プロペラ性能の近似計算法について

森山 文雄*

On an Approximate Numerical Method for Estimating the Performance of Marine Propellers

By

Fumio Moriyama

Summary

Dealing with the ship propulsive performance, we usually consider the problem concerned with the mutual interaction among ship-hull, propeller, and rudder. For this purpose, the numerical model, by which the thrust and the torque acting on the propeller and the velocity field near it, can be exactly calculated in a short time, is needed.

In this report, the author modifies the numerical method by Yamazaki, which adopts the theory of infinite number of bladed-propeller. And then the numerical results are compared with the experimental results of open water tests on AU- and Troost-type series propellers.

1. 緒 言

船の推進性能について考える場合,普通船体, ブロ ペラ, 及び 舵の3つの構成部分に分けて考える¹⁾が, その中でプロペラは船体, 舵に大きく作用するという 意味で推進性能の中核的な部分を占める。プロペラ性 能の数値計算については, 揚力面理論を取入れた容量 の大きな計算例が報告されている²⁾が, 船の推進性能 を考える場合のプロペラの取扱いは船体あるいは舵と の相互干渉という形で取扱われるので, プロペラ自体 については計算時間が短く, かつ流体力や近傍の流場 ができるだけ良好に推定できるモデルが必要である。

このような目的から本論では山崎³³らによる無限翼 数プロペラ理論を応用したプロペラモデルに改良を加 えることにした。その主な改良点としては,

1) プロペラ後方へ流出する自由渦モデルの変更

2) プロペラ性能に影響する物理量をプロペラ半径 方向に変化させ、半径方向の単一断面における値 で代表させることを極力さけた点

である。そして改良した計算方法の適用例として、プロ

* 推進性能部 原稿受付: 昭和54年7月2日 ペラ単独性能に関して、AU 型及び Troost 型シリーズ プロペラの数値計算を行い、実験値との比較を行った。

2. 基礎論

2.1 座 標 系

本論で採用した座標系を Fig. 1 に示す。ここで, x 軸はプロペラ軸と一致させ、プロペラ後方を正とす る。また、y 軸を鉛直上方にとり、座標系が右手系に なるように z 軸をとる。プロペラ軸は静水面に平行と し、プロペラは十分没しているものとする。さらに直 交座標系 0-xyz は次の関係を用いて円筒座標系 $0-xr\theta$ に変換する。

x=x, $y=r\cos\theta$, $z=r\sin\theta$ (2.1) 2.2 基礎式

ブロペラは翼数 N, 半径 r_0 , ボス半径 r_B をもち, 半径 r=r における断面の翼弦長を c(r), 有効ビッ チを $2\pi a(r)$ とする。このプロペラを推進性能の立場 から近似的に rake, skew 及び翼厚さを無視し, 半径 方向の Nc(r) と $2\pi a(r)$ 分布を保持しながら翼数を 無限大にしたもので置換える。そうすると, プロペラ 面 SP は次式で表わされる円盤となる。

x=0, $r_B \leqslant r \leqslant r_0$, $0 \leqslant \theta \leqslant 2\pi$ (2.2)

今, プロペラは θ の負の向きに一定角速度 Ω で回転しながら x 軸に沿って負の方向に一定速度 V で前進しているとする。プロペラは面 SP 上に分布する半径方向に軸をもつ束縛渦と,それから流出する自由渦で置換えることができる。ここで面素 $rdrd\theta$ に含まれる束縛渦の強さを $\Gamma(r, \theta)drd\theta$ とし,自由渦は一定ビッチ (hydraulic pitch) $2\pi h(r)$ をもつ螺旋面となって無限後方へ流出していくものとする。

以上のような特異点の分布によって表わされるプロ ペラの速度ポテンシヤルを *φ*P とすると,

$$\phi_{P} = \frac{1}{4\pi} \int_{r_{B}}^{r_{0}} dr' \int_{0}^{2\pi} \Gamma(r', \theta') G_{P}(x, r, \theta; r', \theta') d\theta'$$
(2.3)

