薄い船の抵抗成分分離の実験的研究

足達 宏之*・日夏 宗彦*・神蔵 輝男*

On experimental separation of ship resistance for thin ship

By

Hiroyuki ADACHI, Munehiko HINATSU, and Teruo KAMIKURA

Abstract

The synthesized tests on a Wigley model (L=4m) are performed. These tests are composed of

- 1) Resistance Test
- 2) Wave Analysis
- 3) Wake Survey
- 4) Hull Pressure Distribution Measurement.

Resistance test and wave analysis are done under the free (heave, trim are free) and fixed (heave, trim are fixed) conditions. Furthermore, in the wave analysis, the influence of the distance between wave height meter and ship is investigated. Also, the separation of ship resistance is performed by using the results of the above tests.

On the other hand, an attempt for the computational resistance separation is made. The wave resistance is calculated by Guilloton's method, and using these results, the frictional resistance is estimated by the Tanaka-Himeno's first approximation for the turbulent boundary layer theory.

Both of the results, computational separation method and experimental one, show a good agreement.

目 次	4-2-1 実験(E)
1. まえがき	4-2-2 実験(F)
2. 模型船	4-3 後流計測
3. 試験状態	4-4 圧力分布計測
4. 試験方法	5. 試験結果及び考察
4-1 抵抗試験	5-1 抵抗試験
4-1-1 実験(A)	5-2 波形解析
4-1-2 実験(B)	5-3 後流計測
4-1-3 実験(C)	5-4 圧力分布計測
4-1-4 実験(D)	6. 抵抗分離とその考察
4-2 波形解析	7. あとがき
* 推進性能部	8. 参考文献
原稿受付:昭和56年9月16日	Appendix 1 計算による数値抵抗成分分離

原稿受付:昭和56年9月16日

Appendix 2 船体の拘束条件による抵抗変化

1. まえがき

近年,電子計算機の大型化に伴い,船体の流体力学 的特性が計算によりかなり求められつつあるが,自由 表面の持つ非線型性や,Navier-Stokesの方程式が持 つ非線形性のため,理論計算のみによる諸特性の解明 には今後の研究に待たねばならないところが多い。一 方 Froude による抵抗分離の概念を用いた実船抵抗 の推算の成功により水槽試験の有効性が認められて以 来,船体の流体力学的特性を解明する上で水槽試験の 持つ意味は非常に重要なものになった。

理論研究の発展と実験設備の発達,実験機器の機能 の向上に伴い,初期の抵抗,自航試験に比べると,波 形解析,後流計測,圧力分布計測あるいは摩擦応力計 測等と水槽試験の種類も多種多様となり,計測データ も大量化しかつ高精度化が要求されるようになって, ある船型に対して上記のような一連の水槽試験を実施 するには非常な労力を要するようになってきた。これ らを解決するにはマイクロコンピュータを導入したデ ータの即時処理を主としたシステムの構成をする必要 があり,今後の水槽試験には不可欠のものと考えられ る。

今回, I.T.T.C. Resistance Committee において Wigley model を用いた Geosim Test が提起され, 船舶技術研究所において 4 m model を用いた自航試 験を除く一連の水槽試験,即ち,抵抗試験,波形解 析,後流計測,それに圧力分布計測を実施する機会を 得ることができたので,上記の理由に基づきマイクロ コンピュータを用いた即時解析システムを作って実験 することにした。

一方,船体の流体力学的特性を明らかにする上で抵 抗分離の概念が非常に重要であるという認識から,得 られた実験値を用いて抵抗分離を行った。今後,一つ の船型に対して一連の実験が要求される事情が増える ものと考え,今回得られた試験結果が役に立つのでは ないかと考えたので,資料として示すことにした。

なお,理論計算により数値抵抗分離を行い,また, 姿勢変化と抵抗の関係を調べ,実験とよい一致が見ら れたのでこれらを Appendix として示すことにし た。

2. 模 型 船

供試模型は *L_{pp}*=4m, *B*=0.4m, *d*=0.125m の Wigley 船型であり,船体表面は次式で表わされる。

$$y = \frac{B}{2} \left\{ 1 - \left[\frac{x}{(L/2)} \right]^2 \right\} \left\{ 1 - \left(\frac{z}{d} \right)^2 \right\}$$

座標系は Fig. 1 に示したものを採用する。この模型の Body plan を Fig. 2 に示す。また模型船の製作精度を Table 1 に示す。 模型船 は 木製 で あり, S.S. $9^{1/2}$ のところに乱流促進用の台形 スタッドが1 cm 間隔で植えられている。スタッドの高さは 1 mm と 3 mmの 2 つの場合について実験を行っている。

3. 試験状態

試験の状態は, dipping および trim を許した,

Fig. 1 Coordinate system

14

(14)

Fig. 2 Body plan of Wigley model

Z S. S.	1/4	1/2	3/4	1	[.] 2	3	4
L.W.L.	. 010	. 012	. 012	. 012	. 006	. 010	. 004
	. 004	. 004	. 003	. 002	0. 0	. 001	. 004
7 W.L.	. 007	. 008	.008	. 007	. 003	. 005	. 003
	. 003	. 004	.002	. 002	. 001	0. 0	. 002
4 W. L.	. 004	. 001	. 005	. 004	0.0	.002	. 002
	0. 0	. 001	. 001	0. 0	.002	0.0	. 002
Z S.S.	5	6	7	8	9	$9\frac{1}{4}$	$9\frac{3}{4}$
L.W.L.	. 003	. 001	. 005	. 001	. 008	.011	. 015
	. 004	0. 0	. 004	. 004	. 004	.001	. 003
7 W. L.	. 001	. 002	. 004	. 002	. 007	. 011	. 014
	. 003	. 001	. 004	. 002	0. 0	. 003	. 004
4 W. L.	. 005	. 003	. 001	. 002	. 005	. 007	. 011
	. 003	0. 0	. 002	. 002	. 001	0. 0	. 002

Table 1 Accuracy of manufacture of Wigley model

y:設計値 $y_m:$ 計測値 B/2:半幅

$$\frac{|y-y_m|}{B/2}$$
 × 100

(15)

s

Ρ

	DATE	W. TEMP.	REMARKS
Resistance test (A)	Jan. 12. '81	11.8 (deg)	Stud height 1mm, Free Condition With Velocimeter $F_n=0.08-0.40$
Resistance test (B)	Jan. 14. '81	11.8 (deg)	Stud height 1mm, Free Condition Without Velocimeter $F_n=0.08-0.40$
Resistance test (C)	Feb. 12. '81	10.6 (deg)	Stud height 3mm, Free Condition Without Velocimeter $F_n=0.08-0.40$
Resistance test (D)	May 8. '81	15.5 (deg)	Stud height 3mm, Fixed Condition Without Velocimeter $F_n=0.08-0.40$
Wave Analysis (E)	Jan. 13. '81	11.8 (deg)	Stud height 1mm, Free Condition Without Velocimeter $F_n=0.21-0.40, Y=L/2$
Wave Analysis (F)	~ May 13. '81 May 14. '81	15.5 (deg)	Stud height 3mm, Fixed Condition Without Velocimeter $F_n=0.21-0.40$ Y=0.729L, 0.5L, 0.833L
Wake Survey	~ Feb. 3. '81 Feb. 10. '81	10.6 (deg)	Without Velocimeter Free Condition, 1%L AFT, 50%L AFT $F_n=0.250, 0.267, 0.289, 0.316$
Pressure Distribution	Mar. 26. '81	10.6 (deg)	Without Velocimeter Free Condition $F_n=0.250, 0.267, 0.289, 0.316$

free condition とそれらを許さない fixed condition の2つの場合について,抵抗試験と 波形解析 を行っ た。しかし,後流計測と圧力分布計測は free condition の場合のみ行った。試験状態をまとめて Table 2に示す。なお試験は全て,三鷹第2試験 水槽(400 m水槽) で行われた。

4. 試験方法

実施した試験の方法について,以下に順を追って述 べる。

4-1 抵抗試験

抵抗試験は, Table 2 に示す状態で行われた。以 下便利のために,日付順でそれぞれ実験(A),(B),(C)及 び(D)と呼ぶことにする。

4-1-1 実験(A)

計測状態は free condition であり,抵抗動力計に よる抵抗値,トリム計による船首尾沈下量,それに翼 車型流速計による対水流速について計測を行った。ま た乱流促進用のスタッドは9½に1cm間隔で高さ1 mmとした。

4-1-2 実験(B)

実験(A)の状態から流速計を除いたもので速度は対地 速度とした。他は全て実験(A)と同一である。実験状態 図を Fig. 3 に示す。

4-1-3 実験(C)

この実験では、乱流促進用のスタッドの高さ3mm をとした。これは低速域 ($F_n < 0.2$) 付近の抵抗値の バラッキの改善を目指したもので、以後の実験は全て

(16)

スタッドの高さを3mmとした。

4-1-1 実験(D)

この実験では、模型が静水面で静止している状態を 2つの3分力計を用いて曳引車に固定し、拘束状態の 抵抗値と上下力を計測した。実験概略図を Fig. 4 に 示す。

4-2 波形解析

波形解析は Table 2 に示す状態で行われた。これ

についても日付順で実験(E), (F)と呼ぶすことにする。 4-2-1 実験(E)

模型状態は、実験(A)、(B)と同じで流速計は除いてあ る。波形計測位置は船体中央線より半船長離れた船の 進行方向と平行な線上とした。航走状態は free condition である。計測は容量型波高計により行い, longitudinal cut 法を用いて解析した。波形記録の 基準点はF.P.とし、基準点の設定には光電式合図マ

E: Trim meter

Fig. 4 Experimental apparatus of resistance test and wave analysis (fixed condition)

