中性子遮蔽解析に用いる輸送方程式の数値解法の研究 竹 内 清*

Study on a Numerical Approach to the Boltzmann Transport Equation for the Purpose of Analyzing Neutron Shields

By

Kiyoshi TAKEUCHI

A numerical method for solving the Boltzmann transport equation is presented for practical neutron shielding calculations. The energy-dependent transport equation written in its general form is converted into a set of coupled one-group integral equations for each energy mesh, with the sources due both to the true source and to the elastically and inelastically scattered neutrons. The scattering source is evaluated by means of numerical integration of the scattering integral through the application of quadrature schemes. Highly anisotropic scattering is taken into account for elastic scattering, while isotropic scattering is assumed for inelastic scattering. The derived integral equation is solved by performing line integration over spatial \tilde{r} along the neutron flight path in the direction of neutron motion between successive spatial mesh intervals at each discrete direction. No iterative technique is applied in the calculation of the integral equation for the benefit of shortening the computing time and of providing always reasonable solutions.

Discussions are given in chapter 4 on the advantages and disadvantages of all the procedures which have been currently used in neutron shielding calculations. The application of the present method to a variety of actual geometries is illustrated in chapter 6, on the basis of which PALLAS program has been designated to perform neutron penetration calculations for one dimensional plane and spherical, and two dimensional cylindrical geometries.

The calculational accuracy of the present method are judged by performing comparisons of its calculated results with analytical solutions for unscattered flux and angular distribution in plane, spherical and two dimensional cylindrical geometries, and with experimental angular spectra in water for fission neutrons from reactor core, and in graphite and polyethylene for fission neutrons from Linac source. Excellent agreement is obtained between the present calculations and analytical or experimental results. To verify the applicability of the method to practical neutron shielding calculations, further comparison is made of the calculated with the experimental results for the reaction rate of penetrated fast neutrons through a stratified iron-water shield, with good agreement obtained between them. From the discussions made in chapter 10 on the advantages and disadvantages of the present method, it is concluded that the method is a reliable and useful tool for the analysis of neutron shields in a variety of source problems.

		目		次		
	要	と 日	2	1.1	緒 言	3
第1章	序	論 ······	3	1.2	在来の中性子遮蔽計算法	7
			**			-

* 東海支所 原稿受付: 昭和47年8月1日

(323)

第2章	定常の中性子輸送方程式10
第3章	中性子と物質との相互作用11
3.1	緒 言
3.2	弹性散乱
3.3	非弾性散乱12
3.4	放射捕獲13
3.5	荷電粒子放出の核反応13
3.6	(n, 2n) 反応 ······13
3.7	遅い中性子による核反応13
3.8	中速中性子による核反応14
3.9	速中性子による核反応14
3.10	中性子遮蔽計算に重要な中性子断面積14
第4章	中性子遮蔽計算における輸送方程式の数値
	解法14
4.1	緒 言
4.2	中性子遮蔽計算における Discrete Ordinates
	解法14
4.3	Discrete Sn 法15
4.4	直接積分解法 (NIOBE)16
4.5	直接積分解法 (EOS)16
第5章	Discrete Ordinates 直接積分解法 (MENE,
	PALLAS) ······20
5.1	緒 言
5.2	定常のボルツマン輸送方程式20
5.3	散乱積分計算
5.3	3.1 弾性散乱積分項 $G_{et}(\bar{r}, \Omega, E)$ の計算 …21
5.3	3.2 非弾性散乱積分項 $G_{in}(\bar{r}, \bar{\Omega}, E)$ の計算…25
5.4	輸送方程式の直接積分計算
5.5	同一エネルギ群内散乱中性子の計算30
5.6	差分形の計算式
第6章	実際の座標形状への適用32
6.1	一次元平板形状
6.2	一次元球対称形状
6.3	無限円柱形状
6.4	二次元 (r, z) 円柱形状34

要 旨

線源から放射された中性子の物質透過現象を解明す ることは,中性子遮蔽上基本的な情報が得られる点が 重要である。原子炉の放射線遮蔽においては中性子お よびガンマ線の遮蔽体透過が主要な問題である。この うち中性子の透過問題はそれ自身の重要さとともにガ ンマ線透過問題の要因となる二次ガンマ線の線源計算

6.5 三次元 (x, y, z) 座標形状 …………35 第7章 非散乱線の計算結果と解析解との比較…36 第8章 実験および他の計算方法による結果と本 解法による計算結果との比較 …………41 第9章 JRR-4 号炉における鉄-水多重層透過速 第10章 検 11.1 結 11.2.1 二次元形状における比較計算の必要 性------59 11.2.2 中性子透過計算に必要な核データの問 11.2.3 本計算法の拡充の第1として熱中性子 透過計算問題………59 11.2.4 本計算法の拡充の第2としてガンマ線 透過計算問題………60 11.2.5 本計算法の中性子ストリーミング計算 への適用…………60 11.2.6 本計算法の遮蔽最適設計への適用……60 11.2.7 三次元形状に対する計算コードの作 魁......60 11.2.8 総合的な放射線遮蔽の解析法の確立…61 付 録 A 複 合 核………62 付 録 B 弾性散乱における諸関係式………62 付 録 C ダイヤモンド差分法とステップ近似…63 付 録 D 微分散乱断面積の取り扱い………64 付 録 E 角度分点の選び方………64 引用文献…………65 謝 辞………67

の基本となるものである。したがって、中性子の物質 透過問題を正確に解析する理論的解析法の確立は、原 子炉の放射線遮蔽設計に必要な諸量を算出することが できることを意味するので最も重要なことである。

これまでに数多くの研究が中性子透過問題に対して 行なわれている。これらのうち中性子の遮蔽体透過を 理論的に取り扱った各種の計算法については第1章で 概説し,在来のこれらの計算法を中性子遮蔽計算に適

(324)

用した場合の各計算法のもつ不利な点や適用限界を明 らかにした。その結果、中性子の遮蔽体透過を理論的 に解析するにはいかなる方法が適しているかが明らか にされた。第4章では中性子透過計算に適していると いわれる輸送方程式の Discrete Ordinates 法にもとづ く数値解法につき検討を加えた。まず Discrete Ordinates 法が中性子透過計算に適している理由を明らか にし、次いで同法にもとづく数値解法である Sn 法や 同じく Discrete Ordinates 法にもとづく直接積分解法 の NIOBE および EOS につき検討を加えた。その結 果, これらの計算法を中性子透過計算に適用した場合 の不利な点や適用限界が明らかにされた。

本研究の目的は、在来のこれらの中性子透過計算法 のもつ不利な点や適用限界を克服して、中性子透過問 題を正確に、かつ効果的に計算できる理論的方法の確 立にある。そのために, 遮蔽計算で重要な定常状態を 対象として, 定常の中性子輸送方程式を第2章でたて た。第3章で中性子の物質との相互作用に関する基本 的な諸現象について述べ、中性子透過の理論的解析上 重要となる現象を明らかにした。第5章で中性子透過 問題を正確に、かつ効果的に取り扱うことができる理 論的解析法として,中性子の定常の輸送方程式を境界 条件を満足する比較的厳密に近い方法で解く直接積分 解法を導いた。本解法は,中性子束の空間,エネルギ, 角度に関して必要に応じて詳細な分布を与えることが できる。したがって遮蔽体内の中性子束分布から遮蔽 体内で中性子に起因して発生する二次ガンマ線の線源 分布を求めることができる点で優れている。また本解 法は多重層の内側境界および外側境界で大きく変化す る中性子角度分布を取り扱うのに適している。一般に 遮蔽体は多重層で構成されるのが普通であるから、上 述の利点は本解法の中性子透過問題適用に対する特長 となる。

第5章で導出された最終式は空間形状に関して何の 制限も設けられていないので任意の遮蔽形状に適用す ることが可能である。したがって第6章に実際の遮蔽 形状への適用例として,一次元平板形状,球対称形状, 無限円柱形状,二次元円柱形状,さらに三次元直角座 標形状への適用について述べた。

第7章では本研究による輸送方程式の数値解法の計 算精度を確かめるために、一次元平板形状における有 限厚さで吸収断面積を有する線源に対する非散乱線の 計算と解析解との比較、一次元球形状における大きな 半径で吸収断面積を有する球体積線源および小さな半 径で同種類の球体積線源に対する非散乱線の計算と解 析解との比較を行なった。さらに二次元円柱形状にお ける吸収断面積を有する円柱体積線源に対する線源内 および遮蔽体内における非散乱線の計算と解析解との 比較を行なった。

第8章では実際の中性子透過問題に対して本計算法 の精度を確かめるために,絶対値で測定値の求められ ている信頼のできる実験として2例を選び,本計算法 にもとづく計算コード PALLAS によりこの2例に対 し比較計算を行なった。すなわち,その1は BSR-1 (および FNR) 炉における水中の中性子角度スペクト ルであり,その2は米国における中性子透過のベンチ マーク問題であるグラファイト中の中性子角度スペクト トルである。さらに第3の比較計算問題は絶対値で測 定値が求められていないが,ポリエチレン層透過の中 性子角度スペクトルの測定値が発表されているので, この問題を計算し透過中性子の前方方向角度の中性子 スペクトル上1点で測定値を計算値に規格化して比較 検討を行なった。

第9章では実際の原子炉遮蔽の理論的解析の1例と して,日本原子力研究所の4号炉の中に鉄層を3枚配 置して一次遮蔽を模擬し,この問題を一次元球形状で 計算し遮蔽体の各物質の境界における速中性子エネル ギスペクトルおよび角度分布を求め,さらにしきい検 出器による速中性子の反応率の測定値と計算による速 中性子の反応率との比較を行ない,速中性子の減衰計 算の正確さを確かめた。

第 10 章では検討の章を設け本解法の中性子透過問 題適用への利点および不利な点を明らかにし,解析解 や実験結果に対する比較計算による比較の結果から, 本解法による中性子透過計算の精度を確かめ,本解法 の中性子遮蔽解析に対する信頼性を検討した。

第 11 章では結言として本解法の中性子遮蔽解析に 対する有効性を述べた。さらに本研究の今後の課題と して総合的な放射線遮蔽の設計および解析を目標とし て、中性子に起因する二次ガンマ線の計算から原子炉 のガンマ線遮蔽計算の包含,簡単な形状のダクトに対 する中性子ストリーミング計算への適用,さらに遮蔽 最適設計計算への寄与にも言及した。

第1章 序 論

1.1 緒 言

現在, 放射線遮蔽の主眼となる対象物は原子炉であ る。その他にも放射線遮蔽の対象となるものに放射性

(325)

同位元素や各種の加速器などがあげられるが,これら の放射線源の遮蔽は原子炉の遮蔽のために開発された 各種の技法を応用することによって遂行され得る。原 子炉の放射線遮蔽を効果的に行なう技法の開発は一般 の陸上炉に対しても望ましいことであるが,原子力船 の原子炉の遮蔽では特に遮蔽重量が経済的な観点で大 きな負の要因となるので,必然的な要望となる。

本研究の目的な原子炉の遮蔽を効果的に行なうため に必要な理論的技法の確立にある。原子炉の遮蔽の分 野では対象となる放射線に中性子とガンマ線とがある が,ガンマ線の遮蔽体透過は遮蔽体内で中性子に起因 して発生する二次ガンマ線の透過が炉心から放射され る一次ガンマ線の透過とともに透過の要因となる。し たがって中性子の遮蔽体透過現象を正確に解析する理 論的解析法の確立は遮蔽を効果的に行なうための基本 となる。

中性子の物質透過を正確に解析する理論解析法とし ては、中性子の輸送方程式を解く方法が最も望まし い。しかし、エネルギ、空間、角度依存の中性子輸送 方程式を解析的に解くことは不可能に近い。したがっ て遮蔽の理論解析法としての輸送方程式の解法は全て 近似解法であり、しかも大型高速の電子計算機使用の 数値解法とならざるを得ない。さらに遮蔽における輸 送方程式の解法の研究は解の存在を前提とした解法の 技術の研究ということになる(第4章)。本研究による 中性子輸送方程式の数値解法も解法の技術の研究であ り、それは多重層より成る厚い遮蔽体を透過する中性 子の解析に最も有効であることを目的として行なわれ た。

放射線透過計算に対する輸送方程式の数値解法は, Discrete Ordinates 法にもとづく解法がほとんどであ る。Discrete Ordinates 法が放射線透過計算に優れて いる理由は次のようである。すなわち中性子の進行方 向角を有限個の分点に分け,各角度分点で独立に輸送 方程式を解く Discrete Ordinates 法は多重層の内側境 界および外側境界で大きく変化する中性子角度分布の 取り扱いに適している。また速中性子の深い透過で問 題となる鋭い前方ピークの中性子角度分布を首尾良く 取り扱い得る利点があるからである(第4章)。したが って本論文で提案する定常の中性子輸送方程式の数値 解法も Discrete Ordinates 法にもとづいており,中性 子の進行方向角を単位球面上で有限個の角度分点で代 表させる。そしてこの角度分点の各分点で中性子の進 行方向にその飛程に沿って輸送方程式を直接積分して 解を求める。エネルギ依存はエネルギを中性子レサジ で表わし、このレサジ単位で等間隔に有限個に分け、 その分点をレサジ分点として逆にこれからエネルギメ ッシュを決めてエネルギ組分け表示を行なう。また散 乱積分計算は次のように数値積分によって行なう。す なわち,非等方散乱の弾性散乱は散乱角度分布関数を 任意の高次のルジャンドル多項式で展開近似すること により散乱の非等方を取り扱う。一方非弾性散乱は実 験室系で等方散乱の仮定(第3章)を設けることによ り、散乱減速関数を用いて計算を行なう。これらの弾 性散乱および非弾性散乱に起因する中性子の散乱積分 の計算は第5章で設定する仮定にもとづいて数値積分 計算される。この仮定の基本は中性子束 $\Phi(\bar{r}, \bar{\Omega}, u)$ が 角度およびレサジについて微小区間 4D および du 内 でステップ関数で近似できる、というのである。した がって,本解法の計算精度は角度分点数およびレサジ 間隔の幅によって決まることなる(第10章)。

さらに本解法の特徴として、在来の輸送方程式の解 法で数値解を得るのに一般に使用されている繰返し収 斂法の使用を回避した点がある。これは繰返し回数だ け計算時間の短縮が可能であるのと、在来の数値解法 で問題となっている対象とする遮蔽問題によっては収 **斂が一様でないこと,また収斂をしないこともあると** いう不安、さらに収斂した値が負の値のような異常な 値に収斂することもあるという恐れを取り除くためで ある(第5章)。この繰返えし収斂法の使用の回避に より本解法は遮蔽計算として大きな利点を持つことに なるが,その反面計算におけるレサジ間隔を密に定め ないと計算精度が悪くなる不利な点も併せ持つことに なる(第10章)。しかし、計算精度に対してあまり厳 しい要求をしない限りレサジ間隔を適当な値に定める ことができるので(第10章),繰返し収斂法の不使用 による計算時間の短縮は本計算法をパラメタサーベイ 用の計算に適用することを可能にし、さらに遮蔽設計 計算に対しても適用することが可能となるので極わめ て重要な利点である。

一般に遮蔽体は形状が大きいため,計算上数多くの 空間メッシュが必要となる。しかし,もし空間メッシ ュ間隔を粗く選んでも計算精度に及ぼす影響が少なけ れば,空間メッシュ数を滅ずることが可能となる。し たがって,空間メッシュ間隔を粗く選べることは遮蔽 計算上大きな利点となる。本解法は輸送方程式の空間 積分を空間メッシュ間で直接積分することにより計算 するので空間メッシュ間隔を粗く選ぶことができる

(326)

5

(第10章)。これに対し、中性子透過計算に最も一般 的に使用されている Discrete Sn 法は空間および角度 メッシュに関して小さなセルを仮定し、このセル上で 互いに向かい合う対辺の中点上の中性子束はその変化 の程度が線型関数で表わされる程度であるという基本 的な仮定の上に成り立っている(第4章)。このために Discrete Sn 法は空間および角度メッシュを細かく選ば ないと減衰の激しい、また速中性子の物質透過のよう に角度分布の変化の激しい遮蔽計算では計算精度が悪 くなる恐れがある。

遮蔽体の形状が大きいことに起因するもう一つの問 題点は、線源から放射される核分裂スペクトルの中性 子は厚い遮蔽体を透過するのに従ってスペクトルを硬 化することである。その結果, 遮蔽体の外側に近いほ ど速中性子が主要となる。一方低いエネルギの中性子 はこの外側近くでは厚い遮蔽体を透過して来た速中性 子が散乱減速されて生じたものである。したがって遮 蔽体の外側に近いところでは速中性子が中性子全体に 影響を及ぼすようになるので、透過速中性子束を正確 に求めることが中性子の遮蔽体透過問題を正確に計算 するための要点となる。しかし,速中性子は深い透過 で鋭い前方ピークの角度分布を示すので、輸送方程式 を解いてこの鋭い前方ピークの中性子角度分布を正確 に求めることは極わめて困難なことであった。在来の 輸送方程式の解法で一般的に使用されている球調和法 はこの種の現象を取り扱うのに最も不向きである(第 1章 1.2)。さらに Discrete Ordinates 法にもとづく在 来の各種の数値解法 (Sn 法や NIOBE, EOS 等) でも, 極端に前方ピークの角度分布をもつ速中性子の深い透 過問題の取り扱いには難点があった(第4章)。この難 点を克服して速中性子の深い透過を正確に取り扱う中 性子透過計算法の確立が本研究の目的である。それは 速中性子の深い透過問題を特に精度良く計算できれ ば,上述のように低いエネルギの中性子は速中性子の 散乱減速によって生じたものであり、しかも低いエネ ルギの中性子の透過問題の取り扱いには特別の難点は ないので,中性子全体の透過問題を精度良く取り扱う ことが可能となるからである。

本論文で提案する中性子輸送方程式の数値解法は数 式の導出の過程で空間形状を固定しないので,導出さ れた最終式は任意の遮蔽体形状へ適用することが可能 である。そこで第6章で一次元平板,球,無限円柱形 状,二次元円柱形状,さらに三次元直角座標形状への 適用を述べる。