で表わされる。ここで $G_P(x, r, \theta; r', \theta')$ はプロペラ 特異点分布を表わすグリーン関数である。またプロペ ラ面 SP 及びその後流領域ではプロペラ渦度による非 ポテンシヤル流れがあり, x, r 及び θ 方向の速度成 分を w_{1x}, w_{1r} 及び $w_{1\theta}$ とすれば,

となる。ここで有限翼数の補正をすると, 翼面の位置 では,

$$w_{1x} = \frac{\Gamma(r, \theta)}{2h(r)\kappa(r, h(r))}, \quad w_{1r} = 0,$$
$$w_{1\theta} = -\frac{\Gamma(r, \theta)}{2r\kappa(r, h(r))} \quad (2.5)$$

ただし

$$\kappa(r, h(r)) = \frac{2}{\pi} \cos^{-1} \exp\left\{-N\left(1 - \frac{r}{r_0}\right) \frac{\sqrt{r_0^2 + h(r)^2}}{2h(r)}\right\}$$
(2.6)

となる。

プロペラ面に流入する x, θ 方向の速度成分を $[V_{*}^{*}]_{(SP)}$ 及び $[V_{\theta}^{*}]_{(SP)}$ とおく。ただし均一流中のプロペラでは,

 $[V_x^*]_{(SP)} = V$, $[V_s^*]_{(SP)} = r\Omega$ (2.7) である。ここで (SP) はプロペラ面における物理量を 意味する。さらにプロペラ面上の x, θ 方向の流速成

分をそれぞれ
$$[V_x]_{(SP)}, [V_{\theta}]_{(SP)}$$
 とすると
 $[V_x]_{(SP)} = [V_x^*]_{(SP)} + \frac{\Gamma(r, \theta)}{2h(r)\kappa(r, h(r))} + \left[\frac{\partial\phi_P}{\partial x}\right]_{(SP)}$
 $[V_{\theta}]_{(SP)} = [V_{\theta}^*]_{(SP)} - \frac{\Gamma(r, \theta)}{2r\kappa(r, h(r))} + \left[\frac{\partial\phi_P}{r\partial\theta}\right]_{(SP)}$
(2.8)

が得られる。ここで均一流中におかれたプロペラで は、 $[\partial \phi_P / \partial x]_{(SP)}$ 、 $[\partial \phi_P / r \partial \theta]_{(SP)}$ は零となる。 $[V_x]_{(SP)}$ 及び $[V_0]_{(SP)}$ の円周方向の平均値を $[V_{0x}]_{(SP)}$, $[V_{00}]_{(SP)}$ とおくと、

$$[V_{0x}]_{(\mathrm{SP})} = \frac{1}{2\pi} \int_{0}^{2\pi} [V_{x}]_{(\mathrm{SP})} d\theta$$

$$[V_{0\theta}]_{(\mathrm{SP})} = \frac{1}{2\pi} \int_{0}^{2\pi} [V_{\theta}]_{(\mathrm{SP})} d\theta$$
(2.9)

で表わせる。ただし均一流中では

$$\label{eq:constraint} \begin{split} [V_{0x}]_{(\mathrm{SP})} = & [V_x]_{(\mathrm{SP})} \ , \qquad [V_{0\theta}]_{(\mathrm{SP})} = & [V_{0\theta}]_{(\mathrm{SP})} \\ \geq & \& \Im_{\mathfrak{o}} \end{split}$$

プロペラ翼面における境界条件は、プロペラ翼面を 透過する流れがないという条件であるが、プロペラが 有限翼数であること、及び翼幅が広いことから揚力面 理論に対応する補正を加えて次のように表わす。

$$\left[\frac{2\sqrt{r^{2}+a(r)^{2}}}{Nk_{1}rc(r)} + \frac{r^{2}+h(r)^{2}}{2h(r)r^{2}\kappa(r,h(r))}\right]\Gamma(r,\theta) + \left[\frac{\partial\phi_{P}}{\partial x}\right]_{(SP)} - \frac{h(r)}{r}\left[\frac{\partial\phi_{P}}{r\partial\theta}\right]_{(SP)} = \frac{a(r)}{r}[V_{\theta}^{*}]_{(SP)} - [V_{x}^{*}]_{(SP)}$$
(2.10)

