上で述べた密度波の伝播速度は(91)式または(117)式によって表される。二相流系における各種の摩擦,運動 量交換および体積力等に関する効果を無視できる場合には(117)式で表され,そうでない場合には(91)式で表 される。但し,(91)式および(117)式は一様定常状態において与える摂動から導かれるので加熱部気泡流に対し ては近似値を与える。

4.結論

軽水原子炉系の熱水力過渡特性や配管破断の想定事故などの解析に広く用いられている RELAP5/MOD1 コードに用いられている一次元非均質非平衡二相流基礎方程式系を基本的に用いた二相流基礎方程式系(13)式~ (17)式の線形安定性解析を行い,その結果を矩形ダクト内層状流および気泡流に適用した結果,次の事柄が明 らかになった。

1) 矩形ダクト内層状流における密度波の長波長成分に関する二相流基礎方程式系の安定のための必要条件は 次式で表される。

 $(\alpha_g \rho_l + \alpha_l \rho_g)(\rho_l - \rho_g) gH/(\rho_g \rho_l) > v_{gl}^2$

(61)

この関係式は蒸気 -- 水の相対速度 vgl が大きい場合には満たされない。つまり系は不安定になる。これはよく知られるヘルムホルッ不安である。その場合において液相の壁面摩擦は安定化効果をもつが,気相の壁面摩擦は二 相境界摩擦と共に不安定効果をもつ((60)式参照)。(61)式は非常に短い波長成分に関する系の安定性に関して も適用できる。その場合にはこの式は安定のための十分条件である。そしてこの条件式が満されない場合の不安 定は非物理的不安定である((114)式参照)。

2) 水平気泡流における音波の非常に低い周波数成分に関しては二相流基礎方程式系は安定である((71)式参照)。

3)矩形ダクト内層状流および気泡流のそれぞれにおける音波の非常に高い周波数成分に関しては二相流基礎 方程式系は安定である((121)式参照)。

4) 蒸気 –水水平気泡流における密度波の長波長成分に関しては各相の壁面摩擦損失が二相境界摩擦損失に比べて無視できる場合には二相流基礎方程式系は安定である(但し,大気圧飽和状態において α_g<0.5の場合)。– 方,非常に短い波長成分に関しては

$$\left(\frac{C\rho}{2}\right)^2 < \alpha_g \alpha_l \rho_g \rho_l$$

(115)

の場合には系は不安定になる。これは非物理的不安定である。尤も (115) 式はC(仮想質量係数) \geq 1 の場合に は α_g , α_l (何れも零ではないと仮定している), ρ_g および ρ_l の各値に関係なく成立しない(気泡流に対しては C > 0.5 が適用される)。

5) 蒸気-水水平気泡流において角周波数 $\omega \rightarrow 0$ における音波の減衰係数は圧力 0.69MP_a, ボイド率 $\alpha_g = 0.1$ の飽和状態において蒸発率 Γ_g に関する効果を考慮した場合には、そうでない場合に比べて 4×10^5 倍程 度大きいと予測される。

6)矩形ダクト内層状流における密度波の長波長成分の伝播速度((83)式)を求めた。

7)水平気泡流における密度波の長波長成分の伝播速度((91)式)を求めた。

8) 矩形ダクト内層状流および気泡流における密度波の非常に短い波長成分の伝播速度((117)式)を求めた。
9) 矩形ダクト内層状流および気泡流における圧縮性波の非常に高い周波数成分の伝播速度((122)式)を求めた。

本研究において検証したこと

1) 二相流基礎方程式系の特性根はその系の非常に短い波長の摂動に関する系の安定性と等価であることを検証した(附録F参照)。

以上の研究結果は一次元非均質二相流基礎方程式系に生じうる物理的安定性および非物理的不安定の問題についてのいくつかの知見を与える。

ー次元非均質二相流モデルを用いた熱水力過渡特性解析コードを作成したり改造したりする場合にはこれらの 知見を前以て把握する必要がある。それによって適切な差分方程式系を作ることができ,数値実験において生じ

20

(408)

るかもしれない不安定に対する適切な判断ができる。

本研究を遂行するにあたり有益なご助言を頂いた原子力船部(現大阪支所)綾威雄主任研究官に謝意を表します。

附録A 非均質二相流差分方程式系の適切性について

非均質二相流基礎方程式系の非常に短い波長の摂動に関する非物理的不安定(不適切)は既に述べたように粘 性項或いは表面張力項などの二次微分効果を加えることによって取除き初期値問題として適切にすることができ る。

さて,非均質二相流基礎方程式系の初期値問題を解くために用いられるその差分方程式系は適切でなければな らない。そのために人工粘性などを陽に加えたり,数値解析上の工夫によって陰に人工粘性が加えられるように する場合がある。本研究において参考にした RELAP5/MOD1 コードで用いられる差分方程式系は後者に該 当する。加えられる人工粘性項などは物理的に意味のある比較的長い波長の振る舞いを抑制しないように選ばな ければならない。

RELAP5/MOD1コードにおいては二相流差分方程式系を適切にするために次のような工夫がしてある³。 即ち,特定の空間微分項に対しては新しい時刻における陰解法を用い,質量流束とエネルギー流束の両項につい ては,それらに含まれるスカラー量には以下の(A-1)式で示される上流側の値を用いる。運動量流束につい ては,運動方程式におけるその保存形はそれに含まれる v_a^2 に対して(A-3)式および(A-4)式に示す上 流側の値を用いると以下に導くように結果的に v_a^2 の勾配に対する中心差分近似項と陰の人工粘性項の和で表 される。

RELAP5/MOD1 コードの二相流差分方程式系においては、まず連続およびエネルギーの両方程式について は Fig.A.1 において x 座標に関して x_j から x_{j+1} まで積分して得られる。一方、運動方程式については x_K から x_L まで積分して得られる。ここで、

 x_{j}, x_{j+1} などをジャンクションと呼び, K, L などをボリュームまたはセルと呼ぶ。 x_{K}, x_{L} などはボリュームK, Lなどの中心を指す。

各ジャンクションにおける質量流束項および エネルギー流束項のそれぞれに含まれるスカラ ー量は次式に示す上流側の値 。を用いる。

$$\dot{\phi} = \frac{1}{2} (\phi_{\rm K} + \phi_{\rm L}) + \frac{1}{2} \frac{|v|}{v} (\phi_{\rm K} - \phi_{\rm L}),$$

$$v \neq 0 \qquad (A-1)$$

ここで、 ϕ はボリュームの平均スカラー量であ り、v は適当な速度(蒸気相又は液相)である。

運動方程式(3)式および(4)式の左辺第2項の対流加速項はこのコードでは次式で近似される。

$$\frac{1}{2} \alpha_a \rho_a \frac{\partial v_a^2}{\partial x} = \frac{(\alpha_a \rho_a)_j}{2\Delta x_j} \{ (\dot{v}_a^2)_{\mathrm{L}} - (\dot{v}_a^2)_{\mathrm{K}} \}$$

