							N'								
N	1	2	3	Ŀ	5	6	7	8	9	10	11	12	13	14	15
1	1.782-2	1.684-2	8.735-3	7.327-3	1.581-2	8.345-3	5.602-3	7.976-3	5.630-3	4.584-3	4.932-3	3.384-3	2.585-3	3.544-3	2.474-3
2		1.644-2	2.358-2	9.517-3	1.358-2	7.093-3	8.918-3	6.965-3	7.338-3	4.438-3	4.111-3	4.328-3	2.861-3	3.086-3	3.434-3
3			1.489-2	2.228-2	1.697-2	6.356-3	5.542-3	8.266-3	5.804-3	7.441-3	5.581-3	4.538-3	4.044-3	3.737-3	3.181-3
4				1.400-2	3.194-2	8.362-3	7.027-3	6.598-3	7.477-3	3.933-3	6.297-3	3.987-3	3.928-3	4.965-3	3.602-3
5					2.264-2	1.651-2	9.207-3	8.603-3	6.618-3	5.981-3	5.981-3	5.088-3	4.701-3	4.604-3	4.342-3
6						1.271-2	2.697-2	1.279-2	8.176-3	6.957-3	5.609-3	7.209-3	4.169-3	6.789-3	4.456-3
7							1.388-2	3.363-2	9.661-3	7.615-3	7.141-3	5.886-3	6.556-3	5.863-3	6.733-3
8								9.828-3	1.615-2	6.639-3	6.925-3	6.622-3	4.700-3	7.800-3	4.580-3
9									7.352-3	1.570-2	7.759-3	7.070-3	6.146-3	6.379-3	7.393-3
اەد										9.307-3	2.284-2	9.396-3	6.899-3	8.704-3	6.040-3
11											8.667-3	2.445-2	8.278-3	9.486-3	7.615-3
12												9.936-3	2.618-2	1.444-2	8.535-3
13											•• *	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	7.028-3	4.997-2	1.214-2
14														7.936-3	2.244-2
15															7.546-3

Table 4 - 3e Matrix Elements for the Current of Neutrons Reflected from the Bottle Region of the EXCELLOX-3 Cask

- 78 -

Table 4 - 3e Matrix Elements for the Current of Neutrons Reflected from the

Bottle Region of the EXCELLOX-3 Cask

П						•	N '								
N	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
ı	2.149-3	1.635-3	3.395-3	2.461-3	2.190-3	1.522-3	1.784-3	1.559-3	1.982-3	1.748-3	2.109-3	1.959-3	2.764-3	2.600-3	3.695-3
2	2.392-3	1.691-3	3.814-3	2.788-3	2.249-3	1.789-3	1.996-3	1.699-3	2.233-3	1.951-3	2.344-3	2.186-3	3.074-3	2.887-3	4.091-3
3	3.538-3	2.009-3	4.108-3	3.524-3	2.608-3	2.148-3	2.386-3	2.009-3	2.650-3	2.308-3	2.773-3	2.585-3	3.626-3	3.397-3	4.799-3
4	3.272-3	3.018-3	4.690-3	4.227-3	3.114-3	2.248-3	2.896-3	2.329-3	3.062-3	2.676-3	3.197-3	2.978-3	4.164-3	3.889-3	5.471-3
5	3.877-3	2.532-3	5.926-3	4.206-3	3.898-3	2.602-3	3.290-3	2.792-3	3.503-3	3.177-3	3.750-3	3.486-3	4.870-3	4.537-3	6.360-3
6	4.399-3	3.708-3	6.329-3	5.644-3	4.382-3	3.465-3	3.758-3	3.536-3	4.238-3	3.869-3	4.542-3	4.186-3	5.836-3	5.397-3	7.501-3
7	4.477-3	3.671-3	7.679-3	6.782-3	4.655-3	4.115-3	4.365-3	4.013-3	4.877-3	4.406-3	5.175-3	4.739-3	6.589-3	6.058-3	8.362-3
8	6.453-3	3.418-3	8.571-3	6.190-3	5.708-3	3.936-3	5.204-3	4.094-3	5.614-3	4.801-3	5.812-3	5.292-3	7.358-3	6.764-3	9.328-3
9	4.365-3	5.710-3	8.890-3	7.324-3	6.805-3	4.206-3	5.955-3	4.586-3	6.338-3	5.375-3	6.551-3	5.932-3	8.204-3	7.506-3	1.028-2
10	7.422-3	3.967-3	1.043-2	9.101-3	6.577-3	5.643-3	6.449-3	5.469-3	7.181-3	6.094-3	7.398-3	6.659-3	9.143-3	8.300-3	1.126-2
11	5.725-3	6,582-3	1.213-2	8.891-3	7.712-3	6.543-3	6.541-3	6.534-3	7.892-3	6.884-3	8.228-3	7.381-3	1.007-2	9.084-3	1.224-2
12	7.461-3	5.130-3	1.200-3	1.091-2	9.343-3	5.876-3	8.355-3	7-225-3	8.453-3	7.930-3	9.120-3	8.181-3	1.106-2	9.903-3	1.321-2
13	8.477-3	7.046-3	1.446-2	1.218-2	9.263-3	7.492-3	9.299-3	7.163-3	9.808-3	8.651-3	9.737-3	8.854-3	1.175-2	1.041-2	1.371-2
14	7.990-3	6.386-3	1.281-2	1.142-2	1.051-2	8.501-3	9.310-3	8.013-3	1.088-2	9.528-3	1.081-2	9.945-3	1.315-2	1.173-2	1.544-2
15	1.858-2	6.597-3	1.448-2	1.288-2	1.111-2	7.256-3	1.017-2	9.557-3	1.185-2	1.009-2	1.191-2	1.081-2	1.424-2	1.264-2	1.652-2

- 79 -

Table 4 - 3e Matrix Elements for the Current of Neutrons Reflected from the Bottle Region of the EXCELLOX-3 Cask