ただし

$$k_{1} = 1.07 - 1.05 \frac{c(r)}{r_{0}} + 0.375 \frac{c(r)^{2}}{r_{0}^{2}}\Big|_{r=r_{e}}$$

$$r_{e} = 0.7r_{0}$$

$$(2.11)$$

次に自由渦の流出条件は流線に沿って自由渦が流出 する条件であるが、プロペラ後方の自由渦がプロペラ 面の束縛渦分布におよぼす影響は、プロペラ近傍にあ る自由渦によって大略決定する。従って、自由渦の流 出するビッチ $2\pi h(r)$ は、プロペラ近傍の流場を用い て表わしてもさしつかえないと考えられる。h(r)の推 定方法については次節で議論する。

以上の条件の下で束縛渦分布 $\Gamma(r, \theta)$ が求まると, プロペラに作用するスラスト T, トルク Q は,

$$T = \rho \int_{r_B}^{r_0} \left\{ 2\pi \Gamma(r,\theta) [V_\theta]_{(SP)} - \frac{1}{2} C_{PD} Nc(r) \sqrt{1 + \frac{h(r)^2}{r^2}} \right\}$$

50

(362)

$$\times [V_{0x}]_{(SP)}[V_{0\theta}]_{(SP)} dr$$

$$Q = \rho \int_{r_B}^{r_0} \left\{ 2\pi \Gamma(r,\theta)[V_x]_{(SP)} + \frac{1}{2} C_{PD} Nc(r) \sqrt{1 + \frac{h(r)^2}{r^2}} [V_{0\theta}]_{(SP)}^2 \right\} r dr$$

$$(2.12)$$

で表わされる。ここで ρ 及び CPD はそれぞれ水の密 度及びプロペラ翼の粘性係数である。プロペラ翼の抗 力に関する実験データはほとんどないようなので,多 くのプロペラ性能の実験値より逆算して, CPD の平均 的な曲線を求めると次式のようは表わせる。

 $C_{PD} = 0.009 + 0.202 |C_L^* - C_{L_{opt}}^*|^{2.5}$ (2.13)

$$\begin{split} & \mathcal{L} \subset \mathcal{C} \\ & C_{L}^{*} = \frac{4\pi \Gamma^{0}(r)}{W^{0}(r)c(r)N} \Big|_{r=r_{e}} \\ & \Gamma^{0}(r) = \frac{1}{2\pi} \int_{0}^{2\pi} \Gamma(r,\theta) d\theta \\ & W^{0}(r) = \frac{1}{2\pi} \int_{0}^{2\pi} \sqrt{\left[V_{x}\right]_{(SP)}^{2} + \left[V_{\theta}\right]_{(SP)}^{2}} d\theta \\ & C_{L \text{ opt}}^{*} = \begin{cases} 1.690\sqrt{\frac{t(r)}{C(r)} - 0.04} - 0.1 \Big|_{r=r_{e}} \\ & \vdots \frac{t(r)}{C(r)} > 0.04 \\ & -0.1 & \vdots \frac{t(r)}{C(r)} < 0.04 \end{cases} \end{split}$$

$$\end{split}$$

$$(2.14)$$

ここで、t(r)はプロペラ翼の最大翼厚を表わす。プ ロペラ直径を $D(=2r_0)$ 、回転数を $n(=\Omega/2\pi)$ 、前進 定数をJ(=V/nD)とおけば、スラスト係数 K_T 、ト ルク係数 K_Q 及びプロペラ単独効率 η_0 は次式で表わ される。

$$K_T = \frac{T}{\rho n^2 D^4}$$
, $K_Q = \frac{Q}{\rho n^2 D^5}$, $\eta_0 = \frac{K_T J}{2\pi K_Q}$
(2.15)