(A - 2)

ここで、 $(\dot{v}_a^2)_{\rm K}$ と $(\dot{v}_a^2)_{\rm L}$ は Fig. A. 1 に示す運動方程式を適用するボリュームの境界 $x_{\rm K}$ と $x_{\rm L}$ のそれぞれにおける量である。ジャンクションにおけるスカラー量に対して(A-1)式で表す上流側の値を用いるのに 倣って、 $(\dot{v}_a^2)_{\rm K}$ と $(\dot{v}_a^2)_{\rm L}$ に対しても次式で表す上流側の値を用いる。

(409)

$$\frac{1}{2}\alpha_{a}\rho_{a}\frac{\partial v_{a}^{2}}{\partial x} = \frac{(\alpha_{a}\rho_{a})_{j}}{4\Delta x_{j}}\left\{(v_{a}^{2})_{j+1} - (v_{a}^{2})_{j-1} + \frac{|(v_{a})_{L}|}{(v_{a})_{L}}(v_{a}^{2})_{j} - (v_{a}^{2})_{j+1}\right\} - \frac{|(v_{a})_{K}|}{(v_{a})_{K}}(v_{a}^{2})_{j-1} - (v_{a}^{2})_{j}\right\}$$

$$(A-5)$$

ボリュームKおよびLの平均速度およびその2乗はそれぞれ次式で求められる。 $(v_a)_{\rm K} = [(v_a)_{j-1} + (v_a)_j)/2, (v_a)_{\rm L} = [(v_a)_j + (v_a)_{j+1}]/2$ (A-6) $(v_a^2)_{\rm K} = [(v_a^2)_{j-1} + (v_a^2)_j)/2, (v_a^2)_{\rm L} = [(v_a^2)_j + (v_a^2)_{j+1}]/2$ (A-7) (A-5)式に(A-6), (A-7)の両式を代入すれば $\frac{1}{2}\alpha_a\rho_a \frac{\partial v_a^2}{\partial x} \doteq \frac{(\alpha_a\rho_a)_j}{2\Delta x_j} [(v_a^2)_{\rm L} - (v_a^2)_{\rm K}] - \frac{(\alpha_a\rho_a)_j}{2\Delta x_j} (\text{VISA})_j$ (A-8) ここで

(VISA)_j= |v_a|_L{((v_a)_{j+1} - (v_a)_j) - |v_a|_K[(v_a)_j - (v_a)_{j-1}]
 (A-9)式は文献 3)の(233)式および(234)式に対応する。(A-8)式から解るように、この式の左辺の運動量流束は差分式ではその中心差分近似項と人工粘性項(第二項)の和で表される。

RELAP5/MOD1 コードの二相流差分方程式系の適切性と精度は数値実験によって確かめられた。

附録B 矩形ダクト内層状流および水平気泡流における(31),(32)および(33)の各式の値

二相混合流単位体積当りの蒸発率 Γ_g の構成方程式としては R.C. Mecredy と L.J. Hamilton⁷⁾が運動学 的理論から求めた式を用いる。彼等は,液相は速度 v_l ,温度 T_l で蒸発し,凝縮は v_g および T_g で起るとして, 蒸発と凝縮が共存している式をたてた。彼等によれば,二相混合流の単位体積当りの蒸発率 r_e および凝縮率 r_c は気泡流に対してそれぞれ次式で表される。

$$\gamma_{e} = \frac{3\varepsilon_{e} \alpha_{g}}{r_{b} \sqrt{2\pi R}} \frac{P_{I}^{s}}{\sqrt{T_{I}}}$$

$$r = \frac{3\varepsilon_{e} \alpha_{g}}{r_{b} \sqrt{2\pi R}} \frac{P_{I}^{s}}{\sqrt{T_{I}}}$$

$$(B-1)$$

$$r_p \sqrt{2\pi R} \sqrt{T_g}$$

ここで、 P_I^s は T_I に対応する飽和圧力、Pは圧力、そしてRはガス常数をそれぞれ表す。本報では、彼等に倣って、蒸発係数 ε_e と凝縮係数 ε_e は等しいと仮定する。即ち、

$$\Gamma_g = \gamma_e - \gamma_c \tag{B-4}$$

この式は熱的平衡状態においては

$$\Gamma_{g} = \frac{3\varepsilon \,\alpha_{g}}{r_{p}\sqrt{2\pi \mathrm{RT}^{\mathrm{s}}}} \left(\mathrm{P}_{l}^{\mathrm{s}} - \mathrm{P} \right) \tag{B-5}$$

となり値は零である。

(31)式の各係数は(B-5)式を α_g , Pおよび S_l のそれぞれに関して微分すれば得られる。即ち,

$$\Gamma_{gag} = 0 \qquad (B-6)$$

$$\Gamma_{gp} = \frac{3\varepsilon\alpha_g}{r_p\sqrt{2\pi RT^s}} \left\{ \left[\left(\frac{\partial T_I}{\partial P}\right)_{s_I} - \frac{dP^s}{dT} - 1 \right] - \frac{P_I^s - P}{2T^s} - \frac{dT^s}{dP} \right]$$

$$= \frac{-\Gamma_0}{P} \qquad (B-7)$$

$$\zeta \zeta \mathfrak{T}_{0} = \frac{3\varepsilon \alpha_{g} P}{r_{p} \sqrt{2\pi R T^{s}}} \tag{B-8}$$

(B-7)式においては液相は非圧縮性と見做す。

(410)