本計算法の計算精度は第7章で各種形状における吸 収係数がある場合の体積線源に対する非散乱線の減衰 計算を行ない,解析解と比較し精度の高いことを確か めた。次いで第8章で速中性子の物質透過問題に対す る計算精度を確かめるために、絶対値で測定値の求め られている実験に対し,比較計算を行ない実験結果と の比較を試みた。その結果,本計算法は速中性子の物 質透過問題を精度良く取り扱うことが明らかにされ た。さらに第9章で実際の原子炉の一次遮蔽を模擬し た水一鉄三重層に対する速中性子透過計算を行ない、 速中性子遮蔽の解析を試みた。その際、速中性子の減 衰が絶対値で正しく計算されているかどうかを確かめ るために、しきい検出器による速中性子の反応率と計 算による同反応率とを比較した。その結果、減衰計算 を正確に行なっていることが確かめられた。以上の比 較計算の結果、本解法による中性子透過計算に対する 信頼性が確認された。

最後に,本研究の成果である中性子遮蔽の理論的解 析法の総合的な放射線遮蔽問題への適用可能性につい て言及する。

参考文献は本文中右肩に)を付して記し、本論文の 末にまとめた。また付録も本論文の末にまとめた。 なお本論文で使用する記号は次にまとめて記してお く。

【記号の説明】

- *F*: 位置を示すベクトル。直角座標では (*x*, *y*, *z*) で表わし,円柱座標では(*r*, *z*) で表わす。単に *r* は半径方向の位 置を表わし,*d* や*t* も距離を表わす変 数として使用する。
- 京: 中性子の進行方向の単位ベクトル。また散乱の場合は散乱後の進行方向単位ベクトル。これに対し、夏/で散乱前の中性子の進行方向単位ベクトルを表わす。
- *Ω*(θ, φ): 上述の *Ω* を極角 θ と方位角 φ で表 わしたもの。
 - θ:中性子の進行方向と軸とのなす角。
 - ∲: 中性子の進行方向単位ベクトルを (x, y) 平面に斜影し,それと x 軸とのな す角。分点表示では φ_{pq} と書く。
 - ω: 極角の余弦, ω=cos θ。 分点表示では
 ωp と書く。

(327)

- $\overline{\mathcal{Q}}_{pq}(\omega_p, \phi_{pq})$:上述の $\overline{\mathcal{Q}}(\theta, \phi)$ を θ の代わりに ω で 書き換え, Discrete Ordinates 角度分 点で表わしたもの。
 - 4Ω_D: D 番目の角度分点の代表する角度の区 間
 - $\Delta \overline{\Omega}(\Delta \omega, \Delta \phi)$: $\overline{\Omega}$ 方向の微小角度区間
 - E: 中性子のエネルギ,または散乱後のエネルギ。これに対し、E' は散乱前の 中性子のエネルギを表わす。
 - *ΔEg: G グループのエネルギ*幅
 - *E*_{max}: 解くべき問題の中性子の最大エネルギ
 u: 中性子レサジ
 - *uj*: *j* 番目の中性子レサジ
 - **Δu**: 微小レサジ区間
 - h: レサジ等間隔に選んだレサジメッシュの幅
 - J: エネルギ組み分けの総数
 - - - $d\overline{\tau}$: 微小位相空間, $d\overline{r}d\overline{\Omega}dE$ 。
 - *S_t(r, E)*: 巨視的全断面積 (cm⁻¹)。なお単一エネ ルギの比較計算では *S*₁ を線源内, *S*₂ を遮蔽体内における巨視的全断面積と して使用する。
 - $S(\bar{r}, \bar{\Omega}, E)$: 純線源(外部線源); 位置 \bar{r} で単位エ ネルギ単位立体角あたり,エネルギEをもち進行方向が $\bar{\Omega}$ である中性子が 単位体積あたり単位時間に生まれる 数。なお単一エネルギの比較計算では $S(\bar{r}, \bar{\Omega}, E)$ を全立体角で積分した線源 の強さとして $S_V(x)$ を使用する。
 - **n**(*r*): 位置 *r* における単位体積あたりの原子 の数。
 - M: 原子の質量。なお <math>Mの逆数 ρ をと書

く。

- $\sigma_{S,i}(\overline{\Omega'} \to \overline{\Omega}, E' \to E): i$ 番目の核種の 微視的微分散乱 断面積; エネルギが E' で進行方向が $\overline{\Omega'}$ の中性子が核に 散乱されてエネル ギが E で方向が $\overline{\Omega}$ に単位エネルギ, 単位立体角あたりなる微分断面積。
- $\sigma^{el}_{S,i}(\overline{\Omega'} o \overline{\Omega}, E' o E)$: 弾性散乱による微視的微分散乱 断面積。
- $\sigma_{S,i}^{in}(\bar{\Omega}' \to \bar{\Omega}, E' \to E):$ 非弾性散乱による微視的微分散 乱断面積。
 - f(E, μ): 弾性散乱による散乱角度分布関数。な おレサジ単位で表わせば f(u, μ) とな る。
 - fⁱⁿ(E', E): i 番目の核による非弾性散乱でエネル ギ E' の中性子がエネルギ E に単位 エネルギあたり減速される確率。
 - $g_i^o(E', E)$: $f_i^{in}(E', E)$ を連続関数で表わした場合の減速確率を表わす関数。
 - σι: 微視的全断面積 (バーン)。
 - **os**: 微視的散乱断面積 (バーン)。
 - *o*^{el}: 微視的弾性散乱断面積 (バーン)。なお
 簡単のため *o*_{el} と表わすこともある。
 - σⁱⁿ_S(E): 微視的非弾性散乱断面積 (バーン)。な
 お簡単のため σ_{in} と表わすこともあ
 る。
 - σa: 微視的吸収断面積 (バーン)。
 - **σ**_{nr}: 微視的 (n, γ) 反応断面積 (バーン)。
 - *G*_{*np*}: 微視的 (*n*, *p*) 反応断面積 (バーン)。
 - $\sigma_{n\alpha}$: 微視的 (n, α) 反応断面積 (// /)。
 - **Gn2n**: 微視的 (n, 2n) 反応断面積 (バーン)。
 - 9: 重心系における散乱角。
 - Θ:実験室系における散乱角。
 - μ: μ=cos θ, なお分点表示では μm と書
 く。
 - α: α=cos θ, なお α を分点表示する場合
 は αm と書く。
 - ψ: 散乱の方位角, なお分点表示では ψ_n
 と書く。
 - A: 水素原子による弾性散乱における非等 方パラメタ。
 - f_p(u): f(u, μ) をルジャンドル多項式展開し た場合の展開係数。
 - $P_l(\alpha)$: l 次のルジャンドル多項式。
 - Pp(µ): p 次のルジャンドル多項式。

(328)

- $P_n^m(\cos \theta)$: ルジャンドルの陪関数。
 - V: 体積, なお V1 は I 番目の体積要素。
- $G(\bar{r}, \bar{\Omega}, E)$: 散乱積分項。
- $G_{el}(\tilde{r}, \overline{\Omega}, E)$: 弾性散乱による散乱積分項。
- $G_{in}(\bar{r}, \bar{\Omega}, E)$: 非弾性散乱による散乱積分項。
 - $\eta_n: \eta_n = \cos \phi_n$
 - $W_n^*: \phi$ についての積分を数値積分する際の 積分点 ϕ_n に対する重み。
 - (z 軸, Ω') 平面と (z 軸, Ω) 平面と
 のなす角。
 - $\xi_n: \ \xi_n = \cos \Delta$
 - W_m: μ についての積分をガウス求積法で数 値積分する際の μm に対する重み。
 - a_{mn} : 重みマトリックス; $a_{mn} = W_m W_n^*$ 。
- T_{g(m), m}(*r*): 転移マトリックス; 位置 *r* で g(m) グ ループの中性子が散乱角 𝔅m で弾性散 乱され単位エネルギ,単位立体角あた り *j* グループの 𝔅pq 方向に入ってく る割合。
 - a_v(E'): 非弾性散乱により中性子 がエネルギ E'から E に減速される割合。
 - *E*^ν: 標的核の基底状態と ν 番目の励起エ ネルギ準位とのエネルギ差。
 - E_{i,B}: *i* 番目の核の励起エネルギ準位を離散 準位の取り扱いと連続分布の準位の取 り扱いにする境界のエネルギ。
 - ζ₀: 台形公式の重み。
 - **bp**: Ω についての積分を数値積分する際の 重み。
 - $\lambda_p: \omega$ についての積分をガウス求積法で行なる際の重み。
 - $c_{o}^{j}(r)$:転移マトリックス;位置 \bar{r} で非弾性散 乱によりgグループの中性子がjグ ループの \bar{Q}_{pq} 方向に単位エネルギあた り,単位立体角あたり落ちてくる割合。
- - R, R₀: 中性子の飛程に沿って測られた距離, また球および円柱線源の半径としても 使用。
- $\tau(\bar{r},\bar{r}',E)$: 光学距離; エネルギEの中性子が位置 \bar{r}' から \bar{r} に到達するまでに $\exp(-\tau)$ で減衰する。
- $G^{D}(\overline{r}, \overline{\Omega}, E)$: 上のエネルギグループから散乱減速さ

れて線源となる量。

- *G^w(r̄, Ω̄, E*):自分自身のエネルギグループ内で散乱 され位相空間 (*r̄, Ω̄, E*) 内に留まる量。
 - $A(\bar{r}, E): \ G^{W}(\bar{r}, \overline{\Omega}, E) = A(\bar{r}, \overline{\Omega}, E) \Phi(\bar{r}, \overline{\Omega}, E) \circ$
 - $\Sigma_t'(\bar{r}, E): \Sigma_t'(\bar{r}, E) = \Sigma_t(\bar{r}, E) A(\bar{r}, E)$
 - $Q'(\bar{r}, \overline{\Omega}, E): \ Q'(\bar{r}, \overline{\Omega}, E) = Q(\bar{r}, \overline{\Omega}, E) G^{W}(\bar{r}, \overline{\Omega}, E)_{\circ}$

 - $\Phi_{ij}: \Phi_{ij} \equiv \Phi(\bar{r}_i, \overline{\Omega}_{pq}, E_j)_{\circ}$
 - Qi: Qijを要素とするベクトル。
 - $Q_{ij}: Q \equiv Q(\bar{r}_i, \bar{\Omega}_{pq}, E_j)_{o}$
 - *Ei*: *Eij* を要素とする対角線マトリックス。
 - **F**_i: F_{ij} を要素とする対角線 マトリックス。
 - **H**_i: H_{ij} を要素とする対角線マトリックス。
 - $E_2(x): E_2 関数$
 - *ms*, *mc*: 球および円柱線源に対する非散乱線を 計算する際の係数。
 - φ₀, θ₀, θ₁, θ₂: 球および円柱線源に対する非散乱線を 計算する際の角度変数。
- *l*₁, *l*₂, *b*₁, *b*₃, *b*₄, *b*₅, *b*₆: 球および円柱線源に対する非散 乱線を計算する際の距離に 関する 変 数。
 - *S*₂(*x*, *y*), *L*₂(*x*, *y*), *G*(*x*, *y*): 球および円柱線源に対す る非散乱線を計算する際の関数。

1.2 在来の中性子遮蔽計算法

中性子遮蔽の計算法としてこれまでに数多くの方法 が開発されており、このうち実際に中性子遮蔽の計算 に使用された、あるいは現在も使用されている方法の みを列挙すると次のようになる。

- (1) 拡散法
- (2) 年令一拡散法
- (3) 点減衰核積分法
- (4) 除去一拡散法
- (5) 球調和法 (Pi 法)
- (6) モンテカルロ法
- (7) モーメント法
- (8) Invariant Imbedding 法
- (9) Discrete Sn 法
- (10) Discrete Ordinates 直接数值積分解法

上述の各計算法はそれぞれ特有の仮定の上に成り立 っているため,中性子遮蔽計算に適用する場合に限界 がある。したがって以下に各計算法に対し,それぞれ

(329)

8

の仮定に起因する制限条件を列挙し遮蔽計算適用の限 界を明らかにする。

(1) 拡散法

制限条件1)としては次のようなものがある。

- (a) 散乱は実験室系で等方である。
- (b) 中性子束の角度分布はほとんど等方である。
- (c) 媒質の吸収は小さい。すなわち $\Sigma_a \ll \Sigma_s$ である。
- (d) 境界や強い線源および強い吸収体から 2~3
 *mfp*以上離れていること。

以上の制限条件から拡散法はほとんど低エネルギ領 域の中性子遮蔽計算にその適用が限られる。

(2) 年令一拡散法

拡散法と同様の制限条件を持ち合わせているので炉 計算には適しているが,遮蔽計算にはその適用に制限 がある。拡散法と同様に低エネルギ領域の中性子透過 計算に適しているが,速中性子領域の計算には不適当 である。通常のフェルミ・年令理論は水素より重い核 を取り扱うが,この制限は Goertzel-Greuling 近似の 使用により取り除かれる²⁰。 実際の中性子遮蔽計算は 7群あるいは5群⁴⁰の例があるが,減衰の程度を簡単 に調べるのに使用されるぐらいである。

(3) 点減衰核積分法

最も簡単な計算技法にもとづく放射線透過計算法 で,主にガンマ線遮蔽設計の計算に使用されている。 中性子透過計算に使用する際の減衰核は Albert-Welton 核⁵⁰であり,これは中性子の減衰を計算するの に除去断面積を用いる。その際,水素の除去断面積と してはエネルギ依存の水素の全断面積を使用し,一方 水素以外の一般の核については,エネルギに独立に決 められた除去断面積⁶⁰を使用する。

Albert-Welton 法の考えは中性子が水素により散乱 される場合は全て吸収と仮定し,散乱された中性子は 無視する。さらに非弾性散乱も吸収として取り扱う。 水素以外の核による弾性散乱の場合は,中性子の進行 方向に対し小角度で散乱された中性子は散乱を受けな いとみなし,中性子はそのままの進行方向に進む。一 方大角度で散乱された中性子は吸収されたとみなされ る。

本解法は簡単な数式にもとづいているので,精度の 高い詳細な情報を得るための計算には不向きである。 しかし,簡単な予備計算や形状が複雑なために他の計 算方法では取り扱うことができないような問題の計算 には適している。

(4) 除去一拡散法

前述の(1)拡散法や(2)年令一拡散法は速中性子 の透過計算に難点がある。したがって中性子遮蔽計算 に適用する場合には大きな制限があった。この難点を 克服するために、速中性子領域における中性子透過計 算はエネルギ依存の除去断面積を使用して除去計算を 行なう。また除去された速中性子はエネルギを落して 拡散法で取り扱えるエネルギ領域に入って来る。この 除去中性子は拡散方程式の線源項に加わり、この方程 式で計算される。速中性子を除去計算し、低エネルギ の中性子を拡散法で計算する除去一拡散法は拡散法や 年令一拡散法に比べて中性子遮蔽計算に対し大きな成 功をおさめている。

初期の除去一拡散法を Spinney 法¹シいい,次の仮 定にもとづいている⁸⁾。

- a. 線源から放出される中性子の透過成分は非散乱 線と小角度の弾性散乱中性子から成る。
- b. 大角度の弾性散乱中性子および非弾性散乱され た中性子は高速中性子ビームから除去される。
- c. 除去中性子は年令理論によりエネルギを落す。
- d. 除去中性子は年令理論で記述されるスペクトル および空間分布を有する。

欠点として,

- a. 除去中性子は全て 2 MeV の拡散領域の1 群に 置かれるから, 2 MeV 以上のエネルギでの中性子 の拡散タイプの透過現象は無視される。
- b. 拡散領域は5群であり群数が少ない。
- c. 拡散の一群から次の一群にのみエネルギの落ち がないとしているので,非弾性散乱や水素との衝 突による大きなエネルギ損失を充分に記述するこ とができない。

Spinney 法の改良として次の3つの除去—拡散コードが開発されている。すなわち,RASH E⁹,MAC¹⁰) あるいは MAC-RAD¹¹) および NRN¹²) である。これ らのコードは Spinney 法に比べて除去と拡散群との結 合方法や減速の取り扱い,群の数および除去断面積の 決め方等に改良が施されている。例えばエネルギグル ープの定め方についていえば,除去グループは Spinney 法の 18 群 (0~18 MeV) に対し NRN では 30 群 (0~18 MeV) であり,拡散グループは Spinney 法 の5 群 (熱中性子~2 MeV) に対し RASH E が 16 群,MAC-RAD が 31 群 (いずれ も 熱中性子~10 MeV), さらに NRN が 24 群 (熱中性子~18 MeV) である。除去群と拡散群との結合方法も Spinney 法は

(330)

全ての除去中性子は拡散群の最高エネルギ群(2 MeV) に落ちるのに対し, NRN では各除去群から数多くの 拡散群へ転移マトリックスを使用して除去中性子の転 移を計算することができる。また減速の 取り扱い も Spinney 法は年令理論によりエネルギの落ちを連続的 に計算するのに対し, MAC-RAD や NRN では各拡 散群から散乱減速された中性子は幾つものより低いエ ネルギの拡散群へ落ちることが可能となる。このこと により非弾性散乱および水素との散乱による減速中性 子の取り扱いが Spinney 法より正確に行なわれる。

以上の改良を考慮に入れても除去一拡散法は次のような不利な点を有する⁸⁾。

- a. 除去断面積はいずれの方法でも経験的に決めな ければならない。これは実験結果や精度の良い輸 送コードの計算結果と比較して決められる。
- b. エネルギの組み分け方法やエネルギ群の幅も除 去断面積と同様に,他の精度の良い結果との比較 により決められる。
- c. 中性子遮蔽の設計計算を目的として作られてい るため,遮蔽の解析計算に適用するには計算精度 が良くない。
- d. 最も重要な点であるが,遮蔽問題を計算する際 にあらかじめその問題と同種の問題に対し比較計 算を行なって計算精度を確かめたものでなくては 適用できない。
- (5) 球調和法 (P_l 法)

ボルツマン輸送方程式をルジャンドル多項式展開近 似により解く方法であるが,実用計算には多群の P_1 近似が最も一般的に使用されている。 P_1 近似法は拡 散法と同等であるから,中性子遮蔽計算に P_1 近似を 適用する場合には拡散法の項で述べたのと同様の大き な制限(速中性子透過計算に不適)を受ける。一般に, P_i 法では l の大きさにより P_i 法の遮蔽問題への適 用可否が問題とされ,また計算精度もlによって決ま る。例えば P_3 近似による計算は P_1 近似に比べ顕著 な改良となることが報告されている¹³⁰。しかし,速中 性子透過計算で問題となる前方ピークの極端な非等方 角度分布や高次の非等方散乱を正確に取り扱うには 1 桁程度のl 次の P_i 法では無理であろう。