2.3 計算手順

Fig. 2 に示すフローチャートに従って計算を行う。 プロペラ幾何形状及び作動状態を入力すると h(r) を 収束パラメータとして繰返し計算を行い,スラスト, トルクが出力される。一般にプロペラ面は,r 及び θ 方向に分割して計算を行うが,単独性能の場合は,半 径方向に5分割程度の要素分割を行えばよい。

3. 数值計算

前節で示した方法に従ってプロペラ性能の計算を行うが,まず,自由渦のビッチ 2πh(r)及び プロペラの

有効ビッチ 2πa(r) の推定方法の吟味を行う必要があ る。そして最終的に代表的なシリーズプロペラ (AU 及び Troost) について単独性能に限り,数値計算を行 って実験値との比較を行う。

3.1 自由渦のピッチ 2πh(r) の推定

三次元翼特性の数値計算を行う場合,翼表面からの 自由渦の流出モデルの選択によって,その計算結果は 左右される。舶用プロペラの場合も同様であり,直進 翼と異るのは,自由渦が螺旋をなして後方へ流出する 点である。しかし,前節で述べたように,プロペラ後 方に流出する自由渦がプロペラにおよぼす影響はプロ ペラ近傍にある自由渦によって大略決定する。従って プロペラ近傍での流場を用いて,h(r)を表わす自由渦 の流出モデルを考えることにする。

今, 簡単の為に Fig. 3 に示すような 直進翼の自由 渦流出のモデルを考える。ここで,実際の渦の流出パ ターンは ③ のように, 各渦位置の流線に沿って流出 する形式をとる。すなわち翼面近傍では翼面の流向に 沿って流出し,翼後方でしだいに主流に近づいていく パターンである。しかし自由渦の変形を考えると複雑 な数値計算となり,計算時間も大きくなるので,自由 渦流出のモデルを検討する。使用するモデルは次の2 つである。第1は, Fig.3の① に示すような, Bollay4) 流の流出モデルで,第1次近似として迎角の 1/2 の角度をなして自由渦を流出させる方法である。第2 のモデルとしては,②のように翼面上の主流方向に自 由渦を流出させる方法を考える。以上の ①, ② のモ デルをプロペラに適用すると, プロペラ翼断面 (r=r) ではそれぞれ Fig. 4 の Type 1 及び 2 のような関 係で表わすことができそれぞれのモデルでは h(r) は 次のように表わせる。

Type 1 では

$$\begin{array}{c}
\nabla l \sharp \\
h(r) = \frac{1}{2} \left\{ a(r) + r \frac{[V_{0x}^*]_{(SP)}}{[V_{0\theta}^*]_{(SP)}} \right\} \\
\nabla l \sharp \\
\end{array}$$
(3.1)

Type 2 Th $h(r) = r \frac{[V_{0x}]_{(SP)}}{[V_{00}]_{(SP)}}$

ここで

$$\begin{bmatrix} V_{0x}^{*} \end{bmatrix}_{(SP)} = \frac{1}{2\pi} \int_{0}^{2\pi} \begin{bmatrix} V_{x}^{*} \end{bmatrix}_{(SP)} d\theta \\ \begin{bmatrix} V_{0\theta}^{*} \end{bmatrix}_{(SP)} = \frac{1}{2\pi} \int_{0}^{2\pi} \begin{bmatrix} V_{\theta}^{*} \end{bmatrix}_{(SP)} d\theta$$
 (3.2)

均一流中のプロペラでは $[V_{0x}^*]_{(SP)} = V$, $[V_{0x}^*]_{(SP)} = r\Omega$ となる。さらに以上のモデル ① ② に対して, h(r) を 半径方向に変化させるか, あるいは単一断面(例えば

(363)