$\Gamma_{gs_{I}} = \frac{\Gamma_{0}}{P} \left(\frac{\partial T_{I}}{\partial S_{I}} \right)_{p} \frac{d P^{s}}{d T}$					
$=\frac{\Gamma_0 H_{gl}}{P V_g C_l}$					(B-9)
ここで H_{gl} および V_{gl} はそれぞれ熱自 次に (32) 式の各係数を求める。 (11 E=-H- Γ_{r} +O	り平衡状態におけ)式において運動	ける蒸発熱‡ カエネルギー	3よび蒸発によ - 項および摩捕	とる比体積増 察熱の項を無	加を表す。 視すれば (B - 10)
この式を、Qは一定値として、 α_g 、P	および Si のそれ	れぞれに関し	して微分すれば	ť	(B - 11)
$E_{\alpha g} = 0$ $E_{p} = -H_{gl}\Gamma_{gp} = H_{gl}\Gamma_{0} / P$ H^{2}				en de la composition de la composition En la composition de l	(B-12)
$\mathbf{E}_{s_l} = -\mathbf{H}_{gl} \Gamma_{gs_l} = \frac{-\mathbf{H}_{gl} 1_0}{\mathbf{V}_{gl} \mathbf{C}_l \mathbf{P}}$	· .			n	(B-13)
最後に(33)式の各係数を矩形ダクト まず矩形ダクト内層状流に対して求め	内層状流および7 る。(19),(20	k半気泡流の)の各式に含	Dそれぞれに文 含まれる各係数	すして求める 枚の値はそれ	。 、ぞれ次式で表される。
$FWG = \frac{\lambda_g v_g}{8\alpha_g H} , FWF = \frac{\lambda_l v_l}{8\alpha_l H}$, $A_{gl} = \frac{1}{H}$, H	$\beta_{gl} = \frac{1}{8}f$	gi Pg Vgi		(B-14)
(B-14)式の各値を(19),(20)の名 $\alpha_{g}F_{g} = -\lambda_{g}\rho_{g}v_{g}^{2}/(8H) - f_{gl}\rho_{g}v_{gl}^{2}/\alpha_{t}F_{l} = -\lambda_{l}\rho_{l}v_{l}^{2}/(8H) + f_{gl}\rho_{g}v_{gl}^{2}/(8H)$	5式に代入すれば (8日) 3日)	. 1.			(B-15) (B-16)
(B-15), (B-16)の各式にお の各式を <i>ag</i> , <i>vg</i> および <i>vi</i> のそれぞれ	いては物質移動の に関して微分すれ	D効果は無袖 れば	見する。(33)	式の各値は(B-15),(B-16)
$(\alpha_g F_g)_{\alpha_g} = 0$ $(\alpha_g F_g)_{v_g} = -\lambda_g \rho_g v_g / (4H) - f_g$ $(\alpha_g F_g)_{v_l} = f_{gl} \rho_g v_{gl} / (4H)$ $(\alpha, F_l) = 0$	ıρgvgi∕(4H)				(B-17) (B-18) (B-19)
$(\alpha_{l}F_{l})_{v_{g}} = f_{gl}\rho_{g}v_{gl}/(4H)$ $(\alpha_{l}F_{l})_{v_{l}} = -\lambda_{l}\rho_{l}v_{l}/(4H)$. *	(B-20) (B-21) (B-22)
(3)武および(4)武に含まれるボイ ド率の勾配 ∂αg /∂x に起因す ―				Ť	
る各相単位体積当りの力はFig. B.1を参照すればそれぞれ					· → ^v g
$- ho_{g} g H rac{\partial lpha_{g}}{\partial x} (蒸気相) および$	Q	ug ^H			
$(f_{\mathbf{F},\mathbf{a}_{\mathbf{g}}}-\rho_{\mathbf{g}}\mathbf{g}\mathbf{H})\frac{\partial \mathbf{a}_{\mathbf{g}}}{\partial x}$ である。	H	Hôa l		1	→ v _ℓ
ただし $f_{pag} = (\rho_l - \rho_g) $ gH	α	L _o H			
(B - 23) 次に水平気泡流に対する(33) —		<u>у</u>		 	
式の各値を求める。単位体積当	Fig. B.1 Gr	adient 20./2x	<pre>dx</pre>	flow in a rect	angular duct
シシーロッシューロ Agl C し C ta 次式を用いる ³⁾ 。	<u>.</u>				

A_{gl}=3α_g/r_p (19), (20)の各式に含まれる係数 FWG および FWF はそれぞれ次式で表される。

(B-24)

(411)

24

$FWG = \frac{\lambda_g v_g}{2D_e} , \qquad FWF = \frac{\lambda_I v_I}{2D_e}$		(B – 25	;)
(7), (B-24) および (B-25) の各式を (19), (20) の各式に代入すれば	× .		
$\alpha_g F_g = -\lambda_g \alpha_g \rho_g v_g^2 / (2D_e) + \gamma_e v_l - \gamma_c v_g - 3f_{gl} \alpha_g \rho_g v_{gl}^2 / 8r_p$		(B – 26)
$\alpha_l F_l = -\lambda_l \alpha_l \rho_l v_l^2 / (2D_e) + r_c v_g - r_e v_l + 3f_{gl} \alpha_g \rho_g v_{gl}^2 / 8r_b$		(B-27)
これらの式を α_g , v_g および v_I のそれぞれに関して微分すれば	i se stand		
$(\alpha_g F_g)_{\alpha_g} = -\lambda_g \alpha_g v_g^2 / (2D_e) - \Gamma_0 v_g i / \alpha_g - 3f_{gl} \rho_g v_{gl}^2 / (8r_p)$		(B-28)
$(\alpha_g F_g)_{v_g} = -\lambda_g \alpha_g \rho_g v_g / D_e - \Gamma_0 - 3f_{gl} \alpha_g \rho_g v_{gl} / (4\gamma_p)$		(B-29)
$(\alpha_g F_g)_{v_l} = \Gamma_0 + 3f_{gl}\alpha_g \rho_g v_{gl} / (4\gamma_p)$		(B – 30)
$\left(\alpha_{l}F_{l}\right)_{\alpha_{g}}^{\dagger} = \lambda_{l}\rho_{l}v_{l}^{2}/(2D_{e}) + \Gamma_{0}v_{gl}/\alpha_{g} + 3f_{gl}\rho_{g}v_{gl}^{2}/(8r_{p})$		(B – 31)
$(\alpha_l F_l)_{v_q} = \Gamma_0 + 3f_{gl}\alpha_g \rho_g v_{gl} / (4\gamma_p)$		(B-32)
$(\alpha_I F_I)_{v_I} = -\lambda_I \alpha_I \rho_I v_I / D_e - \Gamma_0 - 3 f_{gl} \alpha_g \rho_g v_{gl} / (4r_p)$	E ve t	(B – 33)
$f_{\mathbf{r},\alpha_{\mathbf{r}}}=0$	$[1, 1] \in [N_{1}, T]$	(B-34)
上記の(B-28)~(B-33)の各式は水平気泡流における密度波に関する(13) 式~(17) テ	式の基礎方程式系の)安
定性解析に用いる。一方、この系における音波の伝播特性を求める場合には定	常状態におり	ナる各相速度 vg お	ぷよ
び v ₁ を共に零とする (G.B. Whitham F.R.S. ¹⁹⁾ p. 4)。そして各相速度と	こしてはそれ	らの摂動分のみを考	え
る。その場合の二相境界摩擦力は気泡(球と見做す)と流体の相対速度が非常	に小さい場合	合に成り立つストー	・ク
スの法則から求めることができる ⁷⁾ 。その結果、 $(B - 26) \sim (B - 33)$ の各式	は以下のよ	うに書換えられる。	
$\alpha_g F_g = r_e v_l - r_c v_g - \alpha_g \rho_g F^{gl} v_{gl}$	$= \sum_{i=1}^{n} (1 - 1)^{i} \sum_$	(B – 35)
$\alpha_l \mathbf{F}_l = \gamma_c v_g - \gamma_e v_l + \alpha_g \rho_g \mathbf{F}^{gl} v_{gl}$		(B-36)
$7.7 = Fg^{l} = \frac{9}{\mu_{l}}$		(B - 37))
$2 \rho_g r_p^2$			
(B-35), (B-36)の両式はR.C. Mecredyら ⁷⁾ が音波の伝播特性を求めるた	めに用いた	式と同じである。	
(B-35),(B-36)の両式を微分して次式を得る。		4	
$(\alpha_g \mathbf{F}_g)_{\alpha_g} = 0$		(B-38)
$(\alpha_g F_g)_{v_g} = -\Gamma_0 - \alpha_g \rho_g F^{gl}$		(B-39)
$(\alpha_g F_g)_{v_l} = \Gamma_0 + \alpha_g \rho_g F^{gl}$		(B-40)
$(\alpha_I \mathbf{F}_I)_{\alpha_g} = 0$		(B-41)
$(\alpha_l \mathbf{F}_l)_{v_g} = \Gamma_0 + \alpha_g \rho_g \mathbf{F}^{gl}$	A	(B-42)
$(\alpha_l \mathbf{F}_l)_{v_l} = -\Gamma_0 - \alpha_g \rho_g \mathbf{F}^{gl}$		(B-43)
附録C 2.2.1 項および2.2.2 項の例題に用いた常数			
$P = 0.69 MP_{-}$			
$1 0.000 \text{ gm}^2$			

