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ABSTRACTS

An implicit factored method (IFM hereafter for brevity) was used for
numerically solving the two-dimensional incompressible Navier-Stokes equations
for flow past a circular cylinder at Reynolds numbers of 10, 20, 40, 80, and 160.
The pseudo-compressibility was introduced into the continuity equation in order
that the IFM can be applied to the equations.

At Re = 10, 20, 40, and 80, steady-state solutions were obtained by iterat-
ing in the time domain. The solutions thus obtained were symmetrical with
respect to the line of symmetry of the body, and agree well with experimental
data. Truncation error analysis was made, and the accuracy of the differences
approximating the derivatives in the governing equations was checked. The
result showed that the present numerical solutions approximate the real solution
with good accuracy, and that the truncation errors are sufficiently small.

At Re = 160, the steady-state solution was not reached, and the flow
became unstable and unsymmetrical. The vortex shedding which is similar to
that in the real phenomena was observed, though the present scheme is not time-
accurate.

Finally, it was concluded that the present scheme is accurate and efficient
in solving numerically the incompressible Navier-Stokes equations.
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1. INTRODUCTION

An Implicit Factored Method is a finite difference scheme originally de-
veloped for numerically solving compressible Navier-Stokes equations. It
was founded by Beam and Warming 1), 2) and extended to arbitrary grid
geometries by Steger 3).

The characteristics of the method are;

(1) Physical variables such as velocity and pressure are used as dependent
variables, so that extension to 3D and inclusion of turbulence models
are easy.

(2) Since dependent variables are in vector form, it is suitable for high-
speed computation using vector processors.

(3) Use of body fitted coordinates makes the scheme flexible, and
application of boundary conditions to bodies of complex geometry
becomes straightforward.

(4) Factorization of spatial differencing operators greatly reduces CPU
time, and makes computation of large dimensions feasible.

In order to apply the method to a system of partial differential equa-
tions, the presence of a time derivative of each dependent variable is neces-
sary. Therefore, a time derivative of pressure is artificially added to the con-
tinuity equation, thus introducing ‘“pseudo-compressibility” to the incom-
pressible Navier-Stokes equations 4),14),15). This makes the system hyper-
bolic, and application of the implicit factored method becomes possible.
Non-conservation form is used in spatial differencings. Conservation form is
dominantly used with compressible Navier-Stokes equations. The main
reason for that is that the conservation form has shock-capturing property in
case of transonic and supersonic flow, because it inherently satisfies the
Rankine-Hugoniot jump relation. However, in incompressible flows, no
shock wave arises, and, as shown in Chapter 6, the non-conservation form
has better numerical stability property than the conservation form.

2. GOVERNING EQUATIONS

Non-dimensional form of the two-dimensional incompressible Navier-
Stokes equations are

ou . ou R ou op N 1 (E)Zu N 62u> 21)
—_— _ V— F —— JR— —— _— -
ot u ox oy dx Re \9ax2 oy?2

ov . ov N ov op . 1 (azv N 62V> (2-2)
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where Re = —

, where non-dimensionalization is made using U, freestream speed, L, repre-
sentative length of a body, and p, the density of the fluid. That is,

u* v P*
U=——,v= , =
t* x* y* (2-4)
= Y X = , =
L/Uso L 7L

, where * denotes dimensional value. In the following computations, the dia-
meter d of a circular cylinder has been chosen as L.

The first term of eq.(2-3) is artificially added to the original continuity
equation for incompressible flow, in order to make the system hyperbolic.
The addition of the term makes the fluid compressible, thus introducing
“pseudo-compressibility’’.

B in the equation is a positive constant. In case of computing a steady-
state flow by interating in the time domain, the pseudo-compressibility
introduces no error in the converged solution, where all the d/d¢ terms
vanish, including the added 9p/dt term. Use of large value in 8 allows time-
accurate solution, but it makes the system of equations stiff 4).

The above system of equations are written in vector form as shown
below.

4r + Fgx + Gqy = Cr(qxx tqyy) (2-5)
where _1_
Reo o)
u uol vVoo 1
q=|v|, F=Elouo|,G=|lov 1|, Cr=|lo —o0 (2-6)
p B oo oBo Re
o 0 o

The eq.(2-5) is in non-conservation form. The advantage of non-
conservation form will be described in detail in Chapter 5.

3. COORDINATE TRANSFORMATION
In order to compute a flow around a body of arbitrary shape, it is con-

venient to use body-fitted coordinates through coodinate transformation in
the governing equations. It makes application of boundary condition easy
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and straightforward, thus making computational scheme simple and flexible.
The coordinate transformation is defined by,

£=§x,y)
n=n(x,») (3-1)
t =t

, where (£, ) denotes computational plane and (x, ¥) denotes the original
physical plane.

Partial differenciation operators in (x, y) plane are replaced by those in
(¢, n) plane.

Iax =&, 0t +nxan

(3-2)
3y =£y0¢ +my0n
, where,
Ex =Jyn ’ Ey =_'an
==Jy: ,ny =Jx
Nx Ye Ny 1; (3-3)
J= & &) =
Xx‘- x,,
Nx My
yt yn
J is the Jacobian. Thus, combining egs. (3-2) and (3-3),
0y =adg +bo
oo R (3-4)
0y =cdg +do,
. where
a=Jy,, b=-Jy,, c=-Jx,, d=Jx; (3-5)

Further, second-order differenciations are, by repeatedly using eq. (3-4),

Oxx = 0x(0x) = (ad; + b0,) (ad; + bay)
=a2dy; + 2abdy, + b2y, + (aag + bay)d; + (aby + bb,)0, (3-6)
dyy = €20y + 2cddgy + d20gy + (cop +dcy)dy + (cdy +ddy)d,  (3-T)
Notice that the above relations are in non-conservation form.

The governing equations (2-5) are transformed using egs. (3-4) through
(3-7). The final form is,

q: + Aqy + Bqn =Cr(aqg + bqgg + Z’q,m +dq; +eqy) (3-8)
where

A=aF +cG

B =bF +dG (3-9)
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a=a®+c?

b = 2(ab + cd)

c=b2+d?

- (3-10)

d =aa; + ba, + ccy +dcy

e =aby + bb, + cd¢ + dd,

ag =Jgyn + Iy an =Jnyn +JIygq

by =-Ueye + V) by = =Ty + Jyen)

ce = =(Jpxy +JJXgn) Cp ==nXqy +JIxpnn)

dg =Jexg + Jxy dy =JInxg + Jxeq (8-11)

1

/= S S=EXeVg = XnVg

Jg = -J%S; Sg = XggVn ¥ XeVgn = (Xgn Vg + XnVer)

Jn = ‘JZSn Sn = Xgn¥n + XeVnn = (Xnn¥e + XnVen)
(3-12)

In actual computation, the equations are discretized in (£, ) plane. §-
and n-derivatives in the equations are replaced by differences. Increments
in £- and 7-directions are set to be constant and chosen as unity. At each
node in (¢, n) plane, the values of x and y are given, thus defining body and
grid geometry, and the values of the geometrical parameters given in egs.
(3-10) through (3-12) are calculated.

4. APPROXIMATE FACTORIZATION

[Padé time differencing]

A time derivative in eq. (3-8) is replaced by a Padé time differencing.?
0q 1 A n 1

— = . 4" +O[(0 - — )AL, A2 4-1
or At 1+0Aq L 2) ] 41

where g" : q at timestep n.