上述の Pi 法に対する改良の1つに,中性子の角度 分布を前方方向と後方方向の2通りに分けて取り扱う Double Pi 法がある。確かに Double Pi 法は Pi 法に 比べ顕著な改良をもたらすといわれているが, ガンマ 線の透過計算に Double Pi 近似が適用された報告¹⁰ があるのみで,中性子遮透計算に実際に適用された報 告はみあたらない。

一般に P_i 法は低い l については計算が容易である が, 高次の l になると計算が複雑になる不利な点があ る。また多重層遮蔽を透過する速中性子は内側境界で 角度分布が大きな変化を示すので, この変化を忠実に 記述することはむずかしい。さらに上述の速中性子が 深い透過で示す鋭い前方ピークの角度分布を P_i 法で 正確に取り扱うことは無理である。

(6) モンテカルロ法^{15),16)}

原理的には全ての遮蔽問題を取り扱い得るのである が,実際に遮蔽問題を計算する場合には種々の諸問題 が生じてくる。元来,遮蔽体は放射線が外にもれ出な いために施すのであるから,もれ出る放射線の数が多 いほど精度が良くなるモンテカルロ法の放射線遮蔽透 過計算への適用は本質的に矛盾しているといえよう。 したがって,遮蔽体透過問題をモンテカルロ法で計算 するには,膨大な数の放射線を遮蔽体に入射させなけ れば遮蔽体を透過する放射線の数が少な過ぎて,その 結果大きな統計誤差を生ずることになる。

あらゆる中性子遮蔽問題を計算できるといわれるモ ンテカルロコードに 05R¹⁷⁾ がある。しかし, 逆にこ の計算コード自身の取り扱いが複雑過ぎて, 直ちに計 算したい遮蔽問題の計算ができない大きな 欠点 が あ る。

したがってモンテカルロ法を遮蔽問題に適用する場 合は,モンテカルロ計算が適している問題に限った方 がよい。例えば,他の計算方法では取り扱うことので きない複雑形状問題や形状が小さい問題(検出器の応 答関数計算問題)等への適用が望ましい。

(7) モーメント法^{2),18)}

ボルツマン輸送方程式を球調和法の場合と同様に, まずルジャンドル多項式展開する。次いで空間変数を 除去するためにモーメント変換を施こす。この変換に よりモーメントで書き換えられた方程式を計算するこ とによってモーメントを求める。最後に計算されたモ ーメントから中性子束を再生する。モーメント法の大 きな制限条件として

- a. 無限一様媒質
- b. 線源は平板および点線源

がある。実際の計算では有限な数のモーメントを数値 積分計算によって求めることになる。これらの有限な 数のモーメントを使用して中性子束を再生することに なり、この再生方法に問題が残されている。ガンマ線

9

(331)

に対するモーメント法計算では,計算されたモーメン トから線束を再生するのに最適の関数が見つけられた ので非常に精度の良い解を得ることができた。これに 対し,中性子の計算では,

c. 計算されたモーメントから中性子束を再生する のに最適の関数が見い出せない。

したがって,実際は各計算問題ごとに中性子束を再生 するための最適な関数を見つけなければならない。最 近でもこの再生関数についての研究が続けられてい る。

モーメント法の場合は、一般に求められる解はスカ ラー東である。これはルジャンドル展開の0次の項で あるから容易に計算できるわけである。それ以上の高 次の成分はせいぜい第1次のいわゆる流束 $\Phi_1(x, E)$ 程 度が計算できる限度である。その理由は $l \ge 2$ 以上の 高次の成分を計算するには大量の数のモーメントを計 算しなくてはならないからである。今 $\Phi_l(x, E)$ を p項のモーメントで表わすためには、

$$\left[\frac{(l+2p)(l+2p+1)}{2}-l\right]$$

の数のモーメントを計算しなくてはならない⁸⁾。 した がって,

d. 中性子角度分布の計算は困難である。

結局モーメント法は簡単な形状における中性子エネ ルギスペクトルを計算し,他の計算方法の計算精度を 比較計算によって調べる際の標準として使用されるこ とになる。

(8) Invariant Imbedding 法

天体物理における光の輸送の問題²⁰⁾から出発し,最 近になって中性子の輸送計算^{21),22),23)} に適用されるよ うになった。本解法は透過と反射の関数を使用して中 性子遮蔽の計算を行なう。まず中性子の反射を計算す るために反射方程式を導出する。反射関数が求められ たら,この反射関数をもとにして透過を計算するため の透過方程式を導出する。いずれの方程式も非線型の 微積分方程式である。また本解法は初期値問題であ り,これはボルツマン輸送方程式が線型の微積分方程 式で境界値問題であるのに対照的である。実際の遮蔽 問題に対し上述の非線型の微積分方程式を解析的に解 くことは不可能であるから数値解法で解く。したがっ て,この場合,ボルツマン輸送方程式を Discrete Ordinates 数値解法で解くのと同程度の困難さとなる ので,この点に関して特に良い点はない²⁴⁾。

本解法の不利な点は一次元平板以外の形状に対して

は計算の実績がないこと、および遮蔽体内における任 意の位置での情報が得られないことである。なお最近 二次元(*x*, *y*)平板形状に対する単一エネルギ等方散乱 の場合の中性子透過計算の試みが報告されている²⁵⁾。

結局 Invariant Imbedding 法は一次元平板形状に対 しては Discrete Ordinates 法と競合状態にあるが,他 の形状へ適用できないのは大きな弱点である。

なお (9) および (10) の Discrete Ordinates 法に もとづく計算法については,本研究による中性子透過 計算法と同じ分類に属するので第4章で詳しく論ず る。

第2章 定常の中性子輸送方程式

中性子遮蔽計算では時間的変化のない定常の問題が 重要であり,時間依存の問題は非常に特殊な問題に限 られるので本論文では定常の中性子透過問題のみを対 象とする。

ボルツマン輸送方程式は個々の粒子の挙動を記述す るのではなく,全体の粒子の平均的な挙動を記述する 方程式である。この方程式は空間,粒子の進行方向, 粒子のエネルギから成る位相空間体積要素を考えた場 合,この体積要素における粒子の保存則すなわち粒子 の生成,流出および消滅が釣り合っていることにもと づいている。したがってボルツマン輸送方程式は次の ような基本的な仮定のもとに導出される²⁶³。

(1) 位相空間体積要素はこの要素内で粒子の統計 的変動が無視できる位大きくとる。統計的変動はボル ツマン輸送方程式では考慮されない。

(2) 中性子の標的核との衝突の時間は零と仮定す る。次章で述べる複合核生成の時間は比較的長い時間 を要するが、それでも 10⁻¹⁴ 秒程度である。

(3) 中性子相互間の衝突は無視できる。これは標 的核の密度に比べて中性子の密度がはるかに小さいと 考えられるからである。したがってボルツマン輸送方 程式は線型になる。

(4) 中性子の減速過程で物質中の原子や分子の振動のエネルギは無視できるとする。中性子のエネルギ が原子や結晶の分子の結合エネルギの2ないし3倍程度に低くなると、中性子の減速は平均エネルギ損失のみに関係するようになる。したがって本論文ではそれ以上のエネルギの中性子のみを対象とする。

(5) 中性子に働く力の場は無視できる。核の場の みを考える。したがって中性子は標的核との衝突間で は一直線に進行する。

(332)

いま,位置 \vec{r} で単位方向ベクトル $\overline{\Omega}$ の $\overline{\Omega}$ 方向の 立体角要素 $d\overline{\Omega}$ 内に進行方向を持ち, $\overline{\Omega}$ 方向に垂直 な単位面積あたり単位時間に通過する中性子のうち, そのエネルギが $E \ge E+dE$ の内にある中性子の個 数を $\Phi(\vec{r}, \overline{\Omega}, E)d\overline{\Omega}dE$ とする。この $\Phi(\vec{r}, \overline{\Omega}, E)$ を中 性子密度の分布関数というが,以降では簡単に中性子 角度束あるいは中性子角度分布と称する。

定常状態の場合,いま考えている位相空間体積要素 $d\overline{\tau} = d\overline{r}d\overline{\Omega}dE$ から中性子が失われる過程は次の2つ の過程である。すなわち

(a) 進行方向 $\overline{\Omega}$ の中性子の $d\overline{r}$ からの流失; [$\overline{\Omega}$ ・grad $\Phi(\overline{r}, \overline{\Omega}, E)$] $d\overline{r}d\overline{\Omega}dE$

(b) 標的核との衝突により dr 中で dΩdE から
 中性子の消滅;

 $\Sigma_{l}(\bar{r}, E) \Phi(\bar{r}, \overline{\Omega}, E) d\bar{r} d\overline{\Omega} dE$

なお $\Sigma_t(\tilde{r}, E)$ はエネルギの中性子の位置 \tilde{r} における 物質に対する巨視的全断面積であり、単位は cm⁻¹ で ある。

また中性子がこの体積要素 *d*7 に入ってくる過程は 次の2つの過程である。すなわち

(c) *d*[₹] 内での中性子の純線源 (あるいは外部線 源ともいう)からの誕生;

$S(\bar{r}, \bar{\Omega}, E) d\bar{r} d\bar{\Omega} dE$

(d) $d\bar{r}$ 内でエネルギ E' で進行方向が $\bar{\Omega}'$ の中 性子が標的核に散乱されてエネルギが E で進行方向 が $\bar{\Omega}$ に,単位時間あたり $d\bar{\Omega}' dE'$ から $d\bar{\Omega} dE$ に流 入する;

$n(\bar{r})d\bar{r}\sigma_{S}(\bar{\Omega}'\to\bar{\Omega}, E'\to E)d\bar{\Omega}dE \\\times [\Phi(\bar{r}, \bar{\Omega}', E')d\bar{\Omega}'dE']$

上式で $n(\bar{r})$ は位置 \bar{r} における標的核の密度であり、 $\sigma_{s}(\bar{\Omega}' \rightarrow \bar{\Omega}, E' \rightarrow E)$ は微視的微分散乱断面積であり単位はバーン (10⁻²⁴ cm²) である。

平衡状態では中性子の流入と流出は等しいので (a)+(b)=(c)+(d)

$$a)+(b)=(c)+(d)$$

となり、上式の両辺を $d\bar{\tau} = d\bar{r}d\bar{\Omega}dE$ で除すると $\bar{\Omega} \cdot \text{grad} \Phi(\bar{r}, \bar{\Omega}, E) + \sum_{t} (\bar{r}, E) \Phi(\bar{r}, \bar{\Omega}, E)$

$$=S(\bar{r},\,\overline{\Omega},\,E)+n(\bar{r})\int d\overline{\Omega}' \int dE'$$

× $\sigma_{s}(\overline{\Omega'} \rightarrow \overline{\Omega}, E' \rightarrow E) \varPhi(\bar{r}, \overline{\Omega'}, E') \cdots (2-1)$ を得る。一般に物質は異種類の核から成ると考えられ るので,(2-1)式の右辺の散乱積分項は物質を構成す る核の種類の和として次のように表わす。

$$\sum_{i} n_{i}(\bar{r}) \int d\overline{\Omega}' \int dE' \sigma_{S,i}(\overline{\Omega}' \to \overline{\Omega}, E' \to E)$$

× $\Phi(\tilde{r}, \bar{\Omega}', E')$ (2-2) ここで i は核の種類を表わす。

輸送方程式(2-1)式の右辺は一般に線源項と呼ばれ るが,このうち散乱線源については次章で詳しく検討 する。

第3章 中性子と物質と相互作用

3.1 緒 言

中性子は物質中を透過する場合,物質を構成してい る原子核および電子と相互作用を起す。中性子と物質 との相互作用を分類するとおよそ次のようになる²⁷⁾。

相互作用

「「「「」「核との相互作用

(*n*, *f*)など スピンの向きに4

中性子と電子との間には両者のスピンの向きに無関 係な相互作用が存在する。これは中性子がある瞬間に $N \hookrightarrow P + \pi^-$ のように陽子と負の π 中間子とに解離し ていると考えられることに起因する。この断面積は5 ×10-31 cm² (5×10-7 バーン)の程度で,核との相互 作用の断面積 (~10-24 cm2, バーン) に比して無視で きるほど小さい27)。したがって本研究においては中性 子と電子との相互作用は無視する。したがって本研究 における中性子と物質との相互作用は原子核との相互 作用のみを取り扱うことにする。原子核との相互作用 のうち,弾性散乱および非弾性散乱は中性子の減速に 重要な役割をはたす。一方吸収として取り扱われる捕 獲や核変換のうち捕獲はガンマ線を放出するので遮蔽 計算上重要である。遮蔽計算においては核分裂現象は 比較的重要視されない。核変換で価電粒子放出の現象 は中性子測定の方で重要である。

ー般に中性子と核との相互作用の断面積は核の種類 によって,さらに中性子のエネルギによっても複雑な 変化を示す。一方中性子の物質透過の計算を精度良く 行なうには物質を構成する各原子核に対する中性子の エネルギ依存の詳細な断面積が精度良く求められてい ることが必要条件となる。

3.2 弹性散乱

中性子が物質を透過する場合,中性子は主に軽い核 による弾性散乱および重い核による非弾性散乱によっ て減速される。弾性散乱は標的核の内部エネルギに変

(333)

化をもたらさないで運動量と運動エネルギを標的核と やり取りを行なう現象である。さらに詳しく述べると 弾性散乱は複合核形成(付録A参照)による共鳴散乱 および複合核を形成しないで核の表面のポテンシャル と相互作用をして散乱されるポテンシャル散乱から成 る。前者の共鳴吸収のビークは重い核の場合1KeV以 下であり,中程度の核(鉄,ニッケル,コバルト等) の場合 0.01 MeV から 2~3 MeV 領域に現われ,軽 い核(炭素,ちっ素,酸素等)の場合 0.1 MeV から 10 MeV 領域に現われる。ただし重い核でも魔法数 (50,82,116)の中性子数をもつ核種(例えば鉛やビ スマス)はあたかもはるかに軽い核のように振舞い, 共鳴ビークは 1 KeV~1 MeV 領域に現われる。

共鳴領域でもポテンシャル散乱は存在するが,共鳴 領域以外のエネルギ領域での弾性散乱はほとんどポテ ンシャル散乱である。ポテンシャル散乱は入射中性子 の中性子波が核力のポテンシャル場と相互作用し,二 次的な散乱波を生ずるものである。散乱断面積は散乱 波の振幅の絶対値の二乗に比例する²⁸⁾。数学的には波 動関数をルジャンドル多項式展開し,その各項が各々 の部分波に対応している。 10^{f} eV より低いエネルギの 中性子の波長は長い (2.86×10^{-11} cm)のでルジャンド ル展開の l=0 すなわち S 波の散乱のみが起る。した がって散乱は等方的となる。l=1の相互作用が認めら れる程度になるのは核の質量 A=10の場合 2.5 MeV であり, A=200の場合は 0.33 MeV であり,このエ ネルギ以上では l=1 すなわち p 波の散乱も寄与して くる²⁸⁾。

中性子が弾性散乱される場合,中性子と原子核の系 の運動エネルギは保存される。核分裂中性子のエネル ギ程度では非相対論的に取り扱ってよい。また標的核 は自由原子で実験室系で静止しているとする。この仮 定が成立するのは物質の分子構造や系の熱による擾乱 に起因する種々の効果を無視できる場合である。すな わち中性子のエネルギが物質中の分子や結晶中におけ る原子の振動のエネルギに比べて大きい限り成立す る。しかし中性子の滅速の結果,そのエネルギが原子 の振動エネルギに近づくと化学結合力を無視すること ができなくなり,また系のもつ熱による擾乱を受ける ようになる²⁰⁾。さらにこのような低エネルギでは結晶 構造に起因する中性子波の干渉効果(干渉性散乱)が 問題となる²⁰⁾。

以上のことから中性子の減速過程でおよそ 1eV 程 度以下の低エネルギ領域では物質の分子や結晶構造を 考慮に入れなければならない。そこで本研究で対象と する中性子は核分裂中性子のエネルギのうち 1eV 程 度以上のエネルギを有する中性子に限定し、1eV 程度 以下で起こる上述の複雑な現象は考慮しないことにす る。

したがって実験室系で衝突する前の標的核は静止し ているとすれば,散乱前後の中性子のエネルギの関係 は次式のように求められる(付録 B)。すなわち散乱 前後の中性子のエネルギを E' および E とすれば

$$\frac{E}{E'} = \frac{M^2 + 2M\cos\theta + 1}{(M+1)^2} \quad \dots \dots (3-1)$$

ここで M は標的核の質量数, θ は重心系での散乱角 度である。また重心系の散乱角度 θ と実験室系にお ける散乱角度 θ との間には次式の関係がある(付録 B)。

$$\cos \Theta = \frac{M \cos \vartheta + 1}{\sqrt{M^2 + 2M \cos \vartheta + 1}} \dots (3-2)$$

水素原子以外の一般の原子に対する中性子の散乱は 低エネルギの場合は重心系で等方であるが,高エネル ギの場合には非等方となる。一方水素原子の場合は, 10 MeV 程度までは重心系で等方散乱であり,それ以 上の高エネルギでは重心系における微分散乱断面積は 次式で表わせる²⁹⁾。

$$\frac{d\sigma(\vartheta)}{d\Omega} = \sigma(90^\circ)(1 + A\cos\vartheta) \cdots (3-3)$$

ここで非等方パラメタ A は中性子エネルギとともに 単調に増加する。しかし 14 MeV 程度では A=0.05 で あり非常に小さい。したがって本研究では水素原子に 対する弾性散乱は対象とする全エネルギにわたって重 心系で等方とする。

3.3 非弹性散乱

非弾性散乱は複合核形成から残留核を励起状態に残 して中性子を放出する反応である。励起状態の残留核 は1個以上のガンマ線を放出して基底状態に戻る。し たがって標的核の第1励起エネルギ準位より小さいエ ネルギの中性子に対しては非弾性散乱は起こらない。 このエネルギをしきい(threshold)エネルギといい, 一般に軽い核や魔法数の中性子数をもつ重い核(例え ば鉛やビスマス)は、このしきいエネルギは大であ る。一方一般の重い核ではしきいエネルギが小さいの で中性子減速過程では非性弾散乱が重要な役割をはた す(Table 1 参照)。

非弾性散乱による減速の計算は非弾性散乱の断面積 の計算方法と密接に関係して行なわれる。すなわち標

(334)