$T^s = 437^{\circ}K$	$C_{vg} = 0.441 \frac{\text{kcal}}{\text{kg}^{\circ}\text{K}}$
$\alpha_g = 0.1$	$C_l = 1.02 \frac{\text{kcal}}{\text{kg}^{\circ}\text{K}}$
$H_{gl} = 494 \frac{\text{kcal}}{\text{kg}}$	$F^{gl} = 906^{S-1}$
$U_{gl} = 448 \frac{\text{kcal}}{\text{kg}}$	$r_p = 0.5 \times 10^{-3} \text{m}$
$V_{gl} = 0.277 \frac{m^2}{kg}$	

附録D 層状流における密度波に及ぼす重力および表面張力の安定化効果について

(412)

矩形ダクト内層状流における密度波の長波長成分に対する散逸関係式は(48)式で表される。そしてこの成分は (60)式の条件を満たさない場合には不安定になる。これはヘルムホルツ不安定であることは(48)式において各 種の摩擦,運動量交換および体積力等に関わる項を無視した結果を,以下に紹介するChandrasekhar¹⁶⁾が求め た二次元層状流におけるヘルムホルツ不安定の式から導くことができることからも了解される。

いま、三次元座標(zは高さ方向)において定常状態にある非圧縮性および非粘性の層状非均質流が水平方向 (x方向)に速度 v_x で流れているとする。非粘性の仮定により v_x は高さ方向には任意の関数と考えることが許 される。また、ある高さ $z=z_s$ を境にしてその上下で密度の不連続が許されるものとする。この系が摂動され て任意の点の各状態量が定常値 ρ , P, v_x , $v_y=v_z=0$ から $\delta\rho$, δ P, δv_x , δv_y および δv_z だけそれぞれ変 動したとする。その場合、摂動に対して

 $e^{i(k_x x + k_y y - \omega t)}$

(D-1)

(D-3)

(D-4)

に依存する解を求めることができる。ここで $k_k \ge k_y$ はそれぞれ x方向およびy方向の波数である。 Chandrasekhar(16), p483)によれば、この系に対して次の力学的関係を導くことができる。

$$\Delta_{s}(\rho(\omega - k_{x}v_{x})\frac{dv_{z}}{dz} + \rho k_{x}\frac{dv_{x}}{dz} dv_{z}) = gk^{2}(\Delta_{s}(\rho) - \frac{k^{2}}{g}\sigma_{s})(\frac{\delta v_{z}}{\omega - k_{k}v_{x}})_{s}$$
(D-2)

ててで

$$\Delta_{s}(f) = f_{z=z_{s}+0} - f_{z=z_{s}-0}$$

 $k^2 = k_x^2 + k_y^2$

g =重力加速度

σ=表面張力

添字 s は二相境界面を示す。

いま,密度 $\rho_1 \ge \rho_2$ の一様な二流体が z = 0の水平面で分けられているとする。 上側の流体の ρ_2 は下側の ρ_1 より小さいとする。そして一定速度 v_{x1} および v_{x2} でそれぞれ流れているとする。この系が摂動されるとき高 さ方向の速度の変動は次式で表すことができる (16), p 484)

$$\delta v_{z1} = A(\omega - k_z v_{x1}) e^{kz} \qquad (z < 0) \qquad (D-5)$$

$$\delta v_{z2} = A(\omega - k_z v_{z1}) e^{-kz} \qquad (z > 0) \qquad (D-6)$$

ここで,Aは任意常数である。高さ方向に直交する平行平板間隔Hが有限で,その中間に二相境界面がある場合 に対して(D−2)式を適用するために(D−5),(D−6)の両式をそれぞれ次式で置換える。

$$\delta v_{z1} = A(\omega - k_x v_{x1}) \frac{\sinh k(z + \alpha_1 H)}{\sinh k \alpha_1 H} (z < 0)$$

$$\delta v_{z2} = -A(\omega - k_x v_{x2}) \frac{\sinh k(z - \alpha_2 H)}{\sinh k \alpha_2 H} (z > 0)$$
(D-7)
(D-8)

ここで $\alpha_1 \ge \alpha_2$ はそれぞれ x方向単位長さ当りの各相の体積比である。(D-7), (D-8)の両式を(D-2)式に代入し、二相境界で $\delta v_{z1} = \delta v_{z2}$ であることを考慮すれば次式を得る。

$$\rho_{2}(\omega - k_{x}v_{x2})^{2} \frac{\cosh k \alpha_{2}H}{\sinh k\alpha_{2}H} + \rho_{1}(\omega - k_{x}v_{x1})^{2} \frac{\cosh k \alpha_{1}H}{\sinh k\alpha_{1}H} = gk((\rho_{1} - \rho_{2}) + \frac{k^{2}}{g} \sigma) \quad (D-9)$$