H: 5-hole Pitot tube

Fig. 5 Experimental apparatus of wake survey

Fig. 6 Experimental apparatus of measurement of hull surface pressure

Fig. 7 Block diagram of pressure measurement system

(17)

Table 3 Results of resistance test unde free condition

	LPP = TemP.= K =	4.000 15.5 ° 0.095	m ▽= ⊂ P= V=	= 0.177 =101.860 = 1.124	7 m ³) k9.sec² K3x10 ⁻⁶ m²	∕m ⁴ ∕sec
No.	. U (m∕s)	Fn	Rn ×106	Rt (kg)	Ct ×10 ³	Сы ×10 ^э
123456789011234567890122345678901234567890123456789012345	0.501 0.563 0.626 0.720 0.751 0.783 0.845 0.908 0.939 0.970 1.002 1.033 1.064 1.096 1.127 1.158 1.158 1.158 1.158 1.271 1.221 1.221 1.221 1.221 1.221 1.252 1.284 1.315 1.565 1.565 1.565 1.565 1.565 1.565 1.565 1.628 1.990 1.565 1.628 1.9753 1.816 1.9753 1.816 1.9753 1.816 1.9753 1.816 1.9753 1.816 1.9753 1.9753 1.816 1.9753 1.9753 1.816 1.9753 1.9754 1.97555 1.97555 1.97555555555555555555555555555555555555	0.080 0.090 0.100 0.110 0.120 0.125 0.135 0.135 0.140 0.145 0.155 0.165 0.165 0.175 0.175 0.175 0.175 0.175 0.185 0.185 0.195 0.200 0.205 0.205 0.200 0.220 0.2300 0.2300 0.320 0.350 0.350 0.350 0.350 0.350 0.350 0.360 0.320	$\begin{array}{c} 1.560\\ 1.753\\ 1.949\\ 2.145\\ 2.242\\ 2.338\\ 2.534\\ 2.631\\ 2.924\\ 3.210\\ 3.216\\ 3.33\\ 3.413\\ 3.509\\ 3.5606\\ 5.705\\ 2.827\\ 3.413\\ 3.413\\ 3.509\\ 6.605\\ 3.802\\ 2.998\\ 4.480\\ 3.9988\\ 4.480\\ 3.9998\\ 4.480\\ 3.9998\\ 4.480\\ 3.9998\\ 4.480\\ 5.265\\ 5.566\\ 6.629\\ 2.15\\ 5.566\\ 6.822\\ 9.15\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.566\\ 6.822\\ 5.56$	0.138 0.204 0.204 0.242 0.257 0.287 0.298 0.333 0.342 0.3421 0.448 0.477 0.508 0.543 0.568 0.569 0.642 0.639 0.642 0.639 0.642 0.639 0.639 0.642 0.639 0.708	$\begin{array}{c} 4.5334\\ 4.2924\\ 4.2924\\ 4.2924\\ 4.0878\\ 4.1959\\ 4.0078\\ 4.1959\\ 4.0078\\ 3.9491\\ 3.9260\\ 3.9260\\ 3.9260\\ 3.9260\\ 3.92549\\ 3.92549\\ 3.92549\\ 3.92549\\ 3.992549\\ 3.992549\\ 3.992549\\ 3.992549\\ 3.992549\\ 3.992549\\ 3.992549\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99254\\ 3.99255\\ 4.2925\\ 4.2925\\ 4.3086\\ 4.32276\\ 4.3086\\ 4.32276\\ 4.3086\\ 4.32276\\ 4.3086\\ 4.32276\\ 4.3086\\ 4.32276\\ 4.3086\\ 4.3086\\ 4.32276\\ 4.3086\\$	0.1343 0.0921 0.0674 0.0565 -0.0254 0.1141 -0.0445 0.1186 -0.0487 0.0159 -0.0137 0.0254 0.0375 0.0254 0.0375 0.0671 0.0254 0.0375 0.0671 0.1734 0.0254 0.0375 0.0487 0.0254 0.0254 0.0254 0.0275 0.0271 0.2294 0.1682 0.2770 0.2971 0.2871 0.3734 0.3845 0.3845 0.7874 0.7851 0.9682 1.2089 1.6569 1.6138 1.5637 1.5493 1.5493 1.57320
40 47 48	2.442	0.390 0.390 0.400	7.408 7.604 7.797	3.657 4.053 4.463	5.6041 5.8692	2.2753 2.5534

18

Table 4 Results of resistance test under fixed condition

	LPP = TemP.= K =	4.000 10.6 0.085	m マ "こ P i V	= 0.17 =101.93 = 1.28	77 m ³ O k9•sec 45×10 ⁻⁶ m ²	2/m ⁴ 2/sec
No.	U (m/s)	Fn	Rn ×10 ⁶	Rt (kg)	Ct ×10 ³	Cw ×10 ³
123456789011234567890123456789012345678901	$\begin{array}{c} 0.501\\ 0.563\\ 0.669\\ 0.751\\ 0.814\\ 0.939\\ 1.002\\ 1.064\\ 1.120\\ 1.255\\ 1.315\\ 1.565\\ 1.673\\ 1.670\\ 1.753\\ 1.690\\ 1.753\\ 1.878\\ 1.910\\ 1.980\\ 1.941\\ 1.980\\ 2.066\\ 9.12\\ 2.129\\ 2.129\\ 2.129\\ 2.317\\ 2.379\\ \end{array}$	0.080 0.090 0.100 0.120 0.130 0.140 0.150 0.160 0.170 0.220 0.220 0.220 0.220 0.220 0.240 0.220 0.240 0.220 0.240 0.220 0.240 0.220 0.240 0.220 0.240 0.220 0.240 0.220 0.240 0.220 0.240 0.220 0.240 0.220 0.240 0.250 0.267 0.267 0.267 0.267 0.267 0.267 0.260 0.260 0.267 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.260 0.267 0.260 0.300 0.300 0.300 0.350 0.370 0.370 0.380	$\begin{array}{c} 1.782\\ 2.227\\ 2.4671\\ 3.364\\ 3.564\\ 5.55\\ 5.792\\ 2.267\\ 3.340\\ 4.45\\ 5.55\\ 5.792\\ 2.267\\ 3.340\\ 4.458\\ 9.33\\ 4.458\\ 9.35\\ 5.55\\ 5.952\\ 2.26\\ 6.66\\ 6.66\\ 6.77\\ 7.7\\ 7.7\\ 7.7\\ 7.8\\ 8.8\\ 8.8\\ 8.8\\ $	0.137 0.167 0.199 0.235 0.277 0.320 0.367 0.415 0.474 0.530 0.669 0.742 0.836 0.907 1.021 1.241 1.241 1.263 1.352 1.418 1.402 1.448 1.503 1.611 1.757 1.809 2.209 2.309 2.309 2.305 2.468 2.589 2.580 2	$\begin{array}{c} 4.5036\\ 4.3473\\ 4.1901\\ 4.0524\\ 3.9849\\ 3.9836\\ 3.9836\\ 3.9836\\ 3.9859\\ 3.9856\\ 3.9958\\ 3.9958\\ 3.9958\\ 3.9958\\ 4.2041\\ 4.1802\\ 4.2091\\ 4.1802\\ 4.2091\\ 4.18322\\ 4.32591\\ 4.18322\\ 4.32591\\ 4.3259$	$\dot{0}.1718$ 0.1031 0.0345 -0.0019 0.0283 0.0177 0.0214 0.0139 0.0774 0.0774 0.1572 0.3416 0.3279 0.4711 0.63366 0.7137 0.63968 0.6793 0.6313 0.6396 0.7137 0.6386 0.7137 0.63896 0.7377 0.63983 0.63983 0.6323 0.63983 0.6325 1.2662 1.32697 1.3687 1.44675 1.44675 1.44675 1.3503 1.35036 1.3578 1.3503 1.3504 1.3505 1.48635 1.48635 1.3578 1.48635 1.48635 1.48635 1.3578 1.48635 1.48635 1.3578 1.48635 1.48635 1.3578 1.48635 1.48635 1.3578 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.48635 1.3578 1.48635 1.48655 1.48655 1.48655 1.48655 1.48655 1.48655 1.48655 1.48655 1.486555 1.48655 1.48655 1.486555 1.486555 1.486555 1.486555 1.4865555 1.486555555555555555555555555555555555555
43 44	2.504	0.400 0.400	6.463 8.908 8.908	3.427 4.128 4.090	4.7762 5.4324 5.3824	2.1572

ーク装置が用いられた 。

4-2-2 実験(F)

この実験は、実験(D)と同じであり、fixed condition に対する計測を行った。計測位置は船体中央線より、 半船長, 5/3×半船長, 1.75/1.2×半船長離 れた3種 類の longitudinal cut line とした。計測システムは 実験(E)と同じである。

4-3 後流計測

20

後流計測は Table 2 に示す状態で 球型 5 孔管 (12 mm ϕ)を用いて行った。計測点の x 座標は L/100 後 方, L/2 後方の 2 つであり, (y, z)座標は Table 5, 又は Table 9 に示した位置であり, z=0 は静止 水面を, y=0 は船体中央線を表わ す。半船長後方の データから Total Head Loss の分布を求めこれを積 分して粘性抵抗を求めた。また L/100後方のデータか らは渦度成分を求め Wigley 模型のような平底を持 たない薄い船の縦渦成分を調べた,実験概略図 Fig. 5 をに示す。

4-4 圧力分布計測

圧力分布は、船体表面に 132 点の圧力孔を設けスキ ャニバルブ及び、半導体型圧力変換器を介して計測さ れた。スキャニバルブと応答の早い圧力変換器を用い ることで4回の航走で1状態の計測が可能となった。 また得られた圧力分布から、圧力抵抗と船側波形を求 めた。実験概略図を Fig. 6、Fig. 7 に示す。

