

図-5.5(1)-(3) 振動挙動の記録例(4 特型)

図-5.5(4)-(6) 振動挙動の記録例(4 特型)

(167)

ーサ外径と圧力管内径の実測値から求めた片側隙間で ある。4 特型では計算上 0.26 G 以下ではスペーサが 圧力管に接触しないことになる。しかし, 図-5.5 に おける相対変位,加速度の波形から明らかなように, 相対変位が 0.9 mm 以下のケースでも衝突している。 その主な原因は圧力管の中心位置からの燃料集合体の 偏心(前後方向あるいは左右方向)によるものである。

燃料集合体および圧力管の固有振動数は比較的低 く、ペン書きオッシログラフにより、その挙動を忠実 に記録できる。しかし、スペーサ間の燃料棒(燃料バ ンドル)の固有振動数および衝撃波の振動数はその範 囲を超えているため、シンクロスコープによる波形の 観察を行った。

図-5.7 は燃料棒の振動挙動を撮影したものである。 上段の波形は S6 と S7 の中間点における燃料棒の振 動変位波形を示し,下段は S6 の振動変位波形を示す。 両波形の縦軸は任意単位であるが,同一レンジで撮影 されており,上・下波形の比較により燃料棒の振動変 位の大小を求めることができる。燃料棒は 370 Hz 前 後で共振し,その振幅は S6 点の約2.5 倍に達してい る。 地震時の挙動が問題となる約 30 Hz 以下の振動 数に対しては,5,10,30 Hz の例で見られるように, スペーサの振動変位と同一値であり,特に有意な振動 は観測されていない。

図-5.8 はスペーサと圧力管の衝突による振動波形 を記録撮影したものである。上段には S6 点の相対変 位波形を示し、下段に S6, S6PT の加速度または変位 波形を示す。撮影時の計器読取値は次表の通りであ る。相対変位の波形には特に高い周波数成分は見られ ない。ペン書きオッシログラフの記録と同一振動加速 度(0.5G)での記録波形はほぼ同一の波形が得られて いる。変位の波形についても同様である。S6PTの加 速度波形にはペン書きオッシログラフの記録より高い 周波数成分の波が見られるが,衝撃加速度の大きさの 比較では最大12%の差が見られた程度である。但し, シンクロスコープによる加速度波形の記録撮影の場 合も約 500 Hz 以上の周波数成分を減衰させるための CR 回路を挿入している。

図-5.9 は振動挙動に関する実験データから S6 点の 振幅,位相について整理したものである。変位比は S6, S6PT の変位を S0PT (S13PT) との比の形で示 したものである。位相角についても同様である。相対 位相角は S6 と S6PT の位相差を示したものである。

圧力管は 7 Hz と 23 Hz にピークがある。7 Hz の ビークは圧力管と燃料集合体の一体化されたものとし て得られる固有振動数の計算値 6.8 Hz に近い。23 Hz のビークは圧力管の 1 次共振の実測値に等しい。(圧 力管単純支持時の固有振動数計算値 19.5 Hz)

燃料集合体は 7 Hz, 11 Hz にピークがある。7 Hzの ピークは圧力管の振幅増大によるものである。11 Hz のピークは燃料集合体の 3 次共振によるもので, 圧力 管との位相差が 90°となっている。振動加速度 0.6 G での振幅がスペーサと圧力管との隙間に相当する振動 数は 11.6 Hz であり, 燃料集合体と圧力管の衝突音の なくなる振動数 11~13 Hz 以上と一致する。

5.1.3 振動変位波形

振動変位波形を詳細に調べ,解析計算の妥当性を評 価するため,燃料集合体および圧力管の変位波形を高 速度シネカメラで近接撮影し,画像の解析処理を行っ た。

実験のケースには 5F型および 4 特型について, そ れぞれ 表-5.1 に示すケースを選定した。加振加速度 は「ふげん」の耐震計算による最大加速度値 0.503 G を参考とし, 0.6 G を選び,振動試験機の振幅制限条 件から低い振動数では 0.3 G とした。振動数は 5.1.1, 5.1.2 の実験データに基づき 6 点毎とした。計測点は 大きな 衝撃加速度の得られている S6, S8, S10 の 3 点とした。

撮影の様子および撮影フィルムの一部は 写真-3.3, 3.4 および 図-3.4 に示したとおりである。

撮影したフィルムは圧力管および燃料集合体の位置 を 16 m/m フイルム解析器で,1コマ毎に読取り,実

(169)

<u>8</u>

No. MEASUREING POINT	1	S6 R.D S6PT D
FREQUENCY SOURCE POINT	1	5Hz
ACC, SOURCE	1	0.11G
MEASUREING POINT	1	0.48G
DISP. SOURCE	1	0.065
MEASUREING POINT	.1	0.13
SWEEP TIME	2	0.08 20msec
Y1 RANGE	1	0.10
I I C KANGE	4	1 0.24

o. EASUREING POINT	1 2	S6 R.D S6PT D
REQUENCY OURCE POINT	1	10Hz
CC. SOURCE	1 2	0.1G 0.1G
MEASUREING POINT	1	0.145G 0.19G
ISP. SOURCE	1	0.20
MEASUREING POINT	1	0.21
WEEP TIME		20msec
1 RANGE	1	0.17
C KANGE	6	1 0.01

5 R.D
OHZ
.1G
145G
.19G .20
.185 .21
.225 Omsec
.1V .5V

	No. MEASUREING POINT	1	S6 R.D
1	FREQUENCY SOURCE POINT	1	5Hz
	ACC. SOURCE	2	0.41G
	MEASUREING POINT	12	1.52G 1.05G
	DISP. SOURCE	1	0.320
	MEASUREING POINT	2	0.350
	YI RANGE	1	0.10

D. EASU	REING POINT	-]	S6 R.D	
REQUI	ENCY E POINT	- 1	10Hz	
сс.	SOURCE	2	0.2G	
	MEASUREING POINT	1	0.26 0.1256 0.856	
ISP.	SOURCE	12	0.26 0.24	
	MEASUREING POINT	1 2	0.03	
WEEP 1 RA 2 RA	I IME NGE NGE	1 2	20msec 0.1V 0.5V	

(注) R.D; 相対変位, D; 変位, A; 加速度

図-5.8 シンクロスコープ撮影波形(変位,加速度,相対変位)

寸への換算,速度と加速度の算出,相対値の算出など のデータ処理および作図は電子計算機で行った。

実験結果の1例を 図-5.10 および 図-5.11 に示す。 同図において記号ロ,縦軸目盛(X1)は圧力管を示 し,記号〇,(X2)は燃料集合体を示す。無記号, (X2-X1)は相対値を示す。DISPLACEMENT(変 位)は1サイクルの平均位置を点0とし,圧力管およ び燃料集合体の振幅波形を示したものである。DIS-PLACEMENT(X2-X1)は相対変位を示し,燃料集 合体と圧力管の変位から算出したものである。速度 (V1),(V2),(V2-V1)および加速度(A1),(A2), (A2-A1)の図についても同様である。

これらの波形において、変位等の絶対値は比較的ス ムーズな曲線を描いているが、相対値は滑らかさに欠 ける。その主な原因は読取誤差によるものである。即 ち、16 m/m フイルム解析器の最小目盛 25/1,000 mm は圧力管等の振幅に対して 5 Hz, 0.3 G の場合、約 1/1,000 であるのに対し、相対変位では約 2/100 とな り、読取誤差が波形の滑らかさに影響を及ぼす。

図-5.10 における変位波形は 5Hz の場合圧力管と 燃料集合体が同相で振動し,7Hz で燃料集合体が僅 かに遅れ,11Hz では約 90°の遅れとなり,13Hz で は逆相となる。

相対変位の波形は 5Hz のものが典型的である。燃料集合体が圧力管に衝突し、スペーサばねがたわむ。 このケースでの相対変位の最大値は 2.70mm (P-P) であり、圧力管との隙間より 0.50mm (P-P) 大きく

振動数 (Hz)	加速度 (G)	標準燃料	特殊燃料
5.0	0.2	S 6	
		S 8	
		S 10	
	0.6	S 6	
		S 8	
		S 10	
7.0	0.3	S 6	
	0.3	S 8	
	0.3	S 10	
	0.6	S 6	
7.1	0.3		S 6
	0.3		S 8
	0.3		S 10
	0.6		S 6
	0.6		S 8 -
	0.6		S 10
9.0	0.3	S 6	S 6
	0.3	S 8	S 8
	0.3	S 10	S 10
	0.6		S 6
	0.6		S 8
	0.6		S 10
11.0	0.3		S 6
	0.3		S 8
	0.3		S 10
	0.6	S 6	S 6
	0.6	S 8	S 8
	0.6	S 10	S 10
13.0	0.6	S 6	
	0.6	S 8	
	0.6	S 10	
23.0	0.3		S 6
	0.3		S 8
	0.3		S 10

表-5.1 正弦波による振動実験条件 (高速度シネカメラ)

振れている。この時,スペーサばねに加わる力は 図-4.17 から約 26 kg と推定される。

S 6

S 8

S 10

0.6

0.6

0.6

0.9

スペーサばねの反発力により燃料集合体はいったん 圧力管から離れる。この時の隙間は片側で 0.078 mm である。その後再び圧力管に接触し、それを繰返す。

35

(171)

