第五章 容器外部線量率の解析関数による表現

5.1 はしがき

使用済核燃料輸送容器の周りの中性子、ガンマ線線量率分布の計算は、規制上要求される輸送 指数を求めるためのほか、多数の容器を船舶に積載した状態に於ける容器間線量率分布や船内線 量率分布を評価するためにも必要である。

従来の輸送容器周辺線量率精密計算法は第一章でも述べたとうり容器内筒部から始まって容器 外部の指定位置に至るまでの一貫した遮蔽計算を行なうので、いわゆる容器遮蔽計算と容器外部 線量率計算とは一体不可分である。 このため、多大の計算時間がかかりすぎるきらいがある。

計算の経済化をはかるために、以下の2点に的を絞った改善を本研究で行なうこととした。

第1点は容器外部の線量率分布計算を容器遮蔽計算と独立なものとし、かつ、計算精度を損な わずに線量率分布計算を簡易化することである。

従来の精密な容器外部線量率計算法では。

第2点は容器遮蔽計算自身を、計算精度を損なわずに簡易化することである。

この第2点については既に第三章、第四章で述べてきたように、放射線に対して各種容器が持っている特性関数を用いる方法を研究することで目的を達することができた。本章では上記第 1点の目的に叶った計算方法を示すこととする。

この方法の主な骨子は容器の幾何形状、容器表面中央部の線量率を用い、容器に相対的な指定 位置に於ける線量率を比較的簡単な解析関数として表わすことである。

この解析関数を導く、にあたり、容器表面上の放射線放射角度分布が、容器表面の法線と放射 線放射方向との間の角度 に関して、いわゆる cos 〇分布であると仮定し、また容器表面の単位 面積から放射する放射線は容器長軸方向に関して等しい線束を持つものと仮定、することにより 加法則 (Additivity Rule) を適用した。

これらの仮定に基づく線量率分布の解析表示が容器からの遠方位置ならびに容器近傍に於いて (2) 示す漸近的性質を検討することにより、容器周辺の測定線量率の径方向依存性に対する経験則 を説明することとする。

(6) さらに解析表示を用いて現用輸送容器を対象とする容器周辺線量率分布を計算し、実測値と 比較検討することにより、この解析関数を用いた容器周辺線量率分布計算法の妥当性および実用 上の有効性を示すこととする。

5.2 線量率分布の解析的表現

5.2.1 基準平面上の解析的表現

5.2.1.1 解析的表現の導出 (1)

輸送容器は外側表面に対する半径が r_s、高さが 2H の茶筒形をしており、容器は Fig.5-1

Fig.5-1 Schematic Illustration of Coordinate System Adopted, Cask Midplane and Detector Positions P and P' (H. Yamakoshi⁽⁵⁾) に示すように、長軸に垂直な 基準平面と呼ばれる平面によ り、高さ H づつの部分に2 分されるものとする。

基準平面上の線量率分布 D は長軸からの距離 r_d に依 存するので、以下では D(r_d) と記すこととする。 D(r_d) の解析的表現を導く際に以下 の仮定を設ける。

(1)容器表面からの放射線放射角度分布は、容器表面の外向き法線と放射方向との間の角度をとすれば、 cos ⊖ に比例するものとする。

(2)容器表面上の単位表面積 から放射される放射線の線束 は、容器長軸方向については 一定とする。

(3)容器表面から放射した放 射線が空気中で散乱しても、

観測点の放射線エネルギー分布に及ぼす散乱の影響は無視することができるものと仮定する。 容器表面の線源強度を放射線エネルギー E に依存するものとして s(E) と表わすことにすれ ば、観測点Pに於ける線量率 D(r_d) は、上記仮定のもとでは以下のように与えられる。

$$D(\mathbf{r}_{d}) = \int s(\mathbf{E}')C(\mathbf{E}'') \left[\int \frac{(\vec{k} \cdot \vec{n})}{4\pi \ \mathbf{s}^{2}} d\tau \right] d\mathbf{E}' ,$$

$$R$$

1

(5-1)

-124 -

ここで C(E) は線束から線量率への変換係数であり、K は線源位置から観測点Pへ向かう単位方 向ベクトルであり、n は線源位置に於ける面積素片 dτに対する外向き法線ベクトルである。 またr は線源位置と観測点Pとの間の三次元的距離である。 表面積分の積分領域Rは、点Pか ら直接見える容器表面上の領域に限定されている。

(5-1) 式のエネルギーの関する積分は表面積分から分離できるので、線量率 $D(r_d)$ の距離 r_d に対する依存性は次のように線束 $\Phi(r_d)$ の距離 r_d に対する依存性で置き換えることができる。

$$D(r_d) = s(E')C(E')dE' \Phi(r_d), \qquad (5-2)$$

$$\Phi(\mathbf{r}_{d}) \equiv \int_{\mathbb{R}} \frac{(\vec{\kappa} \cdot \vec{n})}{4\pi \xi^{2}} d\tau \qquad , \qquad (5-3)$$