Nucleus	E_{tr} , MeV
Lie	2.19
Li ⁷	0.478, 4.61
Be ⁹	2.43
B10	0.72
B11	2.14
C^{12}	4.42
N ¹⁴	2.30
O^{16}	6.09
\mathbf{F}^{19}	0.11, 0.19, 1.37
Na ²³	0.44, 2.07
Al ²⁷	0.84, 1.01, 2.23
Cr^{52}	1.45
$\mathrm{Mn^{55}}$	0.126, 0.98
Fe ⁵⁶	0.85, 1.81
Co	1.10
Ni	1.33
Cu	0.97
у	0.91
Zr	0.90
Nb	0.030, 0.764
W	0.10
Pb^{206}	0.81
Pb^{207}	0.6
$\mathrm{Pb^{208}}$	2.62
Bi209	0.91
U^{235}	0.046
U^{238}	0.044
Pu^{239}	0.050

Table 1 Thresholds for inelastic scattering²⁾

的核の励起エネルギ準位の準位間隔に従い,断面積は 次の2通りに分けて求められる。その1は標的核の低 い励起準位においては準位間隔が大きく離れているの で離散分布として取り扱う。この終状態が離散分布の 場合の非弾性散乱の断面積は複合核生成から Hauser-Feshbach の理論⁸⁰⁾あるいは同理論の改良である Moldauer の理論⁸⁰⁾あるいは同理論の改良である Moldauer の理論^{81),820}によって計算される。これに対 し入射中性子のエネルギが高くなり,残留核が高い励 起準位に励起されるようになると,そこでは準位幅が 準位間隔より広くなり終状態を分離することができな くなる。このような場合は複合核理論では残留核の準 位分布密度の概念を導入して終状態に対する統計的な 取り扱いが必要となり⁸³⁰,いわゆる統計理論による蒸 発模型で非弾性散乱の断面積は計算される。

また非弾性散乱の角度分布は入射エネルギが低いほ

ど等方的であり複合核過程が主役を演じ、入射エネル ギが高く、かつ励起エネルギが低いほど非等方的にな り、複合核過程を経由しない直接反応過程の寄与が現 われる³³⁾。

しかし得られている非弾性散乱の角度分布のデータ は遮蔽計算に直ちに使用できるように,対象とする全 エネルギにわたって編集されていない。さらに現在ま での中性子計算方法ではいずれの場合でも非弾性散乱 の角度分布を等方散乱仮定にしている。また非弾性散 乱が重要な減速の役割をはたす鉄では非弾性散乱の角 度分布はほとんど等方散乱扱いできる。以上の理由か ら本研究でも非弾性散乱は等方散乱を仮定する。

3.4 放射捕獲

低エネルギの中性子が原子核に捕獲されて複合核を 形成し、この励起された複合核がガンマ線を放出して 基底状態に戻る反応である。二次ガンマ線の線源とし て重要な反応であるが中性子の観点に立って見れば単 なる中性子の吸収である。

3.5 荷電粒子放出の核反応

中性子が標的核に捕獲され複合核を形成し、 α 粒子 や陽子が二次放出粒子として残留核のクーロン障壁に 打ち勝って放出される反応である。クーロン障壁の小 さい核は質量数の小さい核であるから軽い核で起りや すい。荷電粒子放出反応は本研究では単に中性子の吸 収として取り扱う。なお核分裂反応は中性子遮蔽計算 では対象外とし、その断面積は単に吸収断面積として 取り扱う。

3.6 (n, 2n) 反応

入射中性子のエネルギが標的核の中性子結合エネル ギより大となると、中性子を吸収し2個の中性子を放 出する (n, 2n) 反応が可能となる。この中性子結合エ ネルギが (n, 2n) 反応のしきいエネルギである。そし て遮蔽物質を構成する核についてはおよそ 10 MeV と 高いが、鉛の場合は6~8 MeV であり、ベリリウムと 重水素の場合は特に低く 1.84 MeV と 3.3 MeV (実験 室系) である。重水素に対する非弾性散乱は起らない から、(n, 2n) 反応は重水素の場合重要な反応である。

3.7 遅い中性子による中性子による核反応27)

1 KeV 程度以下の遅い中性子で起る反応は弾性散乱 (n, n) と放射捕獲(n, γ) が主で,まれに軽い核に対 し(n, p),(n, α) 反応が起る。核分裂反応は遮蔽計算 では対象外とする。標的核が中位や重い場合に共鳴散 乱および放射捕獲が起るが,一般に中位の核では共鳴 散乱が主としてて起り,重い核では放射捕獲が主とし て起る。一方,軽い核ではポテンシャル散乱が主とし て起る。

3.8 中速中性子による核反応27)

1~500 KeV の中性子では軽および中位の核につい ては放射捕獲の断面積は一層小さくなり,重い核では まだある程度大きいが散乱が次第に主になって来る。 重い核でははっきりした共鳴は現われなくなるが,鉛 やビスマスなどの魔法数の中性子数を有する核ではは っきりした共鳴がみられる。中位の核でははっきりし た共鳴がみられ,また軽い核でも共鳴がみられるがそ の数は少ない。非弾性散乱はまだ起らない。

3.9 速中性子による核反応²⁷⁾

0.5~10 MeV の速中性子では弾性散乱はポテンシャ ル散乱が共鳴散乱に比べて優勢となる。しかし軽い核 ではまだ共鳴の山が数多くみられる。1 MeV 程度以 上になると非弾性散乱が起るようになる。数 MeV 以 上になると残留核は高い励起状態に残されるので連続 体理論が成立し, 蒸発モデルの適用が可能となる。 (*n*, *p*), (*n*, *α*) などの荷電粒子放出反応も中位の核では 1~3 MeV 程度で可能になって来る。しかしこの反応 の断面積は小さい。

10 MeV 程度に高いエネルギになると非弾性散乱や 荷電粒子放出の反応が充分起こり得るようになり,ま た (*n*, 2*n*), (*n*, *np*) などの1 個以上の放出粒子が現わ れる核反応が起るようになる。弾性散乱の角度分布は 鋭い前方ビークを示すようになる。

3.10 中性子遮蔽計算に重要な中性子断面積

前述の議論から遮蔽体中での中性子の核反応にもと づく重要な断面積としては,弾性散乱および非弾性散 乱の散乱断面積 σ_s ,ならびに (n, 2n)反応の断面積 $\sigma_n, 2n$,さらに全ての反応の断面積を加え合せた全断面 積 σ_t がある。中性子を吸収し他の粒子を放出する各 種の反応はまとめて吸収として取り扱い,吸収断面積 で考慮される。したがって,

 $\sigma_t = \sigma_S + \sigma_{n,2n} + \sigma_a ,$

 $\sigma_S = \sigma_{el} + \sigma_{in}$,

 $\sigma_a = \sigma_{n,\tau} + \sigma_{n,p} + \sigma_{n,\alpha} + \cdots \cdots$

ここで σ_{el} , σ_{in} はそれぞれ弾性散乱および非弾性散 乱断面積であり, $\sigma_{n,r}$, $\sigma_{n,p}$, $\sigma_{n,a}$ 等はそれぞれ (n, γ) , (n, p), (n, α) 反応の断面積である。

以上の積分断面積の他に中性子減速を計算するのに 微分散乱断面積が必要である。弾性散乱については一 般に非等方散乱の取り扱いをするので,散乱の角度分 布を考慮に入れた微分散乱断面積 $\sigma_s(E' \rightarrow E, \overline{\Omega'} \rightarrow \overline{\Omega})$ が必要となる。実際の計算には、この微分散乱断面積 を中性子の散乱角についてルジャンドル多項式展開し た時の各エネルギにおけるルジャンドル係数 $f_l(E)$ が 必要である。

一方非弾性散乱については実験室系で散乱角度分布 は等方であると仮定するので、中性子の減速のみの微 分散乱断面積 *σs*(*E*′→*E*) が必要となる。

また (n, 2n) 反応の取り扱いは理論式の上では特に 行なわず,計算に用いる断面積の上で (n, 2n)の断面 積を非弾性散乱の断面積に含めてしまう。したがって (n, 2n) の微分断面積も非弾性散乱の場合と同様に散 乱は実験室系で等方分布とし,微分断面積も $\sigma_s(E' \rightarrow E)$ となる。ただし,二次中性子は2個放出するこ とを微分断面積上で考慮する。

第4章 中性子 遮蔽計算における輸送方程式 の数値解法

4.1 緒 言

輸送方程式の解法について、これまでに開発された 各種の解法は文献(34)に集大成されている。また最 近開発された解法については文献(35)に Case の方 法を中心に詳しく述べられている。また輸送方程式の 解法を数学的な観点に立って論じた論文をまとめたも のに文献(36),同じく数学的理論の現状をまとめたも のに文献(37)がある。

中性子遮蔽計算における輸送方程式の解法はいずれ も文献(37)の分類に従えば,解法(技術)の研究で あり,このうちの近似解法である。そして,すべての 近似解法は解の存在を前提としている⁸⁷⁾ように,遮蔽 計算における近似解法も解の存在を前提として議論を すすめる。

4.2 中性子遮蔽計算における Discrete Ordinates 法

中性子遮蔽の実用計算を輸送方程式の近似解法で行 なう場合,ほとんど Discrete Ordinates 法により,し かも数値計算によって行なわれる。遮蔽計算に Discrete Ordinates 法が適している理由はおよそ次のよう である。

一般に多重層遮蔽体の内部境界面や外部境界面で中 性子束は角度によって著るしく変化する。このため中 性子の角度分布が一様であると仮定する拡散理論は遮 蔽計算には不適当である(第1章1.2)。また中性子の 角度分布を有限項のルジャンドル多項式で展開近似す る *P*_t 近似法も境界での角度依存性を正確に表現する

(336)

には不充分である⁸⁸⁾。これに対し,角度空間を多領域 に分割し,各領域内で独立の角度分布関数をとる考え 方は非常に有効である。したがって Discrete Ordinates 法のように角度空間を有限個の角度分点で表わし,各 角度分点で輸送方程式を解いて中性子束を算出する解 法は遮蔽計算に適している³⁸⁾。

Discrete Ordinates 法は P_i 近似法と等価であると いう議論がある^{39),40)}。しかしこれはあくまで線束およ び微分散乱断面積,さらに線源がl次のルジャンドル 多項式展開近似で表わすことが可能であること,およ び Discrete Ordinates 法における散乱積分計算がガウ ス求積法によって行なわれる場合に限られる。一般に 遮蔽体中での速中性子束は極端な前方ビークの角度分 布を有するので,これを有限項のルジャンドル多項式 で展開近似することはむずかしい。したがって速中性 子の透過問題に対しては Discrete Ordinates 法と P_i 近似法とが等価であるとはいえない。

Discrete Ordinates 法は境界条件の定義が簡単で見 通しのよいことも特長である³⁸⁾。これに対し *Pi* 近似 法では、中性子の角度分布が境界条件を厳密に満足す ることはむずかしい³⁹⁾。本研究による Discrete Ordinates 数値解法においては中性子角度分布は角度分点 のみならず分点間の全角度にわたって境界条件は厳密 に満足されている。

以上のことから Discrete Ordinates 数値解法の一つ である Discrete Sn 法や本研究における Discrete Ordinates 直接積分解法は,中性子遮蔽で特に問題に なる現象――連中性子束の極端な前方ビークの角度分 布,速中性子領域における鋭い前方ビークの非等方散 乱角度分布および境界において大きく変化する中性子 角度分布――を首尾良く取り扱うことができる点で遮 蔽計算に適している。

Discrete Ordinates 法は初め Wick⁴¹⁾-Chandrasekhar⁴²⁾ 法といわれ, ボルツマン輸送方程式における散乱積分 計算をガウス求積法で行ない,輸送方程式を角度分点 につき解く方法である。その際角度分点はルジャンド ル多項式の根に一致させる。次いで原子炉の計算に本 解法を適用し,数値計算で解く方法として Sn 法が Carlson によって開発された⁴³⁾。この初期の Sn 法は 角度分点の選び方が Wick-Chandrasekhar 法と異なり, 角度の余弦につき等間隔に選んだ。また中性子角度分 布は各角度分点間を直線で結ぶ,いわゆる折線近似で 表わした。この折線近似法は中性子角度分布の計算で 90 度方向に対し対称性が失われる欠点⁴⁰⁾がある(輸送 方程式は基本的に対称性を有している)。このため境 界条件および対称条件を満たすのが困難であった。ま た散乱の取り扱いも等方散乱を仮定している。その後 S_n 法は発展し,次に記述する Discrete Sn 法 $^{44},^{45}$ と なる。

4.3 Discrete Sn 法

Discrete Sn 法は中性子の角度分布を Discrete Ordinates 角度分点の各分点につき,その各分点の代 表する角度区間で中性子束を積分することによって表 わす。Discrete Sn 法は次の仮定にもとづきボルツマ ン輸送方程式を計算する²⁴⁾。

a. ボルツマン輸送方程式を finite-difference cell で 表わす。すなわち

finite-difference cell²⁴ $\equiv \int_{V \in V_I} dV \int_{\mathcal{Q} \in d\mathcal{Q}_D} d\mathcal{Q} \int_{E \in \mathcal{A} E_G} dE$

ここで V は体積, Ω は中性子の進行方向単位ベ クトル, E は中性子のエネルギである。

輸送方程式の微分形は上述の finite-difference cell で表わすと差分形で近似される。

- b. エネルギは多群の形をとる。
- c. 数式の導出の過程で、次のような平均値の定理 を適用して積分計算をする。

$$\int_{x_2}^{x_1} x f(x) dx \cong \bar{x} f(\bar{x}) dx , \quad x_1 < \bar{x} < x_2$$

d. 余計な未知関数(セルの中心点における中性子 束,セルの各対辺の中心点における中性子束等 (Fig. 4.1))を減ずるため、ダイヤモンド差分法を 導入(付録C参照)。

Fig. 4.1 Diamond difference technique in Sn method

e. ダイヤモンド差分法の使用により,中性子角度

(337)

分布が 90 度方向に近い角度分点で負になること が多い。この場合ダイヤモンド差分法の使用の代 わりにステップ関数で近似する(付録C参照)。

f. 差分形表示の輸送方程式は,繰り返えし収斂法 により計算される。

最近の遮蔽計算用 Discrete Sn コード^{40,47})は遮蔽計 算に適するように弾性散乱は高次の非等方の取り扱い をする。さらに等方散乱仮定の非弾性散乱の計算も行 なう。

Discrete Sn 法の不利な点は次のようである。

(1) ダイヤモンド差分にもとづいていることか ら、セルの大きさは隣り合うメッシュ点で中性子角度 分布の変化が少なく、その変化の程度は線型近似で表 わし得る程度である。したがって遮蔽体中での中性子 束のように空間について急激な減衰を示し、その上角 度分布が極端な前方ピークを示す場合には小さなセル を定める必要がある。すなわち距離および角度メッシ ュ両方とも細かく定める必要がある。

(2) ステップ関数近似の使用はセルを構成する隣 り合うメッシュ点で中性子角度分布が一定であるとい う仮定であるから,(1)で述べた条件は一層厳しくな る。

(3) 繰り返えし収斂法で計算するが,その際収斂 が必ずしも一様ではない。また必ず収斂する保証もない。

4.4 直接積分解法 (NIOBE)^{48),49)}

一次元球対称形状におけるボルツマン輸送方程式の Discrete Ordinates 解法の一つである。輸送方程式は Discrete Ordinates 角度分点(この場合ガウス求積法 における積分点に一致)の各分点につき計算される。 計算技法は一次偏微分方程式の数学的取り扱いにもと づいて特性線にそって輸送方程式を直接積分計算す る。エネルギ依存は多群に組み分けすることにより, エネルギの高い群から1群づつ順に計算することによ って処理される。この1群ごとの計算に繰り返えし収 斂法を使用して解を得る。

非等方散乱扱いの弾性散乱および等方散乱仮定の非 弾性散乱にもとづく散乱積分計算の技法は,モーメン ト法における中性子の弾性および非弾性散乱積分計算 に使用された技法^{3),18),50)}を適用して行なわれる。

NIOBEの弱点は小さな体積線源の取り扱いにある。 すなわち,この場合非散乱線は極端に前方ビークの角 度分布になるので,散乱線も含めた中性子束の角度分 布も前方ビークとなる。このような極端な非等方の角 度分布をもつ中性子束を計算すると,解は収斂しない ので求まらないか,あるいは収斂しても負の角度分布 のような無意味な計算結果を与えることがある。この 原因は NIOBE 計算では散乱積分計算を行なうのに, 中性子束角度分布を有限項のルジャンドル多項式で展 開近似している。したがって中性子束角度分布が有限 項のルジャンドル多項式で展開近似できる程度になめ らかな非等方角度分布であるならば,解は一様に収斂 し正しい解を与える。しかし,鋭い前方ピークの角度 分布のように有限項のルジャンドル展開近似で表わす ことがむずかしい場合は,上述のように収斂しないか, あるいは無意味な解を与えることになる。

したがって点線源に近い問題の計算は不可能であ る。また大きな体積線源に対する計算においても、し ばしば計算した中性子束角度分布が実際の現象には現 われない振動型の角度分布を示すことがある。したが ってこのような場合は角度について積分した中性子ス カラー束が仮りに正しい解であったとしても、角度分 布は正しいとはいえない。

4.5 直接積分解法 (EOS)51),52)

著者および片岡の研究によるもので、一次元平板形 状における定常のボルツマン輸送方程式を Discrete Ordinates 法にもとづいて解く計算方法である。

まず Discrete Ordinate 角度分点をガウス求積法の 積分点に選び,輸送方程式をこの各角度分点に対し中 性子の進行方向にそって直接積分する。エネルギ依存 は NIOBE と同じく多群に組み分けし,エネルギの高 い群から1群づつ低い群へ計算をすすめる。

散乱積分計算は非等方扱いの弾性散乱および実験室 系で等方散乱仮定の非弾性散乱にもとづいて, NIOBE における散乱積分計算に適用したのと同じ技法3)18)50) を適用して行なう。したがって EOS は NIOBE と同 じ弱点を持つことになった。ただし、EOS の場合は形 状が平板形状であるために,単一方向に近い角度分布 の入射線源問題を除いて、平板等方線源問題や平板余 弦分布線源問題などの一様な角度分布を持つ線源問題 の場合には、非散乱線の減衰の仕方に差があっても零 になることはないので解は一様に収斂する。しかし収 斂した角度分布が,遮蔽問題にもよるが,高エネルギ 領域で振動することがある (Fig. 4.2)。Fig. 4.2 に示 されている計算例は核分裂線源からの中性子のカーボ ン媒質中における中性子角度分布である。線源は板形 状であり、x=0 cm で 50 cm 厚のカーボン媒質に入 射する。また線源の角度分布は等方とした。図中実線