S 6

S 8

S 10

S 10

DISPLACEMENTIX11 (HM)-

-3.00 -2.20 -1.60 -3.65 5.28 1.80 1.99 2.65 3.45 -DISPLACEMENT(X2) [MM]-

7Hz および 9Hz では最初の衝突が S6 以外の部分 で起る。図-5.11 はその1例を示したものである。同 図における相対変位の最大値は,
 S6
 2.73 mm (P-P)

 S8
 2.76 mm (P-P)

 S10
 2.65 mm (P-P)

であり、最初の衝突は S8 点で発生する。

加速度の波形には燃料集合体と圧力管がほぼ同相で 振れる 7~8 Hz の成分が含まれている。これは燃料 集合体と圧力管が一体となって振動する場合の一次共 振によるもので,図-5.9 の実測値と一致する。

5F型についての変位,加速度の最大値(P-P)は 表-5.2の通りである。同表における振動数の欄は,フ ィルムに記録された内臓タイムマーカー信号から算出 した値である。加速度の欄は上・下タイプレート部の 圧力管の加速度を加速度計で計測した値を示す。圧力 管,燃料集合体および相対値の欄は撮影フィルムから 求めたものである。圧力管の最大加速度は9Hz,0.3 G 時に S8 点で生じ,その最大値は 2.89G である。 燃料集合体の最大加速度は11Hz,0.6G 時に S8 点で

후수에 두	振動数	加速度	圧フ	 竹 管	燃料集	作 合 体	相文	寸 値
司側魚	(Hz)	$S13P1 (\pm G)$	加速度 (G P-P)	変位 (mm P-P)	加速度 (G P-P)	変位 (mm P-P)	加速度 (G P-P)	変 位 (mm P-P)
S 6	4.72	0.604 0.592	3.09	18.82	2.73	21.18	3.99	2.70
	7.35	0.296 0.296	3.60	10.08	3.23	13.16	5.77	2.76
	9.09	0.300 0.300	2.86	1.95	1.76	3.03	4.20	2.59
	10.99	0.609 0.609	3.09	2.24	2.96	4.12	5.61	(2.76) 2.53)
	14.08	0.598 0.598	2.91	0.95	2.12	1.70	4.65	2.79
	22.73	0.600 0.600	8.98	2.20	1.71	0.65	8.59	2.09
S 8	6.67	0.296 0.296	3.47	9.78	3.42	12.33	5.48	2.78
	8.93	0.300 0.300	5.77	1.78	2.05	2.80	7.30	2.80
	10.42	0.609 0.609	2.53	2.34	4.29	4.76	4.49	3.12
	12.66	0.598 0.598	4.76	1.02	2.90	1.67	5.26	2.61
	22.99	0.600 0.600	3.47	2.28	1.51	0.37	4.49	2.41
S 10	6.90	0.296 0.296	2.99	8.33	2.79	11.11	4.42	2.76
	9.71	0.300 0.300	2.44	1.63	2.43	2.89	4.54	2.67
	10.31	0.609 0.609	1.96	1.69	3.04	4.33	2.14	2.86
	12.82	0.598 0.598	2.09	1.07	1.63	2.02	3.72	2.56

表-5.2 変位および加速度の最大値 (P-P) (5F型,高速度シネカメラ撮影)

注 23 Hz (約)の値は数サイクルについての P-P 値を参考値として示したものである。

生じ,その最大値は 2.15G である。この時の相対変 位も最大値 3.12mm を示し,スペーサばねには約 53 kg の力が作用する。

なお,表-5.2 における圧力管,燃料集合体,相対 値の欄の加速度,変位は両振幅 (P-P 値)を表わす。 高速度シネカメラによる記録波形は対称形でないケー スが多く,また 23 Hz の波形のように数サイクルの 周期で移動しているものもあり,片振幅値での表示が 厳密さに欠ける場合が多い。そこで,このような場 合,P-P 値と注記のうえ両振幅値を使用する。

5.2 地震波による振動実験

解析計算コードの妥当性を評価するとともに,地震 時のふげん燃料の健全性を確証するため,地震波によ る振動実験を実施した。

実験計測の方法は正弦波による振動実験の場合と同 ーである。地震波の再現には地震波再現システム (3.3 節参照)を用いた。実験条件およびパラメータ は,次のとおりであり,合計 24 ケースの実験を行っ た。

入力波
 TAFT 波, EL CENTRO 波
 原点番号
 50 (圧力管の上部固定点)
 56 (圧力管の下部固定点)

方 向	X方向	(プラントの南北方向)
ł	Y方向	(プラントの東西方向)
計測点	S6, S8,	S10
加振倍率	1.0	

ここで、加振倍率1.0は、ふげん炉の耐震計算において TAFT 波のX方向、質点番号 50 の点の応答波形 (TAFT M24X-50)の最大加速度 0.503G を基準とし、地震波再現システムのゲインを設定した値である。従って、他の地震波の場合には加振倍率 1.0 でも、その最大加速度は 0.5G に満たない。

計測には加速度計,非接触型振動変位計による計 測と高速度シネカメラによる撮影を併行して行っ た。

ペン書きオッシログラフの記録の1例を図-5.12に 示す。同図において,記録チャンネルの略号と記録デ ータの関係は,次のとおりである。

記録紙の送り速度は5目盛/sec であり,最上段に1 秒間隔のタイムマークが記録されている。ch.2の相 対変位は 図-3.3 による補正が必要であり,目盛は概 略値を示すものである。ch.3 および ch.4 の加速度 波形には相対変位が(+)または(-)の最大値附近で パルス状の衝撃波が発生しているのが見られる。これ

図-5.12 地震波の振動実験記録 (1) S6 点

図-5.12 地震波の振動実験記録 (3) S10 点

(175)