(5-3) 式に於ける右辺の具体的表現は表面線源の長軸に関する座標 hと角度 θ に関する二重積 分で表わされる。

$$\Phi(\mathbf{r}_{d}) = \frac{\mathbf{r}_{s}}{\pi} \int_{0}^{H} \int_{0}^{\theta_{c}} \frac{e^{c}}{(\mathbf{r}_{d}^{\cos\theta} - \mathbf{r}_{s}) d\theta dh}}{(\mathbf{r}_{d}^{2} + \mathbf{r}_{s}^{2} - 2\mathbf{r}_{d}^{2}\mathbf{r}_{s}^{\cos\theta} + h^{2})^{2/3}}, \quad (5-4)$$

$$\theta_{c} \equiv \cos^{-1}\left(\frac{r_{s}}{r_{d}}\right) , \qquad (5-5)$$

(5-4) 式の積分のうちで h に関する積分は容易に実行できるので、 $\Phi(r_d)$ は角度 θ に関する積分表示で与えられる。

$$\Phi(\mathbf{r}_{d}) = \frac{\mathbf{H} \mathbf{r}_{s}}{\pi} \int_{0}^{\theta_{c}} \frac{\mathbf{r}_{d} \cos\theta - \mathbf{r}_{s}}{(\frac{\mathbf{r}_{d}^{2} + \mathbf{r}_{s}^{2} - 2\mathbf{r}_{d}\mathbf{r}_{s} \cos\theta}{(\mathbf{r}_{d}^{2} + \mathbf{r}_{s}^{2} - 2\mathbf{r}_{d}\mathbf{r}_{s} \cos\theta + \mathbf{H}^{2})^{-1/2} d\theta}, \qquad (5-6)$$

(5-6) 式の積分は解析的に実行することは不可能であり、通常は、これから先の積分は数値的 に実行される。 しかしながら、本研究では、物理的考察から、(5-6) 式の被積分関数のうちで 第2因子として与えられる (....)の部分は、その 依存性が、0 < 0<0cm 一印 の範囲では、極めて鈍 感であると考え、この部分を以下で定義する平均値 J で置換することが可能であると仮定する。

$$J \equiv \theta_{c}^{-1} \int_{0}^{\theta_{c}} (r_{s}^{2} + r_{d}^{2} - 2r_{s}r_{d}\cos\theta + H^{2})^{-1/2} d\theta , \qquad (5-7)$$

(5-6) 式の被積分関数のうちで第1因子で与えられる(....)の部分の積分は解析的に容易に 実行することができる。 この積分の結果をKとして表わすこととする。

$$K \equiv \int_{0}^{\theta} \frac{r_{d} \cos\theta - r_{s}}{\hat{r}_{d}^{2} + r_{s}^{2} - 2r_{d}r_{s}\cos\theta} d\theta , \qquad (5-8)$$

上記の(5-8)式ならびに(5-7)式を考慮すれば、(5-6)式は近似的に、以下のように表わせる。

$$\Phi(\mathbf{r}_{d}) \simeq \frac{\mathrm{H} \mathbf{r}_{s}}{\pi} \mathbf{J} \cdot \mathbf{K} , \qquad (5-9)$$

-126-

積HJは2個の第1種楕円積分 $F(\frac{\pi}{2},\lambda)$ ならびに $F(\psi_c,\lambda)$ を用いて以下のように表わせる。

$$HJ = \frac{2}{\cos^{-1}(X/Y)} \frac{F(\frac{\pi}{2}, \lambda) - F(\Psi_{c}, \lambda)}{\sqrt{1 + (X + Y)^{2}}}, \quad (5-10)$$

ただし、

$$X \equiv \frac{\frac{r}{s}}{H}, \quad Y \equiv \frac{r_{d}}{H}, \quad (5-11)$$

である。

さらに、 λ 、 ψ_{c} 、 θ_{c} は、X、Yを用いて以下のように表わされる。

$$\lambda \equiv \sqrt{\frac{4 \times Y}{1 + (X + Y)^2}}, \qquad (5-12)$$

$$\Psi_{c} \equiv \sin^{-1}(\sqrt{\frac{1+(X/Y)}{2}})$$
, (5-13)

$$\theta_{c} \equiv \cos^{-1}(\frac{X}{Y}) , \qquad (5-14)$$

他方、量Kは以下に示すように単純な関数で表わせる。

$$K = \frac{1}{r_{s}} \sin^{-1}(\frac{X}{Y}) , \qquad (5-15)$$

以上の結果を総合すれば、線束 $\phi(r_d)$ の式は

-127 -

$$\Phi(r_{d}) \simeq \frac{H J}{\pi} \sin^{-1}(\frac{X}{Y}) , \qquad (5-16)$$

で与えられる。

=⊥ 観測点Pが容器表面に接近して行くと、Y は X に接近して行くので、(5-16)式中の関数 sin (X/Y) は ^Π2 に、また積HJは1に接近して行く。 したがって、(5-17)式のように因子2を 掛けた場合の線束の式は容器表面で値を1に規格化した場合の線量率分布であると言える。

$$\Phi(\mathbf{r}_{d}) \simeq \frac{2 \mathrm{H}}{\pi} \mathrm{J} \mathrm{K} \sin^{-1}(\frac{\mathrm{X}}{\mathrm{Y}}) , \qquad (5-17)$$

Table 5-1 には、(5-17)式と、容器表面上で上記規格化を行なった場合の(5-4) 式との比較を 示す。 半径 r_sが現用容器の場合のように 1 m 程度の場合は、Hの値が 0.5 m 程度に小さ いと(5-17) 式は近似がやや悪い。 しかしながら、Hの値が大きくなるにつれて急速に近似精 度が改善され、現用容器の場合のように、H ≃ 2 m 程度では良好な結果を与えることが分かる。