(D-9)式は k H≪1 の場合には次式になる。

 $\alpha_1 \rho_2 (\omega - k_x v_{x2})^2 + \alpha_2 \rho_1 (\omega - k_x v_{x1})^2 = k^2 \alpha_1 \alpha_2 [(\rho_1 - \rho_2)g + k^2 \sigma]H$ (D-10)
Cの式において x 方向の摂動だけを考えて $k = k_x$ とおけば平行板間の一次元非圧縮性層状流に対する散逸
関係式になる。この式の添字 x1および x2 をそれぞれ l および g で置換えて (41), (43)および (44)の各式を
用いて整理すれば

$$(\alpha_{g}\rho_{l}+\alpha_{l}\rho_{g})\varphi^{2}+2k(\alpha_{g}-\alpha_{l})\frac{\rho_{g}\rho_{l}}{\rho}v_{gl}\varphi$$
$$-k^{2}\left\{\alpha_{g}\alpha_{l}\left[(\rho_{l}-\rho_{g})g+k^{2}\sigma\right]H-\frac{\rho_{g}\rho_{l}}{\rho^{2}}(\alpha_{g}^{3}\rho_{g}+\alpha_{l}^{3}\rho_{l})v_{gl}^{2}\right\}=0$$
(D-11)

この式は(48)式において各種の摩擦,運動量交換および体積力等に関わる項を無視し,C(仮想質量係数)=0

(413)

26

とし、矩形ダクト内層状流の液相に対する力としてボイド率の勾配 $\partial \alpha_g / \partial x$ に起因する力の係数として(B-23)式を用いた式に一致する。但し、(48)式においては表面張力 σ は無視している。(D-11)式は、結果的には密度波の非常に短い波長成分に関する散逸関係式(109)において係数 f_{reg} に矩形ダクト内層状流に対する値(B-23)式を代入し、C=0とした式と一致する。但し、(109)式においては表面張力 σ を無視している。

(D-11)式から安定条件として次式が得られる。 $v_{gl} \leq \sqrt{(\alpha_g \rho_l + \alpha_l \rho_g)((\rho_l - \rho_g)g + k^2 \sigma) H / \rho_g \rho_l}$

(D - 12)

長波長においてこの式が満たされない場合はヘルムホルツ安定である。

附録E 特性根と安定性の関係について

非均質二相流基礎方程式系(13)式~(17)式の特性根と安定性の関係はこの系の物理的理解の上で有益な情報 を含んでいるので、ここでは Ramshaw と Trapp⁶⁾が導いた両者の関係についての議論の要約を紹介する。 そして彼等が示した特性根と安定性の関係を本報の2.2.3項で求めた非常に短い波長の摂動に関する安定性と附 録Fで求めた特性根との間の関係に適用してみる。

二相流基礎方程式系は一般的には附録Fの(F-1)式で表される。このn個の式から成る1次準線形偏微分 方程式系に Von Neuman と Richtmyer によって初めて用いられたとされる局所線形安定性解析法を適用 すると、 $\omega(k) \neq 0$ と仮定すれば次式を得る。

$$\det\left(\mathbf{A} - \frac{k}{\omega}\mathbf{B} + \frac{i}{\omega}\mathbf{D}\right) = 0 \tag{E-1}$$

ててで

$$\mathbf{D} = \left(\frac{\partial \mathbf{A}}{\partial \mathbf{U}_0} \frac{\partial \mathbf{U}_0}{\partial t}\right)^{\mathrm{T}} + \left(\frac{\partial \mathbf{B}}{\partial \mathbf{U}_0} \frac{\partial \mathbf{U}_0}{\partial x}\right)^{\mathrm{T}} + \left(\frac{\partial \mathbf{C}}{\partial \mathbf{U}_0}\right)^{\mathrm{T}}$$
(E-2)

U₀は摂動されない場合の解である。肩記号Tは転置行列を表す。

一方, (F-1)式の特性根 λ は次式で定義される。

 $\det(\mathbf{A} - \lambda^{-1}\mathbf{B}) = 0$

(E - 3)

(E-1)式と(E-3)式を比較すると、もし**D**=0 ならば $k/\omega = \lambda^{-1}$ となり散逸関係式は特性根から直ちに得られる。しかし、**D**=0 となるのは **A**、**B** および**C** がすべて常数の場合のみである。この場合には系の特性根が実数ならば全波長(或いは全周波数)の摂動に関して ω (或いはk)は実数となり系は安定である。即ち摂動に関して系は発散も減衰もしない。しかし、**D** \rightarrow 0 の場合には特性根が実数であっても安定のための十分条件ではない。このことは実数の特性根を有する系でも物理的不安定を示すことがありうることから了解される(例えば、文献 6)の(4)式~(9)式の二相流系)。このような物理的不安定を記述するために複素特性根は不要である。

(E-1)と(E-3)式を比較すると直観的に解るように安定性と特性根は非常に高い周波数の極限においては、特性根の逆数 λ^{-1} の解に1個でも零が含まれる場合を除いて等価になる。これは厳密にはOstrowskiの定理⁶⁾による。即ち、 $k \to \infty$ のとき $k / |\omega(k)|$ が常に有限値に近付くならば、この定理は

 $\lim |\lambda^{-1} - k / \omega| = 0$

(E - 4)

この定理によって k→∞における散逸関係式 (107), (111) および (121) の各式から得られる k /ω はそれぞれ附 録Fにおいて求めた特性根 (F-9), (F-12)および (F-31)の各式の逆数に等しいことが検証される。

附録F 非均質二相流基礎方程式系の特性根について

二相流基礎方程式系(13)式~(17)式の系の特性根を求める。一次元二相流基礎方程式系は次の n個(普通は 3 ≤ n ≤ 6)の式から成る一次準線形偏微分方程式系で表される。

$$\mathbf{A}(\mathbf{U}) \frac{\partial \mathbf{U}}{\partial t} + \mathbf{B}(\mathbf{U}) \frac{\partial \mathbf{U}}{\partial x} + \mathbf{C}(\mathbf{U}) = 0$$

(F - 1)

ここで、係数行列AおよびBは $n \times n$ の正方行列であり、Uは従属変数のn次列ベクトルである。ここで扱う系では係数行列は従属変数 $u_1, u_2, \cdots u_n$ の導関数を含まない。つまり準線形系である。非同次項C(U)はn次の列ベクトルであり、従属変数の導関数を含まない。

(414)