	入力	データ	発生	燃料集	合体絶対	加速度	<u></u>	圧力管	管絶対 :	加速度		相:	好 加 ;	业 度	スト
	Т.	ACC	T.	56	58	S10	S6PT	S8PT	S10PT	SOPT	S13PT	S6PT	SSPT	SIOPT	~
\sim	(sec)	(G)	(sec)	(G)	(G)	(G)	(G)	(G)	(G)	(G)	(G)	-56 (G)	-58 (G)	(G)	$\hat{1}$
	3.92	0.30	3 95	0.65	0.60	0.55	-0.80	-0.75	-0.80	0.50	0.50	-1.45	-1.35	-1.35	
	6.62	0.30	6 70	0.80	0.65	0.60	-0.75	-0.80	-0.70	0.35	0.40	-1.55	-1.45	-1.30	
TAFT ATR	6.81	-0.40	6.85	-0.80	-0.90	-0.85	1.00	0.90	0.80	-0.55	-0.65	1.80	1.80	1.65	*
M24X-50	9.3	-0.40	9.45	-0.65	-0.65	-0.75	1.00	0.85	0.95	-0.40	-0.50	1.65	1.50	1.65	
	9.55	0.45	9.60	0.65	0.65	0.70	-0.95	-0.95	-0.80	0.50	0.50	-1.60	-1.60	-1.50	
	9.70	-0.50	9.75	-0.75	-0.70	-0.75	0.85	0.95	0.90	-0.50	-0.50	1.60	1,65	1.65	
· · · · · · · · · · · · · · · · · · ·	2 00	0.25	4.02	0.70	0.8	0.55	-0.80	-0.80	-0.75	0.45	0.50	-1.5	-1.60	-1.30	
	1 10	-0.25	4 20	-0.70	-0.65	-0.70	0.85	0.95	0.80	-0.40	-0.40	1.55	1.60	1.50	
TAFT ATR	6.63	0.50	6.70	0.60	0.55	0.60	-0.80	-0.80	-0.75	0.35	0.40	-1.4	-1.35	-1.35	
M18Y-50	6.80	-0.40	6 90	-0.95	-1.05	-0.85	1.00	0.95	0.70	-0.80	-1.00	1.95	2.00	1.55	*
11101 00	0.00	-0.40	0.50	-0.70	-0.65	-0.75	1.00	0.90	0.90	-0.50	-0.55	1.7	1.55	1.65	
	9.55	0.45	9.70	0.70	0.00	0.70	-0.90	-0.90	-0.90	0.55	0.60	-1.6	-1.50	-1.60	
			5.10	0.70	0.00		0.00		0.10	0.45	0.05	1.0	1 00	0.60	
	2.07	-0.45	2.15	-0.60	-0.60	-0.50	0.40	0.40	-0.95	1 20	1 20	1.0	-2.60	-0.85	*
El-Centro	2.25	0.40	2.40	1.10	1.70	1.00	0.65	-0.90	0.55	-0.50	-0.45	1.50	1.15	1.25	~
ATR	2.40	-0.40	2.57	-0.70	-0.70	-0.70	0.00	0.40	0.00	0.00	0.45	_1 2	-1 25	-1.00	1
M24X-50	2.62	0.45	2.80	0.60	0.55	0.50	0.10	-0.70	-0.00	0.25	-0.20	0.5	0.45	0.50	
	4.30	-0.30	4.50	-0.40	-0.40	-0.45	0.10	-0.05	-0.55	1 20	0.50	-1 15	-1 15	-1 35	*
	5.03	0.30	5.25	0.05	0.60	0.80	-0.50	-0.55	-0.33	1.20	0.00		1.10	1.00	
	2.25	0.45	2.37	1.40	1.50	0.90	-0.90	-1.10	-0.80	1.20	1.20	-2.30	-2.60	-1.70	*
El-Centro	2.37	-0.50	2.55	-0.75	-0.75	-0.70	0.40	0.45	0.55	-0.50	-0.50	1.15	1.20	1.20	
ATR	2.55	0.40	2.73	0.60	0.50	0.50	-0.55	-0.60	-0.30	0.25	0.25	-1.15	-1.10	-0.80	
M18Y-50	4.35	-0.25	4.45	-0.45	-0.40	-0.40	0.25	0.15	0.05	-0.25	-0.20	0.70	0.55	0.45	
	5.10	0.25	5.17	0.60	0.65	0.75	-0.35	-0.45	-0.20	1.20	0.45	-0.95	-1.10	-0.95	*
	9.35	-0.15	9.50	-0.70	-0.60	-0.50	0.55	0.70	0.75	-0.20	-0.15	1.25	1.30	1.25	
	3.90	0.25	4.02	0.80	0.65	0.55	-0.85	-0.85	-0.45	0.40	0.40	-1.65	-1.50	-1.00	
	4.10	-0.20	4.20	-0.60	-0.65	-0.50	0.55	0.65	0.35	-0.35	0.30	1.15	1.30	0.85	
TAFT ATR	6.65	0.40	6.75	0.60	0.70	0.55	-0.75	-0.75	-0.70	0.35	0.40	-1.35	-1.45	-1.25	
M24X-56	6.82	-0.40	6.92	-0.75	-0.70	-0.75	1.00	0.95	0.65	-0.50	-0.80	1.75	1.65	1.40	
	9.57	0.40	9.55	0.70	0.65	0.65	-0.90	-0.90	-0.80	0.50	0.50	-1.60	-1.55	-1.45	
	9.70	-0.45	9.71	-0.70	-0.65	-0.75	0.95	0.95	0.95	-0.45	-0.50	1.65	1.60	1.70	
	3.92	0.30	4.02	0.75	0.70	0.55	-0.90	-0.90	-0.60	0.40	0.40	-1.65	-1.65	-1.15	
	4.08	-0.25	4.20	-0.60	-0.60	-0.55	0.65	0.75	0.35	-0.35	-0.30	1.25	1.35	0.90	
TAFT ATR	6.64	0.45	6.75	0.60	0.65	0.60	-0.80	-0.75	-0.75	0.35	0.35	-1.40	-1.70	-1.35	
M18Y-56	6.80	-0.40	6.90	-0.85	-0.75	-0.75	0.95	0.95	0.65	-0.50	-0.90	1.80	1.70	1.40	
	9.40	-0.40	9.50	-0.70	-0.70	-0.75	0.95	0.85	0.95	-0.40	-0.50	1.60	1.55	1.70	
	9.55	0.40	9.70	0.70	0.70	0.70	-0.95	-0.95	-0.80	0.50	0.45	-1.65	-1.65	-1.50	
-	.2.05	-0.40	2.10	-0.50	-0.50	-0.50	0.30	0.25	0.10	-0.35	-0.35	0.85	0.75	0.60	
El Contro	2.25	0.35	2.40	1.40	1.35	0.90	-0.70	-0.70	-0.50	0.85	1.20	-2.10	-2.05	-1.40	*
ATP	2.40	-0.35	2.55	-0.70	-0.70	-0.65	0.20	0.25	0.35	-0.45	-0.45	0.90	0.95	1.00	
MOAY-56	4.70	-0.20	4.80	-0.55	-0.60	-0.60	0.85	0.80	0.65	-0.15	-0.15	1.40	1.40	1.25	
W124X-50	9.62	-0.25	9.80	-0.60	-0.50	-0.40	0.70	0.65	0.20	-0.10	-0.10	1.30	1.15	0.60	
	9.76	0.10	9.95	0.55	0.50	0.45	-0.65	-0.75	-0.65	0.20	0.20	-1.20	-1.25	-1.10	
	2.05	-0.40	2.10	-0.50	-0.50	-0.50	0.30	0.25	0.25	-0.40	-0.35	0.80	0.75	0.75	
FLCantas	2.25	0.35	2.40	1.30	1.60	0.95	-0.85	-0.80	-0.75	1.10	1.15	-2.15	-2.40	-1.70	*
ATP	2.45	-0.35	2.55	-0.80	-0.75	÷0.70	0.55	0.55	0.70	-0.50	-0.50	1.35	1.35	1.40	
MIN CC	4.72	-0.10	4.82	-0.60	-0.60	-0.55	0.75	0.80	0.60	-0.20	-0.15	1.35	1.40	1.15	1
1V110 1 - 00	9.70	-0.15	9.80	-0.65	-0.60	-0.45	0.75	0.75	0.40	-0.10	-0.10	1.40	1.35	0.85	
	9.85	0.10	9.95	0.50	0.50	0.40	-0.60	-0.70	-0.50	0.20	0.20	-1.10	-1.20	-0.90	

表-5.3 S6, S8, S10 点の加速度の最大値

(注) ストッパー欄の ※ 印は, 振動子とストッパーが衝突した箇所を示している。

(177)

(179)

チャンネ ル 番 号	計測值	目 盛
ch. 1	INPUT: 地震波	0.5 G/mm
ch. 2	RELATIVE DISP: 計測点の相対変位	1.0 mm/cm
ch. 3	Acc S(): S6, S8, S10 点の加速度	8.5 G/mm
ch. 4	Acc S()PT: S6, S8, S10 点の圧力管の加速 度	0.5 G/mm
ch. 5	Acc SOPT: 加振点 SOPT の加速度	0.5 G/mm
ch. 6	Acc S13PT: 加振点 S13PT の加速度	0.5 G/mm

らの衝撃波は ch.3 では相対波形と逆の方向に発生 し, ch.4 では同じ方向に発生し,その大きさは前者 より大きな値となっている。このような衝撃波の発生 はスペーサと圧力管の衝突により生ずるものである。

ch. 5, ch. 6 の加速度波形が同一方向に 1G または それ以上のパルス波として発生しているケースがあ る。 このような点では振動変位の絶対値が ±20 mm の限界を超え,振動子が振動試験機のストッパーに衝 突している。従って,実験データの評価,利用に際し ては,それに留意する必要がある。

また,予震の部分で,振動開始後 1~2 秒の間に大きな加速度または衝撃波が発生しているケースがある。これは,入力波が -0.5G からステップ状に 0.0 G となり,0G の前後で振動を始めることによるもので,地震波再現システムの時定数のとり方に起因する

ものである。その変位量が大きい場合にはストッパー への衝突を伴なうことになり,この部分についても留 意する必要がある。図-5.12の0.9秒後に生ずるch. 5, ch.6 に見られるパルス波がこれに相当する。

表-5.3 はこれらの記録データの中から,特に大きな 加速度の発生した時間とその大きさを6点づつ示した ものである。相対加速度の欄は燃料集合体と圧力管の 加速度を単純に加算したものであり,相対加速度の目 安として示したものである。これらの実験により得ら れた燃料集合体の最大加速度(目安値)は,EL CEN-TRO M24X-50 の S8 点で生じ,1.7G である。この 時の入力波の加速度は 0.4G,加振点 SOPT および S13PT の加速度(含衝撃波)は 1.2G である。S6 点 の圧力管の最大加速度 1.00G は,耐振計算による燃 料集合体の中央部付近の圧力管(質点番号 53)の加速 度よりかなり小さい。

燃料集合体と圧力管の相対加速度の推定値は、次の 通りである。

S6	2.30 G	(3.0G)
S8	$2.60\mathrm{G}$	(2.8G)

S10 1.70 G (1.7 G)

ここで,カッコ内の数字は後述する解析で得られた 計算値を示す。

高速度シネカメラによる撮影フィルムを読取り,電 子計算機で処理・作図したものの1例を図-5.13 お よび図-5.14に示す。同図において,縦軸のDIS-PLACEMENT, VELOCITY, ACCELERATION は

計測点の燃料集合体と圧力管の相対変位,相対速度, 相対加速度を表わす。

これらの図において,相対変位の波形にはペン書き オッシログラフでは明確にすることができなかった最 大変位附近での詳細な波形をつかむことができる。両 者の関係の1例として 図-5.12(1)の相対変位と 図-5.13(3)を比較したものを 図-5.15 に示す。両波形は 0.9秒の点を除けば極めてよい一致を示している。0.9 秒の点でのフィルムの解析に見られる一往復の波は振 動子のストッパーへの衝突に伴なうもので,図-5.12 (3)にもそれに伴なう波が表われている。図-5.14 は ストッパーへの衝突回数の多いケースである。(1)図 で3点,(2)図で2点がそれに該当する。このうち, 0.5秒の点のものは地震波再現システムに起因する衝 突で,2.0秒および4.8秒のそれは地震波の大振幅に 起因する衝突である。