A : difference operator.
Ag" =q"1 - q" (4-2)
0 : parameter
6 =0 ; Euler explicit.
6 =1/2 ; Trapezoidal.
6=1 ;  Euler implicit.

The differencing operator eq. (4-1) is second-order accurate when § = 0.5,
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and first-order accurate otherwise.
Substituting eq. (4-1) into eq. (3-8),

Aq" + 0At[A(Aqy)" + A(Bg,)"
- Cr(aAq"y; + bAq ¢, + ¢Aq" an + c?qu +eAq",)]
=-At[A"q" + B"q"y — Cr (aq"%; + bagy + eqiy + dqt + 2q})]
1
+0[(0 - —2—)At2, Ar3] (4-3)

[Local linearization]

Nonlinear tems in the above equation are processed using the concept
of “local linearization”, as follows.

.2 94 )
A(Aqy) = — (Aq)At=— Atqy + A—(q¢)At
ot ot ot

=4 nta + 42 (% Any = adg, +AA
ar o de T g gy O T AAde T AN
= AAq + AAq; (4-4)
where
A aug cug 0
A=|avg cvg 0 (4-5)
o o0 o
Similarly,
A(Bq,) = BAq + BAq, (4-6)
where bu, du, o
B=|bv, dv, o 4-7)
o o o
Substituting eqs. (4-4) and (4-6) into eq. (4-3), and setting h = 0 A¢,
[+h[A" + 42 _C (ai Ia?i>]
o T\ a2 d¢
. ] 92 0
+h[B" + B"— - Cg (é—g +é——>] } Ag® (4-8)
Oy Oy On

= -At[Aq¢ + Bq, - Cr (@qee + bqay + eqny + dqy + 6q,)1" + hbCg Aqt,

[Explicit treatment of a mixed derivative]
The mixed derivative in RHS of the above equation is explicitly treated

(340)
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by shifting the timestep from n to n-1.
Aqt, = Aqi;t +0 [A2] (4-9)
The above treatment introduces an error of O(At2), and does not degrade

the solution accuracy.

[Approximate factorization]

The spatial defferenciation operators in LHS of eq. (4-8) are factored as
follows. Using eq. (4-9) at the same time,

[+hd+a2 ¢ <‘—"&+d‘i> J
[ Y -LR aagg PY: 1
. 0 .92 0
X I+h[B+Ba—17 CR<CW +9E>]]A‘In

=-At[Aq; + Bq, - Cr(dqy¢ + bqgn + eqnn +dqy + 2q,1" + hlqu'E'{,l
(4-10)

This factorization introduces an error of O(At?2), thus does not degrade the
formal solution accuracy.
By defining an intermediate variable Ag*,

. ) 2 )
I[+h[B+B— -Cr(é—5 +e—)1{ A" (4-11)
on on

Ag* =
q on

eq. (4-10) is decomposed into two sets ODEs (ordinary differential equa-
tions). That is,

£-sweep

I+h[21+Aa C(‘az +da)]JA*
- G— +d—
TR Y= TR b

=-At[Aq; + Bqn — Cr(aqe + 54En +Cqny + d‘ls +eq,)]"

- 1 94 4 i

-1 .

+thRAq'£n —ﬁ(ws—a‘g +wnW)q (4 12)

The last two terms in the above equation are added 4-th order numerical
dissipation terms. In general, the addition is necessary at high Reynolds
numbers in order to damp numerical disturbances of short wavelength.
n-sweep

By definition,

. 0 02 ]
I+h{B+B— f—a + &— "= Ag* -
[ on Cr (¢ on? +ean )11 Ag" = Aq (4-13)
(341)
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Eqgs. (4-12) are solved in £-direction together with appropriate boundary con-
ditions, and then, eqs. (4-13) are solved in n-direction. This factorization
greatly reduces computational work from that of solving an unfactored 2-D

boundary value problem.

After solving ¢&- and n-sweeps, the values of q at next timestep is,

qn+1 ___qn + Aq”

[Spatial differencings]

(4-14)

To solve eqs. (4-12) and (4-13), spatial derivatives are approximated by

central differencings. Setting Af=An=1,

where E}" : shifting operator.

(i: numbering in ¢-direction)

Em L. . .
£ qij =Qdi+m,j (j: numbering in n-direction)

Eta-differencings are defined similarly.

[Matrix coefficients]
¢-sweep
Substituting eq. (4-15) into eq. (4-12),

*
LijAqiqj +M,'qu;; + Niquzl;l,j = feii
where R
1 . d
Lij=-hl;A+@- ?)CR],-,'
M;; =1+ h(A + 2dCR);j
1 . d
Njj = h[—z—A -@+ —Z—)CR 1ij
feij = [RHS of eq. (4-12)] ;;

n-sweep

LijAqij1 + MijAgij + NijAqije1 = faij

(342)

) 1 .

3% =5 - )+ Olag”]

a2
1 a¢2 =E¢' - 2E0 + E;' + O[Ag?]

3 +2 +1 0 -1, g2 2
W:Es - 4E{" +6E0 - 4E + By +O[AE”]

(4-15)

(4-16)

(4-17)

(4-18)



where

1. e
L= h[EBf €-5)Cr 1i
M;; =1+ h(B + 2¢CR);j

1 e
Nij = h[E*B =€+ )Cr )y
Jnij = Agjj

(4-19)

Eq. (4-16) or eq. (4-18) forms a block tridiagonal system in general, and is
solved efficiently using the Thomas algorithm.

5. VON NEUMANN STABILITY ANALYSIS

In this chapter, it will be shown that the non-conservation differencing
form used in the present scheme possesses good stability property, using a
model scalar equation.

A model scalar equation used is,

oU
57 Lawnt (5-1)
where
L =Fa+Ga R<ﬁ+i> 5-2
T8y T ey T \ax? T g2 (52)
F, G, R are constants . R>0

(1) Stability in (x, y) plane.
Using Padé time differencing (4-1) in eq. (5-1),

Spatial differencings for x-derivatives are central differencings similar to
eq. (4-15).

ox " zax B B
92 1 +1 _op0 , p-1
a? = (Ax)z (Ex -2E"+E;") (5-4)

where E; U(x, y) = U(x + mAx, y)

Y-differencings are defined similarly.
An assumed form of solution U is, according to the von Neumann’s
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method1®) ,

U" =Up(x, y) +u"
where
u'=v" expli(k1jAx + k2kAy)]
vl = ;Vn-l - §_2 Vn-2 =,
Lx,y)Up=0
U": value of U at timestep n
Up: steady state solution

u": assumed periodic disturbance

¢: amplification factor per each timestep
RHS of eq. (5-3) becomes, using egs. (5-4) through (5-6),
[RHS of eq. (5-3)] = - AtL (x ) U" = —(Re + ilm)u"
where (Re = AtR(K%oz2 + K%ﬁz) >0

I, = At(Fk1acosfx + Gkafcosfy)

<o[Esinﬂx = sin 8,
6, = K1Ax 0. = Ko Ay

2 VT 2

(5-5)

(5-6)

(6-7)

(5-8)

The amplification factor { becomes, substituting eq. (5-7) into eq. (5-3),

¢ = 1-(1-0)(Re+ilm)
1+6 (Re+ilm)

(5-9)

If [¢| < 1, the scheme is stable and the periodic disturbance diminishes. If
€] = 1, it is neutrally stable. If |{| > 1, it is unstable and the periodic dis-

turbance grows unboundedly.