基礎方程式系(13)式~(17)式を(F-1)式で表せばU,A およびB は次式になる。 U=(α_g , P, v_g , v_l , S $_l$)^T

ここで肩記号Tは転置行列を表す。AとBはそれぞれ

$$\mathbf{A} = \begin{pmatrix} \rho_{g} & \alpha_{g} \rho_{g}^{*} & 0 & 0 & 0 \\ -\rho_{I} & \alpha_{h}^{\prime} \rho_{I}^{\prime} + \frac{T_{g}^{*}}{T_{I}} \rho_{I}^{\prime\prime} \end{pmatrix} & 0 & 0 & 0 \\ 0 & 0 & \alpha_{g} \rho_{g} + C \alpha_{g} \alpha_{I} \rho & -C \alpha_{g} \alpha_{I} \rho & 0 \\ 0 & 0 & -C \alpha_{g} \alpha_{I} \rho & \alpha_{I} \rho_{I} + C \alpha_{g} \alpha_{I} \rho & 0 \\ 0 & \alpha_{g} \rho_{g} S_{g}^{*} T_{g}^{*} & 0 & 0 & \alpha_{I} \rho_{I} T_{I} \end{pmatrix}$$
(F-3)

$$\mathbf{B} = \begin{bmatrix} \alpha_{I}(\rho_{I} v_{I} + T_{I} \rho_{I} v_{g}) & 0 & \alpha_{I}(\rho_{I} v_{I} - T_{I} \rho_{I} v_{g}) \\ \alpha_{g} \rho_{g} g H & \alpha_{g} & \alpha_{g}(\rho_{g} v_{g} + C\alpha_{I} \rho v_{I}) & -C\alpha_{g} \alpha_{I} \rho v_{g} & 0 \\ -\alpha_{I}(f_{rag} - \rho_{g} g H) & \alpha_{I} & -C\alpha_{g} \alpha_{I} \rho v_{I} & \alpha_{I}(\rho_{I} v_{I} + C\alpha_{g} \rho v_{g}) & 0 \\ 0 & \alpha_{g} \rho_{g} S_{g}^{*} T_{g}^{*} v_{g} & 0 & 0 & \alpha_{I} \rho_{I} T_{I} v_{I} \end{bmatrix}$$

(F - 4)

ただし、(F-3)、(F-4)の両式を求める際に(14)式の DS_{I}/Dt_{I} を含む項は(17)式を用いて消去してある。

(F−1)式の特性根は次式の λで与えられる。

det($\mathbf{A} - \lambda^{-1} \mathbf{B}$) = 0 (F-5) 非同次項Cは特性根の定義によりこの式に含まれない。(F-5)式に(F-3),(F-4)の両式を代入し て得られる行列式を展開すれば

(F-6)式は5個の特性根を有する。その中の1根は直ちに
 λ_I=0
 (F-8)
 或いは(F-7)式を用いて

 $\lambda_1 = v_l$

(F-9)

特性根と安定性の関係(E-4)式から λ_1 は(107)式から求まる液相エントロピーの摂動の非常に高い周波数 成分の位相速度 ω_1 / k に等しい。

(F - 2)

次に残りの4個の特性根の中には
$$v_g + \sqrt{\frac{\alpha_g \alpha_l (\rho_l - \rho_g) gH}{\alpha_g \rho_l + \alpha_l \rho_g}} \ge v_l - \sqrt{\frac{\alpha_g \alpha_l (\rho_l - \rho_g) gH}{\alpha_g \rho_l + \alpha_l \rho_g}}$$
(気泡流に対しては H = 0 とするので各値の第二項は零)の間の値を有するものがあると仮定すると(F - 6)式の大括弧内に

おいて λ_g および λ_l のオーダの 4 次項はそれらの 2 次項に比べて無視できる。3 次項と 1 次項はない。その結果次式を得る。

$$\alpha_{g}(\rho_{g} + \alpha_{l}\rho_{g}^{*}(f_{r_{\alpha_{g}}} - \rho_{g}gH))\lambda_{g}^{2} + \alpha_{g}\rho_{l}\lambda_{l}^{2} + C\rho\lambda_{g}\lambda_{l} - \alpha_{g}\alpha_{l}f_{r_{\alpha_{g}}} = 0$$
(F-10)
この式を(F-7), (43) および(44) の各式を用いて書換えると

$$\begin{aligned} (\alpha_{g}\rho_{l}+\alpha_{l}\rho_{g}+C\rho)(\lambda-v)^{2} &-\frac{2}{\rho}\left[(\alpha_{l}-\alpha_{g})\rho_{g}\rho_{l}+\alpha_{g}\alpha_{l}^{2}\rho_{l}\rho_{g}^{*}(f_{pag}-\rho_{g}gH)\right.\\ &+\frac{C}{2}\left(\alpha_{l}\rho_{l}-\alpha_{g}\rho_{g}\right)\rho\right]v_{gl}(\lambda-v)-\alpha_{g}\alpha_{l}f_{pag}+\left[(\alpha_{g}^{3}\rho_{g}+\alpha_{l}^{3}\rho_{l}-C\alpha_{g}\alpha_{l}\rho)\rho_{g}\rho_{l}\right.\\ &+\alpha_{g}\alpha_{l}^{3}\rho_{l}^{2}\rho_{g}^{*}\left(f_{pag}-\rho_{g}gH\right)\left]\frac{v_{gl}^{2}}{\rho^{2}}=0 \end{aligned} (F-11)$$

(F - 12)

この式の解は

 $\lambda_{2,3} = \mathbf{V} \pm \mathbf{A}$

ここで V および A はそれぞれ (112), (113) の各式によって表される。非常に短い波長においては (E-4)式 から (F-11)式に含まれる ($\lambda - v$)を $\left(\frac{\omega}{k} - v\right)$ で置換えることができる。その結果から (111) 式を導くことができる。 (F-12)式は気泡流 ($f_{reg} = 0$, H=0)に対しては文献 3)の(146)式と一 致する。 (F-12)式から $\lambda_{2,3}$ の値は $v_g + \sqrt{\frac{\alpha_g \alpha_l(\rho_l - \rho_g)gH}{\alpha_g \rho_l + \alpha_l \rho_g}}$ と $v_l - \sqrt{\frac{\alpha_g \alpha_l(\rho_l - \rho_g)gH}{\alpha_g \rho_l + \alpha_l \rho_g}}$ (気泡 流に対しては H=0 とする)の中間にあることがわかり、 λ_g および λ_l のそれぞれのオーダーの4次項を無視した ことは妥当である。 $\lambda_{2,3}$ の値は実数または共役複素根になる。 (F-12)式の根号内が負の場合には共役複素根 となり (13)式~(17)式の基礎方程式系は楕円形になる。特性根の実数部は波の非常に短い波長成分の伝播速度 を表し、虚数部はその符号によってその波の成分の時間的な減衰または成長を表す。楕円型の系に対してはある 将来の時刻におけるすべての境界条件も与えなければならない。 もし与えれば現在の現象に対して将来の状況 が影響することになり初期値問題としては不適切である。適切であるためには特性根はすべて実数でなければな らない。