6. 動的応答解析

燃料集合体に振動外力が作用した場合の動的応答を 計算するため,解析計算コードを作成した。この解析 計算コードは,規則形状波および不規則形状波に対す る燃料集合体の時刻歴応答を解析し,発生応力等を算 出するもので,耐震性の評価は言うに及ばず,船体運 動に対する舶用炉燃料集合体の健全性の評価にも利用 できる。

6.1 解析モデルおよび基礎式

本研究において作成した動的応答解析計算コード は,第4章の実験的研究により得られた諸特性を基に して想定した解析モデル(図-6.1 参照)に対して,次 の仮定のもとに解析を行う。

6.1.1 解析上の仮定

解析上の仮定は,次の通りである。

- (1) X-Y の2次元問題として扱う。
- (2) 圧力管の固有振動数が,燃料集合体に比べて かなり高いため,圧力管を完全剛体と仮定す る。
- (3) 燃料集合体を1本の弾性梁と考え,燃料集合体の回転慣性および剪断力によるたわみ効果を無視する。
- (4) 各スペーサは,弾性ばねと衝撃吸収素子を含むモデルとする。
- (5) 入力波は燃料集合体の上・下端で,圧力管に 同一波形で伝達される。
- (6) 燃料集合体の上・下タイプレート部にある案

内ばねの変位を考慮する。

連続体である燃料集合体の運動を解析するためのメ ッシュ分割を図-6.2に示す。燃料集合体に働く外力, 慣性力,減衰力等は,全て,メッシュの代表点(ノー ド)に集中荷重として作用するものとする。また,燃 料集合体の長さ(全長)は上・下タイプレートの案内 ばね取付位置間の長さとし,燃料集合体の全質量がこ の長さの範囲に一様に分布しているものとする。

6.1.2 計算の流れ

解析計算コードの計算の流れを 図-6.3 に示す。主 な計算手順は、次の通りである。

- (1) データ入力 (カードデータ, 地震データ)
- (2) 初期設定,マトリックス設定
- (3) 初期 (*t*=*d*t) での加速度,速度,変位の計算
- (4) t=nAt (n>1) での衝撃力,加速度,速度, 変位,応力の計算
- (5) シュミレーション終了まで(4)を繰返す
- (6) 最大衝撃力,最大応力のプリント・プロット データの出力

6.1.3 基礎式

燃料集合体の振動は,次の振動方程式で表わされる。

(181)

(32)

(182)

境界条件

燃料集合体上・下端の境界条件は,端での曲げモー メントがたわみ角に比例するとして,次式で与える。

$$\left(\frac{\partial^2 y(x,t)}{\partial x^2}\right)_{x=0,L} \cdot L = \pm \alpha L \left(\frac{\partial y(x,t)}{\partial x}\right)_{x=0,L}$$
(32)

ここで, *L* は燃料集合体の長さ, α*L* は燃料集合体 の固有振動数 ω から次式で求められる定数。(端末支 持条件)

$$\alpha L = \frac{-2\beta L}{\tan(\beta L/2) + \tanh(\beta L/2)}$$

$$\beta = \omega / \sqrt{\frac{EIg}{A\gamma}}$$

$$(33)$$

反発力

スペーサと圧力管の衝突による反発力は(20)式お よび(27)式で与えられる。(4.5節参照)

燃料棒の曲げ応力

燃料棒の被覆管に生ずる曲げ応力は,燃料棒の変形 曲率が燃料集合体中心軸の変形曲率と同じであること から,次式で計算する。

$$\sigma = E \frac{\partial^2 y}{\partial x^2} \cdot \frac{D}{2} + \frac{WlD}{8I_R}$$
(34)

ここで, E; 被覆管のヤング率

D; 被覆管の直径

- I_R ; 被覆管の断面二次モーメント
- $\partial^2 y/\partial x^2$; 燃料集合体の変形曲率
- *l*; スペーサ・リング素子の固定ディンプ ル・スパン
- W; 燃料棒一本当りの衝突荷重

(34)式の第1項は,燃料集合体の変形曲率によって 生ずる応力であり,第2項は衝突時にスペーサのディ ンプル部に付加される局所曲げ応力である。

6.2 数值解法

6.2.1 振動方程式の展開

基礎式 (30) を 図-6.2 に示すメッシュの各ノードに 適用する。i 番目のスペーサを含むメッシュの長さを Δx_i とし, (30) 式を整理すると,時刻 t で,

$$\ddot{y}_{t,i} + \frac{b}{a} \dot{y}_{t,i} + \frac{1}{a} \frac{\partial^4 y_{t,i}}{\partial x^4} = f_{t,i}$$
(35)

ここで,

$$a = \frac{A\gamma}{EIq}$$
$$b = \frac{C}{EI}$$

$$f_{t,i} = \frac{\partial^2 y_{0,t}}{\partial t^2} + \frac{P_{t,i}}{m}$$
$$m = \frac{A\gamma}{a} \Delta x_i$$

(35) 式をベクトル表示すると,
$$\{\dot{\boldsymbol{y}}\}_{i} + \frac{b}{a} \{\dot{\boldsymbol{y}}\}_{i} + [K] \{\boldsymbol{y}\}_{i} = \{\boldsymbol{f}\}_{i}$$
 (36)

左辺第3項の [K] $\{y\}$ は燃料集合体のたわみ項 1/a· $\partial^4 y/\partial x^4$ を行列表示したものである。

(36) 式より,

$$\{\ddot{\boldsymbol{y}}\}_1 + \frac{b}{a}\{\dot{\boldsymbol{y}}\}_1 + [K]\{\boldsymbol{y}\}_1 = \{\boldsymbol{f}\}_1$$
 (37)

$$\{\dot{y}\}_2 + \frac{b}{a}\{\dot{y}\}_2 + [K]\{y\}_2 = \{f\}_2$$
 (38)

$$\{\boldsymbol{\dot{y}}\}_{3} + \frac{b}{a}\{\boldsymbol{\dot{y}}\}_{3} + [\boldsymbol{K}]\{\boldsymbol{y}\}_{3} = \{\boldsymbol{f}\}_{3}$$
(39)

サフィックス 1, 2, 3 は, それぞれ時刻 *t*-2*d*t, *t*-*4*t, *t* に対応する。

$$\dot{y}(t) = \dot{y}(t - \Delta t) + \Delta t \ddot{y}(t - \Delta t) + \frac{\Delta t^2}{2} \ddot{y}(c)$$

$$(t - \Delta t < c < t)$$

であるから,
$$\ddot{y}(c)$$
を $rac{\ddot{y}(t)-\ddot{y}(t-\mathit{\Delta}t)}{\mathit{\Delta}t}$ で近似して,

$$\dot{y}(t) = \dot{y}(t - \Delta t) + \frac{\Delta t}{2} (\ddot{y}(t - \Delta t) + \ddot{y}(t))$$

これより,

$$\{\dot{\boldsymbol{y}}\}_2 = \{\dot{\boldsymbol{y}}\}_1 + \frac{\Delta t}{2} (\{\ddot{\boldsymbol{y}}\}_1 + \{\ddot{\boldsymbol{y}}\}_2)$$
(40)

$$\{\dot{\boldsymbol{y}}\}_{3} = \{\dot{\boldsymbol{y}}\}_{2} + \frac{\Delta t}{2} (\{\ddot{\boldsymbol{y}}\}_{2} + \{\ddot{\boldsymbol{y}}\}_{3})$$
(41)

同様に,
$$y(t)$$
 についてもテーラー展開して,
{ y }₂={ y }₁+ dt { \dot{y} }₁+ $\frac{dt^2}{3}$ { \ddot{y} }₁+ $\frac{dt^2}{6}$ { \ddot{y} }₂ (42)

$$\{\boldsymbol{y}\}_{3} = \{\boldsymbol{y}\}_{2} + \Delta t \{\boldsymbol{y}\}_{2} + \frac{\Delta t^{2}}{3} \{\boldsymbol{y}\}_{2} + \frac{\Delta t^{2}}{6} \{\boldsymbol{y}\}_{3} \quad (43)$$

(1) 初期状態

初期条件により,

$$\{y\}_1=0, \{\dot{y}\}_1=0$$

(37) 式より,
{
$$ij$$
}₁={ f }₁
(40) 式より,
{ ij }₂= $\frac{dt}{2}({f}_1 + {ij}_2)$ (44)

(183)

$$\{\boldsymbol{y}\}_{2} = \frac{\mathcal{\Delta}t^{2}}{3} \{\boldsymbol{f}\}_{1} + \frac{\mathcal{\Delta}t^{2}}{6} \{\boldsymbol{\ddot{y}}\}_{2}$$

$$(45)$$

(45) 式より,

$$\{\boldsymbol{\ddot{y}}\}_2 = -2\{\boldsymbol{f}\}_1 + \frac{6}{\varDelta t^2}\{\boldsymbol{y}\}_2 \tag{46}$$