From eq. (5-9), the condition [{| < 1 leads to the following condition for

0.

Re

1
0>— - —
2 Re2 + Im?

(5-10)

Using the relation Re > 0 shown in eq. (5-8), it may be stated that the con-
dition [¢| <1 is satisfied for all possible values of At, Ky, k9, Ax and Ay if

0 gi
2
(344)




That is, the above scheme is unconditionally stable if 0 =1/2.

(2) Stability in (¢, 1) plane

35

The eq. (8-1) is transformed into (&, n) plane using coordinate trans-

formation defined by egs. (3-1) through (3-7).

oU
— ==L U
ot (£, n)
where
) ) <a2 . 92 92
L =A—+B— -Rl|a +b + ¢ +d
(£,1) aE an a 622 asan ¢ a,n2
A=aF + cG
B=bF+dG

Using Padé time differencing (4-1) in eq. (5-11),
[1+0AtLg n)]AU = =AtL U
By assuming a solution of the form similar to eq.‘(5-5),
[RHS of eq. (5-13)] = =AtL(¢ )U = - (Re + ilm)u"
where
Re = AtR(ax3a? + brikoafcostycost, + ixk3p2)
Im = At[(A - Rd)kyacosdy + (B — Ré)kefcosh,,]
Further, using eq. (3-10),

Re
AR

= (azx%oz2 + 2abky akyfcosbcost, + bK%BZ)

+ (CZK%CIZ + 2cdkiakafcosbicos, + dzlc%Bz)
2 (@®k3a® - 2labkyakaBl + BZkEE2)+ (.. ... )
= (lakyal - bkaB)? + (Ickqal - ldkofl)?

20
Therefore,
Re20
Amplification rate { is again given by eq. (5-9). That is;

(5-11)

(5-13)

(5-14)

(5-15)

(5-16)

The present scheme is unconditionally stable under arbitrary coordinate

(345)
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transformations if 6 2> 1/2.

In the above analysis, the real part Re in eq. (5-15) has no contribution
from convection terms of the original equation eq. (5-1). Therefore the
positiveness of Re is assured under arbitrary coordinate transformations,
which is the key to the unconditional stability above mentioned. On the
other hand, the use of conservation form instead of non-conservation form
in spatial differencing in the transformed (&, n) plane brings contribution
from convection terms into Re. Therefore, the positiveness of Re is not
assured, and the scheme has poorer stability property in general.

The above analysis does not take into account two factors which are
included in actual scheme shown by egs. (4-12) and (4-13). They are,
explicit treatment of a mixed derivative, and approximate factorization. The
stability analysis on the above two factors are described in detail in ref. 5).
According to the analysis it may be stated that explicit treatment of a mixed
derivative restricts the stability range, but approximate factorization recovers
most of the stability range lost by explicit treatment.

It should be noticed that b in eq. (3-10) coincides with F in eq. (A1-2).
Therefore, b becomes zero if the grid is orthogonal. In that case, the mixed
derivative term becomes zero, therefore its explicit treatment does not affect
the stability property or time-accuracy.

(3) Stability with added 4-th order numerical dissipation term
4-th order numerical dissipation terms are added to eq. (5-13).

[1+0AtL(¢ )JAU = <AtL(¢ n)U"=N(g ) U" (5-17)
where

= o* o 5-18
Ny = g\ @eged Y onga wg >0, w, >0 (5-18)

¢-derivative is approximated using eq. (4-15), and 7n-derivative is approxi-
mated similarly.

Substituting into eq. (5-17) an assumed solution of the form similar to
eq. (5-5), and setting 0 = 1 for simplicity,

1-Rn
e 5-19
§ 1+Re+ilm ( )
where
Re, Im : given by eq. (5-15) (5-20)

1
Rn= —E(wglc%a‘l + wnlc%ﬁ‘i)
From eq. (5-19),
(1 - Rn)?

(1+ Re)2 + Im?

1512 = (5-21)



In order that || £ 1 for all possible values of Re( > 0) and Im, Rn must
satisfy the following condition.

(1-Rn)2<1 <« 0<LRn<2 (5-22)
The above condition is satisfied if,
0Sw; <1 and 0L, £1 (5-23)
Therefore, it may be stated that the present scheme with added 4-th
order numerical dissipation terms is unconditionally stable if § = 1 and if eq.
(5-23) holds, again under arbitrary coordinate transformations.

6. TRUNCATION ERROR ANALYSIS

In this chapter, a method is given for estimating the order of accuracy
and truncation errors, once computed steady state solution is given.

(1) Steady state equations
The steady state part of eq. (4-10) gives,

Aqe + Bq, - Cr(Aqg: + Bqey + Eqnn + dqs +éqy)

+ (WeGteee + Wnlnnnn) =0 (6-1)

16A¢

Three components of the above equation are given respectively as fol-
lows.

x-momentum eq.

1
Uty tvuy +px + (- - Uxx) + (- Uyy)
o @ o R A
Wy w

n
e S I =0 6-2
16A7 EEEET A, nmmn (6-2)

® @

y-momentum eq.

1 1
Uvx + vvy + Dy + (== Vix) + (= ——Vyy)

Re Re
0@5 V®+(?%o—"v @=0 ® (6-3)
16Ar 7 1ear MMM

@
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continuity eq.

(J)n
+ —0D =0 6-4
Bux +Bvy + 16At geee + o1 Panan (6-4)

(2) General form of differences and truncation errors

A derivative of a certain spatial function f is expressed as a sum of its
difference and truncation error. Denoting difference as * and truncation
error as ~,

~ 1 . - 1
fo=fi+Te where fi=— (B -EC)f, Te=- fiw (65)

1 _ 1
In =f:+?n where f:EE(Enl“Enl)f» ?nE"?f:nn (6-6)

* % _ o+l o . _ 1 «
fee =fer + Tee where fgp = (B¢ - 2E° + E{V)f, 7£e=-“1‘2—fessz (6-7)
* ~ * ° = 1 %
fnn=fnn+fnn where fnnE(E;;l_zE +En1)fa ?nn=‘§fnnnn
(6-8)

fen =f:n + ?En (6-9)
* 1 +1 +1 = 1
where [, =T(Et -E¢ )(E -Ep )’ f - E (ftnnn +f:££n)

fiee = (ES? - 8E{" + 3E° ~E{)f (2€iSM2) (6-10)

fieer = (EQZ —4E" + 6E° - 4E{" + E{Y)f (3S1SIM2) (6-11)

fiten = (E LBy (B -8B + 3E° —~EJN)f (2 <1 €1IM-2)(6-12)
Similarly with fg,mn.

(3) Spatial parameters

Using eqgs. (6-5) through (6-12), differences and truncation errors of
spatial parameters are given as follows.



* ~
Xg = Xg + X

* ~
Xn =Xn + Xq

* ~~

§ Xee T Xep ¥ Xy
- * ~

Xgn = Xgn + X

* ~Y
Xnn = Xan + Xaq

Similarly with y.

