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ABSTRACTS 

An implicit factored method (IFM hereafter for brevity) was used for 
numerically solving the two-dimensional incompressible Navier-Stokes equations 
for flow past a circular cylinder at Reynolds numbers of 10, 20, 40, 80, and 160. 
The pseudo-compressibility was introduced into the continuity equation in order 
that the IFM can be applied to the equations. 

At Re = 10, 20, 40, a:nd 80, steady-state solutions were obtained by iterat-
ing in the time domain. The solutions thus obtained were symmetrical with 
respect to the line of symmetry of the body, and agree well with experimental 
data. Truncation error analysis was made, and the accuracy of the differences 
approximating the derivatives in the governing equations was checked. The 
result showed that the present numerical solutions approximate the real solution 
with good accuracy, and that the truncation errors are sufficiently small. 

At Re = 160, the steady-state solution was not reached, and the flow 
became unstable and unsymmetrical. The vortex shedding which is similar to 
that in the real phenomena was observed, though the present scheme is not time-
accurate. 

Finally, it was concluded that the present scheme is accurate and efficient 
in solving numerically the incompressible Navier-Stokes equations. 
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1. INTRODUCTION 

An Implicit Factored Method is a finite difference scheme originally de-
veloped for numerically solving compressible Navier-Stokes equations. It 
was founded by Beam and Warming 1), 2) and extended to arbitrary grid 
geometries by Steger 3). 

The characteristics of the method are; 
(1) Physical variables such as velocity and pressure are used as dependent 

variables, so that extension to 3D and inclusion of turbulence models 
are easy. 

(2) Since dependent variables are in vector form, it is suitable for high-
speed computation using vector processors. 

(3) Use of body fitted coordinates makes the scheme flexible, and 
application of boundary conditions to bodies of complex geometry 
becomes straightforward. 

(4) Factorization of spatial differencing operators greatly reduces CPU 
time, and makes computation of large dimensions feasible. 

In order to apply the method to a system of partial differential equa-
tions, the presence of a time derivative of each dependent variable is neces-
sary. Therefore, a time derivative of pressure is artificially added to the con-
tinuity equation, thus introducing "pseudo-compressibility" to the incom-
pressible Navier-Stokes equations 4),14),15). This makes the system hyper-
bolic, and application of the implicit factored method becomes possible. 
Non-conservation form is used in spatial differencings. Conservation form is 
dominantly used with compressible Navier-Stokes equations. The main 
reason for that is that the conservation form has shock-capturing property in 
case of transonic and supersonic flow, because it inherently satisfies the 
Rankine-Hugoniot jump relation. However, in incompressible flows, no 
shock wave arises, and, as shown in Chapter 6, the non-conservation form 
has better numerical stability property than the conservation form. 

2. GOVERNING EQUATIONS 

Non-dimensional form of the two-dimensional incompressible Navier-
Stokes equations are 

au Ou au 0p 1 （砕u 評u
—+ U —+ v―=  -—+—+ 
at 0x ay ax Re ax2 ay2) 

(2-1) 

av av av op 1 /32v 詑v
—+ u —+ v—= -—+ -(--＋一）3 t..,. ox.. oy -oy. Re ¥ ox2. oy2 (2-2) 
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ap _/au av —+ P(—+—)= 0 at,~¥ax ay 

UooL 
where Re= 

V 

(2-3) 

, where non-dimensionalization is made using Uoo, freestream speed, L, repre-
sentative length of a body, and p, the density of the fluid. That is, 

三’三x*，p=p[y:: 

t =，X =---， y =-
LIUOO L L  

(2-4) 

, where* denotes dimensional value. In the following computations, the dia— 

meter d of a circular cylinder has been chosen as L. 
The first term of eq. (2-3) is artificially added to the original continuity 

equation for incompressible flow, in order to make the system hyperbolic. 
The addition of the term makes the fluid compressible, thus introducing 
"pseudo-compressibility". 

(3in the equation is a positive constant. In case of computing a steady-
state flow by interating in the time domain, the pseudo-compressibility 
introduces no error in the converged solution, where all the a/at terms 
vanish, including the added ap /at term. Use of large value in(3allows time-
accurate solution, but it makes the system of equations stiff 4). 

The above system of equations are written in vector form as shown 
below. 

Qt+ Fqx + Gqy = CR (Qxx + Qyy) (2-5) 

where ー
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(2-6) 

The eq.(2-5) is in non-conservation form. The advantage of non-
conservation form will be described in detail in Chapter 5. 

3. COORDINATE TRANSFORMATION 

In order to compute a flow around a body of arbitrary shape, it is con-
venient to use body-fitted coordinates through coodinate transformation in 
the governing equations. It makes application of boundary condition easy 
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and straightforward, thus making computational scheme simple and flexible. 
The coordinate transformation is defined by, 

lに靡，yy)）

t = t 

(3-1) 

, where（t r/) denotes computational plane and (x, y) denotes the original 
physical plane. 

Partial differenciation operators in (x, y) plane are replaced by those in 

(~, r/) plane. 

I °x ＝もat+ nふ
ay =もat+ r/y ari 

where 

も＝ Jy11 ，も＝—Jx11

T/x = -Jyt, T/y = lxt 

J= l~x も＝
1 

nx ny I:： ::I 
J is the Jacobian. Thus, combining eqs. (3-2) and (3-3), 

I °x = a祖＋ b祝
ay = cat + da11 

where 

a=Jy11, b=-lYt, c=-Jx11, d=lxt 

(3-2) 

(3-3) 

(3-4) 

(3-5) 

Further, second-order differenciations are, by repeatedly using eq. (3-4), 

Oxx = Ox（む）＝ （aot + bo11) (aot + bo11) 

= a2 ou + 2abot11 + b2 01111 + (aat + ba11)ot + (abt + b%）祝 (3-6)

Oyy = c2on + 2cdatri + d2otri + (CCt + dcri)祖＋ （叫＋ ddふ (3-7)

Notice that the above relations are in non-conservation form. 
The governing equations (2-5) are transformed using eqs. (3-4) through 

(3-7). The final form is, 

qt + Aqt + Bq17 = CR (aqn + bqn + cqT)T) +如＋年）

where 

[A =aF+ cG 
B =bF+ dG 

(3-8) 

(3-9) 
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＾ a=a 2 +c 2 

＾ b = 2(ab + cd) 

6 =炉 +d2

d = aat + bari + cct + dcri 

e =abt + b妬＋叫＋ ddri

at = J tYri + fYtri 

ht = -(ftYt + Jyn) 

CE = -（JEXn + Jxtn) 

dt =JEXt +Jxtt 
1 

J=― 
s 

Jt = -J悶
Jn = -J梵

an =JnYn +Jynn 

妬＝ー(Jnyt+ Jytn) 

Cn = -（JnXn + Jxnn) 

dn =JnXt +Jxtn 

(3-10) 

(3-11) 
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(3-12) 

In actual computation, the equations are discr~tized in（t r,) plane. ~
and r,-derivatives in the equations are replaced by differences. Increments 

in ~— and r,-directions are set to be constant and chosen as unity. At each 

node in (~, r,) plane, the values of x and y are given, thus defining body and 
grid geometry, and the values of the geometrical parameters given in eqs. 

(3-10) through (3-12) are calculated. 

4. APPROXIMATE FACTORIZATION 

[Pade time differencing] 

A time derivative in eq. (3-8) is replaced by a Pade time differencing. 2) 

aq 1 △ 1 
=-・  

at At 1+0A • -L,.  2 
qn + 0 [ (0 ---;.-）△t,△t2] (4-1) 

where qn : q at timestep n. 
△ :difference operator. 

△qn =qn+l _ qn 

〇 :parameter
0 = 0 ; Euler explicit. 
0 = 1/2 ; Trapezoidal. 

0 = 1 : Euler implicit. 