(44), (46) 式より,

$$\{\boldsymbol{y}\}_{2} = -\frac{\Delta t}{2} \{\boldsymbol{f}\}_{1} + \frac{3}{\Delta t} \{\boldsymbol{y}\}_{2}$$

$$(47)$$

(46), (47) 武を (38) 式に代入して,

$$-2\{f\}_{1} + \frac{6}{dt^{2}}\{y\}_{2} + \frac{b}{a}\left(-\frac{dt}{2}\{f\}_{1} + \frac{3}{dt}\{y\}_{2}\right) + [K]\{y\}_{2} = \{f\}_{2}$$

$$\left(\frac{6}{dt^{2}} + \frac{3}{dt} \cdot \frac{b}{a}\right)\{y\}_{2} + [K]\{y\}_{2}$$

$$= \{f\}_{2} + 2\{f\}_{1} + \frac{dt}{2}\frac{b}{a}\{f\}_{1}$$

故に,

$$\left(1+\frac{b}{2a}\mathcal{A}t\right)[\boldsymbol{I}]+\frac{\mathcal{A}t^{2}}{6}[\boldsymbol{K}]\left\{\boldsymbol{y}\right\}_{2}$$
$$=\frac{\mathcal{A}t^{2}}{6}\{\boldsymbol{f}\}_{2}+\left(\frac{\mathcal{A}t^{2}}{3}+\frac{\mathcal{A}t^{3}}{12}\cdot\frac{b}{a}\right)\{\boldsymbol{f}\}_{1} \quad (48)$$

ここで, [*I*] は単位マトリックスである。(48) 式より,

$$\{\boldsymbol{y}\}_{2} = [\boldsymbol{D}]^{-1}\{\boldsymbol{f}\}$$

$$(49)$$

ここで,

$$[D] = \left(1 + \frac{b}{2a} \Delta t\right) [I] + \frac{\Delta t^2}{6} [K]$$
$$\{f\} = \frac{\Delta t^2}{6} \{f\}_2 + \left(\frac{\Delta t^2}{3} + \frac{\Delta t^3}{12} \cdot \frac{b}{a}\right) \{f\}_1$$

である。

(2) 第2タイム・ステップ以後

$$\{y\}_{3} = \{y\}_{t}, \{y\}_{2} = \{y\}_{t-\Delta t}, \{y\}_{1} = \{y\}_{t-2\Delta t}, \{f\}_{3} = \{f\}_{t}, \{f\}_{2} = \{f\}_{t-\Delta t}, \{f\}_{1} = \{f\}_{t-2\Delta t}$$

とおき、初期状態と同様に、(37)~(43) 式より $\{y\}$
 $\{y\}$ を消去して、次の結果を得る。

$$\left(\left(1+\frac{b}{2a}\mathcal{A}t\right)[\boldsymbol{I}]+\frac{\mathcal{A}t^{2}}{6}[\boldsymbol{K}]\right)\{\boldsymbol{y}\}_{3}$$

$$=\frac{\mathcal{A}t^{2}}{6}(\{\boldsymbol{f}\}_{1}+4\{\boldsymbol{f}\}_{2}+\{\boldsymbol{f}\}_{3})$$

$$-\left(\left(1-\frac{b}{2a}\mathcal{A}t\right)[\boldsymbol{I}]+\frac{\mathcal{A}t^{2}}{6}[\boldsymbol{K}]\right)\{\boldsymbol{y}\}_{1}$$

$$+\left(2[\boldsymbol{I}]-\frac{2}{3}\mathcal{A}t^{2}[\boldsymbol{K}]\right)\{\boldsymbol{y}\}_{2}$$
(50)

(50) 式より

$$\{y\}_{3} = [D]^{-1}(\{f\} + [A]\{y\}_{1} + [B]\{y\}_{2})$$
(51)

ここで,

$$[D] = \left(1 + \frac{b}{2a} \Delta t\right) [I] + \frac{\Delta t^2}{6} [K]$$
$$[A] = -\left(1 - \frac{b}{2a} \Delta t\right) [I] - \frac{\Delta t^2}{6} [K]$$
$$[B] = 2[I] - \frac{2}{3} \Delta t^2 [K]$$
$$\{f\} = \frac{\Delta t^2}{6} (\{f\}_1 + 4\{f\}_2 + \{f\}_3)$$

である。

6.2.2 燃料集合体のたわみ項の取扱い(解析的手法)

燃料集合体を一様な弾性梁と仮定しているため, 図-6.4のモデルで,燃料集合体に分散荷重が作用した

場合の任意点における各時刻におけるたわみ量を解析 的に求めることができる。同図において、 M_1 , M_2 は 支持条件によって生ずる曲げモーメント、 R_1 , R_2 は 反力である。また、 W_j は x_j ノードに働く分散荷重 であり、j メッシュに働く慣性力、衝撃力、減衰力等 を集中荷重として代表させている。

x=l 点での釣合いにより,

$$Rl + M_1 = \sum_{i=1}^{j} W_i(l - x_i) + M_2$$

 $x_j \leq x \leq x_{j+1}$ の点での曲げモーメントは,

$$M = R_{1}x + M_{1} - \sum_{i=1}^{j} W_{i}(x - x_{i})$$

$$= \frac{M_{2} - M_{1}}{l}x + \frac{x}{l} \sum_{i=1}^{k} W_{i}(l - x_{i})$$

$$+ M_{1} - \sum_{i=1}^{j} W_{i}(x - x_{i})$$
(52)

これより

$$\begin{aligned} \frac{d^2 y}{dx^2} &= -\frac{M}{EI} = -\frac{1}{EI} \left\{ \frac{M_2 - M_1}{l} x \\ &+ \frac{x}{l} \sum_{i=1}^k W_i (l - x_i) + M_1 \\ &- \sum_{i=1}^j W_i (x - x_i) \right\} \end{aligned}$$

(184)

$$\frac{dy}{dx} = -\frac{1}{EI} \left\{ \frac{M_2 - M_1}{2l} x^2 + \frac{x^2}{2l} \\
\cdot \sum_{i=1}^{k} W_i (l - x_i) + M_1 x \\
- \sum_{i=1}^{j} \frac{W_i (x - x_i)^2}{2} \right\} + C_1$$

$$y = -\frac{1}{EI} \left\{ \frac{M_2 - M_1}{6l} x^3 + \frac{x^3}{6l} \\
\cdot \sum_{i=1}^{k} W_i (l - x_i) + \frac{M_1}{2} x^2 \\
- \sum_{i=1}^{j} \frac{W_i (x - x_i)^3}{6} \right\} + C_1 x + C_2$$
a) $x = 0$ °C, $y = 0$ £ %
 $C_1 = \frac{1}{6EII} \left\{ (M_2 + 2M_1)l^2 \\
+ l^2 \sum_{i=1}^{k} W_i (l - x_i) - \sum_{i=1}^{j} W_i (l - x_i)^3 \right\}$
c) $x = 0$ °C, $\frac{d^2y}{dx^2} = u \frac{dy}{dx}, (u = \frac{\alpha}{L})$ £ %
 $2l(3 + ul)M_1 + ul^2M_2 \\
+ u \sum_{i=1}^{k} W_i (l - x)x_i(2l - x) = 0$ (54)

d)
$$x=l$$
 \mathfrak{C} , $\frac{d^2y}{dx^2} = -u\frac{dy}{dx}$, $\left(u = \frac{\alpha}{L}\right)$ \sharp \mathfrak{h}
 $2l(3+ul)M_2 + ul^2M_1$
 $+u\sum_{i=1}^k W_i(l-x_i)x_i(l+x_i) = 0$ (55)

$$M_{1} = \frac{ulB - 2(3+ul)A}{DNT}$$

$$M_{2} = \frac{ulA - 2(3+ul)B}{DNT}$$

$$(56)$$

ここで,

$$A = u \sum_{i=1}^{k} W_i(l-x_i)(2l-x_i)x_i$$
$$B = u \sum_{i=1}^{k} W_i(l-x_i)(l+x_i)x_i$$
$$DNT = 4l(ul+3)^2 - u^2l^3$$

任意の点 $x(x_j \le x \le x_{j+1})$ でのたわみは, (55) 式に C_1 , C_2 , M_1 , M_2 を代入して次のように求まる。

$$y = \frac{1}{6EIl} \left\{ \sum_{i=1}^{j} W_i x_i (l-x) (-x^2 + 2lx - x_i^2) + \sum_{i=1}^{k} W_i (l-x_i) x (-x^2 + 2lx_i - x_i^2) + YMT \right\}$$
(57)

ここで,

$$YMT = \sum_{i=1}^{k} x_{i}(l-x_{i}) \{(2l-x_{i}) - RMT_{1} + (l+x_{i}) \cdot RMT_{2}\} W_{i} \\ RMT_{1} = \frac{u}{DNT} \{3x(l-x) \\ \cdot [(ul+2)x - (ul+4)l]\} \\ RMT_{2} = \frac{u}{DNT} \{3x(l-x) \\ \cdot [-(ul+2)x - 2l]\}$$
(58)