(6-13)

Following eqs. (6-14) through (6-21) are given using egs. (3-10) through
(3-12). It is assumed that truncation error is small compared with diffe-

erence, and only the first-order terms are picked up.

~ *
S=5"+5 where (S =x:y:—x:y:

E 3 ~
Sg =8¢ +5¢
~ * o~ ~ * E ~ %
where Sy =XxgeVn + Xgen + XeVen + Xepen
X A~ ~ * * A~ ~ *
~ (XgnYVg + XenVe + XqVeg + X Vee)
S, =Sy +5,
~ * ~ ~ * * A~ ~ %k
where S, =Xgnyn + XenVa + Xg Yyn + XeVan
*k ~ ~ * L P ~ %k
= (XnnY g * XpnVe * XnVen + XnVen)
J=7"+7 where T = —(J%)25
Je =J?+.75 where .7; = —J*(J*:Sve + 27S:)
Ty =Jn + T, where T, =-J*(J*S, + 275}
a=a*+3a where @ =J*5, +Jyn
Similarly with b, ¢, d.
ag =a +3d; where G =J?J7n +Jeva +J*J7En +TVen
Similarly with b¢, c¢, dg, a,, by, ¢y, and d,.

(4) Differenced form of steady state equation

~_ * ~ ~ £ L ~ *
S =Xg Yng + XeVn —XnVg = XnVe

(6-14)

(6-15)

(6-16)

(6-17)
(6-18)
(6-19)
(6-20)

(6-21)

Using the results shown in the previous two sections, each term of the
components of the steady state equations (6-2) through (6-4) is expressed as

follows.
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Xx-momentum equation

@ wuux = [uux] * + iy (6-22)
where [ [ uuy ] * = u(a*u: + b*u:)

Wiy =u(@ G +aug + b 0, +buy)
@ vuy = lvuy1” +vu, (6-23)
where [ [vuy] ¥ v(c*u;‘ + d*u:)

—— L 2 ~ % E ) ~ Xk
vuy =v(c ug +cug +d uy +duy)

* ~Y
®) px =px +Dx (6-24)
where p: =a*p;k+ b*p:
~ R~k kY ™~k
Px=a pi+tapg +b Dy +bp,
/_\_/
1 1 % 1
@ - = (= g tax] * [= o ] (6-25)
where [-—u ]=|< = —1—[a*2u* + 24 b uen + b 2un
Re xx Re £E En nn
+ (a*a;k+b*zzr’l:)u;l< + (a*b:+ b*b:)u:]
T ———
R~ Xk * g~
[ Re Uxx] Re (20 auge +a “ug
+ 20" Uy +a b ugn+ab ugy)
+ 2 Buny + b*20,,
+ (a*a;l= + b*a:)gg
+(@"a +aa; + b a, +bagyup
+(a"bg +b™by)iin
+(a b5+27b5 +b b,, +I7b:)u:]
1 « = 1 '
® -+ —[—E;uyy] = o=tyy] (6-26)

1 1
where [- Re uyy] and [-R— uyy] are expressed by changing a to ¢ and b
e e

to d in eq. (6-25).

(350)
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16A¢ EEEE 16A? 12133
Estimation of truncation error is not necessary.

@ 2y =y *
16At nnnmn 16At nnnn

Similarly with y-momentum equation and continuity equation.

(5) Differences and truncation errors in steady state equations

(6-27)

(6-28)

Using the results shown in the previous section, derivatives in the steady
state equations are approximated by differences, producing truncation

errors.

x-momentum equation

* * 1 1
(a1 + ruy 17 + 08 + [t ] + [~ == uyy 1™
* * e Re

" @ ® pe 5"
W Wy }
+ U, + — =
16Ac " 167 i‘"’"’” [residual]
® @
1 1
T @ ©® & &

y-momentum equation

1 1 *
[uvx]*+[vvy]*+P;k+[———vxx] 4 [~ Re Vianl

e
o o o g ol
wWe * (€¥}3 * .
+ EAT EEEE + M Vnmm—[remdual]
©* ®*
[ua‘;x] [Vg] % [- E‘é"xx] [—@Vyy]
® ®

continuity equation

* * e * w *
Bux +Bvy + zor Preee ﬁ P o = [residual]
© ® o)
o ©

(6-29)

(6-30)

(6-31)
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Residuals in the above equations show how closely the given numerical
solution reaches a steady state, and truncation errors show how accurately
the differences approximate the derivatives. The terms with ~ below the
equations show that the truncation error arises in the term above it. The
layout of the terms in the above three equations coincides with that in Table
8-1, which will be shown in Chapter 8.

(6) Use of the same differencing operators in metrics and flow variables

In this section, it will be shown that;

No truncation error arises under arbitrary coordinate transformations

if the same differencing operators are used in metrics and flow variables,
and if the flow variables are linear with x and y.

Let us suppose that a flow variable f which represents u, v, and p is linear
with x and y.

f=ox +fy (6-32)

where a,  are constants.

Hereafter, in this section, derivatives are denoted as —g%, and differences
are denoted by subscripts, such as fy .

i) 1st derivative
From eq. (6-32),
0
of = a (6-33)
ox

£¢- and n-differences of the linear function f defined by eq. (6-23) are ex-
pressed as below, under the assumption that the same differencing operators
are used in f, x, and y.

Je=axg + By , fp =axy, +fyy (6-34)

X-difference of f is then expressed, using eqgs. (3-3) through (3-5),
Ynlaxg + Bye) = ye(axy + Byn)

fx = (6-35)
XtVn —Xnlg
Therefore,
af
fx =—a— (6-36)
x

That is, x-differencing of f produces no truncation error. Similar results may
be obtained with y-differencing.




il) 2nd derivatives
From eq. (6-32),
a%f
dx?

2nd difference of f with respect to x is expressed using eq. (3-6),

Frx =a2fte + 2abfey + bzfnn + (aag + bay)fy + (abg + bby)fy
4

/T;;=y%f€£ - 2Y¢Ynfen +y52fnn +J(Snye=Seyn)eVn ~faVe)

0 (6-37)

+J’£n(feyn +fn.V€)"ynn.VEfE —J’ggynfn (6-38)
2nd difference of f is decomposed into two parts using eq. (6-32), that is,
Srx = (ax + By )xx = aXxx + BVxx (6-39)

Substituting x and y respectively in place of f in eq. (6-38),

Xxx = e e e = 0 and yxzx = e v e o= 0 (6-40)
J2 J -
Therefore,
82
Fox = g =0 (6-41)
ox

Similarly with f,, f5, and fx,.

The use of the same differencing operators on metrics and flow variables
is very important for two reasons. One reason is that it assures that the dif-
ferenced form of equations approximates the original differential equations
more accurately as the mesh becomes finer and the flow variables can be
more accurately regarded as linear locally. The other is that the uniform
flow away from the solid body is accurately expressed using non-uniform
mesh, because all the flow variables are linear (i.e., constant) there.

7. BOUNDARY CONDITIONS

(1) Grid system

The grid system used in the present calculation is an “O-grid”’. The
physical (x, y) plane is mapped onto the computational (£, i) plane by
making a cut along 7n-axis, as shown in Fig. 7-1. The surface of the body in
question is mapped onto the bottom boundary in (£, ) plane.
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Top boundary

Right
boundary

§

2 i IM-1 IM
Bottom boundary

Physical plane Computational plane

Fig. 7-1 O-grif system.