The differencing operator eq. (4-1) is second-order accurate when 0 = 0.5, 

(4-2) 

(339) 
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and first-order accurate otherwise. 
Substituting eq. (4-1) into eq. (3-8), 

△qn + 0△t［△（Aqt)n十△(Bqn)n

-CR (a△心＋ b△qnEn+ c△qnnn+ d△q; + e△qn'TI)] 

=—△ t[An石＋B%勾ー CR (a咋＋6叫＋ cq品＋碕＋硲）］

1 
+ 0[(0--）△往，△t3]

2 
(4-3) 

[ Local linearization] 

Nonlinear terns in the above equation are processed using the concept 

of "local linearization", as follows. 
a aA a 

△(Aqと）キーー (Aqt)△t=――△tqt+A--（qt)△t 
O t Ot Ot 

aA & .  _.  a, aq 
=—• tqt +A- （-—△ t) キ ~qt +A△qt a t ---, I; -- a~'at 

=A△q+A△qt (4-4) 

where 
―

―

 

0

0

0

 

utvt 

c
c
o
 

utvt 

a
a
o
 

―

―

 ＿＿
＿ ^

A
 

(4-5) 

Similarly, 

叫）キB△q+B△qn

where B=［にn悶
0 0 

(4-6) 

―

―

 

0

0

0

 

(4-7) 

Substituting eqs. (4-4) and (4-6) into eq. (4-3), and setting h = 0△t, 

k+h[A" +A"i 評＋ ＾ a l+h［が＋An因―CR（打戸＋ d訂
+ h[B"+バ-CR` 叶`△qn (4-8) 

=—• t[Aqt + BqTj -CR (iiqtt + bqa11 + cqT/11 + dqt +年）］n+ hbCR△qt11 

[ Explicit treatment of a mixed derivative] 

The mixed derivative in RHS of the above equation is explicitly treated 

(340) 



by shifting the timestep from n to n-1. 

△心＝ • qt~l + 0［△t2] (4-9) 

The above treatment introduces an error of 0（△t2), and does not degrade 
the solution accuracy. 

[ Approximate factorization] 

The spatial defferenciation operators in LHS of eq. (4-8) are factored as 
follows. Using eq. (4-9) at the same time, 

/1+h[A+A½ —cR(a~`>I
評

x ! 1 + h[B + B五CR（情$+e~ ）叶△qn

=—• t[Aqt + Bq11 -CR(aqu + bqt11 + cq1111 +如＋年］n+ hb^△q糾
(4-10) 

This factorization introduces an error of 0（△t2), thus does not degrade the 
formal solution accuracy. 

By defining an intermediate variable△q*, 

ぶ叫I+h[iJ + Bf心（C竺豆上川△qn両両2.---a,,., (4-11) 

eq. (4-10) is decomposed into two sets ODEs (ordinary differential equa-
tions). That is, 

~-sweep 

!l+h [A +A二 CR(ii 竺— +di)］ l △q*a~'°'l\'. ¥" a炉 a~

=—• t[Aqt + Bqri -cR (aqH + bqtri + cqriri +如＋年）］n
4 

1 1 0 沢 n+hbC心心—―(Wt 一— +wri-;;-)qn (4-12) 
16 紺 naが

The last two terms in the above equation are added 4-th order numerical 
dissipation terms. In general, the addition is necessary at high Reynolds 
numbers in order to damp numerical disturbances of short wavelength. 
71-sweep 

By definition, 

!l+h[il+Bf CR(C~+e~ l+h[il+B玩伍(COn2豆玩）］j年＝△q* (4-13) 
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Eqs. (4-12) are solved in ~—direction together with appropriate boundary con-
ditions, and then, eqs. (4-13) are solved in fl-direction. This factorization 
greatly reduces computational work from that of solving an unfactored 2-D 

boundary value problem. 

After solving ~- and fl-sweeps, the values of q at next timestep is, 

qn+l = qn十△qn (4-14) 

[ Spatial differencings] 

To solve eqs. (4-12) and (4-13), spatial derivatives are approximated by 

central differencings. Setting •~=• Tl= 1, 

a 1 

a~ 2 
ー＝ー(Etl-E内＋ 0［年］

a2 
雨＝Etl-2Eo＋配＋ 0［△炉l

犯
＝ 

明
Et2 -4年＋ 6E0-4年＋Eげ＋0［△炉l

where E『:shiftingoperator. 

E『qij= qi+m,j 
(i: numbering inおーdirection)

(j: numbering in 17-direction) 

Eta-differencings are defined similarly. 

[ Matrix coefficients] 

~-sweep 

Substituting eq. (4-15) into eq. (4-12), 

＊ ＊ ＊ 
Lii△qi-1,i +M吟qii+Nii△qi+1,j =ftii 

where 
1 d 

L••= —h[-A + （a --
＂ 2 2 

)C叫 ij

恥＝I＋叫＋ 2aC砂i
1 d 

Nii=h[-A -（O+-
2 2 

）CR] ii 

ft ii = [RHS of eq. (4-12)] ii 

11-sweep 

Lii△qLi-1+Mii△qii+Nii△qi,i+1 =fnij 

(4-15) 

(4-16) 

(4-17) 

(4-18) 



where 
1 e 

馴＝ h［2B + (c -2)CR ] ii 

M;j = 1 + h(B + 2ccR)ij 
1 e 

Nii=h[-B-（C+-
2 2 

）CR ];j 
(4-19) 

f11ii =△q; 
Eq. (4-16) or eq. (4-18) forms a block tridiagonal system in general, and is 
solved efficiently using the Thomas algorithm. 

5. VON NEUMANN STABILITY ANALYSIS 

In this chapter, it will be shown that the non-conservation differencing 
f onn used in the present scheme possesses good stability property, using a 
model scalar equation. 

A model scalar equation used is, 

au ―=-L U a t 
(x,y) (5-1) 

where 

『(x,y)＝̀ -̀R̀＋ a22) 
F, G, R are constants. 

(5-2) 

R>O 

(1) Stability in (x, y) plane. 
Using Pade time differencing (4-1) in eq. (5-1), 

[1 + 0• tLcx,y)] • U= —• tL(x,y)U (5-3) 

Spatial differencings for x-derivatives are central differencings similar to 
eq. (4-15). 

a 1 
＝ 

ax 2△x 
(£;1 -E；り

詑 1

涵＝（ム）2(£;1 -2Eo + E;1) 

where E;1 U(x, y) = U(x + m△x,y) 

Y-differencings are defined similarly. 

(5-4) 

An assumed form of solution U is, according to the von Neumann's 
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method 16) ， 

ぴ＝ Uo(x,y) + un 

where I炉三汗 exp[i(miふ＋心k△y)]

げ＝ tvn-1= r2 vn-2 =... 

L(x,y)U。=0

び： valueof U at timestep n 

u。:steadystate solution 

u n : assumed periodic disturbance 

t: amplification factor per each timestep 

RHS of eq. (5-3) becomes, using eqs. (5-4) through (5-6), 

[RHS of eq. (5-3)] =—• tL (x,y)び＝ー(Re+ilm)un 

where (Re三△tR("t託＋ K§的＞〇

Im三△t(FK1acos0x + GK2(3cos0y) 

sin 0 x,.. _ sin 0 a=。x ，に。 y
y 

0x三
k1△x 

2 
'Oy三

K2△y 

2 

(5-5) 

(5-6) 

(5-7) 

(5-8) 

The amplification factor t becomes, substituting eq. (5-7) into eq. (5-3), 

1 -(1 -0) (Re+ ilm) 
t =（5-9) 

1 + 0 (Re+ ilm) 

If ltl < 1, the scheme is stable and the periodic disturbance diminishes. If 
ltl = 1, it is neutrally stable. If ltl > 1, it is unstable and the periodic dis-
turbance grows unboundedly. 

From eq. (5-9), the condition ltl < 1 leads to the following condition for 
0. 

1 Re 
0>--

2 - Re2 +Im2 
(5-10) 

Using the relation Re > 0 shown in eq. (5-8), it may be stated that the con-
dition ltl < 1 is satisfied for all possible values of△t,K1ぷ2，△xand△y if 

1 
0こ―

2 



That is, the above scheme is unconditionally stable if 0 ~ 1/2. 