0.7r₀) での値で代表させるかといった2つの方法が考 えられるが,数値計算を行ってみるとどちらを用いて もスラスト,トルクには *h*(*r*) の半径方向の変化は大 きく影響しないようである。しかし,プロペラ後流場 を取扱うような問題(例えば舵との干渉)では,半径 方向に変化させた *h*(*r*) を使用した方がよいと思われ る。

以上の自由渦の流出モデルの優劣をみるために,多 くのプロペラで Fig. 5 に示すような プロペラスラス トの計算を行った。ここで CAL. 1 及び 2 はそれぞ れ (2.14) の Type 1, 2 のモデルによる計算結果で ある。また簡単のため, CAL. 1 では h(r) は r=0.7 r_0 の断面における値で代表させている。計算手順 は CAL. 2 については, Fig. 2 に従って行うが, CAL. 1 では (3.1) から明らかなように h(r) は繰返 し計算をする必要はない。また CAL. 2 の場合, h(r)の初期値は h(P) = V/Q とおいている。

CAL. 1 の場合,高荷重領域で K_{T} の計算値が実験 値に比べて低下する。この傾向は翼幅が広いほど著し いようである。CAL. 2 の場合は高荷重領域でもスラ スト計算値は低下しないが, Fig. 3 に示したように, Type 2 では自由渦を プロペラ翼面の流向に流出させ ており,自由渦の変形を考えていないために実際に比 べて螺旋自由渦がプロペラ翼から離れていないのでス ラスト勾配が小々大きくなると思われる。自由渦の軌 跡を計算していく方法を採用すればよいが,本論のモ デルは推進性能の問題を取扱うためのものであり,計 算時間をなるべく少なくする必要があるので,この自 由渦の変形を表わすために h(r) に修正係数を与え る。 種々の形状を有する プロペラについて計算を行い, CAL.3 として次式に示すような係数 A を用いた h(r) を採用した計算を行う。

$$h(\mathbf{r}) = A \left\{ \mathbf{r} \frac{[V_{0x}]_{(\mathrm{SP})}}{[V_{0\theta}]_{(\mathrm{SP})}} \right\}$$
(3.3)

ここで

$$A=1+1.25(c_{\max}/D-0.42)$$
 (3.4)
 c_{\max} : 最大翼幅

である。(3.3) (3.4) を用いたプロペラ単独性能の数 値計算例を Fig. 6~8 に示す。使用したプロペラは Table 1 に示す MAU 及び AU 型のシリーズプロペ ラである。ここで H/D はプロペラのピッチ比(幾何 的なビッチ比)である。数値計算例では有効ビッチ (K_T が零になる J の値)を実験値から仮定して a(r)を半径方向に一定として与えている。Fig. 6~8 から 適当な a(r) でおさえれば K_T , K_Q とも計算値は実験 値とよく合致する。なお,以下に示す AU, MAU 型 プロペラの単独試験結果は,文献 5)~7)から引用し た。

3.2 有効ピッチ 2πα(r) の推定

3.1 から適当な a(r) 分布が推定できれば プロペラ 単独性能の推定ができることがわかったので,有効ビ ッチの計算を行う。ここでは プロペラ各翼断面の無揚 力角 a_{g1} を Telfer の方法を参考にして求めた文献 8) の方法に従って計算することにより,a(r) 分布を求め る。今 Fig. 9 に示すような翼型を考える。翼幅を c(r),最大翼厚を t(r),前縁から最大翼厚位置までの 距離を c'(r),前縁及び後縁における基線から Nose-Tail Line までの高さをそれぞれ $y_t(r)$, $y_t(r)$ とすれ ば

Series of Propeller	MAU4-55	AU5-65	AU6-70
Exp. Area Ratio	0.550	0.650	0.700
Pitch Ratio	0.500 0.800 1.200	0.400 0.800 1.200	0.700 0.900 1.100
Effective Pitch Ratio (Assumed)	0.585 0.890 1.300	0.480 0.890 1.290	0.790 0.990 1.200
Boss Ratio	0.180	0.180	0.180
Max. Blade Width Ratio	0.311	0.294	0.264
Max. Blade Thickness Ratio	0.050	0.050	0.050
No. of Blades	4	5	6
Rake Angle	10 deg.	10 deg.	10 deg.