5. 試験結果及び考察

5.1 抵抗試験

抵抗試験の結果を実験(A), (B), (C), (D)の順に, Fig. 8, Fig. 9, Fig. 10, Fig. 11 に示す。また(D), (C)に 対して結果を Table 3, Table 4 に示す。 Fig. 8, Fig. 9 を比較すると流速計を設置したときは、それがないときに比べ抵抗曲線が高速域になる に従って低くでているのがわかる。これは船が流速計 の Wake 中を航走していることに起因するものと思 われる。また、流速計による対水速度と対地速度の差 がわずかであったことや、流速計で計測した対水速度 と流速計の後流中を走っている船の実際の対水速度と が必ずしも一致しないであろうと考えられることなど から、以後の実験では全て流速計を除いた対地速度で 行った。今回の様な薄い船に対しては、後流の影響は 無視できないであろうし、また波形解析においては流 速計を除いた対地速度を用いていることを考えるとこ の方が一貫性があるものと考えられる。

Fig. 8, Fig. 9 に共通して見られるのは, $F_n \ge 0.2$ における抵抗値のバラツキである。この再現性の悪さ の原因の一つとして, スタッドによる層流一乱流の選 移点の固定が十分でないことが考えられたので, 実験 (C), (D)についてはスタッドの高さを3mmとして抵抗 試験を行った。Fig. 10, Fig. 11 にその結果を示す。 この結果, $F_n \le 0.2$ でのバラツキはなくなり再現性は 改善され, スタッドの遷移点固定作用が抵抗試験の再 現性に重要な役割を果たしていることが推定される。 なお, これらスタッド自身の固有抵抗の変化分は考慮

Fig. 8 Resistance curve

(20)

Fig. 10 Resistance components

していない。

Fig. 10, Fig. 11 に free, fixed の両 condition における造波抵抗係数 C_w を示した。 C_w は, 平板

の摩擦抵抗式として Schoenherr の式を採用した 3 次 元外挿法により求めた。このとき形状 係数*K* は free のとき0.085, fixed のとき0.095であった。 Free と

(21)

Fig. 12 Trim and mean sinkage curves

fixed のときの全抵抗の差はほとんど造波抵抗の差に よるものであり摩擦抵抗の差による寄与は大きくな い。摩擦抵抗 R_f は $R_f=1/2\rho V^2 S \cdot C_f$ (C_f :摩擦 抵抗係数)の関係から、同一速度では浸水面積Sに比 例する量であることを考えると、姿勢変化による摩擦 抵抗変化分は次の様にして推算することが可能であ る。即ち、今、free condition で航走しているとき の平均沈下量に相当する量だけ fixed condition の 時は浅喫水になったと考えると、Fig. 12 に示したよ うに平均沈下量は、 $F_n=0.4 \ {\rm co} \ 0.5\%$ L であることが わかる。これより free condition のときの浸水表面 積が $S_{FR} \propto Ld$ (S_{FR} は free condition 航走時の浸 水表面積, d は喫水) に対し、fixed condition では $S_{Fx} \propto L(d-0.005L)$ 程度 (S_{Fx} は fixed condition 航走時の浸水表面積) であることが言え、さらに d=0.125(L/2) であることから 結局 $S_{FR} \propto 0.0625L^2$ に 対して $S_{Fx} \propto 0.0575L^2$ とな り $F_n=0.4$ で S_{Fx} は $S_{FR} \ 0.8\%$ 減となる。平均沈下量は速度 と 共に増加

22

(22)

Fig. 14 Comparison of wave pattern resistance

するので $F_n \leq 0.4$ では数%の減少となることから、 摩擦抵抗の差はそれほど大きくないことが言える。

一方,造波抵抗は船体形状の微分的素因が効いてく るため、わずかな姿勢変化で Fig. 10, Fig. 11 に見 られる抵抗差を生じるものと考えられる。この事を計 算で確認し,結果を Appendix 2 に示した。

Fig. 13 には、fixed condition で計測された上下 力と free condition で計測された平均沈下量に水線 面積と水の比重量を乗じた力を比較してある。両者は よく一致しており、fixed condition で計測された上 下力は主に船体が運動することにより生じる圧力低下 がもたらす船体近傍の水位低下による静的浮力減少で ほぼ説明され、流水圧変化による吸引力による寄与は 相対的に小さいものと考えることができる。

5-2 波形解析

Longitudinal cut method により求めた波形造波 抵抗を free condition と fixed condition のそれぞ れに対して Fig. 10, Fig. 11 に, また比較のために Fig. 14 に重ねて書いたものを示す。これから, 波形 造波抵抗 C_{wp} においても free, fixed の差が, 3次 元外挿で求めた C_w と同様に現われ ているのがわか る。3次元外挿で求めた C_w と C_{wp} を比べると, free, fixed 両 condition ともに高速域で $C_w > C_{wp}$ となっている。また, 差 $C_w - C_{wp}$ が F_n に対して 大略, 直線的になっている。

Free と fixed condition における振幅関数を F_n

(23)

Fig. 15 Comparison of amplitude functions between free and fixed conditions

Fig. 16 Comparison of amplitude functions between free and fixed conditions

Fig. 17 Comparison of wave patterns betwee free and fixed condition

=0.267, 0.289 に対してそれぞれ Fig. 15 及び Fig. 16に示した。低速では、両者はほとんど一致している が、高速になると θ が小さいところで fixed condition の振幅関数の値が free condition より低めに出 ており、これが造波抵抗の差になって現われてきてい る。このことは理論計算においても同様な結果が得ら れた。(Appendix 2) Fig. 17 には 無次 元後続波形 の比較の一例を示した。これでみると両者とも波形形

Fig. 18 Comparison of wave pattern resistances at different Y values

Fig. 19 Comparison of amplitude functions at different Y values

Fig. 20 Comparison of amplitude functions at different Y values

状及び位相差はほとんど一致しているが,振幅がわず かに fixed condition の方が小さくこの差が造波抵抗 の差となってきているのがわかる。次に,波高計測の 位置を変化させたときの造波抵抗値を Fig. 18 に,振 幅関数の比較を Fig. 19, Fig. 20 に示す,造波抵抗 値は波高計測位置によってはほとんど変わらず三者の

Table 5 Results of wake survey $(F_n=0.25, L_{pp}/2 \text{ aft})$

y z	-40	-20	0	20	40	60	80	100	120	140	160
-20	22.2	29.7	38.0	38.0	29.7	16. 1	7.0	4.1	1.5	1.0	0.2
	.909	.862	.834	.853	.859	. 926	.961	.980	.985	.991	.997
-40	24.2	33. 2	39.6	38.0	29.3	21.2	11.3	3.6	0.8	0.6	-0.2
	.901	. 859	.828	.852	.883	.901	.945	0.969	.986	.978	.990
-60	29.2 .876	40.0 .834	44. 4 . 820	44. 1 . 824	36.2 .877	22. 1 . 963	10.5 .923	2.2 .990	0.6 .999	0.2 1.001	
-80	34.5	41.7	47.9	46.9	37.4	25.0	13.2	3.6	0.6	-0.2	0
	.788	.810	.775	.792	.853	.898	.939	.968	.982	.988	. 985
-100	31.8	43.7	49.4	46.8	38.4	24.5	12.4	4.1	0.3	0	-0.4
	.869	.818	.799	.802	.853	.905	.939	.968	.984	. 986	.995
	26. 1	39.2	47.0	43.2	30.3	20.1	6.8	0.6	0	0	0
	. 882	.834	.804	.851	.928	.918	.969	1.001	. 997	. 989	. 989
-180	19.3	32.6	37.6	36.4	21.3	8.8	1.4	0.3	0	0	0
	.877	.857	.825	.841	.943	.970	.984	.980	. 977	. 972	. 977
-220	8.8	20.9	32.3	28.2	17.6	4.2	0.8	0.1	0	0	0
	.934	.936	.865	.930	.957	.993	.997	1.001	. 996	. 996	. 996
-260	-1.0 1.005	7.5 .969	17.3 .933	14.6 .959	5.8 .982	-0.2 1.009	0.1 1.004	0 1.007	0 1.007		_
-290		0.4 .998	2.3 .990	1.1 .991				-			$\begin{array}{c} \text{T. H. L} \\ (\text{mm}) \\ u/U_{\infty} \end{array}$

z (mm)

結果は、ほぼ一本の線に載っている。

振幅関数はピークの位相はどれも良い一致を見せて いる。0 が高くなるほど、Y=1.0、即ち船体に一番 近い所で計測した結果による振幅関数が他に比べて小 さく出ているのが見受けられる。このYの位置による スペクトルの違いは著者の一人により考察されてお り¹¹, それによると0が大きいところではYが小さい 方が理論値に近く、Yが大きくなるほど理論値から離 れていくことが示されている。

5-3 後流計測

後流計測により得られたデータ を Table 5~12 に 示した。後流計測結果の一例として $F_{n}=0.316$ に対 して Fig. 21~Fig. 27 に示す。 Fig. 21, 22, 23, 24にはそれぞれ $L_{pp}/100$ 後方で計測した 主流方向速 度分布,総圧欠損,総圧欠損クロスカーブ,それに面 内速度分布が示してある。Fig. 24 には更に無次元渦 度分布も示してある。その他の速度についても全体の 傾向はここで示した例とほとんど変わらない。 Fig. 21,22から、総圧欠損と流速分布はよく似た形状をし ており、流速がおそくなっているところほど総圧欠損 が大きいのがわかる。また水面下 -60mm あたりに は、等速度線において横幅のふくらみがみられ、境界 層がこの付近で最も厚くなっている ものと考えられ る。Fig. 23 のクロスカーブはピラミッド状になって いるが Lpp/100 後方という船体直後での計測である ことから、船尾造波による圧力影響もかなり入ってい るものと思われ、これから直接に抵抗成分分離の手掛 りは得られそうにない。Fig. 24 に面内速度分布及び それから求めた渦度分布を示した。面内速度は大略, 船体中心線と水面に向う流れでありその大きさはだい たい主流の一割程度である。渦度分布は船体中心線に 沿って水面から船底位置付近まで分布している。水面

y (mm)