(2) Stability in（t 11) plane 
The eq. (3-1) is transformed into (t 11) plane using coordinate trans-

formation defined by eqs. (3-1) through (3-7). 

au 
~ = -L(L 11)U (5-11) 
a t 

where 

゜゜（評 a2 02 ^ a a  
L(t,n)=A面＋B盃―R(ii記＋6函ご年＋d面＋｀）

A三 aF+cG

B =bF+dG (5-12) 

Using Pade time differencing (4-1) in eq. (5-11), 

(1 + 0• tL(L'TI)] • U= —• tLet,'Tl)U (5-13) 

By assuming a solution of the form similar to eq. _ (5-5), 

[RHS of eq. (5-13)) =—• tL(L'TI)U = -(Re+ ilm)un (5-14) 

where 

IRe三△tR(dKf託＋ bkma{3co迅 CO叱＋c夢）

Im=△t[ (A -Rd)K1 acos0 t + (B -R枷 2{3co出］

Further, using eq. (3-10), 

Re 

△tR 
―=  （a2K炉＋2abK10'.1'2{3cos0tcos011 + bK梱）

+ (c2Ki託＋ 2cd1<.四噸cos0tco叱＋d％釈）

~ (a2Kta2 -21abK1aK2{3|＋ b％駅）＋ （．．．．．） 

= (laK1al -lbK2{3|）2 + (lcK1al "."'" ldK2{3|）2 

~o 
Therefore, 

Re~O 

Amplification rate tis again given by eq. (5-9). That is; 

(5-15) 

(5-16) 

The present scheme is unconditionally stable under arbitrary coordinate 
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transformations if 0 ~ 1/2. 

In the above analysis, the real part Re in eq. (5-15) has no contribution 
from convection terms of the original equation eq. (5-1). Therefore the 
positiveness of Re is assured under arbitrary coordinate transformations, 
which is the key to the unconditional stability above mentioned. On the 
other hand, the use of conservation form instead of non-conservation form 
in spatial differencing in the transformed（t T/) plane brings contribution 
from convection terms into Re. Therefore, the positiveness of Re is not 
assured, and the scheme has poorer stability property in general. 

The above analysis does not take into account two factors which are 
included in actual scheme shown by eqs. (4-12) and (4-13). They are, 
explicit treatment of a mixed derivative, and approximate factorization. The 
stability analysis on the above two factors are described in detail in ref. 5). 
According to the analysis it may be stated that explicit treatment of a mixed 
derivative restricts the stability range, but approximate factorization recovers 
most of the stability range lost Aby explicit treatment. 

It shoul~ be noticed that b in eq. (3-10) coincides with Fin eq. (Al-2). 
The ref ore, b becomes zero if the grid is orthogonal. In that case, the mixed 
derivative term becomes zero, therefore its explicit treatment does not affect 
the stability property or time-accuracy. 

(3) Stability with added 4-th order numerical dissipation term 
4-th order numerical dissipation terms are added to eq. (5-13). 

[1 + 0△tL(t,ri) ］△U= —△tLu,ri)ぴ—N(Lri)Un

where 

N(t,n)三宝(Wt`＋叫五） 叫＞ 0,Wri > 0 

(5-17) 

(5-18) 

t-derivative is approximated using eq. (4-15), and 11-derivative is approxi-
mated similarly. 

Substituting into eq. (5-17) an assumed solution of the form similar to 
eq. (5-5), and setting 0 = 1 for simplicity, 

1-Rn 
f= 

1 +Re+ ilm 

where 

Re, Im : given by eq. (5-15) 
1 

Rn=ー（WtKi砂＋ W祁却）
16 

From eq. (5-19), 
2 

炉＝
(1 -Rn) 

(1 + Re)2 + /m2 

(5-19) 

(5-20) 

(5-21) 



In order that ltl ~ 1 for all possible values of Re(> 0) and Im, Rn must 
satisfy the following condition. 

(l-Rn)2~1 • O~Rn ~2 

The above condition is satisfied if, 

0 ~ Wt ~ 1 and O ~ w11 ~ 1 

(5-22) 

(5-23) 

Therefore, it may be stated that the present scheme with added 4-th 
order numerical dissipation terms is unconditionally stable if 0 = 1 and if eq. 
(5-23) holds, again under arbitrary coordinate transformations. 

6. TRUNCATION ERROR ANALYSIS 

In this chapter, a method is given for estimating the order of accuracy 
and truncation errors, once computed steady state solution is given. 

(1) Steady state equations 

The steady state part of eq. (4-10) gives, 

Aqt + Bq11 -CR(fiqn + bqe11 + cq1111 + dqt + eq11) 

+ 1 (wrqtttt + w祁 nnnn)＝ 0 
16△t 

(6-1) 

Three components of the above equation are given respectively as fol-

lows. 

x-momentum eq. 

1 1 
叫＋ VUy+ Px + (-~ Uxx) +(-— Uyy) 

① ② ③ 
Re Re 

＋ 

叫 Wn④ ⑤ 
unn + ~ unnn11 = o 

16△t16△t 
(6-2) 

⑥ ⑦ 

y-momentum eq. 

1 1 
uvx + VVy + Py + （---Vxx)＋ （---Vyy) 
① ② ③ Re Re 
Wt w ④ ⑤ 

VEEEE + 
n 

16△t16△t vnnnn =0 
(6-3) 

⑥ ⑦ 
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continuity eq. 

w 
伽 X +釦y+ 

Wt  - .  WT'l 
PEEEE+pnnnn=0 

16△t16△t 
① ② 

⑥ ⑦ 

(2) General form of differences and truncation errors 

(6-4) 

A derivative of a certain spatial function f is expressed as a sum of its 

difference and truncation error. Denoting difference as * and truncation 
error as r,,J, 

f 
~ * 1 

E ＝かftwhere fと三ー (£;1-E内f,7E手一
1 * 
fitt 

2 6 

* ＊ 1 
fn =fn ＋凡 wheref~ 三ー (£;1 -E内f,7n手一

1 * 
fnnn 

2 6 

(6-5) 

(6-6) 

* ~ * ＋1 几＝f~ + lu where f~ 三 (£;1 -2Eo + E古f,凡手一1 * 
12 

f皿 (6-7)

f 
＊ 

nn =fnn + 7nn where f＊三（£;1-2Eo + E;l)f, 11111 = --f.;; 1 * 
nn 12fnnnn 

(6-8) 

* ~ 和＝fi11 + f t11 (6-9) 

* 1 +1 -1 +1 -1 ~ 1 
where ftri 三— (E[J. -Et-...)(£~... -£~...), f = -~ ＊ ＊ 4 (Et.~ -bt -) (b11 --.t,11 -), f = -B (ft111111 + ftn11) 

＊ 
f;n三 (£(2-3£;1 + 3Eo -E古f(2こi印 M-2) (6-10) 

扁三(£(2-4£(1 + 6£0 -4犀＋Et-2)/(3 ~ i ~ IM-2) (6-11) 

扁l 三~(E; 1 -£; 1) (£ ;2 -3£ (1 + 3Eo -Et 1)f (2 ~ i幻 M-2)(6-12)
2 

＊ 
Similarly with ft.111111. 

(3) Spatial parameters 

Using eqs. (6-5) through (6-12), differences and truncation errors of 

spatial parameters are given as follows. 



* ~ Xt = Xt + Xt 

* ~ Xri = X11 + X11 

* ~ Xtt = Xtt + Xtt 
＊ 

Xtri = Xtri + Xtri 

Xnn ＝心＋Xnn

Similarly with y. 

(6-13) 

Following eqs. (6-14) through (6-21) are given using eqs. (3-10) through 
(3-12). It is assumed that truncation error is small compared with diffe-
erence, and only the first-order terms are picked up. 

s = S* + § where l s* ＝x:Yn* -Xǹ  

~ ＊～ ~ * ＊~  ~ ＊ 
s =xt Yn+ xtYn -XnYt -XnYt 

* ~ St = st・ + St 

~ * ～ ～ * ＊～ where st =x + ～ ＊ 
ttY11 + XttY11 + Xt Ytri + Xtyt~ 

＊ ～ ～ ＊ ＊ ～ ～ ＊ 
-(xi叫't+XtriYi +X~Yti +・XriYtt> 

* ~ 
Sri = S~ + Sri 

~ * ～ ～ * ＊~  ～ * 
where ST/ = xi叫'n+ xEnYn + xtYnn + xtYnn 

J=J 
＊ 

* ~ ～ ＊ ＊~ ~ * -(x~T/y t + XT/T/Yt + X17 Y t11 + X叫'En)

～ ～ 
+J wherC J = -（J*)2亙
* ~ J t = 1; + It where ~ = -J* (J苅＋幻吋）

J n 
* ~ ～ ~ ＊ =J +J * *～ 
n n where Jn = -J (J Sn + 2JSn) 

~ ～ ＊～ ～ ＊ a= a*+ a-where a-= 1・・i'T'/ + ly~ 

Similarly with b, c, d. 