以下においては密度波の非常に短い波長成分に関する基礎方程式系の安定性とその系の特性根の関係を簡単化した基礎方程式系について説明する。

気液両相が非圧縮性で物質移動がなく、体積力も $\partial \alpha_g / \partial x$ に起因する力も働かない場合において基礎方程式系(13) 式~(17) 式は次の(F-13) 式~(F-16) 式の系で表される。

$$\frac{\mathrm{D}\alpha_g}{\mathrm{D}t_g} + \alpha_g \frac{\partial v_g}{\partial x} = 0 \tag{F-13}$$

$$\frac{\mathrm{D}\alpha_i}{\mathrm{D}t_i} + \alpha_i \frac{\partial v_i}{\partial x} = 0 \qquad (\mathrm{F} - 1.4)$$

$$\rho_{g} \frac{Dv_{g}}{Dt_{g}} + C\alpha_{l}\rho \left(\frac{Dv_{g}}{Dt_{l}} - \frac{Dv_{l}}{Dt_{g}}\right) = -\frac{\partial F}{\partial x}$$

$$\rho_{l} \frac{Dv_{l}}{Dt_{l}} + C\alpha_{g}\rho \left(\frac{Dv_{l}}{Dt_{g}} - \frac{Dv_{g}}{Dt_{l}}\right) = -\frac{\partial F}{\partial x}$$

$$(F-15)$$

(F-15),(F-16)の両式から $\partial P / \partial x$ を消去する。そして(F-13)式~(F-16)式の系を線形化 する。その際一様定常状態の各変数の値を改めて α_g , α_l , v_g および v_l とする。そしてそれらからの摂動分を それぞれ $\Delta \alpha_g$, $\Delta \alpha_l$, Δv_g および Δv_l とすれば

$$\frac{\partial \Delta \alpha_g}{\partial t} + v_g \frac{\partial \Delta \alpha_g}{\partial x} + \alpha_g \frac{\partial \Delta v_g}{\partial x} = 0 \qquad (F - 17)$$

(416)

$$\frac{\partial \Delta \alpha_{I}}{\partial t} + v_{I} \frac{\partial \Delta \alpha_{I}}{\partial x} + \alpha_{I} \frac{\partial \Delta v_{I}}{\partial x} = 0 \qquad (F - 18)$$

$$\rho_{g} \left(\frac{\partial \Delta v_{g}}{\partial t} + v_{g} \frac{\partial \Delta v_{g}}{\partial x} \right) + C\alpha_{I}\rho \left(\frac{\partial \Delta v_{g}}{\partial t} + v_{I} \frac{\partial \Delta v_{g}}{\partial x} - \frac{\partial \Delta v_{I}}{\partial t} - v_{g} \frac{\partial \Delta v_{I}}{\partial x} \right)$$

$$= \rho_{I} \left(\frac{\partial \Delta v_{I}}{\partial t} + v_{I} \frac{\partial \Delta v_{I}}{\partial x} \right) + C\alpha_{g}\rho \left(\frac{\partial \Delta v_{I}}{\partial t} + v_{g} \frac{\partial \Delta v_{I}}{\partial x} - \frac{\partial \Delta v_{g}}{\partial t} - v_{I} \frac{\partial \Delta v_{g}}{\partial x} \right) \qquad (F - 19)$$

(F-19)式をx に関して微分して得られた式に(F-17), (F-18)の両式を代入すれば次式を得る。 $\frac{\partial^2 \Delta \alpha_g}{\partial t^2} + 2V' \frac{\partial^2 \Delta \alpha_g}{\partial x \partial t} + B \frac{\partial^2 \Delta \alpha_g}{\partial x^2} = 0$ (F-20)

$$trt L, \quad B = \frac{\alpha_l \rho_g v_g^2 + \alpha_g \rho_l v_l^2 + C_\rho v_g v_l}{\alpha_g \rho_l + \alpha_l \rho_g + C_\rho} \quad (F-21)$$

ここで V' は (112) 式において $f_{Pag} = 0$ (H = 0)とした値である。(F - 20)式の特性根は $\lambda = V' \pm \sqrt{(V')^2 - B}$

この式は検算すればわかるように(F-12)式において $f_{Pag} = 0$ (H=0)とした式と同一である。このことから(F-12)式と等価の(111)式と、さらに(111)式が導かれた(109)式に対応する(48)式の両式はそれぞれ非常に短い波長および長波長の密度波に関する散逸関係式であることがわかる。

さて、2.2節に示すように摂動 $\Delta \alpha_g$ は次式で表すことができる。

 $\Delta \alpha_g = \hat{\alpha}_{g} e^{\pm k \Lambda' t + i k (x - V' t)}$ ($k \to \infty$ の場合) (F-25) この式から特性根 $\lambda_{2,3}$ が複素根の場合には、その実数部はボイド率 α_g の摂動の非常に短い波長成分の伝播速 度を表し、虚数部はその符号によってその波長成分の時間的な減衰または成長を表すことがわかる。

最後に残りの2個の特性根を求める。(F-7),(43)および(44)の各式を用いて(F-6)式の大括弧内を $(\lambda - v)$ に関する式に書換えると

この式の左辺を(F-11)式で割り,残余を無視すれば($\lambda - v$)に関する2次方程式を得る。この残余は($\lambda - v$)の-1 乗以下の次数の項から成り, ($\lambda - v$)の大きさは(F-27)式に導かれるように断熱的音速のオーダであるので残余は無視できる。得られる二次方程式から次の2個の特性根を得る。

$$\lambda_{4,5} = v + Y' v_{gl} \pm a_{cne} \tag{F-27}$$

ててで

(417)

29

(F - 22)

$$Y' = \frac{\alpha_{g}\rho_{g}\left(\rho_{l}+C\rho/2\right)-\alpha_{l}\rho_{l}\left(\rho_{g}+C\rho/2\right)+\alpha_{g}\alpha_{l}^{2}\rho_{l}\rho_{g}^{*}\left(f_{F}\alpha_{g}-\rho_{g}gH\right)}{\left(\alpha_{g}\rho_{l}+\alpha_{l}\rho_{g}+C\rho\right)\rho} + \frac{a_{mne}^{2}}{2\left(\rho_{g}\rho_{l}+C\rho^{2}\right)}\left\{\left(\alpha_{l}\rho_{l}-\alpha_{g}\rho_{g}\right)\left(2\rho_{g}\rho_{l}+C\rho^{2}\right)\left(\alpha_{g}\rho_{l}\rho_{g}^{*}+\alpha_{l}\rho_{g}\rho_{l}^{'}\right)/\left(\rho_{g}\rho_{l}\right)\right\}$$

$$+\alpha_{l}\left(\rho_{g}\left(3\alpha_{l}\rho_{l}-\alpha_{g}\rho_{g}\right)+2C\alpha_{l}\rho^{2}\right)\frac{1_{g}}{T_{l}}\rho_{l}^{\prime\prime}\right\}$$
(F-28)

$$a_{cne}^2 = \frac{\left(\alpha_g \rho_l + \alpha_l \rho_g + C\rho\right)\rho}{\rho_g \rho_l + C\rho^2} a_{mne}^2 \qquad (F-29)$$