(5-2) 式の積分で Js(E')C(E')dE' は容器表面中央部に於ける線量率 Do を与える。 した がって、(5-17)式を考慮すれば、基準平面上の線量率分布 D(r_d)は

$$D(r_{d}) \simeq \frac{2 D_{0}}{\pi} H J \sin^{-1}(\frac{X}{Y})$$
, (5-18)

として表現される。

5.2.1.2 解析表示の漸近的性質⁽¹⁾

(a) 容器から遠方に離れた場合

Jの定義式である(5-7)式からも伺えるように、距離 r_d が半径 r_s 、高さHに比較して十分 に大きくなるにしたがい、Jは漸近的に

$$J = \frac{1}{r_d} , \qquad (5-19)$$

Table 5 - 1 Comparison of Exact Flux ϕ in Eq.(5-4) with Approximated Flux ϕ in Eq.(5-9). (Both expressions in Eqs.(5-4) and (5-9) are normalized to the unity on the cask surface)

r = 1.0 m				H = 0.25	m	T	H = 0.5 m				<i>H</i> = 1.0 m		
<i>r_s</i> =	1.0 m	[φ	(n/cm²·	s ⁻¹)		φ (n/c	m²·s	⁻¹)	ϕ (n/cm ² ·s ⁻¹)			
(m)	/ _d - (r	n)	Exact	Aŗ	proximat e	Ex	act	App	proximate	Exact		Approximate	
1.01 1.05 1.1 1.2 1.4	1.0E 5.0E 1.0E 2.0E 4.0E	-2 ^a 9.045E- -2 7.600E- -1 6.265E- -1 4.342E- -1 2.337E-		-1 8 -1 6 -1 5 -1 3 -1 1	8.658E-1 9.075E-1 8 6.596E-1 7.905E-1 7 5.184E-1 6.945E-1 6 3.534E-1 5.520E-1 4 1.962E-1 3.623E-1 3		8.9 7.9 6.4 4.9 3.	972E - 1 524E - 1 416E - 1 938E - 1 198E - 1	72E-1 9.089E 24E-1 8.004E 16E-1 7.180E 38E-1 6.045E 98E-1 4.534E		9.060E - 1 7.878E - 1 6.996E - 1 5.798E - 1 4.268E - 1		
1.6 1.8 2.0 3.0 5.0	6.0E 8.0E 1.0E 2.0E 4.0E	E-1 E-0 E-0 E-0	1.453E- 9.950E- 7.271E- 2.499E- 7.663E-	-1 1 -2 8 -2 6 -2 2 -3 7	.258E-1 .814E-2 .550E-2 .348E-2 .388E-3	2.49 1.80 1.35 4.90 1.52	95E-1 2.220E 03E-1 1.622E 58E-1 1.235E 01E-2 4.612E 24E-2 1.470E		220E - 1 622E - 1 235E - 1 612E - 2 470E - 2	3.503E 2.759E 2.212E 9.115E 2.985E	-1 -1 -2 -2	3.272E-1 2.572E-1 2.064E-1 8.636E-2 2.882E-2	
7.0 9.0 11.0	6.0E 8.0E 1.0E	E-0 E-0 E+1	3.685E- 2.162E- 1.420E-	-3 3.586E-3 -3 2.134E-3 -3 1.392E-3		7.35 4.31 2.83	0E-3 7E-3 8E-3	7. 4. 2.	154E-3 220E-3 780E-3	1.456E 8.585E 5.655E	-2 -3 -3	1.418E-2 8.396E-3 5.542E-3	
	r	1.0 m			H =	2.0 m				H =	4.0 m		
	-,,-	<u> </u>	- r.		φ (n/c	$m^2 \cdot s^{-1}$)			φ (n/a	cm ² ·s ⁻	1)	
(in)		· " " (1	m) ^r	E	xact	Ap	proxima	e	Exa	et	A	pproximate	
1.01 1.05 1.1 1.2		1.0 5.0 1.0 2.0 4.0	E-2 E-2 E-1 E-1 E-1 E-1	9.10 8.02 7.24 6.21 4.91	9.100E-1 8.020E-1 7.245E-1 6.215E-1 4.913E-1		9.082E - 1 7.980E - 1 7.186E - 1 6.130E - 1 4.800E - 1		9.101E-1 8.030E-1 7.261E-1 6.260E-1 5.025E-1		9.088E-1 8.006E-1 7.236E-1 6.228E-1 4.990E-1		
1.6 1.8 2.0 3.0		6.0 8.0 1.0 2.0 4.0	E-1 E-1 E-0 E-0 E-0	4.40 3.40 2.89 1.47 5.53	05E-1 02E-1 08E-1 01E-1 05E-2	3 3 2 1 5	.936E - 1 .296E - 1 .800E - 1 .416E - 1 .366E - 2		4.4311 3.6531 3.2061 1.9031 8.8601	E-1 E-1 E-1 E-1 E-2		4.392E-1 3.612E-1 3.164E-1 1.868E-1 8.672E-2	
7.0 9.0 11.0		6.0 8.0 1.0	E-0 E-0 E+1	2.865E-2 1.681E-2 1.115E-2		2 1 1	2.736E-2 1.644E-2 1.093E-2		4.9541 3.109 2.116	E-2 E-2 E-2	4.850E-2 3.048E-2 2.076E-2		
r =	= 0.25	m		H =	0.25 m			r = 0	5 m		Н =	0.5 m	
	1		-	$\phi (n/cm^2 \cdot s^{-1})$					$r_{i} = r_{i}$		φ (n/c	$m^2 \cdot s^{-1}$)	
(m)		(m)	E	act	Approxii	nate	(m)		(m)	Exact		Approximate	
0.26 0.30 0.35 0.45 0.65	1 5 1 2 4	.0E-2 .0E-2 .0E-1 .0E-1	8.20 6.04 4.53 2.76 1.25	5E-1 5E-1 3E-1 0E-1 0E-1	E – 1 8.104E E – 1 5.798E E – 1 4.268E DE – 1 2.572E DE – 1 1.177E		0.51 0.55 0.60 0.70 0.90		1.0E-2 5.0E-2 1.0E-1 2.0E-1 4.0E-1	8.720 7.175 6.045 4.534 2.759	E-1 E-1 E-1 E-1 E-1	8.666E-1 6.996E-1 5.798E-1 4.268E-1 2.572E-1	
0.85 1.05 1.25 2.25 4.25	6 8 1 2 4	0.0E-1 0.0E-1 0.0E-0 0.0E-0	6.91 4.35 2.98 8.58 2.30	5E-2 5E-2 5E-2 5E-3 7E-3	6.588E 4.182E 2.882E 8.394E 2.266E	-2 -2 -3 -3	1.10 1.30 1.50 2.50 4.50		6.0E-1 8.0E-1 1.0E-0 2.0E-0 4.0E-0	1.802 1.250 9.115 2.986 8.585	E-1 E-1 E-2 E-2 E-3	1.686E-1 1.177E-1 8.636E-2 2.882E-2 8.396E-3	
6.25 8.25 10.25	6 8 1	0.0E-0 .0E-0 .0E+1	1.05 5.98 3.85	1E-3 5E-4 9E-4	1.031E 5.856E 3.764E	-3 -4 -4	6.50 8.50 10.50) } }	6.0E-0 8.0E-0 1.0E+1	4.003 2.307 1.499	E-3 E-3 E-3	3.928E-3 2.266E-3 1.471E-3	