* ～ ~ *～ ~ ＊ ＊~  ～ * 
at =at +at where at =JtYn +JtYn +J yEn +JyEn 

Similarly with ht, Ct, dt, an,妬， Cn,and dn. 

(4) Differenced form of steady state equation 

(6-14) 

(6-15) 

(6-16) 

(6-17) 

(6-18) 

(6-19) 

(6-20) 

(6-21) 

Using the results shown in the previous two sections, each term of the 
components of the steady state equations (6-2) through (6-4) is expressed as 
follows. 
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x-momentum equation 

① UUx = [UUx]＊＋砿 (6-22) 

where l [UUx ]＊ = u(a＊叶＋ b＊叶）

～ ＊～ ～ ＊ ＊～ ～ ＊ 
uux = u (a・ u-r + a ui + b---u-T'/ +bu~) 

② vuy = [vuy]*＋況 (6-23) 

where I [VUy ]＊ ＝V(C＊叶＋ d＊叶）

~ *~ ～ ＊ ＊～ ～ ＊ 
vuy =v(c・u-r + iui +d・u-11 +du~) 

* ~ ③ Px=px +px (6-24) 

where lp:=aW+ b鸞
~ *～ ～ * ＊~ ~ ＊ 
Px = a ・Pt + ci Pi + b. PT/ + b p~ 

//----～＝---
④ 

1 1 * 1 
- -
Re 

Uxx = [ --:::.--Uxxl ・ + [ --::-Uxx] 
Re Re 

(6-25) 

where 
1 * [-— Uxx] * =—上＊2 ＊ ＊ ＊ ＋ b*2 * 
Re Re 

[a・ ;t;ut・t + 2a・・・b-.. Utri + b ·.Gu~ri 

* ＊ ＊ ＊ ＊ ＊ ＊ * ＊ ＊ 
+ (a ・ai + b ·a~)ui + (a "bi+ b ・ bi叫］

//---、------［一上Uxx] ＝—上 ←＊  ＊2~ 
Re Re 

［加 auEE+a utt 

* *~ *～ ＊ ～ ＊ ＊ 
+ 2(a ・b ・u-t11 +a・ b ui11 +ab・ ui11) 

*~ ＊ 
+ 2b. bu~11 + b *2~ Unn 

＊ ＊ ＊ ＊ ～ 
+ (a・ai + b ·a~)u~t 

*~ ~ * ＊~ ~ * ＊ 
+ (a ・ ar + aai + b ・ i11 + b a~)ui 

+ (a＊吋＋ b*叶）；n

+ (a *'j;t＋国＋ b冗＋E応）叶］

1 _ 1 -* ~ 
⑤ -— Uyy = [ -~ Uyy] ~ +[-— Uyy] (6-26) 

Re Re Re 

---―-- --ク1 * 1 
where [ -~ Uyy ] ・ and [ -~ Uyy ] are expressed by changing a to c and b 

Re Re 

to din eq. (6-25). 
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⑥ 
WE 叫＊

uun = 
16△t16△t 

uun 

Estimation of truncation error is not necessary. 

(6-27) 

① 
Q n Q n 

16△t 
Unnnn = u 

16△t nnnn 

Similarly with y-momentum equation and continuity equation. 

＊
 (6-28) 

(5) Differences and truncation errors in steady state equations 

Using the results shown in the previous section, derivatives in the steady 

state equations are approximated by differences, producing truncation 

errors. 

x-momentum equation 

* ＊ ＊ 1 * 1 * [uux] ・ + [vuy] ・ + p; +［-―Uxx] ・ +［-― Uyy] 

ぷぶ③＊ Re Re 
④＊ぷ

［応］
～ 
① 

+ ~ U1:1:1:1: + ~u 
16△t 

註註
16At 

r,1111r, = [residual] 

⑥ 
＊ 

⑦ 
＊ 

／ 
//-------

1 
UUx VUy Px [ --::: Uxx] ［一丙□yy]
~ ～ ~ 
① ② ③ 

Re ~ 
R ⑤ 

y-momentum equation 

* ＊ ＊ 1 * 1 * [uvx] ・ +[vvy] ＋凡＋［一―-Vxx] ＋ ［ ---Vnn] 
* ＊ * ① ② ③ 

Re Re 
④＊ ⑤＊ 

Wt TT*. Wt * 
+ --VEEEE + v = residual 

16△t16△t 
r,rir,r, = [residual] 

⑥ 
＊ 

⑦ 
＊ 

／ ／ 
［可］尻[-一Vxx] ［-―Vyy] 
～ ～ 
② ③ 

Re Re 
～ 
④ 

～ 
⑤ 

continuity equation 

*. " *. Wt 釦x＋防＋ P 
* Qn*  
呻十— P = ［residuall * ＊ 16△t16△t nmm 

① ② ⑥＊ ⑦＊ 

--- ＿ - --

伽X {3Vy 
～ 
① 

.、一一―

② 

(6-29) 

(6-30) 

(6-31) 
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Residuals in the above equations show how closely the given numerical 
solution reaches a steady state, and truncation errors show how accurately 
the differenc~s approximate the derivatives. The terms with --below the 
equations show that the truncation error arises in the term above it. The 
layout of the terms in the above three equations coincides with that in Table 
8-1, which will be shown in Chapter 8. 

(6) Use of the same differencing operators in metrics and flow variables 

In this section, it will be shown that; 

No truncation error arises under arbitrary coordinate transformations 
if the same differencing operators are used in metrics and flow variables, 
and if the flow variables are linear with x and y. 

Let us suppose that a flow variable f which represents u, v, and pis linear 
with x andy. 

f三 ax+(3y (6-32) 

where a,(3are constants. 

at 
Hereafter, in this section, derivatives are denoted as —— ,and differences 

ax 
are denoted by subscripts, such as fぷ

i) 1st derivative 
From eq. (6-32), 

町
= a 

ax 
(6-33) 

~- and r,-differences of the linear function f defined by eq. (6-23) are ex-
pressed as below, under the assumption that the same differencing operators 
are used in f, x, and y. 

ft = O'.Xt +{3~ t,  f 11 = ax 11 +{3四

%-difference off is then expressed, using eqs. (3-3) through (3-5), 

fx = 
Yri (axt + f3Yt) -yt(axri + f3Yri) 

= a 

Therefore, 

fx＝竺
ox 

XtYri -XriYt 

(6-34) 

(6-35) 

(6-36) 

That is, x-differencing off produces no truncation error. Similar results may 
be obtained with y-differencing. 



ii) 2nd derivatives 
From eq. (6-32), 

a21 

ax 2 
=O 

2nd difference off with respect to xis expressed using eq. (3-6), 

fxx =a加＋ 2.abft11+ b2伝＋ （aar + ba孔ift+ (abr + bb孔fn

↓ 

信吋fu-2YrY贔＋y加＋J(S~Yr- SrY~)(ftYs -f,山）

+ Yt11(f~Yn + f11Yd -Y1111九ft-Ytt乃fn

(6-37) 

(6-38) 

2nd diff ere nee off is decomposed in to two parts using eq. (6-32), that is, 

fxx = (O'.X +{3lY)xx = O'.Xxx +{3Yxx 

Substituting x and y respectively in place off in eq. (6-38), 

Xxx_ =... = 0 
J2 

Therefore, 

詑f
fxx =-―=  0 ax 2 

and 
Yxx 
J2 

=... = 0 

Similarly with [y, [yy, and fxy. 

(6-39) 

(6-40) 

(6-41) 

The use of the same differencing operators on metrics and flow variables 
is very important for two reasons. One reason is that it assures that the dif-
ferenced form of equations approximates the original differential equations 
more accurately as the mesh becomes finer and the flow variables can be 
more accurately regarded as linear locally. The other is that the uniform 
flow away from the solid body is accurately expressed using non-uniform 
mesh, because all the flow variables are linear (i.e., constant) there. 