 $a_{mne}^{2} = \frac{\rho_{g}\rho_{l}}{\left(\alpha_{\sigma}\rho_{l}\rho_{\sigma}^{*} + \alpha_{l}\rho_{\sigma}(\rho_{c})\right)}$

$$\frac{\rho_g \rho_l}{\rho_g^* + \alpha_l \rho_g \left(\rho_l' + \frac{T_g^s}{T_l} \rho_l''\right) \right] \rho} \qquad (F - 30)$$

a cne は蒸気相が熱的平衡にあり、液相が熱的非平衡にある二相流の各流動様式における音速である。例えば層 状流に対してはC(仮想質量係数)=0として得られる。

$$(F - 27)$$
式の特性根 $\lambda_{4,5}$ は初期状態が熱的平衡状態にあれば $T_I = T_g^s$ であるので次式になる。
 $\lambda_{4,5} = v + Yv_{gI} \pm a_c$ (F-31)
ここで

$$a_c^2 = \frac{\left(\alpha_g \rho_l + \alpha_l \rho_g + C\rho\right)\rho}{\rho_g \rho_l + C\rho^2} a_m^2 \tag{97}$$

$$a_m^2 = \frac{\rho_g \rho_l}{\left(\alpha_g \rho_l \rho_g^* + \alpha_l \rho_g \left(\rho_l' + \rho_l''\right)\right)\rho}$$
(98)

$$Y = \frac{\alpha_g \rho_g(\rho_l + C\rho/2) - \alpha_l \rho_l(\rho_g + C\rho/2) + \alpha_g \alpha_l^2 \rho_l \rho_g^* (f_{rag} - \rho_g g H)}{(\alpha_g \rho_l + \alpha_l \rho_g + C\rho) \rho}$$

+
$$\frac{a_m^2}{2(\rho_g \rho_l + C\rho^2)} \{ (\alpha_l \rho_l - \alpha_g \rho_g) (2 \rho_g \rho_l + C\rho^2) (\alpha_g \rho_l \rho_g^* + \alpha_l \rho_g \rho_l') / \rho_g \rho_l \}$$

$$+\alpha_l \left(\rho_g (3\alpha_l \rho_l - \alpha_g \rho_g) + 2C\alpha_l \rho^2\right) \rho_l'' \right\}$$

(120)

(F-31)式の特性根 $\lambda_{4,5}$ は(E-4)式の関係により(122)式,即ち圧縮性波の非常に高い周波数(非常に短い波長)成分の伝播速度に等しい。

参考文献

- 1) 例えば K.R.Katsma, et al.,: RELAP 4/MOD 5-A Computer Program for Transient Thermal-Hydraulic Analysis of Nuclear Reactors and Related Systems, ANCR-NUREG-1335,1976.
- 2) 例えば TRAC-P1A-An Advanced Best-Estimate Computer Program for PWR LOCA Analysis, NUREG/CR-0665, 1979.
- 3) 例えば V.H.Ransom, et al.,: RELAP 5/MOD 1 Code Manual VOL. 1: System Models and Numerical Methods, NUREG/CR-1826, EGG-2070 DRAFT, 1981.
- T.A. Porsching, J.H. Murphy and J.A. Redfield: Stable Numerical Integration of Conservation Equations for Hydraulic Networks, Nuclear Science and Engineering, 43 (1971), pp. 218-225.
- 5) D. Gidaspow (Chairman): Modeling of Two-Phase Flow, Proceedings of Round Table Discussion RT-1-2 at the Fifth International Heat Transfer Conference, Tokyo, September 3-7, 1974.
- 6) J.D. Ramshaw and J.A. Trapp: Characteristics, Stability and Short-Wavelength Phenomena in Two-Phase Flow Equation Systems, ANCR-1272 (1976), Aerojet

30

(418)

Nuclear Company.

- 7) R.C. Mecredy and L.J. Hamilton: The Effects of Nonequilibrium Heat, Mass and Momentum Transfer on Two-Phase Sound Speed, Int. J. Heat and Mass Transfer, Vol. 15 (1972), pp. 61-72.
- 8) Owen C. Jones, JR. (Editor): Nucear Reactor Safety Heat Transfer, Hemishere Publishing Corporation, 1981.
- 9) J. A. Boure, A. E. Bergles and L. S. Tong: Review of Two-Phase Flow Instability, Nuclear Engineering and Design, Vol. 25 (1973), pp. 165-192.
- 10) S.Kakac and T.N.Veziroglu: A Revew of Two-Phase Flow Instabilities, Advances in Two-Phase Flow and Heat Transfer, Vol. II, Martinus Nijhoff Publishers, 1983.
- 11) Bakers, O: Simultaneous Flow of Oil and Gas, Oil Gas J., Vol. 53 (1954).
- 12) G.B.Wallis: One-dimensional Two-phase Flow, McGraw-Hill Book Company, 1969.
- 13) Mandhane, J. M., Gregory, G. A. and Aziz, K.: A Flow Pattern Map for Gas-Liquid Flow in Horizontal Pipes, Int. J. Multiphase Flow, 1-4 (1974).
- 14) B. N. Hanna, G. D. Raithby and W. B. Nicoll: Sound Speed and Critical Discharge in Two-Phase Flow, Two-Phase Momentum, Heat and Mass Transfer in Chemical Process and Energy Engineering Systems, Vol. I, pp. 33-46, Hemisphere Publishing Corporation, 1979.
- J.R. Travis, F.H. Harlow and A.A. Amsden: Numerical Calculation of Two-Phase Flows, LA-5942-MS (1975), Los Almos Scientific Laboratory.
- S. Chandrasekar: Hydrodynamic and Hydromagnetic Stability, London: Oxford University Press, 1968, pp. 481-484.
- S. Kakac, and M. Ishii (Editors): Advances in Two-Phase Flow and Heat Transfer, Vol. II, Martinus Nijhoff Publishers, 1983.
- Lahey, R.T., Jr., and Moody, F.J.: The Thermal-Hydaulics of Boiling Water Reactor, Chap. 7, American Nuclear Society, 1977.
- G. B. Whitham F. R. S. : Linear and Nonlinear Waves, A Wiely-Interscience Publication, 1974.
- J.J.Ginoux (Editor): Two-Phase Flows and Heat Transfer with Application to Nuclear Reactor Design Problems, Chapt. 11, Hemisphere Publishing Corporation, 1978.
- 21) Benjamine, T. B.: Shearing Flow over a Wavy Boundary, J.Fluid Mech. 6 (1959), p. 161.
- 22) Cohen, L.S. and T. J. Hanratty: Generation of Waves in the Concurrent Flow of Air and a Liquid, A. I. Ch. E. Journal II (1965), p.