(26)

Fig. 22 Contour curves of total head loss

付近には船尾跳水渦²⁾ と思われる渦分布が,船底付近 にはいわゆる船尾縦渦が分布している。しかしながら それらの大きさは微弱であり, 例えば S R 138 におけ る高速コンテナ船の縦渦強さの 1/6 程度, また肥大タ

Fig. 25 Contour curves of velocity V_x/U

Fig. 26 Contour curves of total head loss

ンカー船型の1/10程度である。

Fig. 25 に, *L_{pp}*/2 後方で計測した主流方向速度分 布, Fig. 26 に総圧欠損, Fig. 27 にそのクロスカー

Fig. 27 Distributions of total head loss

Fig. 28 Depthwise distributions of $\int (H_0 - H) dy$

ブを示す。これらより半船長後方の伴流の拡散領域は 船の半幅程度で一見 *L_{pp}*/100 後方のそれと変わらな い。しかし船体直後の計測値は造波による圧力成分が かなりあり,直接比較はできないと考えられる。この Wigley 船型の伴流には縦渦成分が非常に弱いため

(28)

y(mm)

Table 6 Results of wake survey $(F_n=0.267, L_{pp}/2 \text{ agt})$

y z	-40	-20	0	20	40	60	80	100	120	140	160
-20	27.0	39.3	46.7	44.9	32. 9	22.6	12.2	6.0	1.6	0	0.3
	.872	.871	.839	.842	. 897	.910	.937	.965	.984	. 990	.986
-40	33. 7	43. 1	49.9	48. 4	35.6	25.4	14.0	5.5	0.6	0	0
	. 870	. 844	.819	. 817	.880	.903	.939	.971	.995	. 999	1.018
-60	32.6	45.7	53. 1	50.4	41.6	26.8	15.6	4.6	0.2	0	-0.4
	.874	.822	. 781	.823	.850	.891	.921	.956	.984	. 982	.982
-80	37. 1	49.9	57.0	53.7	43.5	29. 7	15.5	4.6	0.4	0.4	-0.2
	. 927	.804	.756	.751	.809	. 854	.909	.943	.967	.990	.991
-100	34.4	45. 7	55.5	55.0	42. 1	27.7	13.4	4.5	0.9	0.6	0.6
	.856	. 824	.767	.777	. 841	.889	.925	.967	.982	.986	.988
-140	23.8	40.7	49.2	47.2	34.0	18.6	5.0	0.2	-0.6	-0.4	0
	.902	.882	.835	.838	.882	.933	.989	1.004	1.01	1.006	1.000
-180	16.3	33. 8	41.0	38.9	26.8	10.7	2.6	0.5	0.7	0.1	0.1
	.955	. 902	.875	.836	.905	.958	.987	1.003	.997	1.001	1.001
-220	7.8 .959	24. 1 . 906	34.7 .887	34. 1 . 882	20.8 .921	6.3 .972	0.4 .994				
-260			21.3 .934	7.1 .971	1.0 .997	1.0 .994	0.4 .994				_
-290		1.5 .986	3.6 .962	0.3 .980							$\begin{array}{c} \text{T. H. L} \\ (\text{mm}) \\ u/U_{\infty} \end{array}$

z (mm)

に、強い縦渦を伴う伴流が下流に行くに従って下がっ て行く現象はほとんど見られない。総圧欠損を幅方向 に積分した量の深さ方向の分布図が Fig. 28 である。 Fig. 28 の面積が粘性抵抗を表わす。これでみると粘 性抵抗成分の深さ方向の分布は速度により幾分異る が、だいたい水面下80mm前後にピークを持っている ことがわかり、これは総圧欠損分布図の最大幅をもつ 位置と一致している。

5-4 圧力分布計測

圧力分布計測結果を Table 11~Table 14 に示す。 それらより図化した一例として, $F_n=0.316$ における 圧力分布を Fig. 29 に, 等圧力線を Fig. 30 に示す。 また圧力分布から船側波形を求め、これを Fig. 31, 32に示した。同図には fixed condition の 場合 に船 側波形写真から読み取った船側波形も示してあり、こ れは, free, fixed 両 condition における波形の比較 となっている。

圧力分布図において**F**.**P**.(**A**.**P**.)の値を示してい ないのは、**F**.**P**.(**A**.**P**.)の計測孔が小さすぎたため (ϕ =0.6mm) にうまく計測されなかったからであ る。圧力分布曲線と船側波形はどれもほぼ相似であ り、圧力がほとんど造波成分によるものと思われる。 また等圧力線図も frame line にほぼ平行になってい る。

圧力分布図を各水線面で積分し、深さ方向にそれら の積分値を書いたものが Fig. 33 である。 こ れをも う一度積分すると圧力抵抗が得られる。各速度に対し て分布形状は大略一致しており、 ま た $F_n=0.25$ と $F_n=0.289$ が水面下130mm付近で圧力抵抗分布に山 があるのがわかる。 $F_n=0.316$ と $F_n=0.267$ はそれ ぞれハンプ、ホローに対応するが Fig. 33 で はそれ による差異や特徴はみられない。

Table 7 Results of wake survey $(F_n=0.289, L_{pp}/2 \text{ aft})$

										у	(mm)
y z	-40	-20	0	20	40	60	80	100	120	140	160
-20	38.6	45.8	55.7	53.9	45.2	34.2	19.6	7.5	2.8	0.4	-0.2
	.843	.822	.795	.784	.822	.862	.911	.955	.971	.980	.981
-40	42.6	52.5	59.8	59.0	49.5	37.2	21.8	7.8	1.3	0	-0.4
	.837	.797	.772	.764	.798	.852	.894	.944	.965	. 973	.977
-60	45.6	58.6	64.2	62. 1	50.0	38.9	23. 1	8.9	1.1	03.	-0.1
	.810	.756	.725	. 734	.783	.821	. 876	.919	.955	. 958	.963
-80	40.7	55.8	62. 0	58. 1	50. 1	33. 7	17.8	6.9	0.8	-0.2	0
	.821	.765	. 755	. 763	. 780	. 848	.906	.933	.961	.966	. 965
-100	37.3	53.2	60.3	58.0	45. 1	32.5	14.6	3.5	0.8	0.2	0.4
	.843	.789	.766	.759	. 811	.844	.910	.945	.953	.959	.957
-140	25.6	42. 4	50.6	49. 1	35.9	17.9	4.7	0.5	-0.3	0.1	0.3
	.895	. 835	.799	. 795	.840	.911	.943	.956	.960	.961	.960
-180	18.3	34.3	42.2	38.6	22. 2	8.0	-0.4	-0.2	0.2	0.4	0.2
	.929	.867	.831	.860	. 894	.930	.966	.962	.959	.959	.959
-220	8.6 .955	24.7 .906	34.2 .876	31.0 .871	18.0 .906	3.7 .960	-0.2 .968	-0.2 .966	0.8 .965	0.8 .963	
-260		7.9 .932	22.2 .890	17.4 .908	5.5 .943	0.1 .957	0.3 .952				—
-290	_	0 . 965	2.3 .946	2.3 .948		_					$\begin{array}{c} \text{T. H. L} \\ (mm) \\ u/U_{\infty} \end{array}$

z (mm)

Fig. 29 Distributions of hull surface pressure

Fig. 30 Contour curves of hull surface pressure

(30)

y(mm)

Table 8 Results of wake survey ($F_n=0.316$, $L_{pp}/2$ aft)

z y	-40	-20	0	20	40	60	80	100	120	140	160
-20	19.8	33. 3	44.3	40. 9	27.5	18.1	8.8	5.9	4.0	2.4	0
	.949	[.] 901	.887	. 879	.917	.942	.972	.987	.992	.997	1.008
-40	34.2	45.8	50.8	47.9	40.3	25.9	15.8	4.5	0.5	0.5	-0.2
	.913	.894	.888	.891	.894	.942	.970	.939	1.02	1.02	1.02
-60	46.7	56.4	61.4	60. 8	55. 5	40.6	22. 2	7.5	0.7	0.3	0.3
	.892	.873	.882	. 882	. 876	.912	. 959	.999	1.02	1.02	1.03
-80	49.1	63.9	72.7	71.9	59.5	45.1	26.6	8.2	0.4	0	0.2
	.884	.847	.831	.815	.856	.890	.936	.986	1.01	1.01	1.01
-100	51.2	66.9	76.8	75.9	60.7	44.3	23.9	8.7	-0.4	-0.4	-0.2
	.869	.831	.819	.814	.842	.888	.945	.991	1.01	1.01	1.01
-140	37.8	62.8	75.5	73.4	54.0	29. 1	8.0	1.7	0	0	0
	.904	.837	.803	.802	.858	. 932	.986	1.01	1.01	1.01	1.01
-180	27.4 .936	49.9 .880	61.7 .848	56.0 .856	36.0 .907	12.4 .978	20.3 1.00	0 1.01	0 1.01	0 1.00	
-220	10.1 .979	32.7 .910	45.3 .883	42. 1 . 870	23.0 .922	4.2 .973	-0.4 .982	-0.2 .982	0.2 .978	0.8 .973	
-260		15.4 .932	32.2 .901	27.4 .906	8.8 .956	0 . 981	0 . 983				
-290	_	0 . 978	1.9 .974	0.9 .971		_					$\begin{array}{c} \text{T. H. L} \\ (\text{mm}) \\ u/U_{\infty} \end{array}$

z (mm)