Table 1 I Incipal Dimension of Model 1 topene	Table 1	Principal	Dimension	of Model	Propellers
--	---------	-----------	-----------	----------	------------

(364)

53

$$\alpha_{g1}(r) = \frac{\left\{1 - \left(\frac{1}{2} - \frac{c'(r)}{c(r)}\right) \frac{y_{l}(r)}{t(r)} - \left(\frac{3}{2} + \frac{c'(r)}{c(r)}\right) \frac{y_{l}(r)}{t(r)}\right\} \frac{t(r)}{c(r)}}{\left(\frac{3}{2} - \frac{c'(r)}{c(r)}\right)}$$
(3.5)

と近似的における。幾何ピッチを $H = 2\pi P(r)$ とおけ るば a(r) は次式で表わすことができる。

$$a(r) = \frac{1 + (r/P(r))\alpha_{g1}(r)}{1 - (P(r)/r)\alpha_{g1}(r)}P(r) \qquad (3.6)$$

(3.5), (3.6) にプロペラ翼の分割断面の形状を入力す ることによって有効ビッチが計算できるが, ここでは Cascade Effect は考慮していないので, a(r)の計算値 は実験値 (a(r)を半径方向に一定と仮定し, $K_T=0$ と なる J 値から求めたもの)に比べて 3~5% 程度大き い値をとる。従って実用上は翼型によって C_a なる係 数を掛けた $a^*(r)$ を採用することにより, 大略推定す

ることができると考える。ここで
$$a^*(r) = C_a \cdot a(r)$$
 (3.7)
AU, MAU 型シリーズプロペラについては
 $C_a = \begin{cases} 0.96: N=4,5\\ 0.94: N=6 \end{cases}$
Wageningen B 型シリーズプロペラについては
 $C_a = \begin{cases} 0.96: N=4\\ 0.96: N=4 \end{cases}$

 $C_a = (0.93; N=5)$

で表わされる。

3.3 プロペラ単独性能数値計算例

Fig. 10~18 に AU 型シリーズプロペラの単独性能

Series of Propeller	MAU4-40	MAU4-55	MAU4-70	AU5-50	AU5-65	AU5-80
Exp. Area Ratio	0.400	0.550	0.700	0.500	0.650	0.800
Boss Ratio	0.180	0.180	0.180	0.180	0.180	0.180
Max. Blade Width Ratio	0.226	0.311	0.398	0.226	0.294	0.364
Max. Blade Thickness Ratio	0.050	0.050	0.050	0.050	0.050	0.050
No. of Blde	4	4	4	5	5	5

Table 2	Principal	Dimension	of	Model	Propeller	Series	(AU-	or	MAU-Type	e)
---------	-----------	-----------	----	-------	-----------	--------	------	----	----------	----

Series of Propeller	AUw6-55	AU6-70	MAUw6-85
Exp. Area Ratio	0.550	0.700	0.850
Boss Ratio	0.180	0.180	0.180
Max. Blade Width Ratio	0.208	0.264	0.322
Max. Blade Thickness Ratio	0.050	0.050	0.050
No. of Blades	6	6	6

Table 3 Principal Dimension of Model Propeller Series (Troost-Type)

Series of Propeller	B4-40	B4-55	B5-45	B5-60
Exp. Area Ratio	0.400	0.550	0.450	0.600
Boss Ratio	0.167	0.167	0.167	0.167
Max. Blade Width Ratio	0.2187	0.3007	0.1968	0.2624
Max. Blade Thickness Ratio	0.045	0.045	0.040	0.040
Pitch Distribution	20 p.c.	20 p.c.	Const.	Const.
No. of Blade	4	4	5	5

