \text{ cp}, \sigma=34 \text{ dyne/}$ cm で、スロートにおけるガスの温度は約 800°C、 P_g はほぼ大気圧、 V_g は約 270 および 410 m/s とした。

2) Bitron の研究11)

スロート直径約 2.8 mm の数種のベンチュリ管から,空気を大気中へ超音速 (460~680 m/s) で噴出し, ベンチュリ管の出口直後に設けた d_i =0.32 mm の液 孔からの Dibutyl phthalate を微粒化した。それによ ると, D_{32} は式 (2) による計算値にほぼ等しく,また 粒度分布は Upper-limit Eq.¹²⁾ にしたがう。

微粒化用空気は、脱湿した後 110~245°C に予熱し て、スロートで約 10°C になるようにし、粒試料は、 噴霧流の速度が約 120 m/s に低下した位置で直接受止 法により採取したが、 D_{32} は 3.7~10.4 μ の範囲であ った。

3) Ingebo らの研究18)

図 9 に示す要領により、 平板中央の液孔から噴出

する水, ベンゼンその他の液体を大量の空気流で微粒 化し, 噴霧の粒度分布, D_{30} , D_{max} を表わすつぎの実 験式を得た。この際, 気流の温度は $30 \sim 540$ °C, 圧力 は大気圧(ただし一部の実験は 0.7 ata および 1.7 ata) とし, 局所平均粒径は直接撮影法により, 分散量分布 は捕集管により測定した。

$$\frac{dR}{dD} = 10^{6} \frac{D^{5}}{D_{\max}^{6}} (W_{e}/R_{e})^{0.24} \\ \times \exp\left\{-22.3 \left(\frac{W_{e}}{R_{e}}\right)^{0.04} \frac{D}{D_{\max}}\right\} \\ \dots \dots (7) \\ D_{30} = 3.9 d_{I} (W_{e}/R_{e})^{0.25} \dots \dots (8) \\ D_{\max} = 22.9 d_{I} (W_{e}/R_{e})^{0.29} \dots \dots (9)$$

ここに, R は直径が D より大きな粒の総体積, $R_e = V_g d_l / \nu_l$, $W_e = \sigma / (\rho_g V_g^2 d_l)$ で,実験条件はつぎの 通り。 $d_l = 0.25 \sim 1.02$ mm, $V_g \rightleftharpoons 30 \sim 210$ m/s, $V_l = 11$ ~ 61 m/s, $\rho_g = 0.46 \sim 1.97$ gr/l, $\rho_l = 0.64 \sim 1.60$ gr/cm³, $\mu_l = 0.29 \sim 1.6$ cp, $\sigma = 16 \sim 71$ dyne/cm.

4) Goodrum らの研究¹⁴⁾

図 10 に示すように,密度可変式極超音速風洞の気 流中に平板1をとりつけ,約 27°C の水を2なる位置 から上向きに噴出し,3なる断面内の噴霧の D_{32} を 光散乱法で直接測定した。この際, $d_i = 0.5$, 1.3, 3.1 mm, $V_i = 25 \sim 61$ m/s, $V_g = 1,210$ m/s, Mach 数= 8 とした。

① 図 11 に示すように, D_{32} は, P_g が小さく d_l

(201)

33

が大きいほど、大きくなる。 ρ_g がかなり大きい場合 に得た、亜音速流についての Ingebo の結果¹³⁾および 超音速流についての Volynskiy の結果を、図の ρ_g の 範囲まで拡張したのが、図の実線および点線である。

D₃₂は V₁によって変わらない。

なお、気流内へ液管を挿入した場合、直角気流式は 平行気流式に比べ、一般に取り扱いが厄介で微粒化特 性が悪くなりやすい¹⁵⁾¹⁶⁾。また、直角気流式における 液柱の分裂の模様と速度については、変圧下での Clark の研究¹⁷⁾がある。

3.4 逆向き気流によるもの

Ingebo¹⁸⁾ は, V_o が 43 および 55 m/s の常圧の空気 流中へイソオクタンを逆向きに噴射し,噴霧の粒径を 直接撮影法で調べた。平均粒径は D_{20} で表わしたが, Graves ら¹⁹⁾ は, 粒度分布が式 (3) にしたがうものと 仮定してこれから D_{32} の値を求め,式(2) による計算 値と比較した。