(31)

											У ((mm)
y z	-40	-20	0	10	20	40	60	80	100	120	140	160
-20	51.9 .612 .050 .070	72.9 .460 	92.2 . 168 014 . 050	85.0 .319 101 .044	73.5 .442 094 .051	53.0 .605 073 .071	34.9 .722 071 .090	$ \begin{array}{c} 16.7\\ .837\\081\\ .096 \end{array} $	5.4 .891 080 .092	-0.1 .931 070 .083	0.1 .933 071 .077	-0.1 .941 068 .070
-40	51.9 .632 .054 .070	73.2 .464 .065 .057	92.5 .189 064 .040	84.6 .349 117 .039	73.7 .454 100 .050	55.0 .606 076 .072	35.7 .733 —.079 .079	17.9 .835 080 .084	5.5 .901 078 .080	-0.1 .873 070 .073	0.1 . 936 065 . 069	0.5 .937 063 .065
-60	49.6 .651 .056 .074	69.3 .501 .070 .057	91.1 .247 .003 .030	83.1 .361 105 .055	71.2 .483 093 .058	51.0 .632 079 .072	33.4 .745 079 .077	$17.5 \\ .834 \\076 \\ .080$	3.4 .912 073 .072	$0.1 \\ .927 \\060 \\ .063$	-0.1 .936 059 .060	0. 3 . 937 058 . 058
80	44. 4 . 675 . 050 . 078	65.3 .519 .064 .069	90.3 .250 049 .046	81.8 .354 117 .053	67.6 .487 099 .064	45. 2 . 660 082 . 082	28.6 .752 088 .082	13.3 .843 080 .079	2.4 .900 072 .073	0.5 .913 060 .066	0.6 .919 059 .063	1.2 . 920 058 . 061
-100	36.6 .715 .048 .083	56.9 .598 .065 .077	$86.7 \\ .257 \\018 \\ .040$	76.0 .439 111 .060	59.2 .578 093 .069	37.9 .701 076 .085	21.5 .803 077 .085	8.9 .863 073 .076	0.3 .914 063 .067	-0.1 .919 056 .063	0.3 .923 055 .061	0.6 .926 053 .058
	16. 9 . 831 . 033 . 089	36.6 .719 .062 .089	80.2 .321 .038 .023	64.0 .526 126 .067	39.7 .699 098 .086	20.3 .807 072 .086	7.1 .874 068 .080	0.3 .922 058 .061	-0.3 .918 051 .062	0.1 . 925 047 . 062		
-180	5.5 .912 .021 .080	24.8 .794 .041 .096	73.9 .411 .076 .036	45.4 .675 131 .080	19.8 .809 084 .087	3.2 .905 049 .079	-0.3 .925 041 .067	-1.4 .933 038 .058	1.8 .921 042 .063	$1.3 \\ .928 \\041 \\ .058$		
-220	1.6 .934 .001 .074	4.7 .915 .005 .091	59. 8 . 524	14.6 .861 111 .098	3.9 .903 039 .085	1.6 .935 027 .063	-0.5 .931 029 .060	0.5 .933 033 .056				
-260	0.9 .947 .008 .065	0.7 .943 .003 .068	0.7 .945 001 .077	2.4 .929 017 .072	0.3 .938 012 .066	-0.1 .941 018 .061	0.9 .935 023 .056	0.7 . 938 025 . 052				

z (mm)

 $\frac{\text{T. H. L.}_{(mm)}}{u/U_{\infty}}$ $\frac{v/U_{\infty}}{w/U_{\infty}}$

(32)

Table 10 Results of wake Survey $(F_n=0.267, L_{pp}/100 \text{ aft})$

											У ((mm)
y z	-40	-20	0	10	20	40	60	80	100	120	140	160
20	57.5 .612 .054 .076	80.8 .438 .067 .062	103.6 .084 .004 .057	$91.1 \\ .318 \\077 \\ .103$	81.6 .423 092 .070	60.8 .578 081 .082	39.5 .701 087 .097	$21.8 \\ .800 \\093 \\ .090$	6.1 .874 095 .082	0.2 .903 088 .074	0 . 909 086 . 065	0 . 912 084 . 058
40	55.4 .623 .057 .079	80.1 .432 .074 .066	$102.1 \\ .126 \\ .064 \\ .057$	91.7 .290 074 .133	78.9 .454 101 .075	59.1 .581 090 .085	38.4 .710 089 .085	20.6 .797 092 .083	6.9 .865 092 .076	0 . 900 081 . 067	0 . 904 079 . 062	0.2 .908 077 .055
-60	53.2 .651 .054 .072	76.1 .496 .070 .066	$101.3 \\ .203 \\016 \\ .035$	90.6 .321 075 .133	78.0 .466 096 .052	54.5 .634 090 .070	37.1 .736 082 .077	18.2 .822 088 .073	4.6 .882 083 .068	0 . 907 074 . 059	0.2 .910 072 .054	0.4 .914 070 .050
-80	44.7 .693 .057 .076	69.8 .540 .071 .069	98.7 .229 .003 .025	86.7 .347 087 .151	72.7.500104.060	49.1 .653 087 .073	30.6 .752 084 .077	15.9 .822 083 .066	2.9 .888 078 .062	0 . 895 067 . 053	0 . 904 067 . 049	0.4 .904 065 .045
100	34. 8 . 759 . 047 . 083	60.6 .601 .076 .079	96.8 .280 001 .033	83.7 .398 092 .154	64.8 .577 098 .068	$41.7 \\ .711 \\085 \\ .081$	23.1 .804 080 .078	9.4 .868 079 .072	0.4 .907 070 .061	-0.2 .916 067 .056	0 . 916 —. 063 . 053	0.4 .921 061 .049
-140	13.9 .856 .053 .087	37.9 .743 .085 .085	88.8 .361 .036 .019	$63.1 \\ .525 \\106 \\ .130$	42.7 .705 076 .079	18.5 .837 046 .087	5.3 .905 037 .076	0 . 927 032 . 066	-0.2 .932 029 .058	.03 .933 027 .056		
-180	7.6 .897 .018 .055	28.4 .803 .018 .059	84.8 .409 013 .051	46.5 .664 107 .116	19.2 .857 013 .059	2.1 .941 015 .072	-0.6 .956 013 .059	-1.9 .966 013 .051				
	4.4 .932 .022 .066	7.8 .918 .016 .081	71. 1 . 523	15.5 . 873 082 . 116	6.5 .924 009 .080	0.6 .967 .001 .056	0.2 .967 002 .051	$0.8 \\ .966 \\003 \\ .048$				
-260	-3.2 .947 .005 .057	2.4 .949 .001 .059	2.2 .957 .004 .070	${\begin{array}{r} 4.0\\.933\\011\\.083\end{array}}$	1.5 .964 014 .056	1.5 .967 .010 .052	0.9 .970 .007 .048	0.5 .975 .005 .045				

z(mm)

 $\begin{array}{c}
\mathbf{T} \cdot \mathbf{H} \cdot \mathbf{L} \\
(\mathbf{m}\mathbf{m}) \\
\mathbf{u} / U_{\infty} \\
\hline
\mathbf{v} / U_{\infty} \\
\hline
\mathbf{w} / U_{\infty}
\end{array}$

(33)

0	10	20	40	60	80	100	120	140	160
121.6	$111.7 \\ .300 \\085 \\ .069$	100.5 .366 087 .073	75.3 .542 058 .068	51.3 .669 050 .070	29. 9 . 771 051 . 081	9.9 .854 057 .082	0.6 .892 050 .075	0 . 898 049 . 068	0. 2 . 900 050 . 059
119.4 .174 .002 .077	111. 1 . 334 077 . 050	94.5 .441 078 .068	69. 1 . 598 061 . 075	47.8 .708 057 .075	29. 1 . 794 056 . 074	11.0 .864 055 .073	${\begin{array}{r}1.0\\.903\\044\\.065\end{array}}$	0.7 .908 045 .061	$0.3 \\ .913 \\041 \\ .055$
117.0 .188 .006 .051	105.0 .373 085 .066	89.4 .465 076 .058	63.5 .620 061 .073	42. 1 . 723 055 . 072	23.8 .809 054 .065	7.0 .874 051 .063	0.7 .900 043 .055	0 . 903 039 . 051	0.2.906037.047
114.4 .238 .002 .051	98.0 .430 089 .065	80.6 .528 087 .077	54.9 .679 063 .084	34.9 .770 054 .078	17.9 .841 054 .075	4.4 .892 051 .066	0.7 .907 039 .059	0.2 .915 036 .056	0 . 919 035 . 053