7. BOUNDARY CONDITIONS 

(1) Grid system 

The grid system used in the present calculation is an "0-grid". The 
physical (x, y) plane is mapped onto the computational (t T/) plane by 
making a cut along rJ-axis, as shown in Fig. 7-1. The surface of the body in 
question is mapped onto the bottom boundary in (~, T/) plane. 
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?

M

 ,J 
Top boundary 

ご：ndaryl|| | | | | | | |：しguhntdary

1 2 i IM-1 IM 
Bottom boundary 

Physical plane Computational plane 

Fig. 7-1 0-grif system. 

(2) ~-sweep 

Boundary conditions on left and right boundaries are needed in ~-sweep. 
There the periodic boundary condition is imposed because the boundaries 
form a single cut in (x, y) plane. That is, 

Top boundary 

Unitorm tlow 「一Extrapolation, Uniform tlow 
1 Jes lee 1 

」M>, ~1v1~ ;::--

；；；芍
℃ u I I I I I I I I I I I I I I I.~ 
C る・

.::'. C 
てコ

コ o l o o 

゜, •こ •こ 9

0 QJ...., 

....,n. I I I I I I I I I I I I I I 1u..c 
芯 ．ロ
-」 a:

1 
1 2 i IM 

Solid wall 

Bottom boundary 

Fig. 7-2 Boundary conditions. 

Xl+k,i = XIM+k,i, Yl+k,j→IM +k,i 

(k = 0,士1,士2,...)

q1+k,i = qIM+k,i ，△q1+k,i ＝ △qIM+k,j 

(k = 0,士1,土2,...)

(7-1) 

(7-2) 

Periodicity of the intermediate variable△q * is easily shown using eqs. 
(4-11), (7-1), and (7-2). That is, ・ 

＊ ＊ 
△q ・ 1 +k,j =△q. IM+ k J (k = 0,土1,士2,...) (7-3) 

Using eq. (7-3) as boundary conditions on left and right boundaries, the 
matrix coefficients shown in eqs. (4-16) and (4-17) form a block periodic 
tridiagonal system. 

(354) 
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＊ 

l [fft11 2 
M1 N1 L1 

1 1 凶凶1 ； L2 M2 N2 

゜
＝ (7-4） 

＊ 

゜
LrM-2 MrM-2 NrM-211凶 I＊M-2 fnM-2 

N1M-l L1M-l M1M-l △qIM-1 ftIM-1 

Solution algorithm for block periodic tridiagonal system is available, 
though it is about twice as costly as that for ordinary tridiagonal system. 

(3) 11-sweep 

i) Bottom boundary 
Solid wall boundary condition is imposed on entire bottom boundary. 

They are, using eq. (Al-12), 
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(7-5) 

～ ～ ～ ～ 
, where d, b, c, and d are defined in eq. (Al-13). 17-differencings on 
the bottom boundary are expressed as, 

|9 =En+1 -E° 

盃和＝E;2_ 2E;1 + Eo 

(7-6) 

Differenciating the above equation by t, and approximating it by 
difference using eq. (4-15) plus the following formulas on bottom boundary 
result in 

△Ql =a1B +BB△Q2 +CB△q3 (7-7) 

, where 

ro-
―写

B
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゜～ ～ 
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ii) Top boundary 
The top boundary is a closed loop which surrounds the body with a large 

radius. The uniform flow boundary condition is imposed in most parts, 
except for the wake region, where the flow is not uniform and the extra-
polation boundary condition is imposed instead. The wake region is defined 
as Jes ~ i ~ lee, where Jes and lee are properly chosen to cover the wake 
region. 

That is, 

Uniform flow (1 < i ~ = Ies-i or lee+ 1 < i ~ IM) 

q;,JM = m (7-9) 

Differenciating the above equation by t and approximating it by diffeences, 

△QJM = al T +B五QJM-1+ C五qJM-2

, where 

a1T= [~],BT=[~ ~゜~]'び＝ [~ ~ ~] 
Extrapolation (Jes~ i ~ Jee) 

The extrapolation condition is given by, 

oq 
—= 0 ox 

Differencing the above equation by t, 

狐 q
at=O 

Using eq. (3-4) and explicitly treating the ~-differencing, 

△吐＝—f △qtl

(7-10) 

(7-11) 

(7-12) 

(7-13) 

(7-14) 

Therefore, eq. (7-10) is again used with the equation below instead of eq. 
(7-11). 

T aJM al=- —• 
n-1 

bJM 
qtJM, BT= 

―

―
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0
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Eq. (4-18) together with eqs. (7-7) and (7-10) form a block tridiagonal 
system. 

叫＋L困 NがらCB

L3 M3 N3 

゜
△q2 

△q3 

゜
LJM-2 MJM-2 NJM-2II図JM2

LJM-l+NJM-1び M狐 1+NJM-1BT△qJM-1

f'T'/2-L四 l
B 

f'T'/3 

f咽JM-2

fTIJM-l -NJM-l al 
T (7-16) 

4-th order numerical dissipation terms in ~-sweep are differenced near 
top and bottom boundaries as follows. Near bottom boundary, that is, at 
j = 2, 

a4 

aがf2 =f4 -4f3+6f2 -4fl +fo 

Linear extrapolation is used for giving f. 

fo = 2f1 -f2 

Then, 

沢

aが f2 =f4 -4f3+5f2 -2fl (7-17) 

Near top boundary, that is at j=JM-1, using extrapolation f1M + 1 = f1M, 
沢

ゴ fJM-1 = -3fJM + 6fJM-l -4fJM-2 + fJM-3 (7-18) an 

(4) Initial conditions 

Since steady-state solutions are pursued in the present context, initial 
conditions are arbitrary in principle. However, they must be compatible 
with the boundary conditions eqs. (7-2), (7-5), (7-9), and (7-12), because an 
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updated q, which is the sum of q at a previous timestep and△q, must satisfy 

the given boundary conditions at each timestep. The initial conditions thus 

chosen are as follows. 
i) u 

Uij=0 (1 ~ i ~ IM and j = 1, 2, 3) 

u;j = 1 (1 ~ i ~ IM and j = JM-1, JM) (7-19) 

j-3 

l/ JM -4 uii =~ (1 ~i~/M and 4~j~JM-2) 

, where, in the last equation, u is linearly interpolated at intermediate values 

ofj. 
ii) V 

Vii=0 (1 ~ i ~IM and 1 ~ j~JM) 

iii) p 

Pii=0 (1 ~ i ~IM and 1 ~i ~JM) 

(5) Updating 

i) q(i, j) (1 ~心/M-1 and 2 ~心JM-1)
Given by solving Eqs. (7-4) and (7-16). 

ii) q(i, 1)(1 ~心/M-1)
Bottom boundary condition is used, i.e., eq. (7-7). 

iii) q(i, JM) (1 ~心/M-1)

(7-20) 

(7-21) 

In the uniform flow region, the top boundary condition eq. (7-10) is 

used with eq. (7-11) or (7-13). 

In the extrapolation boundary condition region, the updated△q in 

the inner region is used to determine△q on the top boundary, in order 

to satisfy exactly the eq. (7-12) at each timestep. That is, 

a 

2 
―-(• Qi+l,JM —• Qi-1,JM) + b(AQi,JM —• Qi,JM-1) = 0 

(Jes~ i ~ Jee) 

The above equations are solved using the tridiagonal solver. 

iv) q(IM, j) (1 ~心JM)
Periodic boundary condition is used, i.e., eq. (7-2). 

After going through i) to iv), eq. (4-14) is used for updating q. 

(7-22) 



8. COMPUTED RESULTS 

(1) Grid 

The grid used in the following computations is shown in Fig. 8-1. A 

direct numerical method 7) was used for the grid generation. 
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Fig. 8-1 (a)-(c) Grid around a circular cylinder. 