	· ·	<u>.</u>					N'								
N	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
16	7.966-3	1.477-2	1.560-2	1.184-2	1.094-2	9.703-3	1.166-2	1.037-2	1.298-2	1.080-2	1.339-2	1.188-2	1.558-2	1.372-2	1.779-2
17		1.205-2	4.564-2	1.626-2	1.380-2	1.044-2	1.313-2	1.055-2	1.425-2	1.288-2	1.465-2	1.277-2	1.652-2	1.425-2	1.811-2
18			2.223-2	2.192-2	1.213-2	1.034-2	1.331-2	1.229-2	1.571-2	1.411-2.	1.621-2	1.400-2	1.851-2	1.586-2	2.007-2
19				1.526-2	1.715-2	9:559-3	1.382-2	1.283-2	1.798-2	1.585-2	1.860-2	1.650-2	2.133-2	1.807-2	2.260-2
20	. 1				1.229-2	1.406-2	1.325-2	1.367-2	2.011-2	1.794-2	2.118-2	1.883-2	2.397-2	2.003-2	2.478-2
21	1					9.296-3	1.651-2	1,393-2	1.983-2	2.000-2	2 hh7_2	2 000-2	2 661 2	2 201 2	0 696 0
22							1.149-2	1.484-2	2.069-2	2 100-2	2 550-2	2.030-2	2.004-2	2.204-2	2.000-2
23								1.024-2	2,055-2	2.156-2	2.833-2	2.636-2	3 273_2	2 687-2	2.909-2
24									1,314-2	2.079-2	2.930-2	2.823-2	3 715-2	3 006-2	3 1.85 3
25										1.242-2	2,803-2	2.968-2	4.190-2	3.386-2	3 013.0
26			[.										2-200-2	2-213-2
27										•••	1.546-2	2.866-2	4-455-2	3.901-2	4.471-2
28												1.531-2	4.417-2	4.354-2	5.153-2
20	н. 1911 - Ал		· . ·	19 J.			19 A.						2.426-2	4.524-2	6.033-2
30					.		1		•					2.433-2	6.708-2
				1				·							4.121-2
-			N'				NI					I	l		
n	31	32	T		30			T	<u>.</u>						
-					36	N	31	32	<u> </u>						
1	3.860-3	4.781-2	16	1.683-2	1.207-1	31	4.760-2	2.989-1							
2	4.260-3	5.142-2	17	1.679-2	1.117-1	32		3.412-1							
3	4.978-3	5.846-2	18	1.851-2	1.207-1	1.0									
4	5.648-3	6.439-2	. 19	2.054-2	1.266-1		÷.,								
5	6.537-3	7.209-2	20	2.218-2	1.297-1		· . · ·								
6	7.638-3	7.956-2	21	2.370-2	1.322-1	·	-	· .							
7	8.452-3	8.443-2	22	2.523-2	1.345-1										
.	9.415-3	9.305-2	23	2.698-2	1.373-1										
8		3													4.1
8	1.031-2	9.794-2	24	2.920-21	1.410-1										
8 9 10	1.031-2 1.117-2	9.794-2 1.005-1	24 25	3.227-2	1.476-1		·. · · ·								
8 9 10	1.031-2 1.117-2 1.204-2	9.794-2 1.005-1 1.038-1	24 25 26	3.227-2	1.476-1		•		•						
8 9 10 11	1.031-2 1.117-2 1.204-2	9.794-2 1.005-1 1.038-1 1.054-1	24 25 26 27	2.920-2 3.227-2 3.609-2	1.476-1 1.476-1 1.559-1		·. · ·								
8 9 10 11 12	1.031-2 1.117-2 1.204-2 1.286-2 1.318-2	9.794-2 1.005-1 1.038-1 1.054-1 1.022-1	24 25 26 27 28	2.920-2 3.227-2 3.609-2 4.129-1	1.416-1 1.476-1 1.559-1 1.672-1		· · · ·		•						
8 9 10 11 12 13 14	1.031-2 1.117-2 1.204-2 1.286-2 1.318-2	9.794-2 1.005-1 1.038-1 1.054-1 1.022-1 1.143-1	24 25 26 27 28 29	2.920-2 3.227-2 3.609-2 4.129-1 4.860-2	1.476-1 1.476-1 1.559-1 1.672-1 1.824-1		· · · ·								
8 9 10 11 12 13 14	1.031-2 1.117-2 1.204-2 1.286-2 1.318-2 1.483-2 1.483-2	9.794-2 1.005-1 1.038-1 1.054-1 1.022-1 1.143-1	24 25 26 27 28 29 30	2.920-2 3.227-2 3.609-2 4.129-1 4.860-2 5.962-2	1.416-1 1.476-1 1.559-1 1.672-1 1.824-1 2.064-1 2.064-1										

88

Table 4 - 3e Matrix Elements for the Current of Neutrons Reflected from the

						יא) יא	в) в								
N (N) 33(1)	34(2)	35(3)	36(4)	37(5)	38(6)	39(7)	40(8)	41(9)	42(10)	43(11)	44(12)	45(13) 46(14	47(19
33(_1) 5.621-2	3.520-3	3.761-3	2.831-3	3.493-3	2.169-3	2.684-3	2.300-3	2.868-3	4.058-3	3.542-3	5.273-3	4.397-2	1.729-2	2.196-2
34(2		5.393-2	4.600-3	3.359-3	4.052-3	2.483-3	3.046-3	2.602-3	3.236-3	4.575-3	4.001-3	5.973-3	3.957-2	1.718-2	2.214-2
35(3		111	4.834-2	4.401-3	5.077-3	3.024-3	3.646-3	3.082-3	3.809-3	5.368-3	4.708-3	7.062-3	3.458-2	1.753-2	2.334-2
чб(_4				4.137-2	6.392-3	3.667-3	4.323-3	3.595-3	4.410-3	6.168-3	5.415-3	8.160-3	3.046-2	1.826-2	2.544-2
d7(5					3.759-2	4.341-3	4.992-3	4.080-3	4.944-3	6.856-3	6.012-3	9.091-3	2.737-2	1.913-2	2.814-2
38(6						3.169-2	5.706-3	4.585-3	5.485-3	7.537-3	6.558-3	9.938-3	2.494-2	2.017-2	3.17) 2
39(7							2.856-2	4.9503	5.882-3	8.040-3	6.960-3	1.055-2	2.366-2	2.117-2	3.568-2
40(8	j					1.1	a	2.503-2	6.119-3	8.428-3	7.307-3	1.104-2	2.286-2	2.216-2	4.056-2
41(9									2.248-2	8.533-3	7.549-3	1.143-2	2.246-2	2.303-2	4.639-2
42(10										2.074-2	7.369-3	1.163-2	2.253-2	2.376-2	5.461-2
43(11)											1.767-2	1.003-2	2 248-2	2 288-2	6 256 2
44(12)				5 A.							11101-2	1 706-2	2 106-2	2.300-2	6 218 2
45(13)			- 11							1990 - A.		21100-2	1 067-2	2.550-2	5 666 n
46(14)						•								1 635_2	5652
47(15)														1.037-2	

Bottle Region of the EXCELLOX-3 Cask

	n N	''(N'g)			N' (N'g)	
N (Ng)	48(16)	49(17)	50(18)	N(Ng)			
33(1) 34(2)	2.781-2 2.718-2	1.764-2 1.717-2	4.242-4 4.127-4	48(16) 49(17)	1.364-1	1.488-1 2.744-1	2.882-3 9.316-3
35(3) 36(4)	2.725-2	1.706-2 1.743-2	4.099-4 4.183-4	50(18)			1.393-1
37(5)	2.957-2	1.814-2	4.348-4				
38(6)	3.169-2	1,923-2	4.605-4 4.925-4				
40(8)	3.748-2	2.230-2	5.330-4				
41(9) 42(10)	4.148-2 4.747-2	2.441-2 2.749-2	5.829-4 6.559-4				
43(11) 44(12)	5.624-2 7.356-2	3.144-2	7.497-4 8.814-4		*	···	
45(13)	1.041-1	4.642-2	1.102-3			- · ·	an an Arran A
47(15)	1.717-1	7.538-2	1.740-3				

- 81 -

 \sim

Table 4 - 4	Wall Structu	re of 50-Ton	Energy Group, N	Upper L	imit of Energy Group, <i>E_N</i> (eV)	CFSN (mre	m∕h)	CFSSG (mrem/h)
<u> </u>	Cask at CRII	IPI Cask	1 2 3 4 5		1.4918+7* 1.2214+7 1.0000+7 8.1273+6 6.7032+6	1.554- 1.236- 9.413- 8.294- 6.327-	3 3 4 4 4	3.242-4 2.802-4 2.324-4 1.974-4 1.829-4
Cavity	-	34.3	6 7 8 9		4.4933+6 3.6788+6 3.0199+6 2.4660+6	4.870- 4.651- 4.888- 4.840-	4 4 4 4	1.759-4 1.730-4 1.762-4 1.762-4
	Steel	3.7	11 12		1.6530+6 1.3534+6 1.1080+6	4.033	4	1.732-4 1.750-4 1.679-4
孫 火 2	Lead	14.6	14 15		9.0818+5 7.4274+5	1.945-4 1.945-4 1.400-4	4	1.649-4 1.570-4 1.560-4
C Cas	Steel	8.0	17 18 19 20		4.9787+5 4.0762+5 2.7324+5 1.8316+5	8.340 5.633 3.842 2.640	5	1.338-4 1.4664 1.167-4 9.159-5 6.974-5
4 4	Resin	10.0	21 22 23 24		1.2277+5 8.6517+4 5.2475+4 3.1828+4	1.663-5 9.258-6 5.612-6 1.506-6		5.172-5 3.220-5 2.289-5 8.568-6
	Copper	8-0	25 26 27		1.5034+4 7.1017+3 2.6126+3	7.012-7 1.500-6 1.565-6		5.314-6 1.219-5 1.193-5
adr 9	Copper (Fin)	22.0	28 29 30		9.6112+2 2.1445+2 4.7851+1	1.509-6 1.343-5 6.637-6		8.667-6 6.190-5 3.975-5
INN 7			31 32		5.0435+0 4.1400-1	1.130-6 1.242-9		1.314-5 7.517-7
6 8			Energy Group, N		Upper Limit of Energy E _N (eV)	Group,	с	FSPG (mrem/h)
Regi			33 34 35 36 37		1.0000+7 8.0000+6 6.5000+6 5.0000+6 4.0000+6			2.899-8 3.767-8 4.189-8 3.788-8 2.905-8
(Н	. Yamakosh	i ⁽¹⁾)	38 39 40 41 42	14	3.0000+6 2.5000+6 2.0000+6 1.6600+6 1.3300+6			1.698-8 8.150-9 2.591-9 5.900-10 5.090-11
			43 44 45 46 47		1.0000+6 8.0000+5 6.0000+5 4.0000+5 3.0000+5			8.896-13 9.978-14 8.155-15 9.314-19 3.600-23
			48 49 50		2.0000+5 1.0000+5 5.0000+4			4.379-34 4.879-48 <1.0-50