それによると、 $V_g=55$ m/s のときは両者がほぼ一 致するが、43 m/s のときの実測値は計算値よりも小さい。

4. 液膜微粒化式二流体噴射弁

液膜をつくる方法によって、数種に分けてのべる。

4.1 液体自身の旋回による液膜

1) うず巻噴射弁式

気体の代表的噴出要領を図12に示す。1はうず巻 噴射弁によってつくられた中空円すい状液膜,2は円 環状隙間で,気体は一般に旋回させ,その方向はうず 巻室内の液体のそれと反対にする。

Fraser²⁰⁾²¹⁾は、隙間 2 の内側の噴射弁正面を球状の 凹面にしたものを、とくに Vortex cup 式と名づけた。 cup 直径が 25.4 mm (1^{''}) のものを用い水を空気で 微粒化したときの実験結果もある δ^{310} , cup 直径約 51 mm (2^{''}) のものを用い、 $P_{g} = 0.7 \text{ kg/cm}^{2}$ G, $P_{i} =$ 0.07~0.11 kg/cm²G, $W_{i} = 77 \sim 104 \text{ kg/h}$ とし、とけ た「ろう」を空気で微粒化したときの Shell 石油社の 実験結果³³⁾を、図 13 の曲線 A で示す。他の曲線

は参考用で, *B* は単孔式 Vortex cup (図 19), *C*は NGTE 式 (図 17)の大形, *D* は同じく小形につい ての結果である。

なお、うず巻噴射弁式における気体の噴出要領には、 図 12 の円環状隙間の代わりに多数の小孔を設けたも のもあり、この場合には、噴出方向を液膜のそれとほ ぼ同じとし、液膜との衝突角を小さくしている。

2) Wigg の研究²⁴⁾

供試噴射弁の構造を 図 14, 寸法を 表 1 に示す。 これは, 旋回を与えられた液体が液管の出口端面上を 膜状に拡がり,これに直角に気流を吹きつけるもので, 水を空気で微粒化したときの D_M は式(10) で表わさ れる。ただし,式中の do の単位は cm とする。

 $D_{M}[\mu] = 4 + (58 + 8.5 d_{0}^{1.5})/(W_{g}/W_{l}) \cdots (10)$ 実験では、 P_{g} は約 1.6 kg/cm²G とし、 W_{l} と W_{g}/W_{l} は表 1のように変化した。

図 14 供試噴射弁24)

表1 噴射弁寸法と作動条件24)

記号	d_0	h	$(W_l[gr/s] \times W_g/W_l)$ の範囲
Α	12.7	2.16	$(35 \times 1.8) \sim (48 \times 1.3)$
В	25.4	4.32	$(91 \times 2.6) \sim (216 \times 1.0)$
С	35.9	6.11	$(202 \times 2.7) \sim (345 \times 1.65)$

34

(202)

図 15 供試噴射弁25)

3) Lefebvre らの研究²⁵⁾

図 15 は、ガスタービンを対象として開発したもの で、1 は燃焼器内筒の頭部空気流入孔を示し、4本の スポーク3とらせん溝4を経て旋回室5へ流入した燃 料は、旋回室出口端から膜状で流出し、膜の両面にほ ぼ同量の燃焼用一次空気を吹きつける。

図 16 は、水とケロシンを常温常圧の空気で微粒化 したときの特性例で、点線は式(2)による計算値であ る。 $W_g/W_i=3$ のときは、図の場合($W_g/W_i=5$)よ り粒径が約 30% 大きくなるが、これが9のときは図 と大差がない。なお粒試料は、噴射弁の下流約 2.4 m の位置で MgO 痕跡法により採取した。

単純式うず巻噴射弁 (Simplex swirl atomizer) では, 燃料流量が少なく噴射圧力が低いときに噴霧特性が悪 化するので,一般に行なわれているように,このとき に微粒化用気体を併用すれば,広い流量範囲にわたり 噴霧特性を良好に保つことができる。しかし,微粒化 用気体の使用についての Lefebvre らの考えかたはこ れとは異なり,燃料流量の少ない範囲は小容量のうず 巻噴射弁(ボス2の先端にとりつける)で賄い,燃料 流量が多くなれば 図 15 の噴射弁を併用しようとす るもので,Lefebvre らはこの組み合わせを"Airspray 式"と名づけた。