A circular cylinder of unit diameter forms an inner boundary. The outer 
boundary forms a circle whose diameter is 40 times that of the inner circle. 
The number of grid points are 81 inおーdirectionand 41 in r,-direction. The 
grids are clustered near solid wall and in the wake region to obtain high 
resolution there. The minimum r,-spacing adjacent to the body is 0.01. 80 
points are placed uniformly on the solid wall. A cut along r,-axis is placed 
on the line of symmetry at upstream. It is doubly defined as i = 1 line and 
i = IM line. The grid is made orthogonal near solid wall so that the boundary 
condition for pressure derived in the Appendix may be used. 

（ 2) Parameters and conditions in computation 

The condition shown in Section 7-(4) was used for initial conditions in 
all the computations shown in the present paper. The boundary conditions 
used are as shown in Chapter 7. 

The parameter 0 for Pade time differencing shown in eq.(4-1) was set as 
unity (Euler implicit), and Wt and w'T) for numerical dissipation terms shown 
in eq.(4-12) were both set as 0.80. 

(3) Convergence criteria 

Computation was continued until a convergence parameter reached a 
certain value. The convergence parameter €it is defined as shown below 8). 
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€it= 

Max( （△u)2 +（△v)2 
Max[~ 

Max(I△pl) 

Max(p）-Min(p) 

△t 
(8-1) 

(4) Computed flow fields 

Flow velocity vectors at Re = 40 are shown in Fig. 8-2 (a) and (b). The 
flow is completely symmetric and a twin-vortex is formed aft of the body. 
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Fig. 8-2 (a), (b) Flow velocity vectors. Re= 40. 

A perspective view of the pressure distribution at Re = 40 is shown in 
Fig. 8-3 (a) and (b). No oscillation is observed in the distribution, since 4-th 

order numerical dissipation terms are added to the original equations (see eq. 

(4-12)). 

I ／ン—-
一-
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// / ／  一
----

Fig. 8-3 (a), (b) Pressure distribution. Re= 40. 

(5) Time history of convergence parameter 

The time history of the convergence parameter _€it at Re = 40 is shown 
in Fig. 8-4. Eit is defined in eq.(8-1). It shows exponential decay both in 
cases△t = 0.5 and△t = 1.0, though short wave oscillations appear on the 
curves. At△t = 1.0, Eit reduces to about 1.0 x 10・6 after 200 timesteps. 
This means that the computed values will change 0.1% at most in the next 
1000 timesteps. In a timestep△t = 1.0, a flow particle travels a distance 
equal to the diameter of the cylinder with a freestream speed. Therefore, it 
may be stated that the solution with△t = 1.0 is converged after 200 time-

10 
::-2 

Eit 

10 
-4 

10 
-6 

゜
100 200 
number ot timesteps Nt 

300 400 

Fig. 8-4 Convergence parameter €it. Re= 40. 
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steps. The CPU time required per timestep is 25 seconds, using the Fujitsu 
FACOM M-180IIAD computer at the Ship Research Institute. 

The number of timesteps needed for reducing Eit to a specified value at 
△t = 1.0 is about half of that at△t = 0.5. However, the computation at△t= 
2.0 showed poorer convergence than△t = 1.0. Therefore, it may be stated 
that practically the maximum allowable timestep△t is about 1.0 in the 
present computation. 

(6) Truncation error analysis 

The truncation error analysis was made using the method shown in 
Chapter 6. 

Before analyzing the flow field, the accuracy of the method and the 
computer code was checked, using the grid shown in Fig. 8-1. First, a model 
function which is linear with x and y was used. The results satisfied eqs. 
(6-35) and (6-37) with an accuracy of more than four significant figures. 
Second, a model function which is quadratic with x and y was used. The 
second differencings thus obtained agreed with the exact values with an 
accuracy of approximately three significant figures. 

The distribution of the points where the analysis was made is shown in 
Fig. 8-5. The results are shown in Table 8-1 (a)-(e). The numbers 1 -7 in 
the table correspond to those in eqs. (6-29) -(6-31). * denotes difference, 
and,...._, denotes truncation error, both of which are estimated using the 
method described in Chapter 6. The magnitude of the terms representing 
differences and truncation errors in the table is normalized using the term of 

Fig. 8-5 Spatial point distribution for truncation error analysis. 



Table 8-1 Truncation error analysis. Re= 40. 
(a) Point A i = 15, j = 3 

廿廿骨伶骨心廿谷髯骨曇む怜骨骨忙伶骨仔曇忙褐＊心得骨曇得贄得骨骨付骨曇骨怜骨伶餐仔り怜什怜廿心＊件伶骨侶骨曇曇骨贄や怜骨伶骨曇得＊＊＊贄脅怜怜伶骨伶怜脅廿骨曇

1•15 J•3 
X-M□MENTUN EcUATION. 
'① ② ③ ④ ⑤ ⑥ ⑦ ¥ -0~510 0.523 -LOO 0.706D-Ol 0.917 0.102D-04 -0.141D-03 

,,...,. -0.267D-02 0.269D-02 0.967D-02 0.138D-02 0.521D-02 
MAX• -1.3205 AT L• 3 SUM•-0.96910D-03 

Y-MOMENTUN EcUATION. 

① ② ③ R ⑤ ⑥ ⑦ * -0~558 o:456 -o:-437 -o:-460 LOO -0~221D-05 -0.193D-03 
~ -0.514D-02 0.444D-02 -0.355D-01 -0.710D-02 0.125D-Ol 

MAX• O. 77077 AT L• S SUM..0.63175D-03 
CUNTINUITY EcUATION. 

① ② ⑥ ⑦ 
* -I.oo 1.00 -o:-6a7D-os o:4e1D-04 
,.._.. -0.524D-02 0.972D-02 

MAX• -3.6412 AT L• 1 SUM= 0.12530D-03 
廿心什怜骨伶骨廿井忙心訃廿り停怜や谷井停骨 1111骨i"＂＂"＂＂＂"""＂""＂"＂"""＂"＂""＂＂＂＂"""""＂"＂"＂"＂＂＂＂""""＂"""""＂ t

(b) Point B i = 28, j = 10 

骨骨曇付骨伶曇＊＊骨曇骨怜怜骨柑訃曇心僻曇訃＊＊骨伶得骨骨骨侶心訃曇骨骨着骨訃訃心骨訃曇り廿忙訃曇鋳骨怜件什曇侶曇訃せ脅訃廿什脅4t忙仕骨什廿伶什々怜仕廿廿うtサ

1•28 J•lO 
X-M□MENTUN EcUATl□N. 

① R ③ ④ ⑤ * 0.539D-Ol -0.5060-01 LOO -0.460D-Ol -0.957 
~ 0.9110-03 -0.1860-04 0.3120-02 o.451D-o3 -o.Js40-02 
MAX• 0.24815 AT Ls 3 SUM• 0.860900-04 

Y-M□MFNTUN EcUATION. 
① ② ③ ④ ⑤ * 0.297 0.1010-01 0.675 0.1550-01 -1.00 

~ o.s200-02 o.3740-03 o.2s90-01 o.16ao-02 o.s1so-03 
MAX•-0.554960-0lAT L• 5 SUM• 0.877580-04 

CONT I NU I TY EcUA Tl ON. 
① 2 

* 1.oo -？．oo 
,...., 0.1100-01 -0.3510-01 
MAX•-0.865800-0lAT L• 2 SUMa-0.46554D-06 

⑥ ⑦ 
-O.lOOD-03 -0.103D-04 

⑥ ⑦ 
-0.134D-04 -0.162D-04 

⑥ ⑦ 
0.'.:>78D-04 0.866D-04 

怜骨脩什訃伶曇曇仕仕仕灼仕仕曇飴骨鋳什怜怜伶心件忙仕費訃怜骨骨修朴怜曇せ岱怜訃髯忙什什伶廿廿井仕件岳訃廿訃訃々心 iit脅lt!HHHHt訃訃サ什什仕訃什廿心訃什ヤ訃

(c) Point C i = 36, j = 20 

怜骨曇俗伶廿仔心谷怜骨伶骨伶曇褐曇得仔怜怜停曇怜停骨怜骨骨停什曇廿怜停心賛曇伶賛忙忙什骨怜＃廿廿得髯廿伶怜曇骨伶曇什怜骨什4"t怜it怜骨怜什得伶骨怜心骨骨伶心怜

1•36 J•20 
X-MOMENTUN EcUATinN. 