-40	67. 8 . 627 . 060 . 080	96. 2 . 440 . 083 . 074	119. 4 . 174 . 002 . 077	111. 1 . 334 077 . 050	94.5 .441 078 .068	69. 1 . 598 061 . 075	47.8 .708 057 .075	29. 1 . 794 056 . 074	11. 0 . 864 055 . 073	1.0 .903 044 .065	0.7 . 908 045 . 061
-60	59.3 .655 .064 .084	89.6 .459 .083 .081	117. 0 . 188 . 006 . 051	105.0 .373 085 .066	89.4 .465 076 .058	63.5 .620 061 .073	42. 1 . 723 055 . 072	23.8 .809 054 .065	7.0 .874 051 .063	0.7 .900 043 .055	${\begin{array}{c}&&0\\.903\\039\\.051\end{array}}$
-80	50.9 .705 .058 .092	78.9 .543 .079 .087	114. 4 • 238 • 002 • 051	98.0 .430 089 .065	80.6 .528 087 .077	54.9 .679 063 .084	34.9 .770 054 .078	17.9 .841 054 .075	4.4 .892 051 .066	0.7 .907 039 .059	0.2 .915 036 .056
-100	38. 8 . 758 . 057 . 096	67.9 .610 .076 .087	$109.1 \\ .287 \\007 \\ .040$	92.7 .461 093 .069	72.3 .580 078 .075	42.9 .728 062 .082	25.4 .806 055 .081	1.3 .861 051 .071	$1.2 \\ .902 \\042 \\ .060$	-0.1 .907 036 .054	$0.2 \\ .910 \\034 \\ .051$
-140	13. 9 . 848 . 055 . 098	41.8 .734 .081 .096	100. 5 . 345 . 028 . 029	73.0 .585 101 .059	45.6 .715 076 .088	22.3 .813 048 .088	6.9 .878 043 .079	0.6 .905 034 .066	0 . 908 030 . 059	0.4 .909 024 .056	
-180	8.0 .900 .033 .080	29.6 .810 .052 .093	97.3 .401 .016 .040	54.8 .700 110 .088	20.1 .858 062 .093	2.1 .929 026 .082	-1.1 .945 022 .070	-2.3 .958 023 .064			
220	4.3 .927 .015 .072	8.5 .909 .011 .085	84.5 .450	19.0 .876 081 .101	7.1 .905 014 .080	-0.3 .954 008 .071	-0.1 .960 010 .064	$1.0 \\ .956 \\011 \\ .060$			
-260	3.2.934001.062	2.7 .938 .007 .065	4.6 .958 0 .119	3.6 .937 0 .072	1.9 .950 009 .066	1.1 .953 .002 .061	0.8 1.014 	-0.2 .961 .004 .053			

z (mm)

T.H.L. (mm)
u/U_{∞}
v/U_{∞}
w/U_{∞}

y(mm)

0 .914 -.031 .047

z

у

-20

-40

72.4 .585 .064 .077

-20

97.0 .415 .084 .086

(34)

Table 12 Results of wake survey $(F_n=0.316, L_{pp}/100 \text{ aft})$

											У ((mm)
y z	-40	-20	0	10	20	40	60	80	100	120	140	160
-20	70.8 .710 .071 .113	106. 7 . 283 	148.2 .242 .002 .129	$128. \ 6 \\ . \ 384 \\ \ 107 \\ . \ 136$	$106.9 \\ .537 \\080 \\ .118$	71.6 .707 074 .110	44.1 .809 087 .116	$20.7 \\ .890 \\091 \\ .111$	3.7 .952 072 .094	1.1 .943 079 .002	0.1 . 955 068 . 081	-0.1 .956 062 .071
-40	75.0 .692 .069 .106	$106.1 \\ .552 \\ .074 \\ .104$	$146.7 \\ .241 \\013 \\ .115$	$124.0 \\ .443 \\105 \\ .107$	$105.7 \\ .542 \\079 \\ .109$	78.3 .669 073 .105	53.7 .773 076 .104	$27.8 \\ 1.012 \\075 \\ .090$	5.8 . 928 078 . 091	-0.3 .950 066 .081	-0.1 .951 062 .073	-0.3 .954 058 .066
60	75.6 .688 .069 .104	$107.9 \\ .463 \\ .075 \\ .100$	147.0 . 269 . 005 . 102	$125.1 \\ .450 \\101 \\ .104$	$107.2 \\ .542 \\088 \\ .105$	$74.6 \\ .688 \\083 \\ .110$	$51.1 \\ .774 \\085 \\ .107$	$26.6 \\ .862 \\084 \\ .105$	7.2.923080.094	0.6 .946 068 .084	0.4 .948 064 .082	0 . 955 —. 060 . 075
-80	67.8 .725 .067 .106	99. 9 . 591 . 078 . 106	146.6 .278 .012 .093	$123. \ 6 \\ .464 \\107 \\ .092$	$101.7 \\ .584 \\082 \\ .106$	69.7.726075.105	42.5 .824 077 .102	23.4 .887 075 .096	4.6.944071.085	0.7 .956 060 .078	-0.1 .963 057 .073	0.7 .964 053 .070
100	55.4 .759 .066 .111	88.8 .622 .081 .115	$140.2 \\ .314 \\040 \\ .083$	$114.4 \\ .506 \\102 \\ .106$	86.8 .784 080 .113	57.6 .755 073 .110	34.0 .842 072 .105	$12.7 \\ .907 \\072 \\ .095$	2.3 .941 063 .084	0.5 .950 055 .078	1.5 .952 051 .073	0.7 .957 049 .070
140	26.3 .859 .052 .112	55.8 .759 .072 .114	$128.3 \\ .367 \\ .026 \\ .063$	$93.0 \\ .608 \\111 \\ .090$	60.3 .734 083 .111	$30.6 \\ .846 \\062 \\ .111$	$11.3 \\ .905 \\062 \\ .105$	$1.3 \\ .941 \\055 \\ .086$	0.5 .945 050 .080	0.3 .951 046 .075		
-180	7.5 .931 .032 .104	34. 1 . 844 . 056 . 111	$120.8 \\ .409 \\ .028 \\ .057$	$62. \ 6 \\ .738 \\118 \\ .104$	$26.4 \\ .865 \\068 \\ .116$	5.2 .934 043 .100	0.6 .952 038 .087	0.2 . 961 038 . 079				
-220	2.3 .944 .014 .091	9.4 .960 .006 .107	97.4 .951	$17.1 \\ .888 \\076 \\ .115$	6.9 .933 031 .103	-1.0 .521 019 .085	-0.2 .924 022 .077	-0.2 .952 026 .069				
-260	2.6 .936 .002 .068	2.4 .939 .007 .073	$2.6 \\ .958 \\013 \\ .105$	1.5 .951 005 .084	0.5 .941 001 .072	0.7 .946 007 .068	$0.1 \\ .951 \\012 \\ .064$	$0.7 \\ .949 \\016 \\ .060$				

z(mm)

T.H.L. (mm)
u/U_{∞}
v/U_{∞}
w/U_{∞}

(35)

90	57.5	53.1																			
70	36.2	37.6	33.2																		
50	46.6	40.7	18.7	21.9	20.8												20.3	21.2	14.2	21.4	22.3
30	34.8	38.9	27.0	12.7	6.0	_	-									12.8	4.8	4.1	8.9	18.4	11.8
10	30.8	34.1	24.3	8.3	0.4	-1.4	-8.2	-3.9	1.5	3.8	-8.5	-10.5	-14.6	-12.1	2.1	4.3	3.7	0.1	1.6	3.0	5.6
-10	27.1	25.5	21.8	6.6	-13.6	-15.3	-17.2	-8.5	0.5	-2.2	-9.0	-12.4	-12.8	-6.0	-4.9	-3.4	-3.5	-5.5	-4.8	-3.9	3.6
-30	_	-			_	-21.1	-18.3	-8.4	-0.9		-12.4	-		-6.2	-4.0	-2.7					
-50	22.7	20.2	16.5	5.9	-12.0	-19.8	-16.4	-8.6	-1.6	-3.5	-12.3	-10.1	-12.0	-6.8	-5.1	-2.7	-4.7	-5.9	-4.2	-3.8	5.2
-90	19.3	15.4	11.2	3. 7	-9.1	-16.4	-13.9	-8.8	-3.2	-5.4	-7.6	-9.0	-11.4	-7.0	-5.7	-3.6	-4.5	-5.3	-4.2	-3.0	5.2
-130	15.5	11.3	7.3	0.2	-8.7	-14.0	-11.7	-8.1	-3.7	-4.1	-5.7	8. 3	-9.4	-7.6	-5.6	-4.0	-5.5	-6.1	-4.7	-3.4	4.4
-170	11.6	9.1	3.9	-0.4	-8.3	-12.8	-11.0	-8.2	-4.4	-4.4	-6.5	-7.1	-7.2	-6.4	-5.4	-3.2	-6.2	-5.5	-5.2	-3.2	2.8
-210	7.5	6.7	1.6	-0.6	-6.8	-10.8	-9.6	-6.7	-4.3	-3.5	-4.9	-5.6	-7.8	-6.4	-4.9	-4.4	-5.3	-5.5	5.0	-2.2	1.7
-230	7.1	6.5	1.4	-1.9	-6.4	-9.8	9.7	-7.0	-4.5	-3.1	-5.8	-6.5	-6.0	-5.4	4.7	-4.4	-4.9	-6.6	-6.0	-0.6	1.3
BOTTOM	7.9	2.1	2.9	1.4	-6.8	-6.8	-7.9	-7.2	-3.8	-3.6	-9.3	-7.8	-7.6	-9.2	-4.5	-7.9	-4.1	-4.7	-0.7	-3.8	-2.3
Z S.S.	$9\frac{3}{4}$	$9\frac{1}{2}$	$9\frac{1}{4}$	9	$8\frac{1}{2}$	8	$7\frac{1}{2}$	7	6	$5\frac{1}{2}$	5	$4\frac{1}{2}$	4	3	$2\frac{1}{2}$	2	$1\frac{1}{2}$	1	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Table 13 Results of pressure measurement $(F_n=0.25, \text{ unit in mmaq})$

(36)