16

(338)

Fig. 4.2 Fast neutron angular distributions in graphite from plane isotropic fission source (EOS calculation)

は 18 MeV のエネルギの場合であり,一方点線は 1.9 MeV の場合である。この計算例の場合でも角度につ いて積分した中性子スカラー束は正しく求められてい る。その計算例を Fig. 4.3 に示す。これは上述の問 題を計算した中性子エネルギスペクトルである。回中 には EOS-2 の計算結果を点線で示し,他の計算結果 としてモーメント法による無限平板中のエネルギスペ クトル⁵³⁾を実線で,さらに次章で述る MENE による 計算結果⁵⁹⁾を一点鎖線で示し比較した。同図に示され た計算結果は EOS-2 および MENE ともに計算のレ サジ間隔が 0.25 と粗いためにカーボン中の中性子ス ペクトルが示すべき激しい変化は Fig. 4.3 には現わ れていない。以上の計算例から EOS により算出され た透過中性子の角度分布は高いエネルギ領域ではその 使用には注意を要する。

また単一方向入射線源(通常垂直入射線源)や鋭い 前方ビークの角度分布をもっつ入射線源問題の場合 は、物質透過の中性子角度分布は鋭い前方ピークを示 す。このことから NIOBE 計算で問題になったのと同 様の悪い影響が現われる。すなわち計算結果は収斂し

Fig. 4.3 Fast neutron energy spectra in graphite from plane isotropic fission source. Comparison of EOS calculation with Moments and MENE calculations

ないので求まらないか,あるいは収斂しても無意味な 負の値に収斂することがある。

上述の中性子束角度分布が高エネルギ領域で振動し たり、あるいは無意味な負の値になる原因は輸送方程 式の右辺の散乱積分の計算方法にある。そこで文献 (52)を参照して EOS における散乱積分の計算方法を 検討してみる。その際非弾性散乱は実験室系で等方散 乱を仮定しているので中性子束角度分布の変化にはあ まり影響を及ぼさない。したがって以下の議論では弾 性散乱による積分計算のみを取り上げ、非弾性散乱に よる積分計算については省略する。

ー次元平板形状における中性子束角度分布を $\Phi(x, \omega, E)$ で表わす。ここで x は空間座標、 ω は中性子の 進行方向と x 軸とのなす角の余弦、E は中性子のエ ネルギである。この場合の弾性散乱による散乱積分項 は(2-2) 式から次のように書き表わせる。

$$I = \int_{E}^{E_{\max}} dE' \int_{4\pi} d\overline{\Omega'} \cdot n(x) \sigma_{S}(\overline{\Omega'} \to \overline{\Omega}, E' \to E) \\ \times \Phi(x, \overline{\Omega'}, E') \qquad \dots \dots (4-1)$$

なお,散乱積分項を上式のように I で代表させる。 ここで n(x) は位置 x における原子の密度であり, また $\sigma_{S}(\overline{\Omega'} \rightarrow \overline{\Omega}, E' \rightarrow E)$ は微視的微分散乱断面積であ る。 付録 D を参照すれば (4-1) 式は次式のように書き 表わせる。

$$I = \int dE' \int d\overline{\Omega}' \cdot n(x) \sigma_{S}(E') f(E', \mu)$$
$$\times \delta(\cos \Theta - \alpha) \frac{(M+1)^{2}}{2ME'} \Phi(x, \omega', E')$$

.....(4-2)

散乱積分計算はエネルギの代わりに次式で定義する中 性子レサジによって行なう。

$$u = \ln \frac{E_{\max}}{E} \qquad \cdots \cdots (4-3)$$

また $d\overline{\Omega'}$ は次式の関係式を使って表わす。

$$\int d\overline{\Omega}' = \int_{-1}^{1} d\mu \int_{0}^{2\pi} d\psi \qquad \dots \dots (4-4)$$

ここで $\mu = \cos \theta$ は重心系における散乱角の余弦, ψ は散乱の方位角である (Fig. 4.4 参照)。

(4-3) 式から, dE' = -E'du', また付録 D の (D-5) 式から $du' = \frac{2M}{(M+1)^2} e^{u-u'} d\mu$ を得る。したがって, $I = \int_{-1}^{1} d\mu \int_{0}^{2\pi} d\psi \cdot n(x) \sigma_{S}(u') f(u', \mu) \delta(\cos \Theta - \alpha) e^{u-u'} \times \Phi(x, \omega', u')$ (4-5)

さて、中性子束 $\Phi(x, \omega', u')$ および散乱角度分布陨数 $f(u', \mu)$ を有限項のルジャンドル多項式 展 開 近 似 す る。すなわち、

$$\Phi(x, \omega', u') = \sum_{l=0}^{L} \frac{2l+1}{4\pi} \Phi_l(x, u') P_l(\omega') (4-6)$$

$$f(u',\mu) = \sum_{p=0}^{P} \frac{2p+1}{4\pi} f_{p}(u') P_{p}(\mu) . \quad (4-7)$$

したがって(4-5)式は次式のように書ける。

$$I = \int_{-1}^{1} d\mu \int_{0}^{2\pi} d\psi \cdot n(x) \sigma_{\mathcal{S}}(u') \sum_{p=0}^{P} \frac{2p+1}{4\pi} \sum_{l=0}^{L} \frac{2l+1}{4\pi} \times f_{p}(u') P_{p}(\mu) \Phi_{l}(x, u') P_{l}(\omega') e^{u-u'} \delta(\cos \Theta - \alpha)$$

$$\cdots \cdots (4-8)$$

Fig. 4.4 を参照して単位球面上の2点 $\overline{\Omega}(\theta, \phi), \overline{\Omega}'(\theta', \phi')$ を原点から見た角を Θ とすると、球面三角の公式から

$$\cos \Theta = \cos \theta \cos \theta' + \sin \theta \sin \theta' \cos (\phi - \phi')$$
.....(4-9)

あるいは ϕ を ($\overline{\Omega}$, $\overline{\Omega}'$) 平面と (z, $\overline{\Omega}$) 平面とのなす角 (前述の散乱の方位角である) とすると,

 $\cos\theta' = \cos\theta\cos\Theta + \sin\theta\sin\Theta\cos\psi\cdots(4-10)$

また、球面関数の加法定理として次の関係式がある。 $P_n(\cos \theta) = P_n(\cos \theta) P_n(\cos \theta')$

$$+2\sum_{m=1}^{n}\frac{(n-m)!}{(n+m)!}P_{n}^{m}(\cos\theta)P_{n}^{m}(\cos\theta')$$
$$\times\cos m(\phi-\phi') \qquad \cdots \cdots (4-11)$$

あるいは (4-11) 式を書き換えれば次式となる。 $P_n(\cos \theta') = P_n(\cos \theta) P_n(\cos \theta)$

ここで $P_n^m(\cos \theta)$ はルジャンドルの陪関数である。以 上の (4-9) 式から (4-12) 式は Fig. 4.4 で示される 単位球面上における z 軸と中性子の進行方向の単位ベ クトル \overline{Q} および \overline{Q}' の3点から成る球面三角に関す る公式である。球面三角に関する基本的な公式は数学 公式集に出ている。

(4-12) 式を使用して (4-8) 式の散乱の方位角 ϕ に ついての積分を計算する。 そのために (4-8) 式で $\cos \theta' = \omega', \cos \theta = \omega, \cos \theta = \alpha$ で表わし, ϕ について 0 から 2π まで積分すると次式となる。

$$\int_{0}^{2\pi} P_{n}(\omega')d\psi = 2\pi P_{n}(\omega)P_{n}(\alpha)$$
$$+ 2\sum_{m=1}^{n} \frac{(n-m)!}{(n+m)!} P_{n}^{m}(\omega)P_{n}^{m}(\alpha)$$
$$\times \int_{0}^{2\pi} \cos m\psi d\psi$$
$$= 2\pi P_{n}(\omega)P_{n}(\alpha) \qquad \dots \dots (4-13)$$
$$U t t b^{5} \circ T \quad (4-8) \quad \exists t \notin \psi \quad k : \supset \forall : T \oslash \bar{\mathfrak{A}} \beta k t$$
$$\int_{0}^{2\pi} P_{l}(\omega')d\psi = 2\pi P_{l}(\omega)P_{l}(\alpha)$$

(340)

のように求まる。これゆえに (4-8) 式は次式のように 書ける。

$$I = \sum_{p=0}^{P} \frac{2p+1}{2} \sum_{l=0}^{L} \frac{2l+1}{4\pi} n(x) P_{l}(\omega)$$
$$\times \int_{-1}^{1} \sigma_{s}(u') f_{p}(u') P_{p}(\mu) \Phi_{l}(x, u') P_{l}(\alpha) e^{u-u'} d\mu$$
$$\dots (4-14)$$

(4-14) 式は µ についての積分だけになったので,次 にこの µ についての積分を実行する,積分計算は数 値積分によって行なう。文献(52)の付録BおよびC を参照して,

 $H_p(u') = \Phi_l(x, u')\sigma_{\rm S}(u')f_p(u') \cdots$ (4-15) とおき,

$$\int_{-1}^{1} H_{p}(u') P_{p}(\mu) P_{l}(\alpha) e^{u-u'} d\mu \cdots (4-16)$$

の積分計算は文献(2)および(52)を参照して次のように行なう。まず μ とレサジは密接なる関係がある。 すなわち付録Dの(D-5)から次式の関係を得る。

$$\mu = 1 - \frac{(M+1)^2}{2M} (1 - e^{u'-u}) \cdots (4 - 17)$$

したがって (4-16) 式を μ について数値積分するの に,その積分点を μ について選んでも u について選 んでもよいから,積分点を u=jh 点に選ぶ。ここで j は整数であり,h はレサジステップである。いま, $e^{-u'}H_p(u')$ がレサジメッシュ区間で線型関数で近似 できる²⁾とすると,

$$\frac{2p+1}{2} \int_{-1}^{1} H_{p}(u')e^{u-u'}P_{p}(\mu)P_{l}(\alpha)d\mu$$
$$= \sum_{\substack{k=0\\ k \neq 0}}^{N+1} H_{pk}\phi_{pk}^{l} \qquad \dots \dots (4-18)$$

のようにレサジメッシュ点についての和の形で近似さ れる。上式でk=0は自分自身のエネルギメッシュ点 に対する値を意味し、k=kは自分自身のエネルギメ ッシュより k 番目高いエネルギメッシュに対する値 を意味する。なおマトリックス ϕ_{pk}^{l} は文献 (51)の付 録 C, D, E, F に計算されている。したがって積分項 Iは次式のように計算される。

$$I = \sum_{p=0}^{P} \sum_{l=0}^{L} \sum_{k=0}^{N+1} n(x) \sigma_{S}(u-kh) f_{p}(u-kh) P_{l}(\omega) \\ \times \phi_{pk}^{l} \frac{2l+1}{4\pi} \Phi_{l}(x, u-kh) \qquad \dots \dots (4-19)$$

上式における $\Phi_l(x, u)$ は次式から計算される。

$$\Phi_l(x, u) = 2\pi \int_{-1}^{1} \Phi(x, \omega, u) P_l(\omega) d\omega$$

$$= \frac{4\pi}{2l+1} \sum_{q=1}^{Q} a_{lq} \Phi(x, \omega_q, u) \quad (4-20)$$

ここで重み aug は

$$a_{lq} = \frac{2l+1}{2} a_q P_l(\omega_q) \qquad \dots (4-21)$$

から求められる。上式における ωq はガウス求積法の 積分点であり,また aq はその重みである。

したがって散乱積分項(4-1)式は次式のように和の 形に導出される。すなわち,

$$I = \sum_{p=0}^{P} \sum_{l=0}^{L} \sum_{k=0}^{N+1} n(x) \cdot \sigma_{S}(u-kh) f_{p}(u-kh) P_{l}(\omega)$$
$$\times \phi_{pk}^{l} \sum_{q=1}^{Q} a_{lq} \Phi(x, \omega_{q}, u-kh) \qquad \dots \dots (4-22)$$

以上の数式の導出における特徴は次のようである。

- i) 中性子束は有限項のルジャンドル多項式展開近 似された。このことにより中性子束は角度変数と エネルギ変数を分離して取り扱うことができた。
- ii) 微分散乱角度分布関数も有限項のルジャンドル 多項式展開近似された。このことにより角度分布 関数はエネルギ変数と重心系における散乱角度変 数に分離して取り扱うことができた。
- iv) 重心系における散乱角 µ についての積分計算 は、(4-15) 式で表わされる H_p(u') に e^{-u'} を掛 けたものがレサジメッシュ間で線型関数で近似で きると仮定してレサジメッシュについての和の形 に近似計算された。

以上の過程で中性子束を有限項のルジャンドル展開 近似できるという仮定が,速中性子の透過計算で起こ る中性子角度分布の鋭い前方ビークを首尾良く近似す ることができないことから,算出された透過中性子の 角度分布に実際の現象では現われない振動が現われる ことになる。

なお散乱角度分布関数を有限項のルジャンドル多項 式で展開近似する方法は、散乱角度分布が鋭い前方ピ ークになる高エネルギ領域 (10 MeV 程度以上)を除い て、項数を重心系で 8~12 程度取れば充分に散乱角度 分布を近似することができる。実用計算では 10 MeV 程度以上に高いエネルギにおける散乱角度分布関数で も有限項のルジャンドル多項式で展開近似する。この 場合にルジャンドル多項式展開係数 $f_p(E)$ が入力デー タとして入力されるが、この $f_p(E)$ を使って元の関数 $f(E, \mu)$ を再生してみると、ある散乱角度で負になる ことがあるので注意を要する。

第5章 Discrete Ordinates 直接積分解法 (MENE, PALLAS)

5.1 緒 言

前章で中性子遮蔽計算に使用されている在来のDiscrete Ordinates 法にもとづく数値解法に対し,中性子 の透過問題適用の見地に立って検討を加えた。その結 果,中性子透過問題に適用した場合に在来のDiscrete Ordinates 数値解法が持つ問題点および取り扱い得る 透過問題の限界等が明らかにされた。本章では,これ らの問題点や限界を取り除いて,中性子透過問題を正 確にまた効果的に計算することのできる計算法の確立 を目的として,定常の中性子輸送方程式をDiscrete Ordinates 法にもとづいて解く新らたな数値解法を提 案する。

本章で提案する輸送方程式の数値解法はおよそ次の ようである。すなわち,まず定常の中性子ボルツマン 輸送方程式を基礎方程式としてたてる。この輸送方程 式を中性子の進行方向単位ベクトル Ω について単位 球面上に選ばれた Discrete Ordinate 角度分点 $\overline{\Omega}_{pq}$ で 表わす。さらにエネルギについても中性子レサジ上で レサジ単位で等間隔に分け、その分点をレサジ分点と し、このレサジ分点に相当するエネルギをエネルギ分 点 E_j (j=1, 2, ..., J) で表わす。このように中性子の 進行方向およびエネルギについて Discrete Ordinate 分点表示の輸送方程式に対して, この輸送方程式の右 辺の散乱積分を数値積分によって計算する。散乱積分 がエネルギ $E=E_j$ に対し,各角度分点 $\overline{\Omega}_{pq}$ につき求 められれば、輸送方程式のいわゆる線源項は各エネル ギメッシュ $E=E_j$ に対して直ちに計算される。した がって, Discrete Ordinate 分点表示の輸送方程式は, エネルギ $E = E_j$ (j = 1, 2, ..., J) についての J 個の一 群の輸送方程式で書き表わされる。もちろんこれらの J 個の一群の輸送方程式はエネルギに関して結合され ている。これらのЈ個の一群のボルツマン輸送方程式 は中性子の進行方向の各角度分点 **Q**m で進行方向にそ の飛程に沿って線積分することにより、一群の積分型 輸送方程式が導出される。

そこでさらに空間変数 \bar{r} についても Discrete Ordinate メッシュ点 \bar{r}_i を定めると、上述の一群の積分型 輸送方程式はこの空間メッシュ (\bar{r}_{i-1}, \bar{r}_i) 間で容易に 積分できる。最終的には計算機で計算するのに都合の 良い差分型の式が導出される。以上の数式の導出の過 程で、空間形状に関しては何ら規定していないので導 出された差分形の式は,各種空間座標で書き換えることにより各種形状に対する中性子の透過計算を行なう ことができる。

なお中性子の飛程にそってボルツマン輸送方程式を 積分する方法は、初め R.D. Richtmyer⁵⁴⁾ が球対称形 状における時間依存の一群のボルツマン輸送方程式を finite-difference 法で解くために、空間一時間から成る 位相空間上中性子の飛程にそって方程式を積分したこ とに始まる。Richtmyer はまず球対称形状に対して書 かれた一群のボルツマン輸送方程式を次式で示す変換 により ($r, \omega = \cos \theta$) 変数を (x, y) 変数に変換した。 すなわち,

$$\begin{cases} x = r\omega = r\cos\theta \\ y = r\sqrt{1 - \omega^2} = r\sin\theta \end{cases}$$

θ

また彼はこの (x, y) 座標を Quasi-Cartesian 座標と呼 び, この (x, y) 座標で書き換えられたボルツマン輸送 力程式を x-vt=const. および y=const. の条件のも とに x 軸にそって方程式を積分した。この条件 x-vt=const. および y=const. は中性子の飛程にそっ ており, また一階の偏微分方程式の特性線でもある。 Richtmyer の Quasi-Cartesian 座標使用および中性子 の飛程にそって方程式を積分するこの解法は, その後 球対称形状および二次元円柱形状におけるエネルギ依 存の定常のボルツマン輸送方程式の直接積分解法であ る NIOBE⁴⁸⁾ や MENE-2^{55),56)}等に適用されている。

中性子の進行方向にその飛程にそって輸送方程式を 直接積分するこの解法は、速中性子の遮蔽で特に問題 となる鋭い前方ピークの角度分布を比較的容易に取り 扱い得るので遮蔽計算に適している。すなわち、中性 子角度分布を計算する上で、Discrete Ordinate 角度分 点 $\overline{\Omega} = \overline{\Omega}_{PQ}$ につき各角度分点で独立に輸送方程式を直 接積分するので、前方方向の角度分布の計算を比較的 他の方向の角度分布に影響されないで行なうことがで きるからである。