*Read as 1.0×10^{-2} .

(H. Yamakoshi⁽¹⁾)

に近づいて行く。

-1また、その場合の sin (r_s/r_d) は、以下の多項式に展開されるので、

$$\sin^{-1}(\frac{r_{\rm s}}{r_{\rm d}}) \simeq (\frac{r_{\rm s}}{r_{\rm d}}) + \frac{1}{6} (\frac{r_{\rm s}}{r_{\rm d}})^3 + \cdots,$$
 (5-20)

距離 r_dが容器半径 r_s よりも十分に大きくなるにつれて漸近的に

$$\sin^{-1}\left(\frac{r_{\rm s}}{r_{\rm d}}\right) = \frac{r_{\rm s}}{r_{\rm d}} , \qquad (5-21)$$

に近づいて行く。

以上の結果を総合すれば、観測点Pが容器から十分に離れた位置で線量率 $D(r_d)$ は、 r_d^2 に比例するものと考えられる。

$$D(r_d) \propto \frac{1}{r_d^2} , \qquad (5-22)$$

(b) 容器近傍の場合

Hの値が現用容器のように 2 m 程度ある場合には、値として $r_s/10 \sim r_s$ 程度の範囲に収まる r_d に対して関数 J の値は以下のように r_d の一次式として近似できる。

$$J \simeq a r_d + b , \qquad (5-23)$$

ここで a と b は、位置

$$r_{d_1} - r_s = 0.1 m$$

 $r_{d_2} - r_s = 1.0 m$
, (5-24)

に於いて(5-23)式が正確に、Jの定義式(5-7)の値を再現するように決定されるものとする。

	H = 0	.5 m	<i>H</i> = 1	1.0 m	H = 1	l.5 m	
(m)	-a	b	-a	Ь	-a	b	
0.01 0.5 1.0 1.5 2.0 2.5 3.0	1.184E-4 ^a 1.167E-4 1.139E-4 1.111E-4 1.085E-4 1.060E-4 1.038E-4	2.087E-2 2.550E-2 3.020E-2 3.478E-2 3.922E-2 4.353E-2 4.773E-2	3.206E - 5 3.586E - 5 3.821E - 5 3.978E - 5 4.088E - 5 4.167E - 5 4.225E - 5	1.029E - 2 1.193E - 2 1.384E - 2 1.587E - 2 1.796E - 2 2.009E - 2 2.225E - 2	1.232E - 5 1.466E - 5 1.641E - 5 1.778E - 5 1.889E - 5 1.981E - 5 2.059E - 5	6.779E-3 7.476E-3 8.355E-3 9.351E-3 1.043E-2 1.157E-2 1.276E-2	
	H=2	0 m	H = 2.5 m		<i>H</i> = 3.0 m		
r _s (m)	-a	Ь	-a	b	-a	Ь	
0.01 0.5 1.0 1.5 2.0 2.5	5.822E-6 7.164E-6 8.265E-6 9.192E-6 9.992E-6 1.069E-5	5.052E-3 5.398E-3 5.857E-3 6.399E-3 7.007E-3 7.669E-3	3.158E-6 3.963E-6 4.660E-6 5.274E-6 5.823E-6 6.319E-6	4.027E-3 4.220E-3 4.484E-3 4.805E-3 5.174E-3 5.584E-3	1.892E-6 2.398E-6 2.857E-6 3.272E-6 3.652E-6 4.003E-6	3.349E-3 3.466E-3 3.630E-3 3.833E-3 4.071E-3 4.338E-3	

Table 5 - 2 r_s and H Dependence of the Coefficient a and the Constant b in the Approximation J = $ar_d + b$

^aRead as 1.184×10^{-4} .