なお液体旋回式には、以上のほか、G.E. 社で開発 した Pintle-vortex 形²⁶⁾ その他がある。

4・2 隙間から流出する液膜

1) NGTE における研究^{27,28)}

図 17 は、イギリスの国立ガスタービン研究所 (NGTE) で開発した噴射弁で、噴霧の拡がり角は約 40°である。大気圧下で、とけた「ろう」を空気で微 粒化したときの粒径は 図 13 の曲線 *C*の通りで、ま た粒度分布は式(11)で表わされる。

m はパラメーターで、実験に当っては、液体噴出口の隙間を 0.25 および 0.50 mm, $\nu_l = 20$ および 40cst, $P_g = 0.7 \sim 3.5 \text{ kg/cm}^2\text{G}$, $P_l = 1.4 \sim 7.0 \text{ kg/cm}^2\text{G}$ とした。

図 17 とほぼ相似な, 噴孔直径 3.2 mm の噴射弁 の特性は 図 13 の曲線 D の通りで, これら 2 つの 噴射弁の特性から, $D_{32} \propto (噴孔直径)^{0.5}$ なる関係を得 た。

2) Fraser らの研究²⁹⁾

図 18 は、弁先端の隙間2から流出する円板状の液 膜を、スリーブ3とノズル4とで形成される円環状噴 気口からの気流によって微粒化するもので、隙間2の 幅は 50~300 µ の範囲で変えることができ、またスリ

図 17 NGTE 式噴射弁27)

(203)

ーブとノズルも交換可能である。

Fraser らは V_g =30~92 m/s, W_l =15~68 gr/s, W_g/W_l =1~3 とし, 大気中で水を空気で微粒化した ときの噴霧の瞬間写真から, つぎの点を 明らかにした。

① 液膜の分裂機構は、空気/水のモーメンタム比によって異なり、これが約18以下では膜面の波立ちにより(ただし、この比がごく小さい範囲を除く)、それ以上では気流と液膜との共振によって分裂する。

② 後者の機構で生成した噴霧は、前者の場合に比べ粒が粗大でかつ分散が悪い。したがって、空気のモーメンタムを過大にすると、分裂機構の変化に伴ない、かえって噴霧特性の悪化を招く。

③ 円環状噴気ロの面積が一定な場合,直径が大きく幅の狭い噴気ロのほうが,粒が細かく分散もよい。

④ 気流に旋回を与えると,粒が細かく分散がよく なる。

4・3 回転コップからの液膜

1) Fraser らの研究^{30,31)}

コップからの液膜を,コップの外側に設けた円環状 隙間から噴出する気流で微粒化し,平均粒径について のつぎの半理論式を得た。

$$D_{32} = 6 \times 10^{-4} + \frac{0.59\sigma^{0.5}R_{*}^{0.21}}{\rho_{g^{0.5}}(ad_{0} + a^{2})^{0.25}} \left\{ 1 + \frac{0.065}{R_{W}^{1.5}} \right\} \\ \times \left\{ \frac{Q_{l}}{V_{T^{3}}(0.5R_{V}^{2} - R_{V} + 1)} \right\}^{0.5} \dots \dots (12)$$

なお,式(12)の誘導に際して用いたデータは、 d_0 =約 102 mm(4")、 V_g =29~200 m/s、 W_g =22.6~454 kg/h、 W_i =113~454 kg/h、 R_W =0.17~3.8 とし、大気圧下で ν_i =5~165 cst の油を空気で微粒化した場合のもので、 D_{32} は光吸収法により直接測定した。

2) Ochmann の研究³²⁾

直径 43 mm のコップにとけた「ろう」を供給し, コップの外側に設けた円環状隙間から空気を噴出した 場合としない場合の粒径を調べ,双方の場合に適用で きる式(11)を得た。実験は大気中で行ない,コップ回 転数=3,420~10,120 rpm, $Q_g=20~120 \text{ m}^3/\text{h}$, $Q_t=$ 15~100 l/h, $V_g=68~240 \text{ m/s}$ (ただし噴出した場合), $\nu_t = 4.8~7.5 \text{ cst}$ としたが,式(13)は ±20% の公差