Table 4 - 5	Calculated Values of Characteristic Functions CFSN,
	CFSSG and CFSPG for 50-Ton Cask at CRIEPI

"Read as 1.4918 × 10⁷

(H. Yamakoshi⁽¹⁾)

- 82 -

ł

	······································							· N' a	•						
. N ^a	. 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 2 3 4 5 6 7 8	1.410-2 ^b	9.919-3 1.611-2	3.559-3 9.636-3 1.991-2	4.314-3 4.102-3 1.069-2 2.435-2	1.542-2 1.341-2 1.133-2 1.981-2 4.490-2	1.555-2 1.327-2 1.192-2 1.054-2 1.687-2 5.878-2	2.040-2 1.815-2 1.646-2 1.613-2 1.381-2 2.601-2 7.661-2	2.702-2 2.566-2 2.338-2 2.410-2 1.892-2 2.101-2 3.795-2 1.040-1	3.210-2 3.327-2 2.971-2 2.897-2 2.832-2 2.353-2 2.696-2 4.386-2	3.603-2 3.819-2 3.420-2 3.340-2 3.463-2 3.022-2 3.022-2 3.080-2 3.080-2	4.243-2 4.266-2 3.807-2 3.740-2 3.919-2 3.637-2 3.745-2 3.745-2 3.925-2	4.934-2 4.688-2 4.275-2 4.249-2 4.541-2 4.526-2 3.671-2 4.904-2	5.602-2 5.142-2 4.629-2 4.530-2 4.862-2 4.862-2 4.824-2 4.193-2 5.220-2	6.431-2 5.659-2 5.068-2 4.895-2 5.271-2 5.303-2 5.367-2 4.809-2 6.086	6.598-2 5.612-2 4.990-2 4.709-2 5.070-2 5.231-2 5.2408-2 4.083-2 4.083-2
9 10 11 12 13 14 15									1.380-1	4.568-2	3.381-2 5.928-2 1.899-1	4.532-2 2.780-2 8.401-2 2.596-1	3.126-2 4.757-2 2.352-2 1.180-1 2.961-1	5.526-2 3.834-2 3.165-2 1.587-1 3.529-1	6.102-2 5.243-2 4.872-2 2.189-2 4.638-2 1.810-1 3.729-1
	16	17	18	19	20	21	22	23	24	25	26	. 27	28	29	30
1 2 3 4 5	$\begin{array}{r} 6.911 - 2 \\ 5.683 - 2 \\ 5.010 - 2 \\ 4.544 - 2 \\ 4.832 - 2 \end{array}$	6.851-2 5.553-2 4.913-2 4.365-2 4.549-2	1.032-1 7.922-2 7.201-2 6.238-2 6.388-2	7.300-2 5.435-2 4.959-2 4.210-2 4.205-2	4.672-2 3.386-2 3.076-2 2.631-2 2.556-2	2.775-2 2.048-2 1.852-2 1.568-2 1.471-2	1.986-2 1.545-2 1.377-2 1.129-2 1.004-2	1.480-2 1.178-2 1.054-2 8.495-3 7.261-3	8.184-3 6.495-3 5.778-3 4.580-3 3.817-3	3.845-3 3.054-3 2.729-3 2.131-3 1.721-3	7.082-4 5.397-4 4.721-4 3.534-4 2.716-4	1.204-3 9.588-4 8.776-4 6.634-4 4.903-4	2.231-4 1.768-4 1.614-4 1.211-4 8.820-5	4.905-4 4.153-4 3.636-4 2.950-4 2.622-4	8.882-4 7.622-4 6.436-4 5.422-4 5.061-4
6 7 8 9 10	5.096-2 5.285-2 3.672-2 5.083-2 5.055-2	4.884-2 5.165-2 4.552-2 4.828-2 4.892-2	6.908-2 7.102-2 7.399-2 6.112-2 8.013-2	$\begin{array}{r} 4.564-2 \\ 4.564-2 \\ 5.043-2 \\ 3.830-2 \\ 4.923-2 \end{array}$	2.759-2 2.756-2 3.114-2 2.325-2 2.739-2	1.571-2 1.559-2 1.756-2 1.293-2 1.608-2	1.047-2 1.017-2 1.127-2 8.906-3 1.177-2	7.408-3 7.162-3 7.828-3 6.390-3 8.112-3	3.834-3 3.703-3 4.028-3 3.326-3 4.114-3	1.699-3 1.641-3 1.782-3 1.472-3 1.751-3	2.642-4 2.549-4 2.811-4 2.230-4 2.528-4	4.571-4 4.421-4 4.782-4 3.962-4 4.357-4	8.127-5 7.873-5 8.498-5 7.065-5 7.549-5	2.539-4 2.494-4 2.502-4 2.474-4 2.515-4	4.944-4 4.865-4 4.836-4 4.889-4 4.943-4
11 12 13 14 15	5.278-2 3.570-2 2.244-2 6.236-2 2.026-1	5.562-2 4.191-2 1.777-2 3.054-2 7.574-2	6.720-2 6.828-2 4.937-2 2.252-2 4.165-2	4.601-2 5.324-2 4.088-2 2.084-2 1.564-2	3.032-2 3.409-2 2.407-2 2.028-2 8.588-3	1.877-2 1.620-2 1.759-2 1.453-2 5.380-3	1.567-2 1.124-2 1.479-2 1.164-2 4.906-3	1.119-2 7.785-3 1.057-2 7.329-3 5.516-3	5.835-3 3.969-3 5.648-3 3.608-3 3.183-3	2.385-3 1.705-3 2.377-3 1.526-3 1.351-3	3.403-4 2.554-4 3.546-4 2.196-4 2.045-4	5.324-4 4.372-4 5.492-4 3.829-4 3.270-4	8.926-5 7.562-5 9.105-5 6.637-5 5.633-5	2.569-4 2.451-4 2.449-4 2.225-4 2.190-4	4.974-4 4.802-4 4.704-4 4.386-4 4.394-4

Table 4 - 6a Elements of Matrices CFRN, CFRSG and CFRPG for 50-Ton Cask at CRIEPI

.