(2) &-sweep

Boundary conditions on left and right boundaries are needed in £-sweep.
There the periodic boundary condition is imposed because the boundaries
form a single cut in (x, y) plane. That is,

Top boundary

Unitorm flow ——Extrapolationo Uniform tlow
Y — les lee M

- ay

,‘a 3

o v Y c

€5 o 3

381 22

5% 3 .

- aQa c

5 o

- o

1
12 i M
Solid wall
Bottom boundary
Fig. 7-2 Boundary conditions.
X1+k,j =XIM+k,j > Y1+k,j=VIM+k,j (7-1)
(k=0,%1,£2,...)

d1+k,j =qIM+k,j , Aq1+k,j=AqIM+k (7-2)

(k=0,%1,+2,...)

Periodicity of the intermediate variable Aq* is easily shown using eqgs.
(4-11), (7-1), and (7-2). That is, '

% *
Aq 1+k,j=Aq M+k,j (k=0,%1,%2,...) (7-3)

Using eq. (7-3) as boundary conditions on left and right boundaries, the
matrix coefficients shown in egs. (4-16) and (4-17) form a block periodic
tridiagonal system.
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My N; Ly Aq fe1
Lo Mg Ny (0] Aqa fe2
=1 (7-4)
0 Lim-2 Miv-2 Niv-2 | | Aqim-2 feiM-2
LNIM-I Lim-1 MiM-1 || Agim 1 feIM-1

Solution algorithm for block periodic tridiagonal system is available,
though it is about twice as costly as that for ordinary tridiagonal system.

(3) n-sweep

i) Bottom boundary
Solid wall boundary condition is imposed on entire bottom boundary.
They are, using eq. (A1-12),

u=0
v=0
1 ~ ~ ~ ~ -
Dn =E(a“nn +bVpy +cuy +dvy) (7-5)

, Where ;, b, ?, and d are defined in eq. (A1-13). n-differencings on
the bottom boundary are expressed as,

l +1 0
onj=1=E, —E (7-6)
32
on3=1 =E," - 2B, +E°
Differenciating the above equation by ¢, and approximating it by

difference using eq. (4-15) plus the following formulas on bottom boundary
result in

Aqy =ai® + BB Aqe + CB Ag3 (7-7)
, Where
0 0 0 0 0 0 0
af=|0|,BE= 0 0|, cBo 0 0((7-8)
0 %-¢ 26-d 1 _a b5 o0
Re Re Re Re
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ii) Top boundary

The top boundary is a closed loop which surrounds the body with a large
radius. The uniform flow boundary condition is imposed in most parts,
except for the wake region, where the flow is not uniform and the extra-
polation boundary condition is imposed instead. The wake region is defined
as Jes < i < Jee, where les and Jee are properly chosen to cover the wake

region.
That is,
Uniform flow (1 <i < =Jes-1 or Jee + 1 < i < IM)
1 .
qim =|0 (7-9)
0

Differenciating the above equation by ¢ and approximating it by diffeences,

Agry =arT + BT Aquy .1 + CT Aquu-2. (7-10)
, Where
0 0 0°0 0 0 0
aaT=|o| ,BT=(0 0 0|,CT=|0 0 O (7-11)
0 0 00 0 00

Extrapolation (Jes S i < Jee)
The extrapolation condition is given by,

0
%9 o (7-12)
0x
Differencing the above equation by ¢,
0Aq
— =0 (7-13)
ox
Using eq. (3-4) and explicitly treating the ¢-differencing,
a -1
Ady =-— Aqy (7-14)
Therefore, eq. (7-10) is again used with the equation below instead of eq.
(7-11).
1 0 0 0 0 O
aT =M pAgnl  BT=-10 1 o] ,cT={0 0 o (715
M 0 0 1 0 0 0
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Eq. (4-18) together with egs. (7-7) and (7-10) form a block tridiagonal

system.
[ Ma+LoB” No+LyC? 0 Tag, |
0 Live Msmz Nyws Aqiy-2
LJM-1+NJM_1CT MJM—1+NJM_IBT; Aq}M-l_j
faa-Laar® ]
fn3
Y
famm-1-Nm1ai ™ (7-16)

4-th order numerical dissipation terms in £-sweep are differenced near
top and bottom boundaries as follows. Near bottom boundary, that is, at
i=2,
4
ot fe=fs-4f3 +6fo-4f1 + /o

Linear extrapolation is used for giving f.

fo=2f1-f2
Then,
a4
nt fo =fa —4f3 + 5f2 = 2f1 (7-17)
Near top boundary, that is at j=JM-1, using extrapolation fiyr+1 = fium,
34
3 fam-1=-8fm + 6fim-1 —4Afim-2 + Fim-3 (7-18)

(4) Initial conditions

Since steady-state solutions are pursued in the present context, initial
conditions are arbitrary in principle. However, they must be compatible
with the boundary conditions egs. (7-2), (7-5), (7-9), and (7-12), because an

(357)



48

(358)

updated g, which is the sum of g at a previous timestep and Ag, must satisfy
the given boundary conditions at each timestep. The initial conditions thus
chosen are as follows. '

i) u

ui]‘=0 (1—(_>Z§IM and j=1s293)

uy =1 A<i<IM and j=JM-1,JM) (7-19)
i—3

ui,-=y]j4—_—4 1Si<IM and 4<jSIM-2)

, where, in the last equation, u is linearly interpolated at intermediate values
ofj.
i) v

vii=0 1LELiSMand1<<IM) (7-20)
iii) p

pij =0 1LiSMand1<jSIM) (7-21)

(5) Updating
i) qi,))(ASi<IM-1and2 <7< IM-1)
Given by solving Eqs. (7-4) and (7-16).
i) q(i,1)(1Si<IM-1)
Bottom boundary condition is used, i.e., eq. (7-7).
i) q@, JM) (1 Si<IM-1)
In the uniform flow region, the top boundary condition eq. (7-10) is
used with eq. (7-11) or (7-13).
In the extrapolation boundary condition region, the updated Agq in
the inner region is used to determine Ag on the top boundary, in order
to satisfy exactly the eq. (7-12) at each timestep. That is,

a
> (Agi+1 gm — Agi-1 gm) + b(AGi gp = Aqi gp-1) =0 (7-22)
(les S i < Jee)

The above equations are solved using the tridiagonal solver.
iv) qUIM, j) (1 £j M)
Periodic boundary condition is used, i.e., eq. (7-2).

After going through i) to iv), eq. (4-14) is used for updating q.
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8. COMPUTED RESULTS

(1) Grid

The grid used in the following computations is shown in Fig. 8-1. A
direct numerical method 7) was used for the grid generation.
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Fig. 8-1 (a)-(c) Grid around a circular cylinder.

A circular cylinder of unit diameter forms an inner boundary. The outer
boundary forms a circle whose diameter is 40 times that of the inner circle.
The number of grid points are 81 in £-direction and 41 in n-direction. The
grids are clustered near solid wall and in the wake region to obtain high
resolution there. The minimum 7n-spacing adjacent to the body is 0.01. 80
points are placed uniformly on the solid wall. A cut along n-axis is placed
on the line of symmetry at upstream. It is doubly defined as i = 1 line and
i = IM line. The grid is made orthogonal near solid wall so that the boundary
condition for pressure derived in the Appendix may be used.