5.2 定常のボルツマン輸送方程式

定常のボルツマン輸送方程式 (2-1) 式を再び (5-1) 式として書く。

 $\overline{\Omega} \cdot \operatorname{grad} \Phi(\overline{r}, \overline{\Omega}, E) + \sum_{t} (\overline{r}, E) \Phi(\overline{r}, \overline{\Omega}, E)$

$$=\sum_{i} n_{i}(\bar{r}) \int d\bar{\Omega}' \int dE' \sigma_{S,i}(\bar{\Omega}' \to \bar{\Omega}, E' \to E)$$

 $\times \Phi(\vec{r}, \overline{\Omega}', E') + S(\vec{r}, \overline{\Omega}, E) \quad \dots \dots (5-1)$

(5-1) 式を計算する順序として,まず右辺の第1項 の中性子の散乱積分を数値積分計算によって求める。 右辺の線源項が各エネルギメッシュについて求められ

(342)

たならば,このエネルギメッシュについての一群の輸 送方程式を直接積分によって解く。この順序に従って 以降の各節で式の導出を行なう。

5.3 散乱積分計算

中性子の核との散乱現象は弾性散乱および非弾性散 乱の両現象を考慮に入れる。弾性散乱は実際の物理現 象をできるだけ正確に取り扱う必要性から,高次の非 等方成分も含むことができる程度に充分な非等方散乱 の取り扱いをする。一方非弾性散乱は実験室系で等方 散乱の仮定をする(第3章)。

さて,以後の計算に便利なように (5-1) 式の右辺の 散乱積分項を $G(\bar{r}, \bar{\Omega}, E)$ で表わすと, $G(\bar{r}, \bar{\Omega}, E)$ は (5-2) 式で書き表わせる。

さらに $G(\bar{r}, \bar{\Omega}, E)$ を弾性散乱による積分項 $G_{el}(\bar{r}, \bar{\Omega}, E)$ と非弾性散乱による積分項 $G_{in}(\bar{r}, \bar{\Omega}, E)$ とに分けて計算する。すなわち,

 $G(\bar{r}, \bar{\varOmega}, E) = G_{el}(\bar{r}, \bar{\varOmega}, E) + G_{in}(\bar{r}, \bar{\varOmega}, E)$ (5-3) $\subset \subset \mathcal{C},$

$$\begin{aligned} G_{el}(\tilde{r}, \overline{\Omega}, E) &= \sum_{i} n_i(\tilde{r}) \int d\overline{\Omega}' \int dE' \sigma_{S,i}^{el}(\overline{\Omega}' \to \overline{\Omega}, E' \to E) \\ &\times \Phi(\tilde{r}, \overline{\Omega}', E') \qquad \dots \dots (5-4) \end{aligned}$$

$$G_{in}(\bar{r}, \bar{\Omega}, E) = \sum_{i} n_i(\bar{r}) \int d\bar{\Omega}' \int dE' \sigma_{S,i}^{in}(\bar{\Omega}' \to \bar{\Omega}, E' \to E) \times \Phi(\bar{r}, \bar{\Omega}', E') \qquad \dots \dots \dots (5-5)$$

上式で $\sigma_{S,i}^{el}(\overline{\Omega}' \to \overline{\Omega}, E' \to E)$ および $\sigma_{S,i}^{in}(\overline{\Omega}' \to \overline{\Omega}, E' \to E)$ はそれぞれ弾性散乱および非弾性散乱の微分散乱断面積である。

5.3.1 弾性散乱積分項 Gel(r, Q, E) の計算

(5-4) 式の計算をすすめる上で簡単のために核種を 表わす *i* は省略する。微分散乱断面積 $\sigma_{et}(\overline{\Omega'} \rightarrow \overline{\Omega}, E' \rightarrow E)$ を付録 Dの (D-9) 式のように書き表わす。 すなわち,

ここで μ は重心系での散乱角の余弦 (=cos ϑ), Θ は 実験室系での散乱角, α は付録 D の (D-2) 式から 計算される実験室系における散乱角の余弦 (α =cos Θ) である。また *M* は標的核の質量数 である。さらに $f(E', \mu)$ は付録 D で定義される散乱角度分布関数で ある。

(5-4) 式でエネルギ *E* の代わりに中性子レサジ *u* ((4-3) 式) で表わすと, (4-5) 式の導出と同じように 次式が導出される。

$$G_{el}(\tilde{r}, \overline{\Omega}, u) = \int_{-1}^{1} d\mu \int_{0}^{2\pi} d\phi n(\tilde{r}) \sigma_{S}^{el}(u') f(u', \mu)$$
$$\times \delta(\cos \Theta - \alpha) e^{u - u'} \Phi(\tilde{r}, \overline{\Omega}', u')$$
$$\dots \dots (5-7)$$

第4章 4.3 において、中性子束 $\phi(\bar{r}, \bar{\Omega}, u)$ は有限項 のルジャンドル多項式で展開近似されたが、本計算法 では中性子束 $\phi(\bar{r}, \bar{\Omega}, u)$ についての多項式展開近似は 一切行なわない。一方 $f(u, \mu)$ については有限項のル ジャンドル多項式展開近似してもよいし^{55),56),57)}, そ のままの形^{58),59)} でも以降の計算に本質的な差はない。 しかし実際の計算に使用する $f(u, \mu)$ のデータはルジ ャンドル多項式展開の展開係数 f_i として得られてい るのが普通である。したがって $f(u, \mu)$ を有限項のル ジャンドル多項式で展開しておく方が便利である。そ こで

$$f(u',\mu) = \sum_{l=0}^{L} \frac{2l+1}{4\pi} f_l(u') P_l(\mu) \quad \cdots (5-8)$$

上式で展開次数を表わす L は任意の大きな数を定めることができる。

次ぎに, (5-7) 式の積分計算を実行するために中性 子の進行方向 $\overline{\Omega}$ を Discrete Ordinate の角度分点 $\overline{\Omega}_{pq}$ で表わす必要がある。 $\overline{\Omega}$ は Fig. 4.4 を参照して極角 θ および方位角 ϕ の 2 つの角度で表わせる。 すなわ ち, $\overline{\Omega} \equiv \overline{\Omega}(\theta, \phi)$ である。本章における以下の計算では 極角 θ の代わりに $\omega = \cos \theta$ を極角に関する変数とし て使うので, $\overline{\Omega} \equiv \overline{\Omega}(\omega, \phi)$ と書き表わす。

Discrete Ordinate 角度分点 $\bar{\Omega}_{pq}$ の決め方はいくつ か考えられるが,理想的には角度分点 $\bar{\Omega}_{pq}$ が各座標軸 に対して対称に単位球面上に分布していることが望ま しい。例えば三次元 (x, y, z) 形状では角度分点 $\bar{\Omega}_{pq}$ が x, y, z の3軸に対して対称に分布していることで ある。Discrete Sn 法ではこの角度分点の選び方につき 特に研究されて,特別の角度分点およびその重みのセ ットが出来ている⁴⁴⁾。本研究では一次元形状の場合に 角度分点 $\Omega_{p}=\omega_{p}$ をガウス求積法における積分点に選 ぶ必要から,一般の場合においても極角に関する ω の 分点 ω_{p} をガウス求積法の積分点に選ぶ⁵⁷⁾。これに対 し方位角 ϕ については Fig. 5.1 を参照して 1/8 球 面上で ϕ の範囲 $(0, \pi/2)$ を極角の余弦 ω_{p} の p に 関係して等分割し,その中心点を ϕ の分点 ϕ_{pq} とす る⁵⁷⁾。したがって $\overline{\Omega}$ の角度分点 $\overline{\Omega}_{pq}$ は Fig. 5.1 の ように選ばれる。付録 E に一例として p=1-6 (-1 $<\omega_p < 1$)の場合の ω_p および ϕ_{pq} , さらにそれぞれ の重み, それから ω_p の重みと ϕ_{pq} の重みの積で決 まる $\overline{\Omega}_{pq}$ の重みを載せておく⁶⁰⁾。

Fig. 5.1 Discrete-ordinate directions on 1/8 unit sphere

本研究における角度分点の選び方は単位球面上にお ける等面積分割法に相当し、角度分点 2mg に対する重 みが全て等しければ単位球面を正確に等面積に分割し たことになり、これは厳密に三次元形状における3軸 に対する対称性を満足する。しかし付録 E の例から Ωpg に対する重みが必ずしも全て等しくないことか ら,本解法で使用する角度分点セットは厳密には3軸 に関する対称性を満足しているとはいえない。ただ し,重みの差が最大で 13.5% 以内であることから近 似的には上述の対称条件を満たしているといえよう。 なお上述の Sn 法に対する特別の角度分点およびその 重みのセットを本解法に適用してもよい。また一次元 形状の場合には,座標軸に対する対称条件はなくなる。 そして本解法ではガウス求積法の積分点とその重みを 一次元形状における角度分点とその重みとして採用す る。このガウス積分点およびその重みを,分点数が14, 16 および 20 の場合について付録Eに示しておく。

以上が中性子の進行方向角 \overline{Q} についての角度分点 の定め方である。次いで中性子のエネルギについても エネルギ分点を定める。この場合にはエネルギ E の 代わりに中性子レサジ u に対して、レサジ単位の hで u を等間隔に分け、各レサジ分点を u_j (j=1,2,…, J) で表わす。したがって j 番目のレサジ u_j は

$u_j = u_1 + (j-1)h$

となる。また u1 は (4-3) 式から u1=0 である。

中性子の進行方向 Ω およびレサジ u が分点表示で きたので,(5-7)式の右辺の積分計算は数値積分によ って計算できる。その際次に述べる2つの仮定にもと づいて数値積分計算する^{55),56),57)}。

(1) 中性子束 $\Phi(\bar{r}, \bar{\Omega}(\omega, \phi), u)$ は角度およびレサ ジについて微小区間 $d\bar{\Omega}(\Delta\omega, \Delta\phi)$ および Δu 内でステ ップ関数で近似できる。

(2) 散乱断面積 σs(u) および散乱角度分布関数
 f(u, μ) のルジャンドル多項式展開係数である f₁(u)
 は, 微小区間 du 内でステップ関数で近似できる。

以上の仮定にもとづいて (5-7) 式における μ につ いての積分はガウス求積法を適用して数値積分計算す る。このために μ を区間 (-1,1) で M 個の積分点 μ_m (*m*=1, 2, …, *M*) に分ける。この場合の積分点 μ_m はガウス求積法における積分点に一致して選ばれる。 一方散乱の方位角 ψ についての積分は次に述べるよ うな数値積分によって計算する。すなわち,まずψに ついての積分区間を決める必要がある。 ϕ は(z軸, $\overline{\Omega}$) 平面に対する対称性 (Fig. 5.2 参照) から区間は (0, π) を対象とすればよい。この区間 (0, π)を中性子の進行 方向の極角の余弦 ω の分点 ω_p に対応して、 ϕ につ いても分点 ϕ_n (*n*=1, 2, …, *P*) を設ける (Fig. 5.3)。 Fig. 5.3 からわかるように積分変数である ψ は他の 変数に対して独立な変数ではなく、 $\phi = \phi(\alpha, \omega)$ のよう にαとωの従属変数である。さらに実験室系における 散乱角の余弦である α は $\alpha = \alpha(\mu, \rho)$ のように μ と

Fig. 5.2 Scattering is symmetry with respect to $(z, \overline{\Omega})$ -plane.

22

(344)

 ρ の従属変数である(付録 B)。なお ρ は標的核の質 量数の逆数である。したがって ϕ についての分点 ϕ_n は $\mu = \mu_m \ge \rho \ge \phi$ ら決まる α_m および $\omega = \omega_n$ によ り決められる (Fig. 5.4)。以下に $\phi = \phi_n$ の求め方を 詳しく述べる。

Fig. 5.3 Relation between discrete points ϕ_n of azimuthal angle and discrete points ω_n of cosine of polar angle in scattering

Fig. 5.4 Cosine of scattering angles, μ and α , in center of mass and laboratory systems, and relation between cosine of angle of neutron direction ω and azimuthal angle of scattering ψ

いま中性子の進行方向 $\overline{\Omega} = \overline{\Omega}_{Pq}$ および散乱角の余弦 $\mu = \mu_m$ に対し,散乱の方位角 ϕ および中性子の散乱 前の進行方向 $\overline{\Omega}'$ を決める。重心系および実験室系に おける散乱角の余弦の間には次式の関係がある ((B-2) 式)。

$$\alpha_{m}(\mu_{m},\rho) = \frac{\mu_{m} + \rho}{(1 + 2\rho\mu_{m} + \rho^{2})^{1/2}} \cdots (5-9)$$

また散乱前後の中性子の極角の余弦の間には次式に示 す関係がある((4-10)式)。

$$\omega' = \omega_p \alpha_m + \sqrt{(1 - \omega_p^2)(1 - \alpha_m^2)} \cos \psi \ (5 - 10)$$

いま $\omega' = \omega_n$ と定め (Fig. 5.3), ω_n に対応して (5-10) 式における ϕ を $\phi = \phi_n$ とすると, ϕ_n は次のように 求まる (Fig. 5.4)。すなわち, (5-10) 式を変形して次 式を得る。

$$\cos \psi_n = \frac{\omega_n - \omega_p \alpha_m}{\sqrt{(1 - \omega_p^2)(1 - \alpha_m^2)}} \equiv \eta_n(\alpha_m, \omega_p, \omega_n)$$
.....(5-11)

 (5-11) 式から ψn を計算し,また ψn 点を数値積分 点とする際の重み Wn* も以下のように計算する (Fig. 5.5)。

Fig. 5.5 Determination of azimuthal angular meshes ψ_n and their weights ω_n

(345)

24

i)
$$\eta_n > 1$$
 の場合
a) $\eta_{n+1/2} \ge 1$ の場合,
 $\varphi_n = 0$ $W_n^* = 0$
b) $\eta_{n+1/2} < 1$ の場合,
 $\varphi_n = 0$ $W_n^* = \cos^{-1}\eta_{(n+1/2)}$
ii) $1 \ge \eta_n \ge -1$ の場合
 $\varphi_n = \cos^{-1}\eta_n$
 $W_n^* = |\cos^{-1}\eta_{(n-1/2)} - \cos^{-1}\eta_{(n+1/2)}|$
ただし
a) $n = 1$ の場合 $\cos^{-1}\eta_{1/2} = 0$
b) $\eta_{(n-1/2)} > 1$ の場合 $\cos^{-1}\eta_{(n-1/2)} = \pi$
d) $n = P$ の場合 $\cos^{-1}\eta_{(n+1/2)} = \pi$
iii) $\eta_n < -1$ の場合
a) $\eta_{(n-1/2)} \le -1$ の場合,
 $\varphi_n = \pi$ $W_n^* = 0$
b) $\eta_{(n-1/2)} > -1$ の場合,
 $\varphi_n = \pi$ $W_n^* = |\cos^{-1}\eta_{(n-1/2)} - \pi|$

(5-12)

以上の計算で散乱の方位角に関する積分点 ϕ_n とその 重み W_n^* が決められた。

次ぎに散乱前の中性子の進行方向の方位角 ϕ' を求 める。Fig. 4.4 を参照して (z 軸, $\overline{\Omega}'$) 平面と (z 軸, $\overline{\Omega}$) 平面とのなす角度を 4 で表わすと, ϕ' は次式か ら求められる。

 $\phi' = \phi - \Delta$

なお散乱角 Θ が同じで $\omega' = \omega_n$ の場合がもう一つあ り (Fig. 5.2), それは, $\phi' = \phi + d$ の場合である。また 角度 d は第4章の (4-9) 式で $d = \phi - \phi'$, $\alpha = \cos \theta$, $\omega = \cos \theta$ と置いて式を変形し, $\alpha = \alpha_m$, $\omega = \omega_p$, $\omega' = \omega_n$ と分点表示すれば角度 d は次式から計算される。

$$\cos \Delta = \frac{\alpha_m - \omega_p \omega_n}{\sqrt{(1 - \omega_p^2)(1 - \omega_n^2)}} \equiv \xi_n(\alpha_m, \omega_p, \omega_n)$$
.....(5-13)

上式で ϵ の値は $1 \ge \epsilon_n \ge -1$ の範囲にあるもののみを 採用する。 ϵ_n の値が求まれば角度 d は求まり, さら に ϕ' も求めることができる。すなわち,

$$\begin{array}{c} d = \cos^{-1} \xi_n \\ \phi' = \phi_{pq} \pm d \end{array} \right\} \qquad \dots \dots (5-14)$$

 $\phi_{pq} + 4 \epsilon \phi_{nq'}$, $\phi_{pq} - 4 \epsilon \phi_{nq''} \cdots (5-15)$ であり, (5-15) 式から ϕ' の属する分点が決められる。

最後に散乱前の中性子のもつレサジ $u' を \mu$ の関数として, $\mu = \mu_m$ に対して $u' = u'(\mu_m)$ から求める (Fig. 5.4)。いま $u = u_j$ とした場合, u' は付録Dの (D-5) 式から各 $\mu = \mu_m$ に対して次のように求められる。

Fig. 5.6 Relation between lethargy meshes and mesh points of cosine of scattering angle in center of mass system

上式から計算される u' に対し

$$u_g - \frac{h}{2} < u' \leq u_g + \frac{h}{2}, \quad g \leq j - 2 \cdots (5 - 17)$$

の範囲にある $u' \approx u' = u_{g(m)}(2 \le m \le M)$ で代表させる (Fig. 5.6)。また g = j - 1 の場合には特別に

$$u_{j-1} - \frac{h}{2} < u' \leq u_j - \Delta u_{j(m=1)} \cdots (5-18)$$

を定め、この範囲内の $u' \approx u' = u_{j-1(m)}$ とおく (Fig 5.6)。なお $\Delta u_{j(m=1)}$ は 5.5 節の (5-72) 式で与えられ る。

以上の計算で (5-7) 式の積分は数値積分計算され, 位置 \bar{r} においてレサジが $u=u_j$ で進行方向が $\bar{\Omega}=\bar{\Omega}_{pq}$ である弾性散乱項 $G_{el}(\bar{r}, \bar{\Omega}_{pq}, u_j)$ は (5-19) 式のよう に求まる。

$$G_{el}(\bar{r}, \bar{\mathcal{Q}}_{pq}, u_j) = \sum_{m=1}^{M} \sum_{n=1}^{P} a_{mn} T_{g(m), m}(\bar{r}) \Phi_{g(m), n}(\bar{r}) \quad (5-19)$$