83 |

1

(Continued)

							:	N' ª							
Nª	31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
1	3.140-4	8.921-6	1.992-2	1.118-2	1.998-2	2.221-2	3.557-2	2 413-2	3 161-2	3 267-2	4 343-2	0 373 - 2	5 747 2	6 457 7	1.007.1
2	2.699-4	7.680-6	1.452-3	9.404-3	2.001-2	2.391-2	4.085 - 2	2.736 - 2	3 385-2	3 558-2	4 502-2	9.685-2	6 120 2	6 256 2	1.097-1
3	2.271-4	6.450-6	4.313-4	5.699-3	1.476-2	2.075 - 2	3.744 - 2	2.686 - 2	3.326-2	3466-2	4 228-2	9214-2	6 000 2	6 100 2	1.039-1
4	1.921-4	5.465-6	1.202-4	2.420-3	8.044-3	1.539-2	3.101 - 2	2.606-2	3.087 - 2	3300-2	4 096-2	8.761 - 2	6.050 2	0.190-2	9.398-2
5	1.806-4	5.141-6	9.921-5	1.633-3	1.403-3	6.017-3	1.742 - 2	1.879-2	2330-2	2.696 - 2	3 526-2	7 822 2	5 602 2	0.141-2	8.936-2
6	1 766-4	5 027-6	1 027 _4	1 608 _ 4	5 542 4	7 057 1	6 420 2		1.000	2.070 2	5.526 2	1.022-2	5.003-2	5.762-2	1.020-2
7	1.739 - 4	4 953-6	1.027 - 4	1.000-4	5 884-4	1.032-4	0.428 - 3	1.106-2	1.613-2	2.022 - 2	2.766-2	6.604 - 2	4.873-2	5.258-2	6.507-2
8	1 726-4	4 915-6	1.000 - 4	1 735 _ 3	5.004-4	4.004-4	1.225-3	5.694 - 3	1.017-2	1.424-2	2.341-2	5.623-2	4.160-2	4.845-2	5.799-2
9	1 752-4	4 992-6	1 529-4	1.733 = 3 1.614 = 3	6 684 4	4.707-4	0.009 - 4	1.330-3	4./36-3	9.854-3	1.888-2	4.268-2	3.255-2	4.450-2	5.212-2
10	1 769-4	5 040-6	1.527 - 4	1 860_3	7 610 4	4.004-4	0.1/2 - 4	3.854-4	1.369-3	4.925-3	1.151-2	2.998-2	1.711-2	3.925-2	4.408-2
		5.040 0	1.701 4	1.007-5	7.010-4	0.172-4	1.498-4	3.884-4	5.453-4	1.646-3	5.261-3	2.301-2	2.541-2	3.293-2	3.484-2
11	1.776-4	5.053-6	1.890-4	2.125-3	8.593-4	7.678-4	8.827-4	4.874-4	5.286-4	5.083 - 4	1.815-3	1.844-2	2.282-2	2.598 - 2	2.551 - 2
12	1.717-4 4	4.884-6	4.970-5	2.202-3	6.162-4	4.761-4	4.266-4	2.408-4	2.493-4	2.376-4	5.786-4	4.189-3	1.495-2	2.108 - 2	1.375 - 2
- 13	1.678-4 4	4.779-6	1.01-11	2.530 - 3	5.992-4	4.207-4	2.972-4	1.717-4	1.683-4	1.596-4	1.588-4	2.112-4	4.340-3	1.521-2	7 274-3
14	1.573-4 4	4.482-6	9.83-12	2.339-3	5.525-4	3.877-4	2.727-4	1.575-4	1.541-4	1.464-4	1.453-4	1.935-4	1.844 - 4	7.804 - 3	4 127-3
15	$\cdot 1.580 - 4 4$	4.507-6	9.74-12	2.243-4	5.293-4	3.715-4	2.612-4	1.510-4	1.472-4	1.400-4	1.387-4	1.848-4	1.607-4	1.509-3	2.154 - 3
				الأ					-			ـــــــــــــــــــــــــــــــــــــ		<u></u>	<u> </u>
ł		·	r	······································	- <u> </u>					·	····	IN			
:	46	4	17	48	49		50	N ^a	46	4	7	48	49		50
1	6.806-2	8.77	3-2	5.850-2	2.566	-3 7	552-5	16	0.020 /	0.01	5 4	E 0// 1			
2	6.390-2	7.88	31-2	4.610-2	1.229	-3 1	539_5	17	0 200 4	9.91	5-4	5.966-4	1.531-	-5 1	.795-7
3	5.962-2	7.27	5-2	4.095 - 2	8.680	-4 8	290-7	18	7,077-4	1.00	0-3	0.532-4	1.672	-5 1	.941-7
4	5.682 - 2	6.94	3-2	3.901 - 2	8.278	-4 6	730-7	19	1.140-3	1.20		7.576-4	1.935	-4 2	.234-7
5	4.984-2	6.12	6-2	3.439-2	7 446	-4 1	300_6	20	1.423-3	1.30	2-3	9.381-4	2.389	-5 2	.741 – 7
6				• • • •			.507 -0		1.010-5	1.98	8-3	1.192-3	3.025-	-5 3	.429–7
71	4.313-2	5.28	9-2	2.960 - 2	6.341	-4 7.	.063-7	21	2.315-3	2.54	4-3	1.524-3	3.847-	-5 4	.287-7
8	3.640-2	4.00	3-2	2.02/-2	5.654	-4 7.	265-7	22	2.770 - 3	3.04	3-3	1.826-3	4.642-	-5 5	.312-7
9	3.413 - 2	- 4.11	2-2	2.316-2	5.011-	-4 8.	.085-7	23	3.852-3	4.23	3-3	2.541-3	6.456-	-5 7	.322-7
ió	2.901 - 2	3.45	0-2	1.950-2	4.228-	-4 8.	.002-7	24	4.748-3	5.20	0-3	3.163-3	8.470-	-5 1	.141-6
<u> </u>	2.400-2	2.86	/-2	1.638-2	3.923-	-4 3.	046-6	-25	6.897-3	7.50	7-3	4.631-3	1.310-	-4 1	.993-6
11	1.902 - 2	2.29	6-2	1.345-2	3.813-	-4 6.	237-6	26	1.232 - 2	1.34	4-2	8 235-3	2 270		106 6
12	9.266-3	1.19	2-2	6.822-3	1.712-	-4 1.	734-6	27	1.187-2	1 20	8-2	7 926-1	2.2/9-		.470-0
13	4.271 - 3	5.73	8-3	3.254 - 3	7.174-	-5 1.	903-7	28	3.665-2	3 96	4-2	7.720-5	7 420		.7/8-0
14	2.312 - 3	2.97	4-3	1.718-3	3.919-	-5 1.	796-7	29	4.660 - 3	5 12	1_3	3 075 2	7,438-	- 4 1	.302-3
15	1 1 1 0 7	1 1 20	1 2 1	7 ((7) A	1 1 000	- 1 - 1		1 20		5.12		5.015-5	/.029-	אן כ-	.919-/
	1.118-3	1.29	4-3	/.00/-4	1.886-	-3 1.	747-7 .	30 [9.522-3	1 04	1_2 .	6 317 2	1 654	1 1 2	000 (

Table 4 - 6a Elements of Matrices CFRN, CFRSG and CFRPG for 50-Ton Cask at CRIEPI