(H. Yamakoshi⁽¹⁾)

Table 5 - 3 Comparison of Exact J-Value in Eq.(5-7) with the Approximated J-Value Given by Eq.(5-23).

(In the case of $r_s = 1 m$)

			H = 0.5 m		H = 1.0 m			<i>H</i> = 2.0 m		
r _d (m)	$r_d - r_s$ (m)	Exact J	Approximate J	Error (%)	Exact J	Approximate J	Error (%)	Exact J	Approximate J	Error (%)
1.01 1.05 1.1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.4	1.01: -2 ⁴ 5.01: -2 1.01: -1 2.01: -1 4.01: -1 6.01: -1 1.01: -0 1.21: -0 1.21: -0 1.41: -0 1.61: -0 1.81: -0 2.01: -0 2.21: -0 2.41: -0	1.972E-2 1.875E-2 1.767E-2 1.576E-2 1.264E-2 1.034E-2 8.659E-3 7.418E-3 6.475E-3 5.738E-3 5.738E-3 5.150E-3 4.669E-3 4.270E-3 3.933E-3 3.646E-3	1.870E-2 1.824E-2 1.767E-2 1.653E-2 1.425E-2 1.197E-2 9.696E-3 7.418E-3 5.140E-3 2.861E-3 5.830E-4 -1.695E-3 -3.974E-3 -6.252E-3 -8.531E-3	(-5) (-3) (-0) (+5) (+12) (+16) (+12) (+10) (-20) (-50) (-88) (-136) (-193) (-259) (-334)	9.956E-3 9.818E-3 9.636E-3 9.249E-3 8.430E-3 7.616E-3 6.864E-3 6.197E-3 5.617E-3 5.617E-3 5.118E-3 4.689E-3 4.319E-3 3.998E-3 3.718E-3 3.473E-3	9.980E - 3 9.827E - 3 9.636E - 3 9.254E - 3 8.490E - 3 7.725E - 3 6.961E - 3 6.961E - 3 6.197E - 3 5.433E - 3 4.668E - 3 3.904E - 3 3.140E - 3 2.376E - 3 1.612E - 3 8.473E - 4	$\begin{array}{c} (+1)\\ (+1)\\ (+1)\\ (+0)\\ (+1)\\ (+1)\\ (+2)\\ (+2)\\ (+2)\\ (+2)\\ (-3)\\ (-3)\\ (-9)\\ (-17)\\ (-28)\\ (-41)\\ (-57)\\ (-76)\\ (-76)\\ (-8)\end{array}$	4.990E-3 4.972E-3 4.948E-3 4.890E-3 4.750E-3 4.583E-3 4.204E-3 4.204E-3 4.007E-3 3.813E-3 3.625E-3 3.446E-3 3.277E-3 3.118E-3 2.969E-3 2.912	5.022E-3 4.989E-3 4.948E-3 4.865E-3 4.700E-3 4.534E-3 4.204E-3 4.038E-3 3.873E-3 3.708E-3 3.543E-3 3.212E-3 3.047E-3	$\begin{array}{c} (+1) \\ (+1) \\ (+1) \\ (+0) \\ (-1) \\ (-1) \\ (-1) \\ (-1) \\ (-1) \\ (+1) \\ (+2) \\ (+3) \\ (+3) \\ (+3) \\ (+3) \\ (+3) \\ (+3) \end{array}$

*Read as 1.0×10^{-2} .

(H. Yamakoshi⁽¹⁾)

このようにして決定される a と b は、Table5-2 に示すように H と r s との関数となってい る。

(5-23)式で与える J の近似式は、 Table5-3 に示すように、Hが 0.5 m 程度の小さな値の場 合は (5-7)式に比較してやや近似が悪いが、日の値が大きくなるにつれて急速に近似精度が改善 実際の容器のようにHの値が 2 m 程度となると(5-23)式は(5-7)式に対して十分 される。 に良い近似となっている。

Table 5 - 4 Comparison of r_d Dependence of Exact and Approximated Functions near $r_s/r_d = 1.0$ and $r_s = 1$ m. (Exact Function = $\sin^1(r_s/r_d)$ and Approximated Function = $A/r_d^{\alpha} + B$)