について,以上の方法を用いた数値計算例を示す。使 用したシリーズブロペラの主要目を Table 2 に示す。 本論の方法を用いれば,かなり広い範囲の形状変化の あるプロペラの単独性能について,数値計算結果は実 験値とよく一致する。

次に代表的なシリーズプロペラとして知られている Troost 型 (Wageningen B—Screw Series) プロペラ の単独性能について,本法を適用して数値計算を行っ た例を Fig. 19~22 に示し,このシリーズプロペラの 主要目を Table 3 に示す。 AU 型に比べて数値計算 結果と実験値との一致はよくないが,大略の推定はで きると考える。

本法の計算方法によれば、1作動状態(V, n を与 える)についてプロペラ単独性能の計算を行う場合、 計算時間は約0.2秒,繰返し計算回数は約6回程度で ある。

4. 結 言

船体あるいは舵とプロペラとの相互干渉といった推 進性能上の問題を取扱う過程にあって、プロペラ性能 計算のモデル改良を行った。このモデルを、形状を系 統的に変化させた AU, MAU 型及び Troost 型シリ ーズプロペラに適用して単独性能の計算を行い、その 結果かなり広い範囲のプロペラ形状の変化に対して計 算値は実験値とほぼ一致することがわかった。

今後の問題として、プロペラ近傍の流場の推定,特 にプロペラ後流の推定がどの程度可能かをしらべる必 要がある。また,伴流中のプロペラ性能についても検 討する必要がある。

最後に,本研究の遂行にあたり終始懇切なる御指導

をいただいた九州大学工学部造船学教室の山崎隆介教 授に深く御礼を申し上げます。なお本論文の数値計算 には 当研究所計算機センター TOSBAC-5600 を使用 した。関係各位に御礼申し上げます。

参考文献

- 例えば R. Yamazaki: "On the Propulsion Theory of Ships on Still Water—Introduction—", Memoirs of Faculty of Engineering, Kyushu Univ., Vol. 27, No. 4 (1968)
- 2) 例えば 小山鴻一: "新しい方法によるプロペラ 揚力面の数値解析",日本造船学会論文集,第132 号(1974)
- 3) 山崎隆介,小柴幸雄,上田耕平: "最適プロペラの設計について",西部造船会々報,第53号 (1976)
- W. Bollay: "A Nonlinear Wing Theory and its Application to Rectangular Wings of Small Aspect Ratio", ZAMM (1939)
- 5) 矢崎敦生: "AU 型プロペラ設計法に関する研究", 運輸技術研究所報告,第11巻7号(1961)
- 矢崎敦生: "Open Water Test Series of Modified AUw Type Six Bladed Propeller Models of Area Ratio 0.85", 日本造船学会論文集, 第 125 号 (1969)
- 矢崎敦生,他: "Open Water Tests Series of Modified AU Type Four- and Five-Bladed Propeller Models of Large Area Ratio",船舶技術 研究所欧文報告 No. 28 (1968)
- R. Yamazaki: "A Study on Screw Propellers", Memoirs of Faculty of Engineering, Kyushu Univ., Vol. 19, No. 1 (1960)
- W. P. A. van Lammeren, J. D. van Manen, and M. W. C. Oosterveld: "The Wageningen B— Screw Series", TSNAME, Vol. 77 (1969)

(366)

Fig. 2 Flow Chart for Calculating Propeller Performance

Fig. 3 Free Vortex from Rectangular Wing

Fig. 4(a)Free Vortex Model from
Propeller (Type 1)Fig. 4(b)Free Vortex Model from
Propeller (Type 2)

(367)

Fig. 5 Comparison of Thrust Coefficient Calculated by Different Free Vortex Models

AU6-70 (Assumed Effective Pitch Ratio)

(369)

Fig. 9 Definition of Wing Section

(MAU4-40)

(370)

– EXP.

 η_0

-0.8

-0.6

0.4

-0.2

-- CAL.

η₀ H/D=1.3

12

J

(373)

(375)

(376)