- 84 -

						:		N′ ª							
	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
16 17 18 19 20	3.829-1	2.167-1 4.153-1	8.821-2 2.297-1 5.444-1	2.891-2 5.780-2 1.539-1 5.462-1	1.174-2 2.090-2 4.271-2 1.567-1 5.339-1	5.714-3 9.416-3 1.680-2 4.537-2 1.591-1	3.667-3 5.739-3 9.341-3 2.166-2 5.593-2	2.690-3 3.985-3 6.036-3 1.246-2 2.734-2	1.473-3 1.994-3 2.883-3 5.509-3 1.093-2	7.042-4 9.075-4 1.270-3 2.302-3 4.253-3	1.071-4 1.322-4 1.800-4 3.124-4 5.443-4	2.227-4 2.648-4 3.385-4 5.509-4 9.105-4	4.246-5 4.920-5 5.977-5 9.217-5 1.464-4	2.170-4 2.177-4 1.890-4 1.764-4 1.701-4	4.4404 4.382-4 3.660-4 3.019-4 2.420-4
21 22 23 24 25						5.013-1	1.854-1 5.573-1	6.461-2 1.720-1 5.647-1	2.247-2 4.370-2 1.421-1 6.291-1	7.938-3 1.333-2 3.092-2 9.007-2 6.180-1	9.372-4 1.408-3 2.741-3 4.683-3 1.994-2	1.487-3 2.095-3 3.742-3 5.088-3 1.211-2	2.311-4 3.143-4 5.358-3 6.654-4 1.278-3	1.950-4 2.025-4 2.919-3 3.131-4 5.025-4	2.078-4 1.616-4 1.729-3 1.452-4 2.069-4
26 27 28 29 30											4.191-1	1.985-1 7.062-1	1.247-2 3.400-2 3.518-1	3.361-3 5.538-3 3.668-2 7.038-1	1.198-3 1.747-3 6.541-3 1.142-1 7.167-1
	31	32	33.	34	35	36	37	38	39	40	41	42	43	44 .	45
16 17 18 19 20	1.599-4 1.570-4 1.299-4 1.052-4 8.161-5	4.554-6 4.457-6 3.675-6 2.957-6 2.275-6	9.54-12 9.11-12 7.60-12 5.95-12 5.10-12	2.247-3 2.462-3 2.855-3 3.536-3 4.496-3	5.311-4 5.826-4 6.755-4 8.369-4 1.065-3	3.735-4 4.098-4 4.749-4 5.882-4 7.484-4	2.636-4 2.897-4 3.354-4 4.154-4 5.289-4	1.531-4 1.684-4 1.947-4 2.408-4 3.064-4	1.481-4 1.629-4 1.889-4 2.340-4 2.984-4	1.408-4 1.547-4 1.793-4 2.222-4 2.831-4	1.396-4 1.536-4 1.780-4 2.207-4 2.814-4	1.857-4 2.043-4 2.368-4 2.937-4 3.744-4	1.617-4 1.777-4 2.059-4 2.552-4 3.252-4	3.587-4 3.932-4 4.558-4 5.643-4 7.175-4	1.800-3 1.972-3 2.289-3 2.838-3 3.611-3
21 22 23 24 25	6.414-5 4.473-5 3.934-4 2.626-5 3.345-5	1.759-6 1.192-6 9.974-7 6.143-7 7.488-7	4.50-12 3.95-12 4.01-12 4.28-12 5.26-12	5.749-3 6.881-3 9.568-3 1.182-2 1.722-2	1.361-3 6.162-3 2.255-3 2.732-3 3.912-3	9.553-4 1.138-3 1.580-3 1.906-3 2.717-3	6.739-4 7.986-4 1.107-3 1.296-3 1.796-3	3.893-4 4.605-4 6.376-4 7.423-4 1.024-3	3.810-4 4.505-4 6.239-3 7.176-4 9.764-4	3.615-4 4.285-4 5.939-3 6.935-4 9.584-4	3.594-4 4.248-4 5.884-3 6.753-4 9.168-4	4.786-4 5.664-4 7.848-3 9.069-4 1.239-3	4.153-4 4.924-4 6.827-3 7.994-4 1.107-3	9.161-4 1.095-3 1.522-3 1.869-3 2.711-3	4.620-3 5.521-3 7.677-3 9.366-3 1.346-2
26 27 28 29 30	1.779-4 2.469-4 7.596-4 1.079-2 4.702-2	3.863-6 5.299-6 1.554-5 2.125-4 7.619-4	8.42-12 1.37-11 2.05-11 6.09-11 1.43-10	3.073-2 2.957-2 9.175-2 1.160-2 2.373-2	7.037-3 6.801-3 2.049-2 2.719-3 5.512-3	4.896-3 4.735-3 1.417-2 1.902-3 3.847-3	3.279-3 3.193-3 9.106-3 1.327-3 2.644-3	1.872-3 1.824-3 5.169-3 7.612-4 1.514-3	1.800-3 1.761-3 4.849-3 7.492-4 1.478-3	1.753-3 1.709-3 4.840-3 7.139-4 1.420-3	1.692-3 1.657-3 4.541-3 7.063-4 1.392-3	2.280-3 2.230-3 6.183-3 9.433-4 1.865-3	2.023-3 1.971-3 5.608-3 8.205-4 1.634-3	4.846-3 4.667-3 1.440-2 1.837-3 3.749-3	2.415-2 2.336-2 7.081-2 9.284-3 1.886-2

Table 4 - 6a Elements of Matrices CFRN, CFRSG and CFRPG for 50-Ton Cask at CRIEPI

(Continued)

| 85 |

.

						1999. 1999.	·······	N'ª						· · · · · · ·	
Nª	31	32	- 33	34	35	36	37	38	39	40	41	42	43	44	45
31 32 33 34 35 36 37 38 20	5.689–1	1.013-2 2.705-1	4.08-10 2.049-9 9.790-5	5.462-2 1.493-1 2.575-4 1.642-4	1.249-2 3.275-2 4.678-4 4.749-4 2.160-4	8.689-3 2.257-2 5.338-4 5.827-4 5.657-4 1.880-4	5.824-3 1.406-2 9.570-4 1.070-3 1.160-3 1.068-3 4.560-4	3.324-3 7.949-3 7.861-4 8.905-4 1.024-3 1.073-3 9.344-4 3.221-4	3.199-3 7.311-3 1.199-3 1.370-3 1.605-3 1.779-3 1.783-3 1.467-3	3.115-3 7.443-3 1.238-3 1.420-3 1.684-3 1.911-3 2.044-3 2.008-3	3.007-3 6.828-3 1.821-3 2.097-3 2.508-3 2.887-3 3.166-3 3.328-3	4.052-3 9.374-3 3.077-3 3.557-3 4.279-3 4.970-3 5.530-3 5.981-3	3.594-3 8.651-3 3.144-3 3.647-3 4.416-3 5.171-3 5.795-3 6.341-3	8.599-3 2.336-2 5.477-3 6.361-3 7.772-3 9.175-3 1.036-2 1.143-2	4.291-2 1.137-1 1.656-1 1.451-1 1.192-1 9.594-2 7.629-2 5.862-2
39 40 41							-		5.440-4	1.602-3 5.626-4	3.195-3 2.509-3	6.172-3 6.018-3	6.663 - 3 6.822 - 3	1.212-2	4.734-2 3.890-2
42 43 44 45											8.360-4	4.991-3	6.680-3 5.419-3 1.578-3	1.270-2 1.220-2 9.921-3 3.371-3	3.320-2 3.055-2 2.914-2 2.528-2 1.029-2
		·····		N'a							•	N' ^a			
	46		47	48	49	•	50	N ^a	46		47	48	49		50
31 32 33 34 35	2.187-2 5.945-2 4.276-2 4.041-2 3.820-2	2 2.38 2 6.38 2 5.41 2 5.17 2 5.00	87-2 82-2 12-2 75-2 90-2	1.463-2 4.047-2 3.144-2 2.911-2 2.657-2	4.023 1.299 6.224 5.754 5.243	$ \begin{array}{c ccc} -4 & 5 \\ -3 & 2 \\ -4 & 2 \\ -4 & 2 \\ -4 & 2 \\ -4 & 2 \\ \end{array} $.919-6 .902-5 .453-7 .269-7 .065-7	41 42 43 44 45	3.616-2 3.632-2 3.545-2 3.311-2 2.761-2	7.4 8.68 9.80 9.58 8.30	18-2 84-2 58-2 89-2 00-2	2.865-2 3.278-2 3.999-2 5.707-2 8.824-2	5.489 6.231 7.401 9.567 1.387	$ \begin{array}{c ccc} -4 & 2 \\ -4 & 2 \\ -4 & 2 \\ -4 & 3 \\ -3 & 3 \end{array} $.059-7 .336-7 .745-7 .091-7 .333-7
36 37 38 39 40	3.668-2 3.573-2 3.527-2 3.540-2 3.580-2	2 4.98 5.11 5.42 5.90 2 6.57	34-2 5-2 29-2 02-2 12-2	2.485-2 2.383-2 2.356-2 2.426-2 2.582-2	4.882 4.670 4.598 4.787 5.100	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $.915-7 .820-7 .778-7 .812-7 .906-7	46 47 48 49 50	8.542-3	5.98 2.21	38-2 2-2	1.258-1 1.561-1 1.033-2	1.948 2.835 2.200 2.854	$ \begin{array}{c ccc} -3 & 5 \\ -3 & 9 \\ -2 & 3 \\ -2 & 6 \\ 1 \end{array} $.628-7 .212-7 .000-6 .015-5 .500-3

Table 4 - 6b Matrix Elements for the Current of Neutrons Reflected from the Water Region in the Cavity of 50-Ton Cask at CRIEPI

"The terms N and N' are, respectively, the energy group for the incident radiation and the transmitted or reflected radiation. (H. Yamakoshi (1))

^bRead as 1.410 $\times 10^{-2}$.