ここでマトリックス $a_{mn} = W_m W_n^*$ であり、 W_m (m = 1, 2, ..., M) はガウス求積法の 重み である。一方 W_n^* (n=1, 2, ..., P) は (5-12) 式から計算される重

(346)

みである。また

$$T_{g(m), m}(\tilde{r})$$

 $= \Sigma_{g(m)}^{el}(\tilde{r}) \sum_{l=0}^{L} \frac{2l+1}{4\pi} f_{l,g(m)} P_{lm} R_m(\rho)$
.....(5)

さらに

$$\left. \begin{array}{c} \Sigma_{g(m)}^{el}(\tilde{r}) = n(\tilde{r})\sigma_{S}^{el}(u_{g(m)}), \\ f_{l,g(m)} = f_{l}(u_{g(m)}), \\ P_{lm} = P_{l}(u_{m}). \end{array} \right\} \quad \dots (5-21)$$

(5-20)

また,
$$R_m(\rho)$$
は (5-16) 式を変形して $e^{u_j-u'}=rac{(1+
ho)^2}{1+2
ho u_m+
ho^2}\equiv R_m(
ho)$ …(5-21)

から計算される。

(5-19) 式における $\Phi_{g(m),n}(\bar{r})$ は次式から求められる。 $\Phi_{g(m),n}(\bar{r}) = \Phi(\bar{r}, \overline{\Omega}_{nq'}(\omega_n, \phi_{nq'}), u_{g(m)})$ $+ \Phi(\bar{r}, \overline{\Omega}_{ng''}(\omega_n, \phi_{nq''}), u_{g(m)})$(5-23)

水素原子以外の一般の核に対する弾性散乱の積分計 算は以上のように行なわれる。これに対し、水素原子 による散乱減速の場合は、いま注目しているエネルギ から必ず最高エネルギ群まで計算の範囲に入れなけれ ばならない。したがって (5-7) 式の積分における μ に よる積分を上述のガウス求積法で計算しないで次に述 べる数値積分法で行なう。すなわち μ についての積分 点はレサジメッシュ u_0 (g=1,2,...,j) に対応する μ のメッシュ点 μ_m とする (Fig. 5.6)。なお μ_m は付録 Dの (D-5) 式で M=1.0 とおき, エネルギ E の代 わりにレサジ u で表わせば次式のように求まる。

 $\mu_m = 2e^{-(m-1)\hbar} - 1$ (5-25)

水素原子の場合, $f(u, \mu)$ は重心系で等方散乱の取り 扱いができる (3 章 3.2 節)ので簡単に $f(u, \mu) = \frac{1}{4\pi}$ とおける。したがって (5-20)式は簡単に次式のよう に書ける。

$$T_{g(m),m}(\bar{r}) = \Sigma_{g(m)}^{el}(\bar{r}) \frac{R_m(\rho=1)}{4\pi} \cdots (5-25)$$

ここで

$$R_m(\rho=1) = \frac{2}{1+\mu_m} = e^{(m-1)\hbar} \cdots (5-26)$$

また μm に対する重みは Fig. 5.6 の下図を参照して 次のように決める。

$$W_{m} = \begin{cases} 2\left\{1 - \exp\left(-\frac{h}{4}\right)\right\}, & m = 1\\ 2\exp\left(-\frac{h}{4}\right)\left\{1 - \exp\left(-1\frac{1}{4}h\right)\right\}, & m = 2 \end{cases}$$

$$\left\{2\exp\left\{-(m-1)h\right\}\exp\left(-\frac{h}{2}\right)\left\{\exp(h)-1\right\},\right\}$$

$$m>2$$

なお g(m)=j-(m-1)。

以上の計算で一般の核の場合および水素原子の場合 における中性子の弾性散乱による散乱積分項が求めら れた。本節で記述した計算法は,実際の中性子の弾性 散乱を記述する関係式が (5-10) 式のように実験室系 における散乱角に直接関係しているのに対し,散乱積 分の式,(5-7) 式が重心系における散乱角の余弦 μ で 積分する形になっているので,この μ を基本的な変数 として他の変数である $\psi', \Omega'(\omega', \phi'), u'$ 等を μ の従 属変数として書き表わし (5-7) 式の散乱積分計算を数 値積分によって行なった。

本散乱積分計算法は初めから数値積分を実行する点 に特徴がある。そのため従来の計算法のように,多項 式展開近似や関数変換技法を使用しないので,実際の 弾性散乱の現象を忠実に記述するのに最適である。し たがって高エネルギの中性子の核による弾性散乱で起 こる極度の非等方散乱を正確に取り扱うことができる 点,特に速中性子の透過計算に大きな利点を有する。

5.3.2 非弾性散乱積分項 $G_{in}(\bar{r}, \bar{Q}, E)$ の計算

非弾性散乱は実験室系で等方散乱仮定 (第3章参照) であるから, 微分散乱断面積 $\sigma_{s,i}^{in}(\bar{\Omega}' \to \bar{\Omega}, E' \to E)$ は 次式のように簡単になる。

$$\sigma_{S,i}^{in}(\overline{\Omega}' \to \overline{\Omega}, E' \to E) = \sigma_{S,i}^{in}(E') \frac{f_i^{in}(E', E)}{4\pi}$$
.....(5-27)

ここで $\sigma_{S,i}^{in}(E')$ は *i* 番目の核種の微視的非弾性散乱 断面積であり, $f_i^{in}(E', E)$ は *i* 番目の核種に中性子が 非弾性散乱され,単位エネルギあたりエネルギ E' か ら E へ減速される確率を表わし,通常減速核と呼ば れる。したがって, $f_i^{in}(E', E)$ は次のように規格化さ れる。

$$\int_{0}^{E'} f_{i}^{in}(E', E) dE = 1, \quad E' \ge E^{1\cdots}(5\text{-}28)$$

ここで E¹ は標的核の第1番目の励起エネルギ準位と 基底状態とのエネルギ間隔である。

(5-5) 式に(5-27) 式を代入すると次式を得る。

$$G_{in}(\bar{r}, \bar{\Omega}, E) = \sum_{i} n_{i}(\bar{r}) \int_{E}^{E_{\max}} \sigma_{S, i}^{in}(E') \frac{f_{i}^{in}(E', E)}{4\pi} \times \int \Phi(\bar{r}, \bar{\Omega}' E') d\bar{\Omega}' dE' \quad \cdots (5-29)$$

(5-29) 式の計算は文献(50)のモーメント法における

(347)

25

中性子の非弾性散乱の計算方法を参考にして,まず減 速核 fⁱⁿ(E', E) を標的核の励起エネルギ準位のエネ ルギ準位間隔により2通りに分けて計算を行なう。す なわち,標的核の基底状態に近い低い励起エネルギ準 位は明らかに大きいエネルギ差で分離しているが(離 散的励起状態という),高い励起エネルギ準位になっ てくるとエネルギ準位の密度が増して連続的分布とみ なすことができるようになる(連続的励起状態)。そ して前者の離散的励起状態に対する非弾性散乱の断面 積の計算は複合核模型における Hauser-Feshbach の理 論で計算できる。一方後者の連続的励起状態の場合は 準位の数を準位密度で表わし核過程の統計理論で計算 できる(第3章)。

いま, $E_{i,B} \geq i$ 番目の核種における離散的励起状態と連続的励起状態の扱いをする境界のエネルギとする。 $E_{i,B}$ の値は核種によって異なる。

さて,入射中性子のエネルギがこの $E_{i,B}$ 以上である場合は減速核 $f_i^{(n)}(E', E)$ はE'について連続関数 $g_i^{o}(E', E)$ で表わせるとする50。すなわち,

$$f_i^{in}(E', E) = g_i^c(E', E), \quad E' \ge E_{i, B} \cdots (5-30)$$

一方入射中性子のエネルギが $E_{i,B}$ 未満である場合は 減速核 $f_i^{in}(E', E)$ は次式のように δ 一関数の和とし て表わす50。すなわち,

$$\sum_{\nu} f_{i}^{in}(E', E) = \sum_{\nu} a_{\nu}(E') \delta \{E' - (E + E^{\nu})\} ,$$

$$E^{1} < E' < E_{i,B} \qquad \dots \dots (5-31)$$

ここで E_{ν} は標的核の ν 番目の励起エネルギ準位と 基底状態とのエネルギ差であり, $a_{\nu}(E')$ はエネルギ E'の中性子が非弾性散乱され単位エネルギあたりエネル ギが $E=E'-E_{\nu}$ に減速される確率を表わす。

減速核 $f_i^{in}(E', E)$ が上述のようにエネルギにより 2通りに分けて取り扱われるので、(5-29)式の計算も 中性子のエネルギにより2通りに分けて計算する50。 以下の計算では核種を示す添字*i*は簡単のため省略す る。

(1) $E \ge E_B$ の場合

減速核は連続関数 $g^{q}(E', E)$ として取り扱われる。 (5-29) 式においてエネルギについての積分は再び中性 子レサジについての積分に変換して行なう。したがっ て (5-29) 式は

$$G_{in}(\bar{r}, \bar{\Omega}, u) = n(\bar{r}) \int_0^u \sigma_s^{in}(u') \frac{g^c(u', u)}{4\pi}$$

$$\times \int_{4\pi} \Phi(\tilde{r}, \overline{\Omega}', u') d\overline{\Omega}' E' du'$$
.....(5-32)

と書き換えられる。

上式において中性子束を全立体角で積分すると

$$\int_{4\pi} \Phi(\bar{r}, \,\overline{\Omega}', \, u') d\bar{\Omega}' = \Phi_0(\bar{r}, \, u') \quad \cdots (5-33)$$

となる。ここで $\varPhi_0(\bar{r}, u')$ は中性子スカラー束である。 (5-33) 式を (5-32) 式に代入し, $E'=E_{\max}e^{-u'}$ に置 き換えると

$$G_{in}(\bar{r}, \bar{\Omega}, u) = n(\bar{r}) \int_0^u \sigma_S^{in}(u') \frac{g^c(u', u)}{4\pi} \times \Phi_0(\bar{r}, u') E_{\max} e^{-u'} du'$$

$$\cdots \cdots (5-34)$$

となり, u' のみの積分になる。u' についての積分計 算を前節で定義したレサジメッシュ u_{g} (g=1, 2, ...,Dに対して台形公式を適用して行なうと次式のように 計算される。

$$G_{in}(\bar{r}, \bar{\Omega}, u_j) = n(\bar{r}) \sum_{g=1}^{j} \zeta_g \sigma_{in}(u_g) \frac{g^o(u_g, u_j)}{4\pi} \times \Phi_{\emptyset}(\bar{r}, u_g) E_{\max} e^{-u_g} \cdots (5\text{-}35)$$

ここで 🕻 は台形公式の重みである。

なお中性子スカラー束 $\Phi_0(\bar{r}, u_g)$ は容易に数値積分 計算によって次式のように求められる。

$$\Psi_{0}(\bar{r}, u_{g}) = \sum_{p'=1}^{P} \sum_{q'=1}^{Q_{p'}} b_{p'} \Phi(\bar{r}, \bar{\Omega}_{p'q'}(\omega_{p'}, \phi_{p'q'}), u_{g})$$

.....(5-36)

ここで $b_{p'}$ は数値積分の際の重みであり次式で計算される。

$$b_{p'} = \frac{2\pi}{Q_{p'}} \lambda_{p'} \qquad \cdots \cdots (5-37)$$

ここで $\lambda_{p'}$ (p'=1, 2, ..., P) はガウス求積法における 重みであり,一方 $Q_{p'}$ は次式から求められる。

$$Q_{p'} = \begin{cases} 2p' & 1 \le p' \le \frac{P}{2} \\ 2(P+1-p') & \frac{P}{2} < p' \le P \end{cases} \cdots (5-38)$$

(5-35) 式を以降の計算に便利なように $\bar{\Omega} = \bar{\Omega}_{pq}$ に 対して書いておく。なお右辺をマトリックスの形で表 わすと次式のように書ける。

$$G_{in}(\bar{r}, \bar{\Omega}_{pq}, u_j) = \sum_{g=1}^{j} \sum_{p'=1}^{P} \sum_{q'=1}^{Qp'} b_{p'} c_g^j(\bar{r}) \mathcal{P}_{p'q'g}(\bar{r})$$

$$\dots \dots (5-39)$$

ここで

(348)

$$c_{g}^{j}(\bar{r}) = n(\bar{r})\zeta_{g}\sigma_{S}^{in}(u_{g})\frac{g^{c}(u_{g}, u_{j})}{4\pi}E_{\max}e^{-u_{g}}$$

$$\cdots\cdots(5-40)$$

$$\Phi_{p'q'g}(\bar{r}) = \Phi(\bar{r}, \overline{\mathcal{Q}}_{p'q'}, u_{g}) \cdots\cdots(5-41)$$

(2) E<E_Bの場合

減速核 fin(E', E) は連続的励起状態と離散的励起 状態の両状態に関係してくるので,非弾性散乱された 中性子が連続分布領域より減速されて来る項と離散分 布領域より減速されて来る項に分けて計算する必要が ある⁵⁰⁾。

i) E' ≧ E_B の場合 (連続領域からの滅速)

(1) の場合と全く同様に計算することができる。す なわち、この場合 $G_{in}(\bar{r}, \bar{\Omega}, u)$ を $G_{in}^1(\bar{r}, \bar{\Omega}, u)$ と書 けばこの項は次式のように書き表わせる。

$$G_{in}^{1}(\bar{r}, \overline{\Omega}, u) = n(\bar{r}) \int_{0}^{u_{B}} \sigma_{S}^{in}(u') \frac{g^{c}(u', u)}{4\pi} \times \Phi_{0}(\bar{r}, u') E_{\max} e^{-u'} du'$$

$$\cdots \cdots (5-42)$$

上式でu'についての積分計算を(1)の場合と同様に 台形公式により行なった結果は, $u=u_J$ に対して次式 のように求まる。

 $G_{in}^{1}(\bar{r}, \overline{\Omega}, u_{j}) = n(\bar{r}) \sum_{g=1}^{B} \zeta_{g} \sigma_{S}^{in}(u_{g}) \frac{g^{c}(u_{g}, u_{j})}{4\pi} \times \Phi_{0}(\bar{r}, u_{g}) E_{\max} e^{-u_{g}} \cdots (5-43)$

ここで u_B はエネルギ E_B に対応するレサジメッシュ である。なお E_B はレサジメッシュ u_J (j=1, 2, ..., J)のいずれかに一致するように定めるのが計算上望ま しい。

ii) *E*′ ≦*E*_B の場合 (離散領域からの減速)

(5-29) 式に (5-31) 式を代入すると次式を得る。この場合の $G_{in}(\bar{r}, \bar{\Omega}, E)$ を $G^2_{in}(\bar{r}, \bar{\Omega}, E)$ と書いておく。したがって

$$G_{in}^{2}(\bar{r}, \overline{\Omega}, E) = n(\bar{r}) \int_{E}^{E_{B}} \sigma_{S}^{in}(E') \frac{1}{4\pi} \sum_{\nu} a_{\nu}(E') \delta\{E' - (E + E^{\nu})\} \int_{4\pi} \Phi(\bar{r}, \overline{\Omega}', E') d\overline{\Omega}' dE'$$

$$\cdots \cdots (5-44)$$

上式において中性子束を全立体角で積分すれば再び中 性子スカラー束 $\phi_0(\bar{r}, E')$ になるから, エネルギ E'についての積分計算の方法を考えればよい。

(5-44) 式においてエネルギについての積分計算を, 5.2.1 における弾性散乱積分の計算の際に設定した仮 定と同様な仮定のもとに行なう。すなわち中性子束 $\phi(\bar{r}, \bar{Q}, E)$ および散乱断面積 $\sigma_{S}^{in}(E)$ はエネルギにつ いて微小区間 *4E* 内でステップ関数で近似できるとす る。この仮定のもとに (5-44) 式のエネルギに関する 積分をエネルギ E についてレサジメッシュ $u_g(g=1, 2, ..., J)$ に対応してエネルギメッシュ E_g (g=1, 2, ..., J) を割り当て, この E_g メッシュ点につき数値積 分で計算する。その結果は次式のように求められる。

$$G_{in}^{2}(\bar{r}, \bar{\mathcal{Q}}, E_{j}) = \frac{n(\bar{r})}{4\pi} \sum_{g=B}^{j} \sum_{\nu \in S_{g}} \sigma_{S}^{in}(E_{g}) a_{\nu}^{j}(E_{g}) \times \Phi_{0}(\bar{r}, E_{g}) \qquad \dots \dots (5-45)$$

ここで $a_{\nu}^{j}(E_{g})$ は $a_{\nu}(E')\delta\{E'-(E_{j}+E^{\nu})\}$ で $E' \in E_{g}$ であることを意味する。また S_{g} はグループに属する ν についての和をとることを意味する。

ここで ν についての和は次の条件を満足する全ての ν についてとる (Fig. 5.7 参照)。

Fig. 5.7 Relation between energy levels of target nucleus and energy meshes

条件

Ei-4

$$E_j + E_{\nu} \leq E_B$$
, $\nu = 1, 2, \cdots \cdots (5-46)$

かつ

$$\frac{\frac{1}{2}(E_{B+1}+E_B) \leq E_j + E^{\nu} \leq E_B, \quad g=B}{\frac{1}{2}(E_{g+1}+E_g) \leq E_j + E^{\nu} < \frac{1}{2}(E_g + E_{g-1}), \\ B < g < j \\ E_j \leq E_j + E^{\nu} < \frac{1}{2}(E_j + E_{j-1}), \quad g=j$$
(5-47)

(5-45) 式を $\overline{\Omega} = \overline{\Omega}_{pq}$ に対し、右辺をマトリックスの 形で書き表わしておくと実際の計算に便利である。す 28 なわち

$$G_{in}^{2}(\tilde{r}, \overline{\mathcal{Q}_{pq}}, E_{j}) = \sum_{g=B}^{j} \sum_{p'=1}^{P} \sum_{q'=1}^{Qp'} b_{p'} c_{g}^{j}(\tilde{r}) \Phi_{p'q'g}(\tilde{r})$$

$$\cdots \cdots (5-48)$$

ここで $b_{p'}$ は (5-37)式に、一方 $\phi_{p'q'g}(\tilde{r})$ は (5-41) 式に与えられている。 $c_g^j(\tilde{r})$ は次式から計算される。

$$c_g^j(\bar{r}) = \frac{n(\bar{r})}{4\pi} \sum_{\nu \in S_g} \sigma_S^{in}(E_s) a_{\nu}^j(E_g) \cdots (5-49)$$