		$\alpha = 1.0$ A = 1.510 $B = -2.321E - 1^{a}$		$\begin{array}{c} \alpha = \\ A = \\ B = 0 \end{array}$	1.303061 1.292).0	$\alpha = 2.0$ A = 1.072 B = 2.551E - 1		$\alpha = 3.0$ A = 9.866E - 1 B = 3.998E - 1	
r _d (m)	$\sin^{-1}\left(\frac{r_s}{r_d}\right)$	f	Deviation (%)	ſ	Deviation (%)	ſ	Deviation (%)	ſ	Deviation (%)
1.01 1.05 1.1 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6 2.8 3.0 3.2 3.4 3.6	1.429 1.261 1.141 0.9851 0.7956 0.6751 0.5890 0.5231 0.4719 0.4298 0.3948 0.3652 0.3398 0.3178 0.2985 0.2815	1.263 1.206 1.141 1.027 0.8468 0.7119 0.6070 0.5231 0.4544 0.3972 0.3488 0.3073 0.2714 0.2399 0.2121 0.1875	$\begin{array}{c} (-12) \\ (-4) \\ (-0) \\ (+4) \\ (+6) \\ (+5) \\ (+3) \\ (+3) \\ (+2) \\ (-4) \\ (-4) \\ (-4) \\ (-4) \\ (-2) \\ (-12) \\ (-16) \\ (-20) \\ (-25) \\ (-29) \\ (-33) \end{array}$	1.275 1.212 1.141 1.019 0.8330 0.7000 0.6002 0.5231 0.4620 0.4124 0.3715 0.3372 0.3082 0.2833 0.2617 0.2429	(-11) (-4) (-0) (+3) (+5) (+4) (+2) (+0) (-2) (-4) (-6) (-8) (-9) (-11) (-12) (-14) (-14) (-10) (-4) (-4) (-4) (-4) (-4) (-5) (-4) (-5) (-4) (-6) (-6) (-7) (1.306 1.227 1.141 1.000 0.8020 0.6738 0.5860 0.5231 0.4766 0.4412 0.4137 0.3918 0.3742 0.3598 0.3478 0.3378	$(-9) \\ (-3) \\ (-0) \\ (+1) \\ (+1) \\ (-1) \\ (-1) \\ (+1) \\ (+3) \\ (+5) \\ (+7) \\ (+10) \\ (+13) \\ (+17) \\ (+20) \\ (+20) \\ (-1) \\ (-$	1.357 1.252 1.141 0.9700 0.7593 0.6406 0.5689 0.5231 0.4924 0.4711 0.4559 0.4447 0.4363 0.4299 0.4249 0.4209	$(-5) \\ (-1) \\ (-0) \\ (-1) \\ (-5) \\ (-5) \\ (-5) \\ (+2) \\ (+4) \\ (+9) \\ (+15) \\ (+22) \\ (+28) \\ (+35) \\ (+42) \\ (+50) \\ (+50) \\ (+50) \\ (-1) \\$
		.					······································		(1)

"Read as -2.321×10^{-1} .

(H. Yamakoshi⁽¹⁾)

-1 関数 sin (r_g / r_d)は、点 P が容器表面から 0.1 m $_{\odot}$ 1 m 程度の範囲内にある場合は、 Table 5-4 に示すように、数%以内の誤差で以下の式で近似できる。

$$\sin^{-1}\left(\frac{r_{s}}{r_{d}}\right) \simeq \frac{A}{r_{d}^{\alpha}} + B, \qquad (5-25)$$

ここで A、B は、(5-24)式で与える位置に於いて関数 $\sin^{-1}(r_s/r_d)$ の値を正確に再現するように 決定されるものとする。 このようにして決定される Α と Β はともに、パラメタαならびに 半径 r_sの関数である。

 α の値を順次動かして行き r_d の値の最も広い範囲で良い近似が得られるのは、 Table 5-3 に示すように、 α =1.303061 とした場合である。 この α の値に於ける B の値は、丁度

B =

となり、(5-25)式の関数形がより単純な単一項のみから成る表現になることは注目に値する。 条件式(5-25)を課して得られる A およびαを以下では改めて A、α で表わすことにする。

$$\ln[\sin^{-1}(\frac{r_{s}}{r_{d}})] = \ln A - \alpha_{q} \ln r_{d_{1}}$$

$$\ln[\sin^{-1}(\frac{r_{s}}{r_{d}})] = \ln A - \alpha_{q} \ln r_{d_{2}}$$

$$(5-27)$$

(5-27)式で求められる α は A と同様に、容器表面の半径 r_s に依存する。 Table 5-5 に示 したように、 r_s の値が小さくなるにつれて α_{q_1} A はともに値が減少し、 r_s が1に近づく一方で A は r_s に近づく。

	<i>r</i> _s (m)	\\\ \alpha_q	A A A A A A A A A A
· •	1.0E-3ª	1.000000	1.000E-3
	5.0E-1	1.161520	5.444E-1
	1.0E - 0	1.303061	1.292E-0
	1.5E-0	1.424830	2.374E-0
	2.0E-0	1.533469	3.934E-0
	2.5E-0	1.632530	6.150E-0
	3.0E-0	1.724180	9.257E-0
		L	
	^a Read as $1.0 \times$	10^{-3} . (H.	Yamakoshi ()

Table 5 - 5 r Dependence of α_{a} and A in Eq.(5-25)

 $\alpha_{\rm g}$ の $r_{\rm s}$ 依存性のうちで特に注目に値することは、 $r_{\rm s}$ = 1 m の場合に於いて $\alpha_{\rm g}$ = 1.303061

が成立することである。 この値は、次項で述べるように、 D(r_d)に対する経験則との対応で重 要な意味を持っている。

5.2.1.3 理論式と経験式との対応

 $r_s = 1 m$ 、H = 1 m の場合の容器を例に採れば、 Table 5-2 の a、b の値および Table 5-5 の α_q A の値から線量率 D(r_d) の r_d 依存性として以下の関係が得られる。

$$D(r_d) \propto \frac{1.788}{r_d^{1.303061}} - \frac{4.937 \times 10^{-3}}{r_d^{0.303061}}$$
, (5-28)