90	57.4	55.1																			
70	49.8	37.5	33.7																		
50	44. 5	47.6	20.6	20.6	19.5												19.6	20.5	14.2	20.2	18.3
30	36.9	43.2	33. 1	18.5	5.1	12.1										11.3	4.8	3.8	4.4	17.1	10.4
10	32.2	36.0	30.4	16.0	0.1	-1.2	-4.4	-2.9	0.2	2.2	3.2	-15.0	15. 0	19. 4	-24.0	-14.9	4.1	2.2	3.4	2.0	7.3
-10	29.1	28.9	26.6	12.8	-7.0	-16.1	17.5	-16.2	-1.7	0.6	-4.0	-7.7	-12.0	-12.0	-18.8	-6.1	-2.0	-1.4	0.0	1.0	8.3
-30	_			_		-22.1	-25.3	-16.3	-3.2		-7.5	_	-12.6	-12.5	-9.9	-5.6			-	_	
-50	25.0	23. 1	20.5	11.0	-7.5	-20.8	-22.2	-15.7	-3.8	-1.3	-2.0	-6.1	-11.5	-12.5	-10.7	-5.4	-3.5	-2.1	0.4	0.9	9.9
-90	21.8	18.1	14.5	7.5	5.9	-17.5	-18.6	-14.8	-5.4	-4.2	-5.0	-5.8	-11.0	-11.7	-10.6	-6.4	-3.6	-2.0	-0.1	1.3	9.6
-130	17.8	13.6	10.0	3.0	-6.2	-14.8	-15.3	-12.7	-5.5	-3.2	-3.5	-6.1	-8.8	-11.6	-9.8	-6.8	-5.1	-3.5	-1.3	0.2	8.7
-170	13.5	11.2	6.1	1.8	-6.7	-13.7	-13.9	-12.1	-6.0	-3.9	-5.2	-5.5	-7.5	-9.6	-9.1	-5.7	-6.1	-3.2	-2.3	0.2	6.6
-210	9.0	8.5	3.3	1.2	5. 4	-11.6	-12.0	-9.6	-5.8	-3.1	-3.8	-4.5	-7.7	-9.1	-7.9	-6.6	5. 0	-3.4	-2.4	0.9	5.3
-230	8.5	8.3	2.9	-0.4	-5.2	-10.4	-12.2	-9.8	-6.0	-2.8	-5.1	-5.7	-6.0	-8.1	-7.6	-6.6	-4.3	-4.7	-3.6	3.0	5.0
BOTTOM	9.4	3.2	4.4	3.2	-5.5	-6.9	9.8	-10.2	-5.1	-3.4	-8.8	-7.1	-7.7	-12.6	-7.0	-10.8	3.4	2.8	2.8	-1.1	0.6
Z S.S.	$9\frac{3}{4}$	$9\frac{1}{2}$	$9\frac{1}{4}$	9	$8\frac{1}{2}$	8	$7\frac{1}{2}$	7	6	$5\frac{1}{2}$	5	$4\frac{1}{2}$	4	3	$2\frac{1}{2}$	2	$1\frac{1}{2}$	1	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Table 14 Results of pressure measurement $(F_n=0.267, \text{ unit in mmaq})$

(37)

37

90	79.4	80.4																			
70	61.1	41.1	48. 7																		
50	42.8	53.6	43. 4	17.7	20.3												15.7	17.0	13.1	20.4	21.4
30	38.2	45.0	40.0	26.9	13.5	10.9										9.4	3.7	7.5	5.9	16.1	23.0
10	33.4	38. 1	35.2	23.6	2.3	0.3	-4.0	0.8	-0.1	1.9	1.0	1.4	-0.6	-14.6	-16.9	-13.0	0.3	-0.5	1.2	0.2	13.1
-10	31.0	31.9	31.0	19.5	1.2	-15.3	-20.9	-18.9	-10.0	-3.3	-2.7	-2.1	-5.3	-11.3	-14.7	-12.7	-9.4	-7.1	-4.3	-0.5	13.0
-30			_	_		-19.6	-30.5	-25.6	-11.6		-6.9	_	-6.6	-12.4	-13.5	-12.0		_	_		
-50	27.5	25.7	24.4	16.4	-1.4	- 18. 7	-26.3	-24.6	-11.6	-5.1	-3.0	-1.3	-5.9	-12.1	-14.2	-11.9	-11.1	-8.0	-3.7	-0.7	12.3
-90	24.4	20.7	17.2	11.5	-1.0	-16.2	-22.0	-22.1	-12.4	-8.1	-5.8	-2.2	-6.4	-11.3	-13.6	-11.4	-10.6	-7.6	-4.4	-0.5	11.1
-130	20.1	16.0	12.4	5.7	-2.9	-13.9	-17.8	-19.0	-11.5	-6.4	-7.7	-3.5	-5.2	-11.6	-12.2	-11.5	-11.9	-9.4	-5.8	-1.8	9.5
-170	15.5	13.4	7.9	4.4	-4.2	-13.2	-16.1	-17.4	-11.1	-6.7	-8.1	-3.6	-4.6	-9.4	-11.1	-11.6	-12.4	8. 5	-6.7	-2.0	6.5
-210	10.4	10.4	4.4	3.2	-3.5	-11.2	-13.8	-13.6	-10.0	-5.4	-8.2	-2.8	-5.5	-9.1	-9.7	-10.2	-10.3	-8.4	-6.4	-1.0	4.6
230	9.9	10.2	4.2	1.1	-3.4	-9.9	-13.9	-13.7	-9.9	-4.6	-6.6	-4.5	-3.8	-8.2	-9.5	-10.2	-9.3	-9.9	-7.9	1.7	4.3
BOTTOM	11.0	3.8	6.2	5.3	-4.2	-6.2	-11.2	-13.8	8 -8.6	-5.4	-10.0	-6.5	-6.3	-13.8	-9.0	-15.3	-8.0	-7.3	0.7	-2.6	-1.2
Z S.S.	$9\frac{3}{4}$	$9\frac{1}{2}$	$9\frac{1}{4}$	9	$8\frac{1}{2}$	8	$7\frac{1}{2}$	7	6	$5\frac{1}{2}$	5	$4\frac{1}{2}$	4	3	$2\frac{1}{2}$	2	$1\frac{1}{2}$	1	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Table 15 Results of pressure measurement $(F_n=0.289, \text{ unit in mmaq})$

(38)

90	55.2	53.0																			
70	62.8	63.7	58.1																		
50	45.2	56.8	50.2	34.7	25.8	-											35.9	13.6	33. 3	35.8	33.9
30	39.1	48.3	46. 1	36.0	21.6	8.2										7.6	21.9	13.1	16.4	16.5	17.8
10	35. 5	40.8	39.7	30.6	12.9	4.5	4.4	0.1	0.7	-2.6	0.5	0.4	-1.7	-0.2	-1.0	-9.7	-0.8	-2.1	-0.6	-1.8	3.3
-10	33. 7	35.5	35.4	26.6	11.5	-11.7	-22.1	-22.8	-22.1	-15.0	-10.6	-5.6	-3.7	-4.7	-10.1	-11.1	-10.8	-11.7	-11.4	-10.3	-3.5
-30			_	·		-13.6	-32.5	-34.9	-24.3		-14.2	—	-4.8	-5.6	-8.5	9.4					
-50	30.9	28.5	28.1	21.7	7.0	-14.0	-27.7	-32.1	-23.9	-16.2	-18.8	-4.3	-4.4	-6.1	-9.5	-8.3	-12.9	-13.4	-10.6	-10.7	0.1
90	27.9	23.4	21.2	15.7	5.8	-13.0	-23.3	-28.3	-23.6	- 18.9	-14.0	-5.5	-6.0	-6.2	9.5	-9.2	-11.9	-12.3	-11.1	-9.6	0.8
-130	23.4	18.9	15. 1	8.6	2.5	-11.4	-19.1	-24.1	-20.7	-15.0	-9.1	-7.0	-5.0	-7.7	-9.0	-9.5	-13.1	-13.8	-12.0	-10.2	0.7
-170	18.0	16.0	9.9	6.9	-0.2	-11.5	-17.0	-21.9	-19.0	-14.2	-12.3	-6.8	-4.7	-6.0	-8.3	-7.4	-13.8	-12.4	-12.6	-9.3	-1.5
-210	12.1	12.8	5.8	5.2	-0.5	-10.1	-14.7	-17.1	-17.0	-12.0	-9.0	-5.7	-6.3	-6.8	-7.7	-9.3	-11.3	-11.8	-11.8	-6.8	-2.3
-230	11.9	15.6	5.9	2.8	-0.5	-8.8	-15.0	-17.2	-16.7	-10.7	-11.5	-7.6	-4.1	-5.6	-7.5	-9.5	-10.2	-13.6	-13.5	-3.5	-2.0
воттом	12.9	16.5	7.9	7.0	-1.7	-5.6	-11.7	-17.2	-14.8	-11.3	-17.5	-9.9	-7.1	-12.5	-7.4	-15.7	-9.3	-11.0	-4.1	-9.8	-8.5
Z S.S.	$9\frac{3}{4}$	$9\frac{1}{2}$	$9\frac{1}{4}$	9	$8\frac{1}{2}$	8	$7\frac{1}{2}$	7	6	$5\frac{1}{2}$	5	$4\frac{1}{2}$	4	3	$2\frac{1}{2}$	2	$1\frac{1}{2}$	1	$\frac{3}{4}$	$\frac{1}{2}$	$\frac{1}{4}$

Table 16 Results of pressure measurement $(F_n=0.316, \text{ unit in mmaq})$

(39)

39

Fig. 32 Comparisons of wave patterns along ship hull

Fig. 33 Depthwise distributions of $\int_{a} p/\rho g \, dy \, (S: \text{Body plan})$

6. 抵抗分離とその考察

以上行った実験結果を用いて抵抗分離を行った。造 波抵抗 Cw は抵抗試験の3次元外挿から, 波形造波 抵抗 Cwp は波形解析から, 圧力抵抗 Cp は圧力分布 計測から, そして粘性抵抗 Co は後流計測からそれぞ れ分離される。Fig. 10 にそれぞれ分離した抵抗成分 を示してある。