① ② ① ④ ⑤ ⑥ ⑦ * 0.129D-Ol -0.948D-Ol 1.00 -0.19!1D-01 -0.899 0.406D-04 0.245D-04 
~ -o. 7820-04 0.163D-04 Q.160D-02 -0.137D-03 0.282D-03 

MA~• 0.64025D-OlAT L• 3 SUM•-0.17126D-04 
Y-MOMENTUN EcUA Tl ON. 

① ② ③ ？ ⑨ ⑥ ⑦ * -0. 470 0. 192 0. 274 -. oo o.996 0. 207D-02 -0. 895D-03 
~ -0.193D-02 0.952D-03 -0.110 -0.124D-01 0.307D-Ol 

MAX•-0.17031D-02AT L• 4 SUM• 0.11277D-04 
CONTINUITY EcUATION. 

① ② ⑥ ⑦ * r.oo -1.00 -o:129D-04 -o~386D-04 
~ -0.609D-02 -0.497D-02 

MAX• 0.38823D-OlAT L• 1 SUM..0.30767D-05 
怜骨伶曇情心侶曇伶骨曇曇伶骨曇曇骨●伶曇骨骨骨骨心曇骨曇●骨鋳曇怜骨仔曇骨谷件得伶仔贄心と’""＂＂＂＂"""＂＂"＂＂"""＂＂"＂"＂"""""＂＂””"し
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(d) Point D i = 15,j = 30 

井件岳心i"＂”"＂＂＂＂"＂”"＂"＂＂＂＂＂＂＂"＂＂＂＂＂＂"＂＂＂＂＂＂＂＂＂""＂＂"""＂＂＂＂＂＂＂"""＂"＂＂"＂""＂＂"＂＂"＂＂"""令

1•15 J•30 
X-M□MENTUN EQUATION. 

① ② ③ R ⑨ ⑥．⑦  * I.oo -0.979D-Ol -0:905 0.351D-Ol -0.311D-01 o;nao-02 0.164D-02 
~ -0.311D-Ol -0.375D-04 0.133D-01 0.987D-03 0.135D-03 

MAX• 0.60946D-02AT L• 1 SUM• 0.34722D-04 
Y-MOMENTUN EcUATION. 

① ② ③ R ⑨ ⑥ ⑦ 
% -o:987 -0.128D-Ol 1.00 0.316D-03 -0.327D-03 -o:736D-04 -0.7360-04 
~ -0.339D-02 0.478D-04 0.121D-02 -0.8620-04 -0.294D-04 
MAX=- 0.16983D-OlAT L..3 SUM• 0.10747D-05 

CONTINUITY EcUATl□N. 
① R ⑥ ⑦ * o:-996 -1.00 -0:171D-04 O. 7680-04 

,.._ -0.310D-Ol 0.373D-02 
MAX=-0.58566D-02AT L• 2 SUM..0.23485D-04 

怜曇伶骨怜怜廿廿井停心心仕忙怜伶心廿什心件怜什件｀＂さ什井褐仔仔忙廿廿骨廿廿曇心骨骨心件得骨仔り件廿怜＊骨怜曇褐骨曇心曇曇怜り褐骨侶怜曇曇停曇曇忙伶什侶り仕りと

(e)PointE i=39,j=30 

怜骨骨怜怜什什怜什谷サ廿件忙怜仕心怜礼怜骨骨件褐件廿仕什什骨停骨骨怜忙怜廿骨件骨骨や井廿伶什什忙井件骨心心件件件が"""＂＂＂＂"＂""＂＂＂＂＂＂＂＂＂＂＇

1•39 J=30 
X-M□MENTUN EcUATl□N. 

① ② R R ⑨ * 0.429 -0.157 0.724 0.735D-02 -1.00 
~ 0.400D-02 0.521D-03 0.5880-02 0.1.34D-03 -0.4960-02 
MAX"'-0.36732D-OlAT L• 5 SUM•-0.57529D-04 

Y-MOMENTUN EcUATION. 

① ② ① R ⑤ * 0:.343 1.00 -0:.340 -0~1050-01 -0.991 ~ 0..386D-02 0.69.3D-02 0.146D-01 -0..300D-03 0.345D-02 
MAX• O. l.3795D-02AT Le 2 SUM•-0.11232D-05 

CONT I MU ITY EcUA Tl ON. 

① R * 1.00 -1.00 
,.._. 0. 934D-02 -0. 693D-02 
MAX=-0.7917.30-0lAT L• 2 SUM= 0.15206D-04 

⑥ ⑦ 
-o-:-926D-03 -0.272D-03 

⑥ ⑦ -o;463[)-03 -0.163D-02 

⑥ ⑦ 
-o;632D-06 0.135D-03 

怜仔廿怜廿什廿忙什伶井廿仔忙怜心忙曇心骨怜怜心骨什什` ＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂＂”＂＂＂＂＂＂＂＂"＂＂＂＂＂""＂""＂ t

maximum absolute value in each equation, and the maximum absolute value 
is shown as titled "MAX=". "L=" shows the number of the term used for 
normalization. "SUM=" denotes [residual] shown in eqs. (6-29) -(6-31). 
It is the sum of the terms representing differences in the equations. If a 
steady-state is completely reached, the sum must be zero. The term is not 
normalized, therefore the ratio SUM/MAX indicates how closely the solution 
obtained reaches steady-state. 

The point A is in the shear layer attached on the solid wall. All the 
physical terms in the three equations are large. 

The point B is in the free shear layer shortly after separation. The x-
momentum equation shows that the pressure gradient is balanced by the 
shear-stress term. Since the direction of the flow is approximately parallel 
with x-axis, all the terms in the y-momentum equation are small. 

The point C is close to the core of the wake bubble. All the terms are 

small. 
The point Dis located away from the cylinder and the wake region. The 

flow is almost irrotational, and all the viscous terms are small. 
The point E is in the wake region away from the cylinder. Though all 



57 

the terms are small, the viscous terms are relatively large, which is in contrast 
to the point D. 

Finally, considering all the results shown in Table 8-1, it may be stated 
that: 

a) The present computed results may be considered as the steady-state 
solution with a good accuracy. 

b) The truncation errors are very small compared with the main dif-
f erenced terms. Therefore, the current differenced form of equa— 

tions approximates the true differential equations accurately. 
c) The 4-th order numerical dissipation terms explicitly added to the 

original equations are so small that the accuracy of the solution is 
not degraded by them. 

(7) Comparison with experiments 

Pressure distribution on the cylinder at Re = 40 is shown in Fig. 8-6, 
together with the experimental data by Grove et al 9) and Thom 10). The 
computed values show good agreement with experiments, especially with 
Grove's results. The reason may be that the Grove's results were obtained 
under smaller wall effect than Thom's, and that the computation was made 
under even smaller wall effect. The wall effect p紅ameterd/h in the figure 
is such that d is the diameter of the cylinder and h is the distance between 
upper and lower surrounding walls. 

Computed pressure distributions on the cylinder at Re = 10, 20, 40, and 
80 are shown in Fig. 8-7. All the computations were made using a timestep 
△t = 1.0. The computed results are symmetric, and no sign of asymmetry or 
instability is observed. 

The front stagnation pressures are shown in Fig. 8-8. The solid line in 
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the figure indicates theoretical values derived by Grove 9), using the concept 

of the boundary layer. The present computations show reasonable agree-

ment with the experiments, and show good agreement with theoretical 

values by Grove especially at higher Reynolds numbers, where the boundary-

layer concept becomes valid. 
The rear stagnation pressures are shown in Fig. 8-9. The computed 

results show good agreement with Grove's results, where a splitter plate was 

used in order to stabilize the flow and maintain the symmetry of the vortex 

wake. No such device was needed in the computation, since numerical dis-

turbances are much smaller than those in the real flow. 
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Drag coefficients are shown in Fig. 8-10. Tritton's experimental curve 
11) is shown by a solid line. The computed drag coefficients were obtained 
using the method described in Appendix A2. They agree well with the 
experimental curve at Re = 10, 20, and 40, though the curve is slightly 
higher. The reason for the deviation at Re = 80 may be that the computed 
flow is completely symmetric, while oscillations appear in the real flow. 