図 19 単孔式 Vortex Cup^{20),21)}

で市販のコップに適用できるといわれる。

$D_M = 0.62\delta Z^{-1/6} (I_0/I)^{0.38} \dots (13)$

ただし Z は微粒化特性数, I は微粒化用空気の Impulse, δ はコップ外縁上の液膜の厚さで, それぞれ 次式で与えられる。

 $Z = \sqrt{W_e}/R_e, \quad R_e = V_p r_0/\nu_l, \quad W_e = \rho_l V_p^2 r_0/\sigma$ $I = \rho_g Q_g V_g, \quad \delta = \{3Q_l \nu_l/(2\pi V_p^2 \sin \beta)\}^{1/3}$ $\dots \dots (14)$

ここに r_0 : コップ半径, V_p : コップ周速, β : コッ プ開き角の 1/2, また I_0 は, $V_0=0$ のときに液膜が 周囲空気からうける Impulse で,本実験では次式で与 えられる。

$$I_0 = 0.087 (V_p/20)^{1.85}$$
(15)

ただし式(15)では, L の単位は kg, V_p は m/s と する。

4・4 旋回気流による液膜

前述の Vortex cup 式には, 図 19 の単孔式があ る^{20),21)}。孔 1 からの液体は,噴射弁正面に形成される 環状うず 2 により壁面 3 に沿って膜状に拡がり, これ に,隙間 4 からの気流を吹きつける。 $P_{g}=0.7$ kg/cm²G, $P_{i}=1.26\sim2.4$ kg/cm²G, $W_{i}=77\sim104$ kg/h とし,大 気中で $v_{i}=40$ cst のとけた「ろう」を空気で微粒化し たときの粒径²³⁾を, 図 13 の曲線 *B* で示す。

旋回気流により液膜をつくる方式には、以上のほか、 G.E. 社の機関車用ガスタービンの Air swirl 式³³⁾そ の他がある。

5. む す び

二流体噴射弁は,溶融金属の微粒化による金属粉末 の製造,金属溶射,塗装,食品類の噴霧乾燥,農薬撒 布,医療などにも広く用いられているが,本文では, 液体燃料の燃焼を目的とした二流体噴射弁を中心と し,これを,液柱微粒化式と液膜微粒化式とに大別し, 代表的噴射弁の構造と噴霧特性の概要をのべた。二流 体噴射弁の流量特性は実用的見地から,また気流によ って液体が分裂する際の模様,機構および速度は噴霧

(204)

36

特性の理解や超音速燃焼などに関連して,それぞれ重 要であるが,本文では紙数の関係上,これらをすべて 省略した。

本文はこのような内容のものであるが,この方面に 関心を持たれる方々にとって多少の参考になれば幸い である。

なお,前述の新形式複合機関に用いる二流体噴射弁 は多孔式のYジェット形とし,目下,その特性を調べ るとともに本噴射弁を備えた高温燃焼器について実験 中である^{10,84)}。

参考文献

- Miwa, K.: Investigation into a novel gas-turbine cycle with an equi-pressure air heater, Papers of Ship Research Institute, No. 22 (1967-9).
- 抜山,棚沢: 空気による液体微粒化の実験(第 1報),機械学会論文集,4-14(昭 13-2),86; 同(第2報),同5-15(昭 13-5),138;同(第 3報),同5-18(昭 14-2),63;同(第4報), 同5-18(昭 14-2),68;同(第5報),同6-22 (昭 15-2),7.
- 3) 本文中の各種粒径測定法については下記参照. 根矢: ガスタービンの燃焼に関する計測法,機 械学会第 210 回講習会教材(昭 39-4), 119;同, 船研報告, 2-2(昭 40-3), 73.
- 4) Lewis, H. C. (E⊅>: Atomization of liquids in high velocity gas streams, Ind. Engng. Chem., 40-1 (1948-1), 67.
- 前沢: 液体燃料の噴霧流燃焼に関する研究(第 1報),機械学会論文集,31-225(昭 40-5),799;
 同,機械学会第 39 期総会講演会前刷集 No. 67 (昭 37-4),13.
- 宮坂: 気流噴霧器の設計について(第2報),機 械学会論文集, 17-58(昭26), 102.
- Conroy, E. H. (ED): Combustion of sulfur in a venturi spray burner, Ind. Engng. Chem., 14-12 (1949), 2741.
- 8) Golitzine, N. ほか: Spray nozzles for the simulation of cloud conditions in icing tests of jet engines, Report No. 14, Nat. Aero. Est. (Canada), 1951 [文献 19) に引用]
- Ingebo, R. D.: Relation of atomization and rocket combustor performance, Chem. Engng. Progress, 58-4 (1962-4), 74.
- 10) 根矢ほか: Yジェット形噴射弁の研究(第1報) 船舶技研第10回研究発表会講演概要(昭 43-5) 127.
- Bitron, M. D.: Atomization of liquids by supersonic air jets, Ind. Engng. Chem., 47-1 (1955-1), 23.
- 12) Mugele, R. A. ほか: Droplet size distribution