- 1 - 86 - 1

							·••••••	N'a	e Seco						
Nª	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1 2 3 4 5	2.375-3 ^b	1.899-2 2.140-2	1.011-2 2.537-2 1.895-2	8.606-3 1.066-2 2.377-2 1.750-2	1.773-2 1.531-2 1.872-2 3.386-2 2.574-2	9.205-3 7.766-3 6.997-3 9.043-3 1.723-2	6.166-3 9.624-3 6.034-3 7.532-3 9.759-3	8.705-3 7.468-3 8.923-3 7.063-3 9.145-3	6.124-3 7.901-3 6.216-3 8.001-3 7.029-3	4.948-3 4.758-3 7.889-3 4.185-3 6.316-3	5.295-3 4.398-3 5.872-3 6.651-3 6.283-3	3.633-3 4.593-3 4.774-3 4.195-3 5.313-3	2.774-3 3.038-3 4.250-3 4.108-3 4.895-3	3.772-3 3.263-3 3.919-3 5.170-3 4.776-3	2.642-3 3.617-3 3.337-3 3.772-3 4.507-3
6 7 8 9 10						1.465-2	2.770-2 1.532-2	1.327-2 3.429-2 1.127-2	8.615-3 1.002-2 1.661-2 8.671-3	7.273-3 7.940-3 6.955-3 1.605-2 1.042-2	5.837-3 7.397-3 7.236-3 8.010-3 2.323-2	7.485-3 6.082-3 6.867-3 7.335-3 9.622-3	4.300-3 6.763-3 4.857-3 6.331-3 7.103-3	7.007-3 6.004-3 8.049-3 6.537-3 8.906-3	4.591-3 6.930-3 4.716-3 7.612-3 6.192-3
11 12 13 14 15					1. v		e de con				9.531-3	2.477-2 1.081-2	8.457-3 2.616-2 7.802-3	9.713-3 1.468-2 5.003-2 8.699-3	7.800-38.723-31.230-22.248-28.290-3
	16	17,	18	19	20	21	-22	23	24	25	26	27	28	-29	30
1 2 3 4 5	2.293-3 2.525-3 3.699-3 3.405-3 4.020-3	1.739-3 1.784-3 2.103-3 3.127-3 2.622-3	3.601-3 4.006-3 4.294-3 4.867-3 6.119-3	2.641-3 2.931-3 3.674-3 4.375-3 4.345-3	2.316-3 2.362-3 2.721-3 3.226-3 4.015-3	1.612-3 1.873-3 2.234-3 2.327-3 2.682-3	1.882-3 2.092-3 2.484-3 2.993-3 3.387-3	1.648-3 1.780-3 2.091-3 2.408-3 2.872-3	2.094-3 2.335-3 2.754-3 3.163-3 3.602-3	1.846-3 2.041-3 2.399-3 2.764-3 3.266-3	2.225-3 2.450-3 2.880-3 3.301-3 3.853-3	2.065-3 2.283-3 2.684-3 3.073-3 3.581-3	2.911-3 3.209-3 3.762-3 4.296-3 4.999-3	2.736-3 3.010-3 3.522-3 4.010-3 4.655-3	3.880-3 4.260-3 4.969-3 5.636-3 6.520-3
6 7 8 9 10	4.527-3 4.592-3 6.636-3 4.479-3 7.618-3	3.804-3 3.758-3 3.510-3 5.821-3 4.042-3	6.493-3 7.851-3 8.778-3 9.078-3 1.062-2	5.783-3 6.926-3 6.341-3 7.478-3 9.258-3	4.487-3 4.759-3 5.836-3 6.934-3 6.692-3	3.543-3 4.197-3 4.025-3 4.292-3 5.732-3	3.846-3 4.455-3 5.313-3 6.062-3 6.550-3	3.612-3 4.091-3 4.181-3 4.672-3 5.554-3	4.331-3 4.723-3 5.728-3 6.450-3 7.289-3	3.951-3 4.491-3 4.898-3 5.472-3 6.187-3	4.639-3 5.276-3 5.929-3 6.667-3 7.508-3	4.274-3 4.831-3 5.398-3 6.039-3 6.759-3	5.957 - 36.717 - 37.505 - 38.354 - 39.282 - 3	5.507-3 6.175-3 6.900-3 7.644-3 8.428-3	7.651 - 3 $8.522 - 3$ $9.514 - 3$ $1.045 - 2$ $1.144 - 2$
11 12 13 14 15	5.859-3 7.626-3 8.627-3 8.104-3 1.856-2	6.690-3 5.206-3 7.113-3 6.536-3 6.683-3	1.232-2 1.218-2 1.465-2 1.299-2 1.474-2	9.038-3 1.105-2 1.228-2 1.151-2 1.307-2	7.833-3 9.454-3 9.327-3 1.058-2 1.120-2	6.637-3 5.958-3 7.541-3 8.570-3 7.305-3	6.641-3 8.457-3 9.356-3 9.382-3 1.024-2	6.623-3 7.309-3 7.212-3 8.074-3 9.613-3	8.001-3 8.559-3 9.871-3 1.096-2 1.192-2	6.979-3 8.023-3 8.708-3 9.597-3 1.017-2	8.340-3 9.229-3 9.807-3 1.089-2 1.200-2	7.483-3 8.281-3 8.919-3 1.002-2 1.089-2	1.021-2 1.120-2 1.184-2 1.327-2 1.436-2	9.213-3 1.009-2 1.050-2 1.183-2 1.274-2	1.241-2 1.338-2 1.383-2 1.558-2 1.667-2

Table 4 - 6b Matrix Elements for the Current of Neutrons Reflected from the Water Region in the Cavity of 50-Ton Cask at CRIEPI

(Continued)