Pressure drag coefficients Cn,P are compared with several experiments 
in Fig. 8-11. The computation of C叩 wasmade by picking up only the 
contribution by pressure in eq. (A2-6) in Appendix A2. The agreement is 
again good. 

Separation angle a is shown in Fig. 8-12. o: is defined as an angle from 
the aft-end point. They show good agreement with experiments. 

Wake bubble length XL is shown in Fig. 8-13. XL is defined as the 
distance between the wake stagnation point and the cylinder center, follow-
ing Grove 9). They are in excellent agreement with the experiments by 
Taneda 13) and Homann 12). The Grove's results do not agree with the 
other data, which may be due to the wall effect. 

◊Taneda,d/h 0.03 
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Fig. 8-13 Wake bubble length. 

(8) Results at Re= 160 

Computation was made at Re= 160. This time, the steady-state was not 
reached, and the flow became unstable and unsymmetrical. It is shown in 
Fig. 8-14. The vortex shedding which is similar to the Karman vortex in the 
real flow is observed. This shows the potential of the present computational 
scheme to time-accurate problems, though anything further cannot be stated 
in the present context. 
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Fig. 8-14 Unsteady vortex shedding at Re= 160. 

9. CONCLUSIONS 

There are two ways for evaluating a computed result. One is to compare 
it with experiments. The other is to estimate the magnitue of numerical 
errors arising at various stages in the computation and to assure that the 
solution obtained is reliable. 

The present work is aimed at fulfilling the latter requirement as much as 
possible. The truncation error analysis in Chapter 6 together with the com-
puted results demonstrates how accurately the finite difference equations 
approximate the original differential equations. 

The agreement with measurements is very good, in general. It seems to 
the present author that some of the measurements are affected by the wall 
effect, which causes discrepancy from the computed results. 

The accuracy and efficiency of the present implicit factored method for 
solving the incompressible N avier-Stokes equations have thus been success-
fully demonstrated. Future tasks are, the extension to three-dimensional 
problems, modification to time-accurate scheme, and inclusion of a turbu。

lence model for solving high Reynolds num her flows. The extension to 
three-dimensional flows is straightforward, because the present scheme is 
written in vector form. The approximate factorization is also valid in three-
dimensions. Unsteady flows will be solved using the present scheme, if one 
uses a simple corrective procedure adopted by Steger et al. 4) for the con-
tinuity equation. The easiest way of including a turbulence model is to use 
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the eddy viscosity model 3). The inclusion of a more complex turbulence 
model, such as the k-e model, is possible, because the added equations for 
k and e have forms similar to the momentum equations. k and e are simply 
added to the vector q. 

Therefore it may be stated that the implicit factored method has the 
potential for solving more complex flows in the future. 
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APPENDIX 

Al Boundary condition for pressure on solid wall 

(1) First fundamental quantities of(~, r,) curves (ref. 6) 

Mapping of (x, y) plane to (t r,) plane is defined by 

I t = E(x,y) 

I 11 = 11(x, Y) 

、
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,
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n
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9
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•1J 

or 
(3-1) 

First fundamental quantities E, F, and Gare defined as 

記＝ Ed拌＋ 2Fd~dr, + Gdr,2 

where ds: line element. 

E=xf + Yf 
F三 XtX11+ YtY11 

G三 x奇＋y号

(Al-1) 

(Al-2) 

H三J瓦ご戸＝一
1 

J 

Line elements ds ~ along ~一axis and dsT'I along f/-axis, and an angle w 

between them are (Fig. Al-1), 

dst ＝喜 d~

dsT'I＝喜dn (Al-3) 

F l 
cos w = ． 

’ 
sm w= 

冨 JJ詞

？
 

Fig. Al-1 Line elements dS ~ and dST'J 

(2) x-and y-momentum equations 

Original momentum equations (2-1) and (2-2) are transformed into 1st 

(373) 
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and 2nd components of eq. (3-8), using eq.. (3-1). 
Boundary conditions for u and v imposed on solid wall are, 

u = v = 0 on solid wall 

Using the above condition in the transformed momentum equations (Fig. 
Al-2), 

1 
apt + bp7) =--（b五＋三＋糾）

Re 

1 
cpt + dpn = --（6vtn + Cvn7) ＋叫）

Re 

(3) Momentum equation in direction normal to~一axis

Using eq. (Al-3)，が， whichis a unit vector along炉＿axis,is 

t e,; = ( Xt 恥

喜’言）

e叫aunit vector in direction normal to ~-axis, is then, 

Yt X 
e n 三 (e~,e~)=(-~, -¾) t 

J'《
The momentum equation in en direction is obtained as 

[momentum eq. in en direction]＝蝶 [x-momentum eq.] 

n + e; [y-momentum eq.] 

Therefore, 

JF 

汀
Pt +J亨

l yt Xt =Te［一喜＝（叫＋叫＋糾）＋言＝ （凡＋叫＋出）］

(Al-4) 

(Al~5) 

(Al-6) 

(Al-7) 

Let a coordinate (m, n) be such that m aligns with ~ and n is normal to 
them, and that both m and n have scale of unity (cf. Fig. Al-2). Then, 

l dm ＝喜dと＋汀cosodn 

dn =y'csin w d'f/ 

↓ 
JF lとn=—汀

'fin = J汀

(Al-8) 

(Al-9) 
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Fig. Al-2 Orthogonal coordinate (m, n) 

Using the above equation, n-derivative of p is, 

Pn = ~nPt + r/T/PT/ = [LHS of eg. (Al-7)] 

~, m 

(Al-10) 

Therefore, LHS of eq. (Al-7) represents normal derivative of pressure, which 

is in agreement with the derivation of the equation. 

In the computation shown in the following chapter, The grid is made 
orthogonal on solid wall. That is, 

F = XtXri + YtYri = 0 ←► G =・O 

Using the above relation, the eq. (Al-10) is finally reduced to, 

Pn＝上
Re 

釦 nn+tvnn +Cun + J%） 

(Al-11) 

(Al-12) 

～ where I a三― ytJ

J
 t

 
x
 

-＝
 ~

b
 

xrixn + YriYn 
で三ytJ[ 2 2 +J(XtYnn -Y凸）］

Xf +Y~ 
～ 
d 三—XtJ [ ］ 

A2 Drag and lift coefficients acting on a solid body. 

As shown in Fig. A2-1, a force vector /Pn acting on a surface of unit 
length is 

(Al-13) 

/pn =[ ::J = [::: :: ] [：こ］
岳＋ f)l1e~

＊ 

* au 
-P + 2µ —⇒F 

ax * 
Ou* Ov * Ov* n 

μ（戸＋戸),-p*+2μ1711e;

(A2-l) 
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IPn 

Fig. A2-1 Force IPn acting on a solid body 

, where e~ and e; are components of a unit normal vector ~n given in eq. 
(Al-6) and* denotes dimensional values. 

A total force IF is given by integrating /Pn all along the solid surface. 

IF= [ ;;g] = f~ ds* (A2-2) 

By non-dimensionalizing the physical quantities in a way shown in eq. 

(2-4), the drag and lift coefficients are given as follows. 

CD= 
Drag 

2 

1 pu弘＝ 2加(-p＋嘉翌）心式（悶＋長）]ds(A2-3) 

CL三 Lift =2I[e:上（逆十竺)+e;(-p+主竺 lds 
上pu虹 Re ay ax Re oy) 
2 

(A2-4) 

The components of vector en are given by 

点＝—
Yt 

J 'e; = 
Xt 

J (Al-5) 

In order to integrate in the computational plane, x and y derivatives are 

replaced by~- and T/-derivatives. That is, 

Ox = aat + b祝， Oy= C祖＋d0n (A3-4) 

Since ~-axis aligns with the solid body surface, the line element ds on the 
solid surface is equal to dSt given in eq. (Al-3). 

ds={不可d~ (A2-5) 



Using the solid wall boundary condition u = v = Ut = vt = 0, and sub-
stituting eqs. (Al-5), (3-4), and (A2-5) into eqs. (A2-3) and (A2-4), 

◎ =2 J [PYt十ii(x~ + 2yf)Un -XtYtVn) ] d~ 

CL = 2 J [ -PX t + i I -x t汽u0+ (2.xf + yf)v" j d~ 
Re 
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