(2) Parameters and conditions in computation

The condition shown in Section 7-(4) was used for initial conditions in
all the computations shown in the present paper. The boundary conditions
used are as shown in Chapter 7.

The parameter 6 for Padé time differencing shown in eq.(4-1) was set as
unity (Euler implicit), and w; and w, for numerical dissipation terms shown
in eq.(4-12) were both set as 0.80.

(3) Convergence criteria

Computation was continued until a convergence parameter reached a
certain value. The convergence parameter € is defined as shown below 8).
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Max(y/ (Au)? + (Av)2 Max(|Apl)
Max |

2 . 2 ’ M
6 — Max@/ uZ + v )A t Max (p) - Min(p) 1)

(4) Computed flow fields

Flow velocity vectors at Re = 40 are shown in Fig. 82 (a) and (b). The
flow is completely symmetric and a twin-vortex is formed aft of the body.
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Fig. 8-2 (a), (b) Flow velocity vectors. Re = 40.

A perspective view of the pressure distribution at Re = 40 is shown in
Fig. 8-3 (a) and (b). No oscillation is observed in the distribution, since 4-th
order numerical dissipation terms are added to the original equations (see eq.
(4-12)).
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Fig. 8-3 (a), (b) Pressure distribution. Re = 40.

(5) Time history of convergence parameter

The time history of the convergence parameter €;; at Re = 40 is shown
in Fig. 8-4. €t is defined in eq.(8-1). It shows exponential decay both in
cases At = 0.5 and At = 1.0, though short wave oscillations appear on the
curves. At At = 1.0, €j; reduces to about 1.0 x 10°® after 200 timesteps.
This means that the computed values will change 0.1% at most in the next
1000 timesteps. In a timestep At = 1.0, a flow particle travels a distance
equal to the diameter of the cylinder with a freestream speed. Therefore, it
may be stated that the solution with At = 1.0 is converged after 200 time-

1 I 1 1 L 1
0 100 200 300 400
number of timesteps Nt

Fig. 8-4 Convergence parameter €;;. Re = 40.
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steps. The CPU time required per timestep is 25 seconds, using the Fujitsu
FACOM M-180ITAD computer at the Ship Research Institute.

The number of timesteps needed for reducing €;; to a specified value at
At = 1.0 is about half of that at At = 0.5. However, the computation at At =
2.0 showed poorer convergence than At = 1.0. Therefore, it may be stated
that practically the maximum allowable timestep At is about 1.0 in the
present computation.

(6) Truncation error analysis

The truncation error analysis was made using the method shown in
Chapter 6.

Before analyzing the flow field, the accuracy of the method and the
computer code was checked, using the grid shown in Fig. 8-1. First, a model
function which is linear with x and y was used. The results satisfied eqs.
(6-35) and (6-37) with an accuracy of more than four significant figures.
Second, a model function which is quadratic with x and y was used. The
second differencings thus obtained agreed with the exact values with an
accuracy of approximately three significant figures.

The distribution of the points where the analysis was made is shown in
Fig. 8-5. The results are shown in Table 8-1 (a)-(e). The numbers 1 — 7 in
the table correspond to those in egs. (6-29) — (6-31). * denotes difference,
and ~ denotes truncation error, both of which are estimated using the
method described in Chapter 6. The magnitude of the terms representing
differences and truncation errors in the table is normalized using the term of

- PR SR
e ¢ ~ - X :
D P - ///)j

-

Fig. 8-5 Spatial point distribution for truncation error analysis.



Table 8-1 Truncation error analysis. Re = 40.
(a) Point A i=15,j=3
2222 EEEY YL AT YT T Y IR TR AR LSRR IR L R R XY R R R R

I=15 J=3
X=MOMENTUN EQUATION.

*x =0.510 0.523 5;{00 0.706D~01 0,917 0.102D-04 =0,141D=03
~ =0.267D-02 0.269D-02 0.967D=02 0,138D-02 0.521D=02

MAX= =1,3205 AT L= 3 SUM==0,96910D-03
Y=MOMENTUN EQUATION, ®
X -0.558 0.456 -5;137 -0,460 1.00 -0,221D0-05 =0,193D-03
~ =0.514D-02 0.444D-02 -0,355D0-01 =-0,7100-02 0,125D-01

MAX= 0,77077 AT L= 5 SUM= 0.63175D-03
CONTINUITY EQUATION,

®

¥  -1,00 1.00 -0.687D-05 0.481D-04
~ =0,524D-02 0.9720-02

MAX= =3.6412 AT L=t SUM= 0,125300-03

L2 LRI EE A2 LR LI L EFT EE YRS TR PR S E LR ST TR LE Y

(b) Point B i=28,j=10

LA L g Ly s
=28 J=10
X=MOMENTUN EQUATION,

% 0.539D-01 -0.506D-01 1.00 -0,4600-01 ~0,957 -é;aOOD-03 -é;iDSD-Ok
~ 0,9170-03 -0.1860-04 0,3720-02 0,451D=-03 -0,384D-02
MAX= 0.24815 AT L= 3 SUM= 0.86090D~04
Y=MOMENTUN EQUATION,
©) ® . ® @
X 0.297 0.107D=-01 0,675 0.1550-01 ~1.00 =0.134D~04 -0,162D-04
~ 0,820D-02 0.374D-03 0.259D-01 0.168D-02 0.515D=-03
MAX%=0,55496D=01AT L= 5 SUM= 0,87758D=04
CONTINUITY EQUATION, @
* g{OO jg{oo é;%780-04 0.866D=04
~ 0.1700-01 -0.,351D0-01
MAX=-0,86580D=01AT L= 2 SUM==0,46554D=06

A2 R X R R L R R Y R g A R T Y R

(c) Point C i=36,j=20

L T T e T XY Ty e R T ST T X2 L)
I=36 J=20
X=MOMENTUN EQUAT]DN,

® ® ® ® @

X 0.1290-01 ~-0.948D-01 1.00 ~0,198D~01 -0,.899 0.406D~04 0.245D-04
~ =0,782D-04 0.163D-04 0.160D-02 -0,137D-03 0.2820-03

MAX= 0.64025D-01AT L= 3 SUM=-0.17126D-04
Y=MOMENTUN EQUATION. C) ()
* -é;%70 0.192 é;lT# 5;200 0.996 0.207D-02 -0.895D-03
~ =0.1930-02 0.952D-03 =-0.110 ~0.,124D-01 0,307D-01

MAX=-0,17031D=02AT L= 4 SUM= 0,11277D-04
CONTINUITY EQUATION. C) C)
* 1.00 -1.00 =0.129D-04 -0.386D~04
~ =0.6090-02 -0.497D-02

MAX= 0,38823D-01AT L= 1 SUM= 0,30767D-05

SRR NI S IR IR0 20 g 2 g SRR I BRI ISP I SRR 4 A 24 R4 2 0 40 S AE I 41 6 3 0 2 48 444 30 21 35 37 J1 SR SE S ap B HE LA 4
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(d) Point D i=15,j=30