(57), (58) 式より各ノード点 x_j $(j=1,2,\dots,k)$ で のたわみ y_j と,荷重 W_j $(j=1,2,\dots,k)$ との関係 を次式の様に表現することができる。

$$\{y\} = [S] \{W\}$$

 $[S]^{-1} = [T] + islow \mathcal{T}$

$$[\mathbf{b}] = [\mathbf{I}] \geq \mathbf{b}(\mathbf{b}(\mathbf{c}),$$

 $\{\boldsymbol{W}\} = [\boldsymbol{T}] \cdot \{\boldsymbol{y}\} \tag{59}$

(36) 式の $[K]{y}$ との対応は、(36) 式が単位長さ に働く加速度の式であることから、 $\{W\}$ の各要素 W_i をメッシュの質量 $m_i (m_i = A\gamma \Delta x_i/g)$ で除してやれば よい。

$$[K_{ij}]\{\boldsymbol{y}_{j}\} = \left\{\frac{W_{i}}{m_{i}}\right\} = \left[\frac{T_{ij}}{m_{i}}\right]\{y_{j}\}$$
故に、マトリックス [K] の各要素は、

$$K_{ij} = \frac{T_{ij}}{m_i} \tag{60}$$

となる。

燃料集合体の変形曲率により被覆管に生ずる曲げ応 力は(52)式より,任意の点での曲げモーメントが計 算できるので,(34)式において,

$$E\frac{\partial^2 y}{\partial x^2} \cdot \frac{D}{2} = \frac{M}{I} \cdot \frac{D}{2}$$
(61)

と置き換えて計算できる。

6.2.3 案内ばねの取扱い

6.1.3 項~6.2.2 項では,案内ばねのたわみが考慮 されておらず,燃料集合体の上・下端での変位は常に ゼロとしている。これは,運動方程式の解法が複雑に なることを防ぐためと,案内ばねが比較的弱いもので あり,系全体から見ると,その影響が極めて小さいと いう理由による。

本計算コードでは案内ばねの効果を次のモデルで考 慮する。(図-6.5 参照)

- 1) 燃料集合体を1質点と考え,燃料集合体全体の 変位量を計算する。
- 2) 燃料集合体と圧力管は、ばねと衝撃吸収要素で 連結されているものとする。
- 3) 案内ばねには初期たわみがあり,常に圧縮力と

(185)

して作用する。

このモデルで計算される燃料集合体の変位は,各スペーサ位置での燃料集合体のたわみ量と合成され,スペーサと圧力管との衝突の判定に利用される。

燃料集合体の運動方程式は 図-6.5 より,次のよう になる。

図-6.5 案内ばねモデル

 $m\ddot{y} + C\dot{y} + Ky = ma \tag{62}$

ここで,

- m; 燃料集合体の質量
- a; 外力による加速度
- C; 減衰係数
- K; ばね定数 (=2k₀)

案内ばねは上・下タイプレートについており,案内 ばねのばね定数を k_0 とすると $K=2k_0$ となる。案内 ばねの最大変位はスペーサと圧力管の隙間と同一値と する。

(62) 式を 6.2.1 項と同様の方法で解くと,次の様 になる。

1) 初期状態
$$(t=\Delta t)$$

 $\left(m+\frac{C}{2}\Delta t+\frac{\Delta t^2}{6}K\right)y_2$
 $=\frac{m\Delta t^2}{6}\cdot a_2+\left(\frac{m\Delta t^2}{3}+\frac{\Delta t^3}{12}C\right)a_1$ (63)

2) 第2タイム・ステップ以後 ($t=n\Delta t$, n>1)

$$\begin{pmatrix} m + \frac{C}{2} \Delta t + \frac{\Delta t^2}{6} K \end{pmatrix} y_3 = \frac{m \Delta t^2}{6} (a_1 + 4a_2 + a_3) + \left(2m - \frac{2}{3} \Delta t^2 K \right) y_2 - \left(m - \frac{C}{2} \Delta t + \frac{\Delta t^2}{6} K \right) y_1$$
 (64)

(63) 式の y₂, (64) 式の y₃ が求める変位である。 なお, 舶用炉燃料のように燃料集合体の上・下タイ プレート部が格子板で固定される場合には, この計算 を省略することになる。

6.3 数值解析

実験により得られたデータ等に基づき,表-6.1に示

表-6.1 入力データ

	標 準 燃 料 (5F型)	特 殊 燃 料 (4 特型)
燃料集合体単位長重量		
(kg/mm)	0.05772	0.0340
粘性係数 (kg·sec/mm ²)	1×10^{-5}	1×10^{-5}
燃料集合体断面 2 次 モーメント (mm ²)	0.4×10^{6}	0.10×10^{6}
センガ密 (kg/mm ²)	7.800	7,800
スペーサ反発係数	0.40	0.52
圧力管とスペーサの		
隙間 (mm)	1.10	0.90
燃料集合体数	1	1
燃料集合体上下支点 照点 (mm)	4 237	4,208,5
マペーサの粉	12	12
スペーアの数 家内げわのげわ完数	14	14
(kg/mm)	6.5	6.5
燃料集合体固有振動数 実測值 (Hz)	2.48	2.70
スペーサ位置 (mm)		
S 1	482.0	552.0
S 2	882.0	972.2
S 3	1,282.0	1,312.0
S 4	1,612.0	1,572.0
S 5	1,872.0	1,832.0
S 6	2,132.0	2,092.0
S 7	2,392.0	2,352.0
S 8	2,652.0	2,612.0
S 9	2,912.0	2,872.0
S 10	3,172.0	3,132.0
S 11	3,502.0	3,472.0
S 12	3,852.0	3,812.0
スペーサのばね定数 (k	g)	0
0 (120	20
1.0	280	70
1.0	480	120
2.0	400	190
2.0	1.240	310
2.0	2 320	580
タイムメッシュ(ser)	1×10^{-4}	1×10^{-4}
· · · · · · · · · · · · · · · · · · ·	(5×10^{-8})	(5×10^{-3})

表-6.2 計算のケース(地震波)

入力波	振動方向	質点番号	
TAFT	M24-X	50	
	M18-Y	50	
	M24-X	56	
· · · ·	M18-Y	56	
EL CENTRO	M24-X	50	
	M18-Y	50	
	M24-X	56	
	M18-Y	56	

(186)

図-6.6 正弦波の計算例

(187)

図-6.6 正弦波の計算例

(188)

(189)

す入力データのもとでの数値計算を行った。

まず,解析計算コードの検証のため,表-5.1に示す 各ケースについての計算を行い,実験値との比較検討 を行った。

地震波についての計算は,表-6.2に示す各ケースに ついて実施した。

これらの地震波は燃料集合体の上下端位置での圧力 管の時刻歴加速度である。それは原子炉本体を 60 箇 の質点と弾性支持梁で構成した質点集中質量モデルで 近似し、このモデルに建屋基礎で最大 0.25 G の地震 波が加わった場合の応答波形である。

ここで,振動方向 X はプラントの南北方向, Y は 東西方向の振動波形を表わし,質点番号 50 は燃料集 合体の上端位置の圧力管,56 は燃料集合体の下端位 置の圧力管を表わす。 計算結果の一例を図-6.6 および図-6.7 に示す。 図-6.6 は S6, S8, S10 点の相対変位,相対速度, 相対加速度を示したものである。(1)のケースではま ず S6 点で燃料集合体が圧力管に衝突し,最大変位量 は約 1.4mm に達する(スペーサばねのたわみ量約 0.3mm)。S8, S10 点での最大変位量は,約 1.35 mm および約 1.3 mm である。発生する相対加速度値も同 様の傾向を示している。衝突後の相対変位が平坦な (丘または谷の)部分は燃料集合体が圧力管にもたれ かかっている状態に対応している。この部分のスペー サばねのたわみ量は各点とも 0.1 mm 程度であり,そ の押し付け力は 8 kg 前後に相当する。