(5-28)式は観測点Pが容器表面から数 cm ないし 2 m 程度の範囲内にある場合は良い近似値 を与える。 しかもその範囲に於いては、第2項は第1項に比較して無視できるほどに小さな値 である。 したがって、(5-28)式はさらに

$$D(r_d) \propto r_d^{-1.303061}$$
, (5-29)

で近似することができる。

実際の容器の表面半径はそのほとんどが 1 m 程度である。 このような容器に対する周辺線 量率分布の測定値から得られる線量率分布の r_d 依存性は、容器から十分にはなれた位置では $\overline{r_d}^2$ に比例し、容器近傍では $\overline{r_d}^1$ ・た比例している。 この距離依存性は経験則として得られている ものである。

容器近傍の線量率分布をひとつのパラメタαで表わした場合のこの理論値α_q = 1.303061 は、 観測結果からαに対応する値を求めた場合に於けるその値の変動範囲内に収まっている。

以上のことから、実際の容器に対して得られている経験則を理論的に十分良く説明できたと考 えることができる。

Table 5-5 から予測されることであるが、容器半径が 1 m からかなり懸け離れている容器で は、経験則に於ける容器近傍線量率分布の距離 r_d に対する指数は 1.2 とはかなり違った値を とるはずである。

5.2.2 解析的表現の一般化⁽⁵⁾

観測点が基準平面上に存在しない場合は、線量率分布を記述するために r_d 、 θ のほかに、もう1個の独立変数が必要となる。 Fig. 5-1 に例示するように、観測点P'の位置座標は (r_d

-134-

,θ,d)で記述されるので、この追加された独立変数として d を用いることとする。

観測点が一般的な位置 P'に存在する場合の線量率を記述するべく、基準平面上の線量率分布の式(5-18)を拡張する必要がある。 そのために、加法則(Additivity Rule)⁽⁴⁾と呼ばれる手法 の考え方を用いることとする。

この手法の原理は、例えば Fig. 5-1 で点 P'の位置を容器長軸に沿って上方へ移動させ、 d = H の状態にした場合を想定すれば、 P'の位置が高さ4 Hの仮想的容器に対する基準平面上 に存在することになるので、点 P'に於ける線量率はこの仮想容器による線量率の丁度半分の値 となると考え得ることにある。

加法則を適用する場合、 P'の位置が H > d を満たすか、あるいは H < d を満たすかに依って取り扱いが異なることに注意する必要がある。

この加法則を適用するのに先立ち、(5-10)式で表わされる積、HJを改めて G(x,y) と表わす ことにする。

5.2.2.1 d < H の場合

Fig. 5-2 中の観測点P'に於ける線量率は、容器が仮想的な表面線源 AD を持つ場合の線量 率から BD の部分による線量率への寄与を差し引いたものとして与えられる。 ただし AD はP' 点がその基準平面上に来るように配慮はれた長さとなっている。

他方、仮想線源 BD から点P'への線量率の寄与は、仮想的な表面線源 AD を持つ容器からの 寄与と表面線源 BC を持つ容器からの寄与との差の、丁度半分の値として与えられる。

以上を総合して、実際の線源 ĀB による、点₽'の位置に於ける線量率 D(r_a,d)は

$$D(r_d, d) = \frac{2D_0}{\pi} G(\frac{r_s}{H+d}, \frac{r_d}{H+d}) \sin^{-1}(\frac{r_s}{r_d})$$

$$-\frac{1}{2}\left[\frac{2D_0}{\pi}\left[G\left(\frac{r_s}{H+d},\frac{r_d}{H+d}\right) - G\left(\frac{r_s}{H-d},\frac{r_d}{H-d}\right)\right]\sin^1\left(\frac{r_s}{r_d}\right)\right]$$

$$= \frac{D}{\pi} \left[G\left(\frac{r_{s}}{H+d}, \frac{r_{d}}{H+d}\right) + G\left(\frac{r_{s}}{H-d}, \frac{r_{d}}{H-d}\right) \right] \sin^{-1}\left(\frac{r_{s}}{r_{d}}\right) , \qquad (5-30)$$

(H. Yamakoshi⁽⁵⁾)

(H. Yamakoshi⁽⁵⁾) P' for the Case d > H.

- 136 --

で与えられる。

ここで新しい変数として、以下に定義する4変数§、η、§'、η'を導入し、(5-30)式を書き直 すことにする。

$$D(r_{d},d) = \frac{D_{0}}{\pi} [G(\$,\eta) + G(\$',\eta')] \sin^{1}(\frac{r_{s}}{r_{d}}) , \qquad (5-32)$$

5.2.2.2 d > H の場合

Fig.5-3 中の観測点P'に於ける線量率は、容器が仮想的な表面線源 AD を持つ場合の線量率 から BD の部分による寄与を差し引いたものとして与えられる。 ただし、ここでも、 AD の長 さは、点P' がその基準平面上に来るように配慮して、選んである。

仮想線源 BD から点 P'に於ける線量率への寄与は仮想的表面線源 AD を持つ容器からの寄与 から、AD からの寄与の半分に相当する O'D からの寄与と仮想線源 BC からの寄与の半分とを 差し引いたものとして与えられる。 ところで、BCの長さの半分は d - H である。