LEL IR LT LRI TT TS STR LTRSS LSRRI E R R L Ll s L

I=15 J=30
X=MOMENTUN EQUATION,
©) @ ©) ® .
b 3 1.00 -0.9790~01 =-0,905 0.3510-01 ~0.3110-01 0.328D-02 0.164D-02
~-0.3110-01 -0.3750-04 0,1330-01 0,9870-03 0,135D0-03
MAX= 0.60946D-02AT L= 1 SUM= 0,34722D=-04
Y=MOMENTUN EQUATION, ()
* -0.987 ~-0.,128D-01 1.00 0,316D=-03 =0,327D0-03 =-0.736D-04 -0.736D~-04
~ =0,339D-02 0.478D-04 0.1210-02 -0,862D-04 =~0.294D-04
MAX= 0.16983D~01AT L= 3 SUM= 0.10747D=-05
CONTINUITY EQUATION, C) ()
* 0.996 ~1.00 =0.171D0-04 0.768D-04
~=0.,3100-01 0.373D0-02
MAX=-0,58566D-02AT L= 2 SUM= 0,234850-04

FA A TR A SIS S SRS S SR SR Sh S AP ST IR IR I 2 2 0 0 30 1 48 1 40 0 30 404030 44 36 31 26 THAE B30 40 35 40 40 35 49 36 48 31 46 36 3 24 24 {E I L2

(e) PointE i=39,j=30

L L X R R L A R LA R L L L Lt Ll
I=39 J=30
X=MOMENTUN EQUATION,

¥ 0.429 -0.157 0.724 0,7350-02 -1.00 -é;%ZGD-OJ -0,272D-03
~ 0,400D-02 0,521D-03 0,.5880-02 0,134D-03 -0,496D-02
MAX=-0,36732D=01AT L= 5 SUM==0.57529D-04
Y=MOMENTUN EQUATION, C)
X 0,343 1.00 ~-0.340 -0,1050-01 -0.991 ~0.4630=03 -0,1630-02
~ 0,386D-02 0.6930-02 0,146D-01 -0,3000-03 0.345D-02
MAX= 0.13795D=02AT L= 2 SUM=-0,11232D-05
CUNTE%?ITY EQUATION, ()
x 1.00 -1.00 =0.6320~06 0.,1350-03
~ 0.934D-02 -0.693D-02
MAX==0,79173D-01AT L= 2 SUM= 0,15206D-04

FEAR I A A I BB AR S A 2 gy S AR T AL SRR S S S R TR R LR A A AR AR R S 2 S AR S B AR IR AL SRR G R 2 0 41 A S I SRR SR SH 4

maximum absolute value in each equation, and the maximum absolute value
is shown as titled “MAX="", “L=" shows the number of the term used for
normalization. “SUM="" denotes [residual] shown in egs. (6-29) — (6-31).
It is the sum of the terms representing differences in the equations. If a
steady-state is completely reached, the sum must be zero. The term is not
normalized, therefore the ratio SUM/MAX indicates how closely the solution
obtained reaches steady-state.

The point A is in the shear layer attached on the solid wall. All the
physical terms in the three equations are large.

The point B is in the free shear layer shortly after separation. The x-
momentum equation shows that the pressure gradient is balanced by the
shear-stress term. Since the direction of the flow is approximately parallel
with x-axis, all the terms in the y-momentum equation are small.

The point C is close to the core of the wake bubble. All the terms are
small.

The point D is located away from the cylinder and the wake region. The
flow is almost irrotational, and all the viscous terms are small.

The point E is in the wake region away from the cylinder. Though all




the terms are small, the viscous terms are relatively large, which is in contrast
to the point D.

Finally, considering all the results shown in Table 8-1, it may be stated

that:

a) The present computed results may be considered as the steady-state
solution with a good accuracy.

b) The truncation errors are very small compared with the main dif-
ferenced terms. Therefore, the current differenced form of equa-
tions approximates the true differential equations accurately.

c) The 4-th order numerical dissipation terms explicitly added to the
original equations are so small that the accuracy of the solution is
not degraded by them.

(7) Comparison with experiments

Pressure distribution on the cylinder at Re = 40 is shown in Fig. 8-6,
together with the experimental data by Grove et al 9) and Thom 10). The
computed values show good agreement with experiments, especially with
Grove’s results. The reason may be that the Grove’s results were obtained
under smaller wall effect than Thom’s, and that the computation was made
under even smaller wall effect. The wall effect parameter d/h in the figure
is such that d is the diameter of the cylinder and h is the distance between
upper and lower surrounding walls.

Computed pressure distributions on the cylinder at Re = 10, 20, 40, and
80 are shown in Fig. 8-7. All the computations were made using a timestep
At = 1.0. The computed results are symmetric, and no sign of asymmetry or
instability is observed.

The front stagnation pressures are shown in Fig. 8-8. The solid line in

Fig. 8-6 Pressure distribution on a circular

cylinder. Re = 40.

Fig. 8-7 Computed pressure distributions.

c
p
A O Grove, Re=40,d/h=0.05 )
Cp +1.5 L5
: splitter plate Re=10 ’
A Thom, Re=36,d/h=0.076 20
B\ O Thom, Re=45.d/h=0.076 40 10
m — Present calculation
S Re=40 80 F Qa !
0.5 0.5
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Fore 30 60 910 120 150  Aft Fore 30 9/0 120 150 Aft
o
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Re =10, 20, 40 and 80.
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Fig. 8-8 Front stagnation pressure coefficient Cpfs.
T T T T T T T T
-0.4 ° 4 E
o.ed &S ® s o £
%
o O °
-o6p _° e 2° E
’ . Al ba 2 o
~0.8}F AD 4
‘S
1.0} ® Present calculation _
@ O Grove, no splitter plate
a O Grove, 4in, splitter plate } d/h=0.05
L2 O Grove, 2in. splitter plate -
0 Homann
a A A Thom
-14 (Cross-hatching indicates 1
unsteady wake)
A
164 -
1 1 ! 1 t 1 L |
o} 50 100 150 200

Re

Fig. 8-9 Rear stagnation pressures coefficient Cpy,.

the figure indicates theoretical values derived by Grove 9), using the concept
of the boundary layer. The present computations show reasonable agree-
ment with the experiments, and show good agreement with theoretical
values by Grove especially at higher Reynolds numbers, where the boundary-
layer concept becomes valid.

The rear stagnation pressures are shown in Fig. 8-9. The computed
results show good agreement with Grove’s results, where a splitter plate was
used in order to stabilize the flow and maintain the symmetry of the vortex
wake. No such device was needed in the computation, since numerical dis-
turbances are much smaller than those in the real flow.
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Drag coefficients are shown in Fig. 8-10. Tritton’s experimental curve
11) is shown by a solid line. The computed drag coefficients were obtained
using the method described in Appendix A2. They agree well with the
experimental curve at Re = 10, 20, and 40, though the curve is slightly
higher. The reason for the deviation at Re = 80 may be that the computed
flow is completely symmetric, while oscillations appear in the real flow.

Pressure drag coefficients Cp p are compared with several experiments
in Fig. 8-11. The computation of Cpp was made by picking up only the
contribution by pressure in eq. (A2-6) in Appendix A2. The agreement is
again good.

Separation angle « is shown in Fig. 8-12. « is defined as an angle from
the aft-end point. They show good agreement with experiments.