相対加速度の波形に含まれている高い振動数の小さ な波は、軸方向メッシュ分割点の質量と剛性で構成さ れる系の振動であって、5F型で約 330 Hz,4 特型で

地震	S 6		S 8		S 10		地震	S 6		S8		S 10	
波名	TIME	ACCEL	TIME	ACCEL	TIME	ACCEL	波名	TIME	ACCEL	TIME	ACCEL	TIME	ACCEL
					(300)	(0)			(G)	(Sec)	(G)	(sec)	(G)
r atr X-50	4.1	1.6	3.7	1.3	4.4	1.3	~	4.0	1.4	4.8	-1.4	5.5	1.2
	4.6	1.4	4.6	-1.1	5.5	0.9	56 TF	5.7	-1.6	5.7	-1.7	5.7	-1.1
	5.8	2.6	6.5	-1.8	5.6	-1.3	X	5.8	-1.4	6.6	1.5	6.6	1.7
AF M24	6.6	1.4	6.7	-1.1	6.5	1.2	TAF7 M24	6.1	-1.5	6.7	1.5	7.0	1.0
T/N	6.7	-1.2	6.8	1.6	7.5	-1.1		6.6	1.5	6.9	1.6	7.5	-0.7
	7.0	-1.0	7.6	1.3	7.6	0.8		6.9	1.5	7.9	-1.3	7.9	-0.8
	3.7	1.2	3.7	1.3	4.7	1.7		4.1	1.3	4.1	1.4	4.2	-0.6
TAFT ATR M18Y-50	4.1	1.5	4.1	1.5	5.9	1.6	TR 56	4.6	-1.3	6.7	1.6	6.5	0.9
	5.6	-1.8	5.3	-1.5	6.4	1.8	K-A	6.7	1.5	6.8	1.5	6.8	1.1
	6.7	1.2	6.6	-1.6	6.6	-1.1	TAFT M18	6.8	1.7	6.8	-1.5	7.2	0.8
	6.7	-1.8	6.7	1.1	7.7	-1.0		6.8	-1.3	7.0	1.5	7.7	-0.7
	6.9	-2.3	6.9	-2.8	7.9	1.7		8.6	-1.4	8.2	-1.1	7.9	0.8
ro ATR X-50	2.3	3.0	2.2	-1.9	2.2	-1.1	ro ATR X-56	2.3	-1.2	2.2	-1.8	1.4	0.8
	2.6	1.9	2.4	2.8	2.5	1.1		2.4	1.0	2.4	-1.3	2.2	-1.4
	2.6	-2.0	2.6	-1.8	2.8	-0.6		2.5	-1.2	2.5	1.6	2.5	-0.8
ent 124	2.7	-1.4	2.7	2.0	3.3	0.8	entr 24.	2.6	1.3	2.6	1.5	2.6	0.7
	2.9	1.1	2.7	-1.5	4.3	0.9	ųΣ	2.7	1.5	2.7	1.0	4.3	0.9
	4.5	-1.8	2.9	1.3	5.1	-0.8	뙤	4.5	-1.7	5.1	-1.0	5.1	-0.6
Я	2.2	-2.0	2.0	1.4	1.4	-0.6	~	2.3	1.6	1.9	1.3	2.2	0.7
AT 50	2.4	1.1	2.2	-1.2	2.0	0.5	entro ATI 18Y-56	2.4	-1.2	2.3	1.3	2.5	-0.6
-Y -	2.5	1.0	2.4	-1.4	2.2	-0.8		2.5	1.7	2.5	-1.9	2.8	0.6
enti [18	2.5	-1.6	2.5	1.0	2.5	-0.8		2.5	-1.5	2.5	1.8	4.5	0.8
NC N	3.4	0.9	2.7	1.0	2.7	0.7	Ϋ́Σ	4.5	-1.0	4.3	1.1	5.1	-0.6
<u>н</u>	4.5	-2.2	3.3	0.9	4.3	0.5	<u>н</u>	5.2	1.0	4.5	-1.1	8.9	-0.6

表-6.3 S6, S8, S10 点の相対加速度

約 240 Hz である。

図-6.7 は TAFT 波についての S6 点の時刻歴応答 を示したものである。9 秒間の地震波のうち,初めの 3.6 秒が予震の部分である。燃料集合体は初めの 2.3 秒間は中立の位置にあり,S6 点は圧力管に接触しな い。本震の部分では圧力管の管壁から管壁への相対移 動を繰返し,中立の位置に留まることは殆んどない。 相対加速度は 5.8 秒後に 2.5G に達している。

各地震波について,大きな相対加速度の発生する時間とその大きさを整理した結果を 表-6.3 に示す。最 大値は S6 点で 3.0G (EL CENTRO M24X-50) S8 点 2.8G (TAFT M18Y-50) S10 点 1.8G (TAFT M18Y-50) である。

7. 検 討

7.1 実験値と計算値の比較

7.1.1 正弦波入力の場合

正弦波による振動実験の結果(点線)と相対変位の 計算値(実線)の比較を 図-7.1 に示す。解析計算コ ードによる計算は,圧力管の中心位置で静止状態にあ る燃料集合体に正弦波状の振動外力が圧力管から加え られた場合の時刻歴応答を計算するものであり,2サ イクル目以後ほぼ定常的な振動波形となる。

点線は計算値との差が極力小さくなるような位置に 実験値を重ね合わせたものである。

5Hz, 0.6G のケースでは両波形が極めてよく一致 している。燃料集合体の圧力管への衝突によるピーク 値は実験値より僅かに高いが,その後に生ずる減衰振 動波形,衝突壁面から反対側の壁面への移動の様子な ど,極めてよい一致を示している。

7Hz, 0.6G のケースでは(+)側の両波形が比較 的よい一致を示している。点線の(一)側では圧力管 への最初の衝突が最大変位量より小さな位置で生じて いる。これは最初の衝突に先立ち,他のスペーサが圧 力管に衝突した場合,あるいは,圧力管の斜め方向へ の衝突に起因するものであり,偏心による後者の効果 は計算に組込まれていない。7Hz,0.6G のこのケー スでは,S6 点の斜め方向への衝突とS7 点での圧力管 への衝突がほぼ同時に同程度の衝撃加速度値で生じて おり,実験値は両者の影響を受けている。

9Hz, 0.3G のケースは最も近似度の悪いケースで ある。この振動数では燃料集合体を含む圧力管の共振 と燃料集合体の3次共振の影響を受け, 0.6G の実験 ができなかった。 このケースでは相対変位の最大値が S10 点で生じ, S6 点の相対変位は圧力管への最初の衝突より次のピ ーク値の方が大きい。

図-7.2 は 11 Hz, 0.6G における S6, S8, S10 点 の各波形を比較したものである。S6 点の相対変位は 最大変位量に差があるが,波形は全般によく一致して いる。S8 点では初めの衝突によるピーク値は実験値 とよく一致している。次のピークは実験値で顕著なの に対し,計算値では特に高いピークがなく,圧力管に もたれかかる形で移動している。S10 点での両波形は 極めてよく一致している。

図-7.2(2)の相対速度は S6 点で実験値と計算値が ほぼ一致している。S8, S10 点では計算値が僅かに大 きな値を示すが,その波形は全般によい近似波形とな っている。(注, S6 点の相対速度は縦軸が他の 2/3 に 縮尺されている。)

図-7.2(3)の相対加速度は実験値が比較的滑らかな 曲線を描いているのに対し,計算値は高い振動数成分 を含む凹凸の激しい波形となっている。その原因は軸 方向メッシュ分割点の質量と剛性で構成される系の振 動によるもので,メッシュ分割数の拡大あるいは減衰 項の導入により平滑化が可能である。この高い周波数 成分を取り除いて得られる波形は実験値に近いものに なることが同図から推測される。

相対加速度の最大値は実験値より高い値または同等 の値を示しているが、これもメッシュ分割点の振動成 分が除去されることにより、更に実験値に近づくこと が予想される。(注, S10 点の相対加速度は縦軸が他 の倍に拡大されている。)

加振振幅が小さく, 燃料集合体が圧力管内で"おどる"状態の場合には周期性に欠ける。23 Hz, 0.6 G の 実験値は相対変位が 23 Hz で管壁に衝突する振動を 繰返している。計算値にも 23 Hz の脈動が含まれる が, 燃料集合体は4倍の周期で圧力管内を移動しいて る。図-7.3 参照。

また, 振動数 23 Hz は圧力管の共振点であり, S6 PT~S8PT の点では加振振幅の 4 倍前後の振幅に達 している。(表-5.3 参照)。解析モデルでは, 圧力管 を剛体近似しており, その差は大きい。

表-7.1 に実験値と計算値の比較を示す。同表にお いて、 δ =1.1mm および δ =0.9mm の欄は実験体系 についての計算値であり、 δ =0.55mm 計算値の欄は ふげん炉の公称値に対するものである。

5F型の相対変位および相対加速度について見ると,

(191)

図-7.1 相対変位の実験値と計算値の比較(5F型 S6)

(192)

図-7.3 23 Hz 0.6 Gの相対変位 (5 F型)

次の5ケースで計算値が実験値より小さな値を示して いる。

相対変位 7.0 Hz, 0.3 G, S8 (-0.04 mm) 7.0 Hz, 0.3 G, S10 (-0.09 mm) 9.0 Hz, 0.3 G, S10 (-0.13 mm) 11 Hz, 0.6 G, S8 (-0.05 mm) 相対加速度 23Hz, 0.6 G, S6

このうち相対変位について見ると、いずれも S10 お よび S8 であり、最も振幅の大きい S6 では、常に計算 値の方が大きな値または等しい値を得ている。また、 7 Hz, 0.3 G, S8 および 11 Hz, 0.6 G, S8 での差 -0.04 mm および -0.05 mm は、寸法精度の誤差範 囲内にある。従って、相対変位では S10 での 7 Hz, 0.3 G の -0.09 mm および 9 Hz, 0.3 G の -0.13 mm の 2 ケースで明らかに計算値が実験値を下まわってい ることになる。

相対加速度について見ると,計算値が実験値より小 さいのは 23 Hz の1ケースである。この場合の計算値 は実験値の 0.76 倍である。これは,前述の如く,圧 力管の共振に起因するものであり,その影響について は検討を要する問題である。

以上,正弦波による振動実験データとの比較によ り,次の結果を得た。

- (1) 解析計算値は,相対変位,相対速度,相対加 速度ともによい近似波形を示す。
- (2) 相対変位および相対加速度の計算値は, 耐震

(194)

表-7.1 実験値と計算値の比較(正弦波)