以上を総合すると、実際の表面線源 AB による点P'の位置の線量率 $D(r_d,d)$ は

$$D(r_{d},d) = \frac{2D_{0}}{\pi} G(\frac{r_{s}}{H+d}, \frac{r_{d}}{H+d}) \sin^{-1}(\frac{r_{s}}{r_{d}})$$

$$- \frac{1}{2} \left[\frac{2D_{0}}{\pi} \left\{ G(\frac{r_{s}}{H+d}, \frac{r_{d}}{H+d}) + G(\frac{r_{s}}{H-d}, \frac{r_{d}}{H-d}) \right\} \right] \sin^{-1}(\frac{r_{s}}{r_{d}})$$

$$= \frac{P_{0}}{\pi} \left[G(\frac{r_{s}}{H+d}, \frac{r_{d}}{H+d}) - G(\frac{r_{s}}{H-d}, \frac{r_{d}}{H-d}) \right] \sin^{-1}(\frac{r_{s}}{r_{d}}) , \quad (5-33)$$

で与えられる。

(5-31)式で定義した変数を用いれば、(5-33)式は

$$D(r_{d},d) = \frac{D_{0}}{\pi} [G(\$,\eta) - G(\$',\eta')] \sin^{-1}(\frac{r_{s}}{r_{d}}), \qquad (5-34)$$

で与えられる。

5.2.2.3 d=Hの場合

d = H の場合は、 [§] および n' は無限大となる。 この場合の H J の値は零となるので、 G(§' n') は零となり、(5-32)式あるいは(5-34)式の ()の中は第 1 項のみで与えられる。

$$D(r_{d}, d=H) = \frac{D_{0}}{\pi} G(\frac{r_{s}}{2H}, \frac{r_{d}}{2H}) \sin^{-1}(\frac{r_{s}}{r_{d}}), \qquad (5-35)$$

5.2.3 関数 G(S,n) の性質

式(5-32)よおび (5-34) に現われる関数 G(§,n) は、Fig.5-4 に見られるように、§ および η の値の変化に対して単調にゆっくりと変化する。

この結果として、変数 § と n の値が任意に § n₀ と与えられた場合、Table 5-6 で与えられる 関数 G(§, n) の値の表から直線内挿により良い近似で、対応する G(gn d) の値を容易に決定する ことができる。

5-3 理論値と測定値との比較。

5.3.1 基準平面上の式の場合

前記 5.2.1.3 節で(5-18)式の右辺の関数形が物理的に矛盾のないことを、関数の漸近的性質の検討から示した。 本節では、実測結果から(5-18)式の妥当性を示すこととする。 なお、 測定は実際の使用済核燃料を積載した船内で行なわれているため、測定空間の制約から測定が船 内空間の一部分でしか行なわれていない場合もある。 そのような場合の測定値の不足は Monte Carlo 計算によって補って、(5-18)式が予測する線量率の空間分布と比較することとした。

Fig.5-4 Contour Map of the Function $G(\xi, \eta)$ (H. Yamakoshi⁽⁵⁾)

Fig.5-4 Contour Map of the Function $G(\xi, \eta)$ (H. Yamakoshi⁽⁵⁾)

Table 5 - 6 Function $G(\xi, \eta)$

	ξ										
$\eta - \xi$	0.0001	0.2	0.6	1.0	1.6	2.4	3.2	4.0			
0.0	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000	1.0000			
0.2	0.9795	0.9669	0.9447	0.9250	0.8990	0.8694	0.8441	0.8219			
0.4	0.9275	0.9063	0.8716	0.8430	0.8078	0.7701	0.7396	0.7140			
0.6	0.8566	0.8318	0.7926	0.7617	0.7247	0.6865	0.6562	0.6312			
0.8	0.7800	0.7551	0.7164	0.6865	0.6512	0.6152	0.5869	0.5637			
1.0	0.7063	0.6832	0.6474	0.6197	0.5874	0.5545	0.5288	0.5078			
1.4	0.5806	0.5625	0.5340	0.5119	0.4858	0.4593	0.4384	0.4213			
1.8	0.4851	0.4714	0.4493	0.4319	0.4111	0.3897	0.3728	0.3588			
2.2	0.4134	0.4029	0.3856	0.3718	0.3551	0.3376	0.3237	0.3121			
2.6	0.3586	0.3504	0.3368	0.3256	0.3119	0.2975	.0.2858	0.2760			
3.0	0.3159	0.3094	0.2984	0.2892	0.2779	0.2657	0.2558	0.2474			
3.6	0.2674	0.2626	0.2543	0.2473	0.2385	0.2289	0.2210	0.2142			
4.2	0.2314	0.2277	0.2214	0.2159	0.2088	0.2010	0.1945	0.1890			
4.8	0.2037	0.2009	0.1958	0.1914	0.1856	0.1792	0.1738	0.1691			
5.4	0.1819	0.1796	0.1755	0.1718	0.1671	0.1617	0.1571	0.1530			
6.2	0.1591	0.1573	0.1541	0.1512	0.1474	0.1430	0.1392	0.1359			
7.0	0.1413	0.1399	0.1373	0.1350	0.1318	0.1282	0.1251	0.1223			
7.8	0.1270	0.1259	0.1238	0.1219	0.1193	0.1162	0.1135	0.1112			
8.6	0.1154	0.1144	0.1127	0.1111	0.1098	0.1063	0.1040	0.1019			
9.8	0.1014	0.1007	0.0993	0.0980	0.0963	0.0942	0.0923	0.0906			

- 140 --

(H. Yamakoshi⁽⁵⁾)