粘性抵抗 C_v はほぼ Schoenherr line に 平行となっており Wigley 船型のように薄い 船に 対してはいわゆる form frctor を用いた分離法

 $C_T = (1+K)C_{F_0} + C_W$

で大体、表現されるようである。

圧力抵抗は,造波圧力抵抗と粘性圧力抵抗に大別で きると考えられる。今回のような薄い船型では,肥大 船型に顕著に見られる複雑な3次元剝離を伴う縦渦を 含んだ伴流ではないので,粘性圧力抵抗は造波圧力抵 抗に比べて十分小さいことが期待される。こう考える と圧力分布計測から得られる圧力抵抗は造波抵抗曲線 に近い形状をなすことが期待される。Fig. 10 には圧 力抵抗と造波抵抗の両曲線を示してあるが,これか ら,両者は同程度の大きさとは言えても C_p 曲線が C_w 曲線の特徴をよく追従しているとは言い難い。こ の原因として,F.P.,A.P.近傍で圧力が精度良く計 測されなかったことがあげられよう。

Fig. 34 は棒グラフの形で全抵抗と各抵抗成分の和 を比較したものである。これから,全抵抗はほぼ後流 計測による粘性抵抗と波形解析による波形造波抵抗の 和で表わされることがわかる。Wigley 船型のような 薄い船で,顕著な波くずれが起きない状態では,後流

40

計測と波形解析により粘性抵抗と造波抵抗に実験的に 成分分離が十分行えることが確められた。

7. あとがき

Wigley 船型を用いた,最初に述べた様な一連の水 槽試験を行い,抵抗分離結果を含む諸結果を示した。 現在まで一つの船型に対して総合的水槽試験が公表さ れた例はあまりないが,以前,著者の一人が高速コン テナ船を用いて同様な試験を行っている⁵⁰。本研究も 上記研究と同主旨のものであり,船の推進性能の研究 において貴重なデータが得られたものと考えている。

- 1)足達宏之;非常に長い中央平行部を持つ船型の波 形解析について,船研報告第10巻4号
- 2)種子田定俊;物体まわりの粘性流の観察,粘性抵 抗シンポジウム,昭和48年
- 3) Gadd, G.E.; Wave Resistance calculation by Guilloton's method T,R.I.N.A. Vol. 115, 1973
- 4)田中一朗,姫野洋司;3次元乱流境界層理論とその応用,日本造船学会論文集,第138号
- 5) 足達宏之,塩沢政夫,不破健;高速コンテナ船型の総合的船型試験,船研報告,第12巻第1号
- 6) ADACHI, H, HINATSU, M; On methods of the Separation of Resistance Components of Thin Ships, Jour. of the Kansai Society of Naval Arch., Japan Vol.183, 1981

Appendix 1 計算による数値抵抗成分分離⁶⁾

Fig. 35 Calculated pressure distribution

Fig. 36 Calculated pressure distribution

Fig. 37 Comparison of amplitude functions

実験で行った抵抗成分分離を理論的に計算により行 い比較した。数値計算により船体に働く抵抗を求める には,原理的には非線型自由表面条件をもつ船体まわ りの流場に対して Navier-Stokes の方程式を数値的 に解いて圧力と分布摩擦応力分布を計算すれば求まる はずである。しかしながら実際には船体まわりの流場 が乱流であることからくる Reynolds 応力の仮定等, 様々な問題に直面し,これも容易なことではない。ま た直接,支配方程式を解いて求める方法は,各抵抗成 分の性質や,船型との関係等を調べる上ではあまり得 策とは考えられず,各抵抗成分をとり出してそれぞれ 理論的考察を加える方がより重要な方法であると思われる。

今回,造波抵抗を求めるに当り,Guilloton 法³⁾を 用いることにした。これは自由表面条件の非線型性が 考慮されており従来の Michell 近似と比べるとかな り改善された計算法であることが示されている。粘性 抵抗は摩擦抵抗のみ考えることにし、この摩擦抵抗を 3次元乱流境界層理論を用いて計算した。用いた手法 は積分法であり、中でも最も簡便な田中・姫野の第一 近似理論⁴⁾を用いることにした。境界層計算に用いる 外部流れとして、先に述べた Guilloton 法により求

められた流場を使い, *F*ⁿ の影響を考慮した摩擦抵抗 を求めたということができる。

計算結果は $F_n=0.316$, $F_n=0.35$ の 2 状態につい て図示し, $F_n=0.316$ がハンプ, $F_n=0.35$ がホロー になるという 2 つの異る特徴を持った状態の比較を行 った。Fig. 35, 36 に $F_n=0.316$, 0.35 対 する圧力 分布を, Fig. 37, 38 にはそれぞれにおける振幅関数 を示した。計算された圧力分布と実験値との対応は非 常によく,造波圧力成分が大部分を占めていることが わかる。振幅関数について見ると, まず free, fixed condition の差は θ の小さい所で fixed condition の方が小さくなっていることがわかり、両者の造波抵抗の差がここに帰因しているのがわかる。また計算値 は実験値と比べ、(の小さいところでは過大評価、()が大きくなるにつれて過小評価になる傾向があるよう である。また位相も()が大きくなるにつれてずれが目 立つようになる。波形解析で求めた波形抵抗値と Guilloton 法により求めた造波抵抗値を比較したもの が Fig. 14 である。これで見ると高速域ではかなり よく一致しているが、低速域では計算は過大評価とな っている。これは Thin Ship theory を基とした理 論計算値にみられる傾向である。

Fig. 40 Stream lines

Fig. 41 Stream line convergence K_1

Fig. 42 Stream line convergence K_1

(44)

Fig. 44 Geodestic curvature K_2

波の影響を考慮したポテンシャル流を用いて境界層 計算を行った結果を示す。Fig. 39, 40 には Runge-Kutta-Gill 法を用いて船体表面上の流速 を積分する

.

ことで得られた流線が示されている。船側波形と各流 線を比べたとき,船底付近以外はほぼ相似となってお り,流線が波の影響を受けていることがわかる。これ

(45)

Fig. 47 Local skin friction C_{τ}

らの図やあるいは Fig. 41, 42 に示した各流線の convergence を示す K_1 と比べてみても明らかなよ うに、F.P.から船体中央部まではひろがり、それか ら後半はせばまりになっているのがわかる。田中一姫 野によると、運動量厚さの第1近似解は、 K_1 の流線 距離に関するモーメント項が含まれていることや、2 次流れ角は測地的曲率と流線距離の関数で表現される ことが示さており、3次元境界層計算における K_1 , K_2 の役割は重要である。 $K_2 \in F_n=0.316$, 0.35 に 対してそれぞれ Fig. 43, 44 に示した。

Fig. 45, 46 に各速度における形状係数Hを, Fig.

47,48には局所摩擦力係数 C:の分布を示したが,両 速度とも顕著な相違は見られない。今回,Hの初期値 を1.3として計算したが,これが4m模型に対して適 当であったかどうか議論の余地があると思われる。

Fig. 49, 50 に 2 次流れ角の分布を示した。 2 次流 れ角も両速度間での相違は余り見られない。共通して 言えることは船首付近で bottom 側に偏るが船尾へ行 くにつれて水面方向に向くことである。

船体表面上に微小要素をとり、そこでの流向、2次 流れ角を考慮した方向に局所摩擦力が均一に作用する として航走時における浸水面積で面積分し摩擦抵抗を

(46)

Fig. 50 Cross flow angle β

求めた。このようにして求めた摩擦抵抗係数を Fig. 51に示す。計算された摩擦抵抗係数は Schoenherr line にほぼ沿っているが、 F_n に対するわずかな振動 が認められ Shape factor H の F_n 依存性を思わせ る。Fig. 51 には Guilloton 法により 求まった造波 抵抗値と摩擦抵抗値の和と実験より求まった全抵抗と の比較も示している。これより全抵抗は、低速域で過 大評価、高速域で過小評価になっているのがわかる。

Fig. 51 Comparison of resistances between calculated and experimental results

Guilloton 法による C_w と波形解析 による C_{wp} が $F_n=0.4$ 付近で良い一致を示していることを考える と、この差は Fig. 10 における C_w と C_{wp} の差, それと $(1+K)C_{F_0}$ line と摩擦抵抗計算 値を比べた ときに認められる過小評価等が原因となって生じてい ると考えられる。

Appendix 2 船体の拘束条件による抵抗変化⁶⁾

5-1, あるいは 5-2 で考察したように船体 を 拘束し て航走すると,抵抗値は小さくなりほぼそれが造波抵 抗の差に等しいことが示されている。これを計算で確 認するために次のように考えた。

Free condition においては, 航走による圧力低下 から生じる船体近傍の水位低下と船体の平均沈下量は ほぼ等しく, 静止時船体位置と運動時船体位置を同一 とした理論計算で求まると考える。一方, fixed condition においては水位低下のみ生じ, 船体 は沈下し ないので水位低下分,即ち free condition 航走にお ける同速度の船体沈下量だけ軽荷状態になっていると 考え,これに対応する船型に対し計算されるものと考 えた。このことは, Fig. 31, 32 に示した船側波形図 を比較したとき,船側波形の形状は free, fixed 両 condition でほとんど違いがなく,fixed condition の方が free condition に比べて平均沈下量にほぼ 等しい量だけ低く出ていることから十分正しい仮定で あると考えられる。以上の考えのもとに free,fixed condition に対応する造波抵抗を計算し,求まったそ れぞれの造波抵抗曲線と波形解析より求まった波形抵 抗曲線を Fig. 14 に示す。これより,free,fixed 両 condition の差が計算でよく表現されており,以上の 仮定が十分正しかったものと考えられる。