挿		1		5	ミ 験	値 $\delta = 1.1 \atop \delta = 0.9 \text{ mm}$			算值	δ=0.55 mm 計算值		
135	振動数	加速度	計測点	相対変位	相対速度	相対加速度	相対変位	相対速度	相対加速度 (×10 ⁸)	相対変位	相対速度	相対加速度 (×10 ³)
類	(Hz)	(G)		(mm)	(mm/sec)	(mm/sec^2)	(mm)	(mm/sec)	(mm/sec^2)	(mm)	(mm/sec)	(mm/sec ²)
	5.0	0.2	S 6	1.35	158.8	19.6	1.36	95.0	33.8	1.71	89.0	i
	. 7.0	0.3	S 6 S 8 S 10	$1.38 \\ 1.39 \\ 1.38$	$196.0 \\ 176.0$	$28.3 \\ 28.6 \\ 21.7$	$1.38 \\ 1.35 \\ 1.29$	$121.3 \\ 125.0 \\ 112.0$	$78.0 \\ 71.0$	$0.86 \\ 0.71 \\ 0.70$	$95.0 \\ 89.0 \\ 61.0$	$40.5 \\ 41.5 \\ 27.6$
12		0.6	S 6	1.36	206.0	25.0	1.59	192.0	80.0	0.81	206.0	
=1.1 mn	9.0	0.3	S 6 S 8 S 10	$1.30 \\ 1.40 \\ 1.34$	158.8 133.8	$20.6 \\ 35.8 \\ 22.2$	$1.49 \\ 1.41 \\ 1.21$	$177.5 \\ 141.3 \\ 75.0$	$63.5 \\ 49.5 \\ 26.3$	$0.77 \\ 0.71 \\ 0.69$	$ \begin{array}{r} 112.5 \\ 89.0 \\ 63.0 \end{array} $	51.0 42.0 24.8
(9=	11.0	0.6	S 6	$\{1.38\ 1.27$	190.0	27.5	1.63	214.0	86.0	0.88	194.0	
型			S 8 S 10	1.56 1.43	115.0	$\begin{array}{c} 22.0\\ 10.5 \end{array}$	$\begin{array}{c} 1.51 \\ 1.43 \end{array}$	$190.0 \\ 120.0$	69.0 36.5	$\begin{array}{c} 0.74 \\ 0.78 \end{array}$	$\begin{array}{c} 140.0\\111.3\end{array}$	
51	13.0	0.6	S 6 S 8 S 10	$1.40 \\ 1.31 \\ 1.28$	$151.3 \\ 122.5 \\ 137.5$	$22.8 \\ 25.8 \\ 18.2$	$1.64 \\ 1.52 \\ 1.44$	$214.0 \\ 200.0 \\ 142.5$	$ \begin{array}{r} 86.3 \\ 67.5 \\ 54.5 \end{array} $	$0.81 \\ 0.79 \\ 0.78$	$122.5 \\ 135.0 \\ 103.8$	
	23.0	0.6	S 6 S 8 S 10	1.05 1.21	142.5 119.3	$\begin{array}{c} 42.1\\22.0\end{array}$	$ \begin{array}{r} 1.22 \\ 1.21 \\ 1.20 \\ \end{array} $	78.0 95.0 120.0	32.0 25.2 44.5	0.81 0.82 0.86	$224.0 \\ 236.0 \\ 194.0$	
	7.1	0.3	S 6 S 10	$\begin{array}{c} 1.00\\ 0.93 \end{array}$	95.0 76.0	$\begin{array}{c} 11.6\\ 11.8\end{array}$	$\begin{array}{c} 1.18\\ 1.04 \end{array}$	$117.5 \\ 67.0$	$\begin{array}{c} 41.0\\ 28.0 \end{array}$	$\begin{array}{c} 0.82\\ 0.74\end{array}$	87.0 59.0	25.2 9.6
		0.6	S 6 S 10	0.99 0.97	$123.8 \\ 112.0$	$41.5 \\ 15.5$	1.36 1.19	202.0 109.0	88.0 32.8	0.98 0.80	$\begin{array}{c} 167.5\\ 81.0\end{array}$	67,0 18.4
) (i	9.0	0.3	S 6 S 10	0.92 0.88	102.0 85.0	$\begin{array}{c} 19.4 \\ 16.9 \end{array}$	1.21 1.07	$\begin{array}{r}133.8\\65.0\end{array}$	$\begin{array}{c} 44.0 \\ 20.0 \end{array}$	$\begin{array}{c} 0.84\\ 0.73\end{array}$	95.0 56.0	$25.5 \\ 12.3$
:0.9 m		0.6	S 6 S 10	$\begin{array}{c} 1.02 \\ 0.91 \end{array}$	$\begin{array}{c} 128.8\\ 110.0\end{array}$	$\begin{array}{c} 24.4 \\ 22.0 \end{array}$	$1.33 \\ 1.21$	$175.0 \\ 115.0$	$\begin{array}{c} 62.0\\ 31.8\end{array}$	0.96 0.86	143.8 97.0	$\begin{array}{c} 47.5 \\ 21.2 \end{array}$
(ĝ=	11.0	0.3	S 6 S 10	0.78 0.81	$55.5 \\ 89.0$	$\begin{array}{c} 3.6\\18.4\end{array}$	1.26 1.05	$\begin{array}{c}152.5\\85.0\end{array}$	45.5 20.2	$\begin{array}{c} 0.84\\ 0.72\end{array}$	98.0 74.0	$32.0 \\ 15.3$
特型		0.6	S 6 S 10	$\begin{array}{c} 1.01 \\ 0.81 \end{array}$	$\begin{array}{c}131.3\\105.0\end{array}$	28.2 12.3	1.38 1.16	210.0 95.0	94.0 28.8	0.96 0.82	136.3 81.0	$50.0\\18.6$
4	23.0	0.3	S 6 S 10	0.73 0.77	$\begin{array}{c} 105.0\\90.0\end{array}$	$\begin{array}{c} 20.8\\ 12.6\end{array}$	0.95 0.76	$\begin{array}{c} 28.0\\ 41.5\end{array}$	5.9 9.0	$\begin{array}{c} 0.63 \\ 0.61 \end{array}$	$\begin{array}{c} 41.5\\51.0\end{array}$	$10.8 \\ 12.5$
		0.6	S 6 S 10	0.84	146.3	24.6	1.04 0.93	96.0 102.0	72.5 37.5	0.65 0.81	$148.8 \\ 150.0$	80.0 63.0
		0.9	S 10	0.54	137.0	19.9	1.15	190.0	64.0	0.98	156.3	59.0

上ほぼ安全側の値を示す。

- (3) 燃料集合体の圧力管への衝突時に生ずる最大 変位量は全般に大きな値となる傾向があり, 更に,近似精度を高めるためにはスペーサば ね等の取扱いに再考を要する。
- (4) 圧力管の共振点の近くでは、圧力管の剛体近 似の効果が顕著に表われ、計算値が実験値を 下まわるケースがある。

7.1.2 地震波入力の場合

"

地震波の実験および計算で得られた相対加速度の最 大値は,次のとおりである。

計算值 27.5×10³ mm/sec²

- TAFT M24X-50 S8. 実験値 21.5×10³ mm/sec²
 - TAFT M18Y-50 S8
 - $(21.0 \times 10^{3} \text{ mm/sec}^{2})$

TAFT M24X-50 S8)

また, これを地震波別に見ると, 計測点 S6, S8, S10 での最大値の大きさと発生点は 表-7.2 の通りで ある。この表から, 加速度の最大値が発生する位置に ついて見ると,

- (a) 両者が一致するケース 10 ケース
- (b) 他に僅かに高い点があるが,
- 誤差の範囲で一致するケース 5 ケース (c) 一致しないケース 1 ケース 計 16 ケース

となり, EL CENTRO M18Y-56 の (+) 側で最大加 速度発生点が一致しないことを除くと,よく一致する か,または,それに近い値 ($0.5 \times 10^3 \text{ mm/sec}^2$, 2~3% の相対的大小の差)を示す点であることがわかる。

相対加速度の大きさについてもほぼ同様の結果であ り, TAFT M18Y-50 のケースで実験値の方が大きな 値を示している以外は,計算値の方が大きいか,また は等しい値を示している。

表-7.2 相対加速度の最大値の比較(地震波)

	方向	Ŧ	十	1			
地震波名		位置	加速度	位置	加速度	<u>計 异 個</u> 実 験 値	
TAFT	+	S 8	27.5×10 ³ mm/s ²	S 8	21.0×10 ³ mm/s ²	·	
M24X50	_	S 6 S 8	12.5 (12.0)	S 6 S 8	(11.0) 20.0	1.31	
TAFT	+	S 8	14.5	S 8	17.5	0.70	
M18Y50	_	S 8	15.0	S 8	21.5	0.70	
TAFT	+	S 6 S 8	(17.5) 18.0	S 6 S 8	16.2 (10.5)	1 00	
M24X56	-	S 6	19.0	S 6	19.0	1.00	
TAFT	+	S 8	12.5	S 8	10.7	1 99	
M18Y56		S 8	18.5	S 8 S 10	(13.5) 14.0	1.04	
EL CENTRO M24X50	+	S 6	11.0	S 6	14.0	1 22	
	-	S 6	23.5	S 6	19.1	1.20	
EL CENTRO	+	S 8	18.5	S 8 S 10	(18.0) 18.5	1 05	
M18Y50	-	S 8	21.5	S 8	20.5	1.05	
EL CENTRO M24X56	+	S 6	21.5	S 6	16.5	1 00	
	-	S 6 S 8	(12.0) 15.0	S 6	17.5	1.23	
EL CENTRO M18Y56	+	S 8	8.5	S 6 S 10	15.5 (12.5)	1 02	
		S 6	16.0	S 6	15.0	1.03	
						平 均 1.11	