- 87 -

						• :		N'a							
Na	- 16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
16 17 18 19 20	8.705-3	1.459-3 1.344-2	1.580-3 4.628-2 2.350-2	1.205-2 1.678-2 2.247-2 1.639-2	1.100-2 1.413-2 1.266-2 1.773-2 1.335-2	9.778-3 1.057-2 1.069-2 1.013-2 1.465-2	1.170-2 1.322-2 1.359-2 1.433-2 1.414-2	1.042-2 1.050-2 1.243-2 1.315-2 1.419-2	1.304-2 1.419-2 1.573-2 1.822-2 2.067-2	1.086-2 1.279-2 1.407-2 1.592-2 1.810-2	1.345-2 1.448-2 1.611-2 1.855-2 2.113-2	1.193-2 1.259-2 1.387-2 1.638-2 1.865-2	1.566-2 1.624-2 1.833-2 2.110-2 2.357-2	1.380-2 1.400-2 1.569-2 1.782-2 1.959-2	1.790-2 1.777-2 1.985-2 2.226-2 2.415-2
21 22 23 24 25						1.002-2	1.649-2 1.233-2	1.396-2 1.468-2 1.107-2	2.028-2 2.084-2 2.038-2 1.421-2	2.026-2 2.145-2 2.179-2 2.039-2 1.349-2	2.446-2 2.548-2 2.871-2 2.993-2 2.760-2	2.071-2 2.299-2 2.629-2 2.855-2 3.032-2	2.620-2 2.902-2 2.227-2 3.686-2 4.185-2	2.154-2 2.386-2 2.629-2 2.954-2 3.344-2	2.613-2 2.826-2 3.067-2 3.397-2 3.824-2
26 27 28 29 30											1.689-2	2.816-2 1.671-2	4.520-2 4.422-2 2.603-2	3.884-2 4.394-2 4.547-2 2.611-2	4.396-2 5.090-2 5.998-2 6.740-2 4.442-2
		N' ^a				N' ^a				N'a				N' ^a	
	31		32	N ^a	31 '	•	32	N ^a	31		32	Nª	31		32
1 2 3 4 5	4.042 - 3 4.425 - 3 5.145 - 3 5.811 - 3 6.694 - 3	3 5.8 3 6.1 3 6.9 4 7.5 5 8.3	323-2 194-2 968-2 986-2 947-2	11 12 13 14 15	1.221- 1.303- 1.331- 1.499- 1.592-	2 1. 2 1. 2 1. 2 1. 2 1. 2 1.	121 - 1 129 - 1 085 - 1 212 - 1 244 - 1	21 22 23 24 25	2.298- 2.446- 2.610- 2.837- 3.129-	2 1. 2 1. 2 1. 2 1. 2 1. 2 1.	346-1 368-1 392-1 430-1 488-1	31 32	5.123-	2 3.	000 - 1 454 - 1
6 7 8 9 10	7.785-3 8.609-3 9.599-3 1.050-2 1.135-2	9.0 9.4 1.0 1.0	008 - 2 152 - 2 039 - 1 083 - 1 194 - 1	16 17 18 19 20	1.694- 1.647- 1.833- 1.023- 2.158-	2 1. 2 1. 2 1. 2 1. 2 1. 2 1.	267 - 1 148 - 1 244 - 1 301 - 1 320 - 1	26 27 28 29 30	3.516- 4.035- 4.762- 5.889- 7.293-	2 1. 2 1. 2 1. 2 2. 2 2. 2 2.	566 - 1 673 - 1 821 - 1 053 - 1 383 - 1				

Table 4 - 6b Matrix Elements for the Current of Neutrons Reflected from the Water Region in the

Cavity of 50-Ton Cask at CRIEPI

"The terms N and N' are, respectively, the energy group for the incident radiation and the transmitted or reflected radiation. (H. Yamakoshi⁽¹⁾)

^bRead as 2.375 $\times 10^{-3}$

-

| 88 | 容器壁および内筒部に対する反射線流特性関数の表、 Table 4-3a 4-3e ならびに Table 4-6a 、 4-6b では、入射線のエネルギー群は縦に上から下へ、反射線のエネルギー群は左から右 へ並べて配列してある。 i 行 j 列目の行列要素 mi,j は、もし i > j であれば、値は零で あるが簡潔のため、0の文字は省略してある。

 $1 \le i \le 32$ であり、かつ、 $1 \le j \le 32$ の範囲にある反射線流特性関数の部分行列は中性子に 対する成分を与え、 33 $\le i \le 50$ かつ 33 $\le j \le 50$ の範囲の部分行列は一次ガンマ線に対 する成分を与え、 $1 \le i \le 32$ かつ 33 $\le j \le 50$ の範囲にある部分行列は二次ガンマ線の成分 を与える。

4.2.2 容器壁遮蔽性能特性関数

輸送容器の壁部に対する遮蔽性能特性関数は壁構造に依存する。 したがって、容器の型に依存するわけであるが、その依存性を分かり易くするために、Fig. 4-1 ∿ 4-3 に於いて、中性子、 二次ガンマ線、一次ガンマ線に対する容器相互間の比較結果を示した。^{注)}

HZ-75T型容器は壁中央部に厚さ 20 cm の水層があり、有効な中性子遮蔽性能を持つ要因となっている。 また、この水層を挟んで厚い鉛層が存在しておりガンマ線に対する良好な遮蔽性能 をもたらしている。

以上に示した容器壁遮蔽性能特性関数の容器間相互比較から、対象とした容器のうちで HZ-75 T型容器が総合的に最も好ましい壁構造を持つことが結論付けられる。 また、TN-12A型容器は、 中性子に対して良好な遮蔽性能をもたらす壁構造をしているが、一次ガンマ線に対しては 相対的にやや遮蔽性能の悪い構造をしていることも分かる。

入射中性子エネルギーが低くなるにつれて、中性子が輸送容器表面線量率へ及ぼす影響は二次 ガンマ線が輸送容器表面線量率へ及ぼす影響に比較して小さくなる、いわゆる逆転の存在するこ とが Fig. 4-1 と Fig. 4-2 との比較からわかる。 そして、この比較からどの種類の容器に於 いても、中性子エネルギーが数百 keV 程度に低くなると、二次ガンマ線の寄与のほうが確実に 中性子の寄与よりも大きいことがわかる。

4.2.3 容器壁反射線流特性関数

容器壁遮蔽性能特性関数と同様に容器壁反射線流特性関数も容器壁構造に依存するが、その依

注)実際の容器の表面にあるレジン層にはボロンが混ぜてある場合があるが、その混合比率は容 器の種類ごとに異なっている。 本研究ではレジン層中にボロンは存在しないと仮定した。

Fig.4-2 Profile of the Characteristic Function CFSN of Typical Four Casks in Incident Neutron Energy Dependence. (H. Yamakoshi⁽¹⁾)

Fig.4-3 Profile of the Characteristic Function CFSPG of Typical Four Casks in Incident Gamma-Ray Energy Dependence. (H. Yamakoshi⁽¹⁾)

- 10

存の範囲は主として容器内側壁の付近に限られている。 また依存の大きさも容器壁遮蔽性能特 性関数の場合の程には大きくはない。

Table 4-3a ∿ 4-3C で示した容器壁反射線流特性関数の値の反射中性子エネルギー依存性か らも分かるように、容器壁に内筒部から入射する中性子のエネルギーが高い場合は容器壁から反 射される中性子は広いエネルギー範囲にわたって減速されている。

4.2.4 内简部反射線流特性関数

内容部には使用済核燃料の輸送のたびごとに、線源条件や物質組成の異なる燃料集合体が収納 されるので、内筒部に燃料を収納した状態に於いて内筒部から反射される放射線の反射線流特性 関数は、本来、そうした収納物質の持つ散乱、吸収の各特性に依存するはずである。

しかしながら、第三章で示した内筒部2領域モデルを用いると、以下に示すように内筒部反射 線流特性関数の計算値に於ける収納物質依存性は近似的に無視することが可能である。

湿式容器 EXELLOX-3 の内筒部に使用済核燃料を収納した場合と内筒部に水のみが満たされて いる仮想的な場合とのそれぞれにつき、ガンマ線の反射線流および中性子の反射線流を計算し、 相対的な比較をした結果を Fig.4-4a、4-4b に示した。 両図とも、燃料収納の効果を表わし ている。

Fig.4-4a では入射ガンマ線のエネルギーが、50群のエネルギー群構造表現に於いて、それぞ れ第39群の場合と第49群の場合とにつき、燃料収納効果を表わしているが、いずれの場合も、反 射線エネルギースペクトルに対する収納燃料の存在の影響として、燃料を収納した場合の反射線 流エネルギースペクトルの方が値が小さくなる傾向を持っている。 このことは、図に於いて黒 い縦線棒の存在として示してある。

ところで、注目すべき事柄として、入射線エネルギーが高い場合は、(a)入射エネルギー群と 同一のエネルギー群に属して反射するガンマ線の線流が大きな値を持つこと、(b)しかもそのよ うなガンマ線においては、燃料によるガンマ線吸収の影響もたかだか5%程度と比較的小さな値 であることが挙げられる。

Fig. 4-4b では第 5群で入射した中性子が内筒部から反射される場合の反射中性子流のエネル ギースペクトルが示してあるが、収納燃料の存在の影響はわずかに熱中性子エネルギー群に於い て認められるのみである。

収納燃料が存在する場合に対するこれらの反射線流の計算では、湿式容器に対する内筒部反射 線流特性関数の計算の場合と同様に、厚さ 10 cm の水層が内筒部表面部分を形成し、その内側 に燃料集合体と水とが均質に混合している計算モデルを用いている。

水は中性子の強い散乱物質でもあるので、厚さ 10 cm の水層は、壁部から内筒部へ入射する

in EXELLOX-3 Cask.

the 5th group as indicated by the mark **↑**.