したがって $E < E_B$ の場合における非弾性散乱され た中性子は

$$G_{in}(\bar{r}, \bar{\mathcal{Q}}_{pq}, u_j) = G^1_{in}(\bar{r}, \bar{\mathcal{Q}}_{pq}, u_j) + G^2_{in}(\bar{r}, \bar{\mathcal{Q}}_{pq}, u_j)$$

$$\dots \dots (5-50)$$

から求められる。以上の計算で非弾性散乱にもとづく 散乱中性子は全て求めることができた。なお整理のた め各種の条件における非弾性散乱積分計算結果をまと めておく。

$$G_{in}(\tilde{r}, \overline{\Omega}_{pq}, u_j) = \sum_{g=1}^{j} \sum_{p'=1}^{P} \sum_{q'=1}^{Q_{p'}} b_{p'} c_g^j(\tilde{r}) \Phi_{p'q'g}(\tilde{r})$$

$$\dots \dots (5-51)$$

ここで $c_{g}^{j}(\bar{r})$ は各種の条件により次のように表わされる。

$$c_{g}^{j}(\tilde{r}) = \begin{cases} \frac{n(\tilde{r})}{4\pi} \zeta_{g} \sigma_{S}^{in}(u_{g}) g^{c}(u_{g}, u_{j}) E_{\max} e^{-u_{g}} \\ 1 \leq g < B \\ \frac{n(\tilde{r})}{4\pi} \zeta_{g} \sigma_{S}^{in}(u_{g}) g^{c}(u_{g}, u_{j}) E_{\max} e^{-u_{g}} \\ + \frac{n(\tilde{r})}{4\pi} \sum_{\nu \in S_{g}} \sigma_{S}^{in}(E_{g}) a_{\nu}^{j}(E_{g}) \\ g = B \\ \frac{n(\tilde{r})}{4\pi} \sum_{\nu \in S_{g}} \sigma_{S}^{in}(E_{g}) a_{\nu}^{j}(E_{g}) \\ B < g \leq j \end{cases}$$
(5-52)

5.3.1 および 5.3.2 において弾性散乱および非弾性 散乱による散乱積分が計算されたので、(5-3) 式から 輸送方程式の右辺の散乱積分を計算する ことがで き る。すなわち、 $E=E_j$ および $\bar{Q}=\bar{Q}_{PQ}$ メッシュ点に 対し散乱積分項は次式のように和の形で求められる。

$$G(\tilde{r}, \overline{\mathcal{Q}}_{pq}, E_j) = G_{el}(\tilde{r}, \overline{\mathcal{Q}}_{pq}, E_j) + G_{in}(\tilde{r}, \overline{\mathcal{Q}}_{pq}, E_j)$$

$$= \sum_{m=1}^{M} \sum_{n=1}^{P} a_{mn} T_{g(m), m}(\tilde{r}) \Phi_{g(m), n}(\tilde{r})$$

$$+ \sum_{g=1}^{j} \sum_{p'=1}^{P} \sum_{q'=1}^{Q_{p'}} b_{p'} c_{g}^{j}(\tilde{r}) \Phi_{p'q'g}(\tilde{r})$$

$$\cdots (5-53)$$

5.4 輸送方程式の直接積分計算

前節で輸送方程式 (5-1) 式の右 辺の散乱積分項 $G(\bar{r}, \bar{Q}, E)$ が数値積分によって計算され,位置 \bar{r} にお ける各エネルギメッシュ E_j (レサジメッシュ u_j) (j=1, 2, ..., J)につき,また中性子の進行方向角度分 点 $\bar{\Omega}_{Pq}$ ($p=1, 2, ..., P, q=1, 2, ..., Q_p$)について求め られた。一方右辺の第2項の純線源 $S(\bar{r}, \bar{Q}, E)$ は前も って与えられる量であるから,各エネルギメッシュ E_j につき,また進行方向角度分点 $\bar{\Omega}_{Pq}$ について $S(\bar{r}, \bar{Q}, E_j)$ を与えることは容易である。したがって輸送 方程式の右辺のいわゆる線源項は各エネルギメッシュ E_j につき,また角度分点 $\bar{\Omega}_{Pq}$ につき直ちに計算され, これを $Q(\bar{r}, \bar{\Omega}_{Pq}, E_j)$ で表わす。すなわち

 $Q(\bar{r}, \overline{\Omega}_{pq}, E_j) = G(\bar{r}, \overline{\Omega}_{pq}, E_j) + S(\bar{r}, \overline{\Omega}_{pq}, E_j)$ $\dots (5-54)$

輸送方程式 (5-1) 式の右辺の線源項が (5-54) 式か らエネルギおよび角度についての各メッシュ点に対し 求められたから, (5-1) 式はエネルギ $E=E_{j}$, 中性子 の進行方向角 $\overline{\Omega}=\overline{\Omega}_{pq}$ に対して次式のように書ける。

 $G_{pq} \cdot \operatorname{grad} \Phi(\bar{r}, \,\overline{\Omega}_{pq}, \, E_j) + \sum_t (\bar{r}, \, E_j) \Phi(\bar{r}, \,\overline{\Omega}_{pq}, \, E_j)$

 $=Q(\bar{r}, \bar{\Omega}_{pq}, E_j) \qquad \dots \dots (5-55)$ (5-55)式は各エネルギメッシュ $E=E_j$ につき一群の

輸送方程式である。

(5-55) 式の左辺の第1項の $\overline{\Omega}$ ・grad は単に中性子 の進行方向 $\overline{\Omega}$ にそってとった微分係数であるから, 上式は空間変数 \overline{r} の代わりに $\overline{r} - R\overline{\Omega}$ で置き換えれば 次式のように書き換えられる³⁴⁾。

$$-\frac{d}{dR}\Phi(\tilde{r}-R\bar{\Omega}_{pq},\bar{\Omega}_{pq},E_j)$$

+ $\Sigma_l(\tilde{r}-R\bar{\Omega}_{pq},E_j)\Phi(\tilde{r}-R\bar{\Omega}_{pq},\bar{\Omega}_{pq},E_j)$
= $\bar{Q}(\tilde{r}-R\bar{\Omega}_{pq},\bar{\Omega}_{pq},E_j)$ (5-56)

上式は R にそって容易に積分することができ次式を 得る。

上式で、いま
$$R=0$$
, $\bar{r}-R_0\bar{\Omega}_{pq}=\bar{r}'$ とおけば
 $\Phi(\bar{r}, \bar{\Omega}_{pq}, E_j)$

(350)

$$= \Phi(\bar{r}', \,\overline{\Omega}_{pq}, E_j)$$

$$\times \exp\left\{-\int_0^{R_0} \Sigma_t(\bar{r} - R''\overline{\Omega}_{pq}, E_j)dR''\right\}$$

$$+ \int_0^{R_0} Q(\bar{r} - R'\overline{\Omega}_{pq}, \,\overline{\Omega}_{pq}, E_j)$$

$$\times \exp\left\{-\int_0^{R'} \Sigma_t(\bar{r} - R''\overline{\Omega}_{pq}, E_j)dR''\right\} dR'$$

$$\dots (5-58)$$

と書ける。(5-58)式は定常の中性子積分型輸送方程式 であり、Fig. 5.8 を参照して(5-58)式の物理的意味

Fig. 5.8 Vector system adopted

は右辺の第1項が,位置 \vec{r}' でエネルギ E_j をもち進 行方向 $\overline{\Omega}_{pq}$ の中性子が R_0 にそって直進し,その間に 指数減衰して位置 \vec{r} に到達することを意味する。一方 第2項は距離 (\vec{r}', \vec{r}) 間で,より高いエネルギの中性 子が核により散乱されてエネルギを落とし E_j にな り,かつ進行方向が $\overline{\Omega}_{pq}$ になった中性子,およびエ ネルギが E_j で進行方向が $\overline{\Omega}_{pq}$ の中性子が純線源か ら発生する,これらの中性子が位置 \vec{r} まで R_0 にそ って直進しその間に指数減衰して \vec{r} に到達することを 意味する。上式で指数関数に含まれる積分を次式の関 数で表わす。すなわち

$$\tau(\bar{r}, \bar{r} - R'\bar{\varOmega}_{pq}, E_j) = \int_0^{R'} \Sigma_t(\bar{r} - R''\bar{\varOmega}_{pq}, E_j) dR'$$

 $\dots (5-59)$

ここで $\tau(\hat{r}, \hat{r} - R'\overline{\Omega}_{pq}, E_j)$ は $\hat{r} \geq \hat{r} - R'\overline{\Omega}_{pq}$ との間 の光学距離と呼ばれる³⁴⁾。

さて、(5-58) 式の計算をすすめるため、空間変数 \hat{r} についても Discrete Ordinate 空間メッシュ点 \hat{r}_i で 表わすことにする。そこで (5-58) 式で $\hat{r}=\hat{r}_i$ および $\hat{r}'=\hat{r}_{i-1}$ と置く。空間メッシュ点の選び方は、多重層 の内側境界面ではその境界面に一致させてその両側 に,境界メッシュ点をそれぞれ1個づつ割り当て,合計2個のメッシュ点を与える。また外側境界では外側 境界面に一致させて空間メッシュ点を選ぶ。同じ領域 内では下記の条件により定まる任意の数の空間メッシ ュ点が選ばれる。空間メッシュ区間は上記の条件によ り選ばれると,任意に選んだ空間メッシュ区間(\bar{r}_{i-1} , \bar{r}_{i})内では全断面積 $\Sigma_{t}(\bar{r}, E)$ が一定の値をもつことが できるので,(5-59)式の積分は容易に計算され次式の ように求まる。

$$\tau(\bar{r}, \bar{r} - R'\overline{\Omega}_{pq}, E_j) = \Sigma_t(\bar{r} - R'\overline{\Omega}_{pq}, E_j)R'$$

$$\cdots\cdots(5-59')$$

さらに (5-58) 式の右辺の第2項の R' についての 積分計算を容易に実行するために次の条件を設ける。 すなわち,上述の条件にもとづき任意に選んだ空間メ ッシュ区間 (\bar{r}_{i-1}, \bar{r}_i)で線源項 $Q(\bar{r}_i - R'\bar{Q}_{pq}, \bar{Q}_{pq}, E_j)$ が線形関数で近似することができるように空間メッシ ュ区間 (\bar{r}_{i-1}, \bar{r}_i)を選ぶ。

以上の条件のもとで選ばれた空間メッシュ区間 (\bar{r}_{i-1}, \bar{r}_i)で(5-58)式の右辺の第2項は容易に積分計 算される。まず線源項 $Q(\bar{r}_i - R'\bar{\Omega}_{pq}, \bar{\Omega}_{pq}, E_j)$ を線形 関数で近似する。すなわち,

$$Q(\bar{r}_i - R'\bar{\Omega}_{pq}, \bar{\Omega}_{pq}, E_j) \equiv Q(\bar{r}_i - R'\bar{\Omega}_{pq})$$
$$= a(\bar{r}_i) + b(\bar{r}_i)R'$$
$$\dots (5-60)$$

また, $\Sigma_t(\bar{r} - R'\bar{\Omega}_{pq}, E_j)$ は区間 (\bar{r}_{i-1}, \bar{r}_i)内で一定の 値であるからこれを $\Sigma_t(\bar{r}_i - R'\bar{\Omega}_{pq}, E_j) = \beta(\bar{r}_i)$ と置 く。したがって (5-58) 式の右辺の第2項は次のよう に計算される。

第2項=
$$\int_{0}^{R_{0}} (a+bR') \exp(-\beta R') dR'$$

= $\frac{a}{\beta} \{1-\exp(-\beta R_{0})\} - \frac{b}{\beta^{2}} \{\beta R_{0} \exp(-\beta R_{0}) + \exp(-\beta R_{0}) - 1\}$ (5-61)

ここで $a(\bar{r})$ および $b(\bar{r})$ は次式で表わせるから,

$$\begin{array}{c} a(\tilde{r}_i) = Q(\tilde{r}_i) \\ b(\tilde{r}_i) = \frac{Q(\tilde{r}_{i-1}) - Q(\tilde{r}_i)}{R_0} \end{array} \right\} \dots \dots (5-62)$$

(5-62) 式の関係を(5-61) 式に代入すると次式を得る。

第2項=
$$\frac{1}{\beta^2 R_0} [Q(\bar{r}_i)\{\beta R_0 + \exp(-\beta R_0) - 1\}$$

+ $Q(\bar{r}_{i-1})\{1 - (1 + \beta R_0) \exp(-\beta R_0)\}]$
.....(5-63)

以上の計算で(5-58)式の第2項は求められる。ま

(351)

た(5-58)式の第1項は容易に計算できるから,結局 (5-58)式は次式のように計算される。すなわち,

上式で $\sum_{i} (\bar{r}_{i-1}, E_j)$ は便宜上空間メッシュ間 $(\bar{r}_{i-1}, \bar{r}_i)$ 内で一定である巨視的全断面積を表わすとする。

(5-64) 式は空間メッシュについて差分の形をしてい るから計算機で計算するのに都合の良い形である。実際の計算手順は最高エネルギの群から順次下のエネル ギ群へ計算をすすめる。また一つの群についての計算 手順は外側境界条件(通常は外側境界で外側から内側 に向う中性子角度束 $\Phi(r, \overline{\Omega}, E)$ は零とする)から出発 し外側空間メッシュから順次内側空間メッシュへ計算 をすすめる。この操作は外側から内側へ向く全角度分 点について各角度分点ごとに行ない,計算がすすみ内 側境界に到達するまで行なう。内側へ向かう全角度分 点につき計算が内側境界へ到達した後は,次に述べる 条件のいずれか一つを適用し内側境界で外側へ向かう 全ての角度分点に対する中性子角度束を計算する。

条件

- i) 有限厚さの平板線源,有限円柱線源,直方体線 源等の線源の場合は内側境界で反射条件を適用す
 る。
- ii) 平板 (Plane) 線源,ディスクおよび有限広さの
 平板 (Plane) 線源, 球殻線源の場合は内側境界条
 件を適用する。
- iii) 球体積線源の場合は最も内側半径メッシュ上で 負の ω (角度でいえば 90 度<θ<180 度) にする 中性子角度束から正の ω (角度では 0<θ<90 度)
 に対する中性子角度束を計算によって求める。

以上の条件から内側境界での内側から外側へ向かう全 角度分点につき中性子角度束が計算されるから,今度 は上述の計算手順の逆に従って内側空間メッシュから 外側空間メッシュへ順次計算をすすめる。この操作は 外側へ向かう全角度分点につき計算が外側境界に到達 するまで行なう。以上の操作が全て完了すれば,本解 法では繰り返えし収斂法を使用しない(次節で述べる) ので,直ちに次のエネルギ群の計算へすすむことがで きる。

5.5 同一エネルギ群内散乱中性子の計算

中性子が自分自身のエネルギ群内で散乱され自分自 身のエネルギ群へ落ちる場合の計算は,繰り返えし収 斂法を適用して計算するのが通例である。しかし,繰 り返えし収斂法を使用すると,まず第1に計算時間が 長くなる欠点があり,第2に対象とする問題の種類に よっては最悪の場合には収斂しないことがあり,また 収斂するにしても収斂が一様でないために余計に長い 計算時間を要することがある。

本解法では計算時間短縮を目的とし,さらに問題の 種類によっては収斂しないこともあるという。繰り返 えし収斂法の不安を取り除くために,繰り返えし収斂 法の使用を避けその代わりに以下に述べる手法^{55)~58)} を用いる。

まず散乱積分項 $G(\bar{r}, \overline{\Omega}, E)$ を 2 通りに分けて次の ように書く。

 $G(\vec{r}, \vec{\Omega}, E) = G^{D}(\vec{r}, \vec{\Omega}, E) + G^{W}(\vec{r}, \vec{\Omega}, E)$ (5-65) ここで

- G^D(r, Ω, E) は中性子が上のエネルギ群から散乱 減速されて位相空間(r, Ω, E) に加 わる項,
- Gw(r, Ω, E) は中性子が自分自身のエネルギ群内 で散乱され再び自分自身のエネルギ 群内の位相空間(r, Ω, E) に入る項。

この $G^{W}(\hat{r}, \overline{\Omega}, E)$ は次の仮定にもとづいて計算する。 すなわち $r=r_i$ 位置において位相空間上のメッシュ $(\overline{\Omega}_{Pq}, E_j)$ が代表している微小位相空間 $\overline{\Omega}_{Pq} dE_j$ 内 の中性子が散乱され,再びこの微小位相空間内に留ま る中性子を $G^{W}(\hat{r}, \overline{\Omega}, E)$ で表わす。したがって $G^{W}(\hat{r}, \overline{\Omega}, E)$ は

$$G^{W}(\bar{r}, \bar{\Omega}, E) = A(\bar{r}, E) \Phi(\bar{r}, \bar{\Omega}, E) \cdots (5-66)$$

と書き表わすことができる。

 $\alpha = \overline{\alpha} = \overline{\alpha}$

さて (5-55) 式の両辺から $A(\bar{r}, E) \Phi(\bar{r}, \bar{\Omega}, E)$ を差 し引くと次式のように書ける。簡単のために添字を省 く。

$$\begin{split} \overline{\Omega} \cdot & \text{grad} \ \varPhi(\bar{r}, \overline{\Omega}, E) + \varSigma_t(\bar{r}, E) \varPhi(\bar{r}, \overline{\Omega}, E) \\ & - A(\bar{r}, E) \varPhi(\bar{r}, \overline{\Omega}, E) \end{split}$$

$$= Q(\vec{r}, \Omega, E) - A(\vec{r}, E) \varphi(\vec{r}, \Omega, E) \cdots (5-67)$$

$$\forall \vec{z} \qquad \Sigma_t'(\vec{r}, E) = \Sigma_t(\vec{r}, E) - A(\vec{r}, E) \qquad \cdots \cdots (5-68)$$

$$Q'(\vec{r}, \overline{\Omega}, E) = Q(\vec{r}, \overline{\Omega}, E) - A(\vec{r}, E) \varphi(\vec{r}, \overline{\Omega}, E)$$

.....(5-69)

で表わすと (5-67) 式は次式のようになる。 $\overline{\Omega} \cdot \operatorname{grad} \varPhi(\overline{r}, \overline{\Omega}, E) + \sum_{t'} (\overline{r}, E) \varPhi(\overline{r}, \overline{\Omega}, E)$ $= Q'(\overline{r}, \overline{\Omega}, E) \qquad \dots (5-70)$

(352)