Wake bubble length X is shown in Fig. 8-13. X} is defined as the
distance between the wake stagnation point and the cylinder center, follow-
ing Grove 9). They are in excellent agreement with the experiments by
Taneda 13) and Homann 12). The Grove’s results do not agree with the
other data, which may be due to the wall effect.
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e Present calculation

x./d

0 10 20 30 40 50
Re

Fig. 8-13 Wake bubble length.

(8) Results at Re = 160

Computation was made at Re = 160. This time, the steady-state was not
reached, and the flow became unstable and unsymmetrical. It is shown in
Fig. 8-14. The vortex shedding which is similar to the Karman vortex in the
real flow is observed. This shows the potential of the present computational
scheme to time-accurate problems, though anything further cannot be stated
in the present context.
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Fig. 8-14 Unsteady vortex shedding at Re = 160.

9. CONCLUSIONS

There are two ways for evaluating a computed result. One is to compare
it with experiments. The other is to estimate the magnitue of numerical
errors arising at various stages in the computation and to assure that the
solution obtained is reliable.

The present work is aimed at fulfilling the latter requirement as much as
possible. The truncation error analysis in Chapter 6 together with the com-
puted results demonstrates how accurately the finite difference equations
approximate the original differential equations.

The agreement with measurements is very good, in general. It seems to
the present author that some of the measurements are affected by the wall
effect, which causes discrepancy from the computed results.

The accuracy and efficiency of the present implicit factored method for
solving the incompressible Navier-Stokes equations have thus been success-
fully demonstrated. Future tasks are, the extension to three-dimensional
problems, modification to time-accurate scheme, and inclusion of a turbu-
lence model for solving high Reynolds number flows. The extension to
three-dimensional flows is straightforward, because the present scheme is
written in vector form. The approximate factorization is also valid in three-
dimensions. Unsteady flows will be solved using the present scheme, if one

uses a simple corrective procedure adopted by Steger et al. 4) for the con-
tinuity equation. The easiest way of including a turbulence model is to use
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the eddy viscosity model 3). The inclusion of a more complex turbulence
model, such as the k-¢ model, is possible, because the added equations for
k and € have forms similar to the momentum equations. k and € are simply
added to the vector q.

Therefore it may be stated that the implicit factored method has the
potential for solving more complex flows in the future.
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APPENDIX

A1l Boundary condition for pressure on solid wall

(1) First fundamental quantities of (&, n) curves (ref. 6)
Mapping of (x, y) plane to (¢, 1) plane is defined by

| £=&(x,») | x =x(§,7)
or (3-1)
n=n(x,y) y=y&n)
First fundamental quantities £, F, and G are defined as

ds? = Ed§? + 2Fdtdn + Gdn?

(Al-1)
where ds: line element.
E=xf+y}
F=xgxn + Yeyn
G=x2+y2 (A1-2)

1
H=\/EG-F?=—
J

Line elements ds; along §-axis and ds, along n-axis, and an angle w
between them are (Fig. A1-1),

dSE =4/ E ds
dsn =V G dn

F 1

cosw=m,smw=7—\/ﬁ

(A1-3)

Fig. A1-1 Line elements dS¢ and dSy

(2) x- and y-momentum equations

Original momentum equations (2-1) and (2-2) are transformed into 1st
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and 2nd components of eq. (3-8), using eq. (3-1).
Boundary conditions for ¥ and v imposed on solid wall are,

u=v=0 on solid wall

Using the above condition in the transformed momentum equations (Fig.
Al-2),

1 .
apg +bp, = Re (bugy + Cupy + euy)

(A1-4)

1 .
cpg +dp, = Eg (bvip +Cvp, + 8vy)

(3) Momentum equation in direction normal to §-axis
Using eq. (A1-3), ¢f, which is a unit vector along -axis, is

Xg Y

e = T Al-5
“JE "JE (A1)

e”, a unit vector in direction normal to §-axis, is then,

Ve X
—, Al-6
VE ' VE ) ( )

The momentum equation in ¢” direction is obtained as

enE(e;!e;)=(-

[momentum eq. in e”

direction] = e% [x-momentum eq.]
+ ¢}, [y- momentum eq.]

Therefore,
JF
- —\/_E_: pe+ A Epy

Y ; R R x ~ R )
= Re [- —\/% (bugn + Cupy +éup) + \/% (bvin + évyy +8vy)]

(A1-7)

Let a coordinate (m, n) be such that m aligns with ¢ and »n is normal to
them, and that both m and n have scale of unity (cf. Fig. A1-2). Then,

dm=\/Edt +/ G cos wdn (A1-8)
dn =\fG—sin wdn
y
(. JF
F" T JVE (A1-9)
Nn = J\/E_
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Fig. A1-2 Orthogonal coordinate (m, n)

Using the above equation, n-derivative of p is,
Pn = &nPg + MyPn = [LHS of eq. (A1-7)] (A1-10)

Therefore, LHS of eq. (A1-7) represents normal derivative of pressure, which
is in agreement with the derivation of the equation.

In the computation shown in the following chapter, The grid is made
orthogonal on solid wall. That is,

F=XgXn+ygyy, =0 < b=.0 (A1-11)
Using the above relation, the eq. (A1-10) is finally reduced to,

Po = @ty + By + Cun +dvy) ' (A1-12)
where |[d =-y,J

g = XEJ

~ _ XnXgg tVqY

¢ =y [ 5 + (Vg = Yeknn)] (A1-13)

£+VE
d=-xJ [ ” ]

A2 Drag and lift coefficients acting on a solid body.

As shown in Fig. A2-1, a force vector /Pn acting on a surface of unit
length is

an Pxx Pyx eg _]

Pn = =
Py Pyy Py ey J
* ou” v
* ou <___ + v > en
P2 axt # " /||
= * %k % (A2"1)
( ou ov > * 9 ov n
s =D M €
H ay* * ax™ g
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Fig. A2-1 Force Pn acting on a solid body

, where € and €}, are components of a unit normal vector e” given in eq.
(A1-6) and * denotes dimensional values.
A total force /F is given by integrating /Pn all along the solid surface.

Drag "
IF = = f/Pn ds (A2-2)
Lift

By non-dimensionalizing the physical quantities in a way shown in eq.
(2-4), the drag and lift coefficients are given as follows.

= Drag Ou n 1 [0u ov
Cp = 2\[e% 2o )t R 50 e lds (A2-3)
2 prL e ox Re \ 0y 0x
= Lift J‘[ 1 au N av>+ ( N 2 av>]d
= e - _—
L l b ay ox \7P Re oy s
2° (A2-4)

The components of vector e¢” are given by

n yE n xs
Cy = =—F—————— e, = .
RV T ARV e X3 (A1-5)

In order to integrate in the computational plane, x and y derivatives are
replaced by §- and n-derivatives. That is,

Ox =adg + b0, , 0, =co; +do, (A3-4)

Since §-axis aligns with the solid body surface, the line element ds on the
solid surface is equal to dS; given in eq. (A1-3).

ds =/ x2+ yEd (A2-5)
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Using the solid wall boundary condition u = v = u; = v, = 0, and sub-
stituting eqgs. (A1-5), (3-4), and (A2-5) into eqgs. (A2-3) and (A2-4),

J : .
Cp = 2f[pys o cF 2y - xevevy | D (A2-6)
- J 2, 2
Cr =2 | [-Dx¢ + Re —XgYgUn + (2xF + yE )y, | dE (A2-7)
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