in sprays, Ind. Engng. Chem., **43**-6 (1951-6), 1317.

- Ingebo, R. D. (E☆): Drop-size distribution for crosscurrent breakup of liquid jets in airstreams, NACA TN 4087 (1957-6).
- Goodrum, P. (Et/2): Mean droplet size for crossstream water injection into a Mach 8 air flow, J. Spacecraft, 4-4 (1967-4), 534.
- 15) 棚沢: 空気による液体微粒化の実験(第6報), 機械学会論文集, 6-23(昭 15-5), 18.
- Hrubecky, H.F.: Experiments in the air-stream atomization phenomena, Priprints of papers, Heat Transfer and Fluid Mech. Inst. (1954-6/7), 263. 〔文献 19) に引用〕.
- Clark, B. J.: Breakup of a liquid jet in a traverse flow of gas, NASA TN D-2424 (1964-8).
- Ingebo, R. D.: Vaporization rates and drag coefficients for isooctane sprays in turbulent air streams, NACA TN 3265 (1954).
- 19) Graves, C. C. (ED): Atomization and evaporation of liquid fuels, NACA Report 1300 (Basic considerations in the combustion of hydrocarbon fuels with air, 1957), 1.
- Fraser, R. P.: Liquid-fuel firing, Proc. Joint Conf. on Combustion, IME and ASME (IME, 1955), Sect. II, 76.
- Fraser, R. P.: Liquid fuel atomization, Proc. 6th Symp. on Combustion (Reinhold Pub. Corp., 1957), 687.
- Eisenklam, P.: Atomization of liquid fuel for combustion, J. Inst. Fuel, 34-243 (1961-4), 130.
- 23) Shell, Private communication 〔文献 20)~22) に 引用〕
- Wigg, L. D.: Drop-size prediction for twin-fluid atomizers, J. Inst. Fuel, 37-286 (1964-11), 500.
- 25) Lefebvre, A. H. (₹⊅: The development of an air blast atomizer for gas turbine application, Co A Report Aero No. 193 (College of Aeronautics, 1966-6).
- 26) Buckland, B.O. ほか: Combustion system for burning bunker C oil in a gas turbine, ASME Paper No. 48-A-109.
- Clare, H. (ED): An air-blast atomizer for use with viscous fuels, J. Inst.Fuel, (1954-10), 510.
- 28) Heath, H. ほか: The performance of an air blast atomizer, Report No. R 71 (British NGTE, 1950-6) 〔文献 21) 27) に引用〕
- 29) Fraser, R. P. (±⊅²: The mechanisms of disintegration of liquid sheets in cross-current air streams, Appl. sci. Res., 12, Sect. A (1963), 143.
- 30) Fraser, R. P. (±⊅³: Performance characteristics of rotary cup blast atomizers, J. Inst. Fuel, 36-271 (1963-8), 316.

(205)

- Eisenklam, P.: Die Zerstäubung von Schweröl in hochbelasteten Brennkammern, B.W.K., 16-11 (1964-11), 560.
- Ochmann, J.: Einfluss der Primärluft auf die Zerstäubung bei Rotations-brennern, VDI-Berichte Nr. 95 (1966), 105.
- 33) Macauley, R. W. ほか: Increased life for gas

turbine combustion systems burning residual fuel, ASME Paper No. 56-GTP-11.

 34) 根矢ほか: 高温燃焼器の研究(第1報),船舶 技研第8回研究発表会講演概要(昭 42-5),156; 同(第2報),同第10回研究発表会講演概要(昭 43-5),131.