Incident energy group is

93

State in EXELLOX-3 Cask, Incident energy group in the left figure is the 49th group and incident energy group in the right figure is the 39th group as indicated by the mark in respective figures.

- 94 -

中性子に対してその内部の燃料の存在を、いわば覆い隠しているものとみなすことができる。

乾式容器については、 TN-12A 型容器の内筒部に使用済核燃料を収納した場合と内筒部にバス ケット構成材料であるアルミが満たされている仮想的な場合のそれぞれにつき、中性子とガンマ 線の反射線流を計算した。 計算の際は、内筒部表面は厚さ 1.4 cm のアルミ層から成り、その 内部に燃料集合体とアルミとの均質混合物が存在していると仮定しており、この仮定は乾式容器 に対する内筒部反射線流特性関数を計算する計算モデルと一致させてある。

湿式容器の場合と同様な手続きで計算結果の相対的比較をした結果、ガンマ線の反射線流エネ ルギースペクトルには収納燃料の影響はほとんど認められないのに対し、中性子の場合は、 Fig ・4-4c ∿ 4-4e に示すように、収納燃料の影響が認められた。 このことは、この乾式容器では 内筒部主要構成材であるアルミが、内筒部に容器壁部から入射するガンマ線に対して、内部の収 納燃料を覆い隠す役割を果たしていることを物語っている。

以上のように、内筒部から反射される中性子流、ガンマ線流に対する収納燃料の影響の仕方は、 乾式容器と湿式容器とでは逆になっている。 それは、水とアルミとでは中性子、ガンマ線に対 する反射、透過の性質が大きく相違することに基づいているからである。 しかしながら、湿式 容器と乾式容器との相違に於いての中性子とガンマ線との役割を交換してみれば、湿式容器の場 合にガンマ線に対して言えた事柄が乾式容器の場合に中性子に対して言える点で、たがいに相補 的に類似していると言えよう。

すなわち、乾式容器の内筒部に入射した中性子は大部分、エネルギーをあまり失わずに反射される。 特に、入射エネルギー群と同一のエネルギー群に属して反射される場合は、収納燃料の 影響を受けても、たかだか5%程度と極めて少ない。

低エネルギー中性子として反射される成分は収納燃料の中性子吸収効果を大きく反映している ことが Fig. 4-4c ∿ 4-4e 中の黒い縦線の長いことから伺える。 しかしながら、その効果の影響が容器表面線量率に及ぼす大きさは、 TN-12A 型容器の容器壁遮蔽性能特性関数の値がそのよ うな中性子エネルギー領域で極めて小さくなっていることから、無視できる程に小さいと考えら れる。

以上の結果から、内筒部反射線流特性関数の値は一度計算しておけばよく、新たな燃料収納の 都度、算出し直す必要はないと考えられる。

4.3 計算値と実測値との比較

4.3.1 実測体系と測定法

4.3.1.1 電力中央研究所の 50 トン容器を対象とした中性子線量率測定

電力中研でいわゆる 50 トン容器を対象とした中性子線量率測定が行なわれ、その測定値が発表されている。⁽⁶⁾そこで得られた測定結果を湿式容器に対する実測例として採り上げ、第三章で示した計算手法で解析⁽¹⁾することとする。

50トン容器の構造は Fig. 4-5a に示したとうりである。 実験の際はFig.4-4b に示すよう に 50 トン容器は直立の姿勢となり内筒部に水が入れられる。

内筒部はさらに、Fig. 4-5b にも示すように、直径 1 m 、高さ 50 cm の中空な線源籠が吊 り下げられる。 線源籠の位置は鉛直の上下方向に可動であり、任意の位置に固定できる。

線源籠の表面には一様に、²⁵²Cfを封入したブラスチック小球が 80 個固着してあり、一様な表面線源を模擬している。 籠に固着する線源としては、総量で 2.4x10⁹ n/sec の中性子源強度を 持つ ²⁵²Cf が用いられていた。

測定では線源籠の種々の位置に対する中性子線量率が、容器表面中央から外径方向に 15 cm 離して固定してあるスタズウイック社製レムカウンターで、Count/sec の単位で記録された。 mrem/hr 単位の線量率への換算には、同レムカウンターの計数値に対する線量率への換算率を (4)

1 mrem/hr = 3.3 Count/sec

測定線量率は線源籠の位置が変わると Fig. 4-6 に示すように分布する。 図中、 線源籠の位置とその範囲は ↔ 印で、また測定線量率はX 印で示してある。

4.3.1.2 TN-12A型容器による中性子、ガンマ線測定

実際の使用済核燃料を収納した TN-12A 型容器を対象に、その周りの中性子、ガンマ線の線量 (7) 率測定が行なわれている。 そこで得られた実測値を乾式容器に対する実測値として採りあげ、 第三章で示した計算手法で解析する こととする。

使用済核燃料は濃縮度 3.3 % の酸化ウラン燃料を PWRから採り出して 546日間冷却したもの (8) であり、 Fig. 4-7 に示した燃焼度配置の燃料集合体 12 体が輸送容器に収納されていた。 集 合体には 0.548 トンノ体のウランが含まれていたと考えられる。

ガンマ線線量率の測定は電離箱サーベイメータで、中性子線量率の測定はレムカウンター (NP-2) で行なわれており、Fig. 4-8 に示す壁構造の容器の表面上 および表面から 1 m 離れた位 置の数箇所づつに対し測定値が得られている。⁽⁷⁾得られた測定値の一部分を Table 4-7 に示す。 なお、輸送容器表面上の線量率測定の際は、次頁注から判断して、モニタ中心は表面から 6 c

Fig.4-5a Geometry of the 50-Ton Cask at CRIEPI. Dimensions are in millimeters. (K. Ueki et. al.⁽⁶⁾)

Fig.4-5b Illustration for Configuration of Neutron Source, Cask Position and Other Materials in the Experimental Circumference (K. Uekiet. al.⁽⁶⁾)

Fig.4-6 Contribution to the Neutron Dose Rate from Various Cylindrical Source Positions. Source positions are measured from the bottom of the 50-Ton cask. Measured dose rates are shown by black dots in the figure. The values shown by the mark x are those adopted in the present study. (H. Yamakoshi⁽¹⁾)

	29,169	28,981	
27,999	32,889	33,088	27,970
27,182	33,474	33,373	27,363
	28,447	28,512	

Fig.4-7 Heterogeneous Distribution of Fuel Burnup in the Bottle Region of TN-12A Cask. Fuel data are as follows; (1) UO₂-fuel with 3.3 % enrichment for PWR, (2) weight of uranium = 0.548 ton/feul assembly, (3) cooling time = 546 days. Averaged fuel burnup over all installed fuels is 29,781 MWd/ton. Fuel burnup averaged over the central four assemblies is 33,206 MWd/ton. Fuel burnup averaged over the peripheral eight assemblies is 28,206 MWd/ton. (H. Yamakoshi⁽³⁾)

- 98

Table 4 - 7 Measured Dose Rates at Positions A and A' at Mid-Points of the Cask Surface, and at Positions B and B' 1 m Apart from the Surface of the Cask Shown in Fig.4 - 8

Measuring Point	Neutron Dose Rates (mrem/hr)	Gamma-Ray Dose Rates (mrem/hr)
A	2.2	6.7
В	1.1	3.3
A'	2.0	6.9
в'	1.0	3.4
· ·	· / ٨	Sekigughi et al (7)

Fig.4-8 Schematic Illustration of Cask Structure and Detector Positions for the Case of TN-12A Cask. (Base on Private Communication⁽⁸⁾ for Mr. Kokaji)

- 99 -