高経済性内航船舶の船型開発に関する研究

上田 隆康*・斉藤 勇* 菅井 信夫*・塚田 吉昭*

Hull Form Development of Coastal Ship with High Economical Performance

Bv

Takayasu UEDA, Isamu SAITO Nobuo Sugai, Yoshiaki Tsukada

Abstract

In order to improve an economical situation of a coastal transportation, to develop a hull form with high performance for saving a fuel oil consumption is very important.

The research project concerning the hull form development of the so-called 999G. T. type coastal oil carrier was carried out from 1984 to 1985.

This report shows the research procedure and the results of model tests. The outline of the study is as follows.

- (1) The prototype was sellected as the base of hull form improvement.
- (2) The first stage of hull form improvement was made by using the proportion of hull, which showed the minimum operating cost among the some combinations of principal dimensions.
- (3) The second stage was made by modifying the shape of fore body and by adding bulbous bow. In this stage, the statistical analysis method based on the wave–making resistance theory and the type ship method were applied.
- (4) In the third stage, the thrust deduction factor was improved by using the calculating method on the propeller-hull interaction.
- (5) The final stage was made by adopting the low speed propeller with large diameter and stern bulb shape.

As the result of this study, the remarkable reduction of the engine power had been achieved.

Besides the items mentioned above, the evaluation about the vibratory forces induced by propeller and the economical advantage by making use of the ship with a newly developed hull form are also shown in this report.

		自 次	
			頁
1.	緒	膏······	38
2.	船	型開発の基本方針と概要	38
3.	内	抗船舶の主要目及び性能に関する調査··	39
3.	. 1	主要目の調査	39
3	.2	性能の調査	39
		**	

* 推進性能部 原稿受付:昭和61年5月1日

. 船型開	発の順序と模型試験41
4.1 比較	を基準船の選定と模型試験結果42
4.1.1	比較基準船の選定42
4.1.2	比較基準船の模型試験結果42
4.2 船型	型開発のための主要目検討43
4.2.1	主要目の検討範囲と馬力推定43
4.2.2	輸送コストの試算49
4.2.3	主要目以外の船型要素の検討51
4.2.4	主要目検討船の模型試験結果51
4.3 船体	新半部の改善51

4.3.1 横断面積曲線と船首バルブ	51
4.3.2 フレームライン形状	53
4.3.3 模型試験結果	54
4.4 船体後半部の改善	57
4.4.1 推力減少係数の改善	57
(1) 船尾形状の計画―その1	57
(2) 模型試験結果	58
4.4.2 船尾バルブ船型と高効率プロペラ・	62
(1) 船尾形状の計画―その 2	62
(2) 高効率プロペラ	63
(3) 模型試験結果	64
4.5 プロペラ起振力の検討	66
5. 性能改善にもとづく経済性評価	
6 結言	69
謝 辞	71

1. 緒 言

内航船舶は、凡そ1万隻が就航していると言われており、国内貨物輸送量4.17億トン・キロメートルの約47%の輸送を担っている。昭和48年に起こった第1次オイルショック以来、内航船舶においても省エネルギー対策の普及と省エネルギー技術の開発が強力に進められ、船型改良、推進器高効率化などによる馬力低減、主機・補機の高効率化、低質燃料の使用拡大、長期汚損防止用塗装の普及などに多大の努力が払われて来た。その結果、499G/T型、699G/T型、999G/T型の内航船舶などにおいてかなり省エネルギー効果が現れている。しかしながら、中小型内航船舶では、性能改善のための技術開発が大型外航船舶に比べて、今一歩立ち遅れていることは事実であろう。

この実情に鑑み、昭和54年、55年には船舶整備公団が999G/T型内航タンカーについて[1]、また、昭和55年、56年には日本中型造船工業会(以後中造工と略記する)が499G/T型内航鋼材運搬船について[2]、それぞれ本格的な船型開発を実施し、大きな成果を上げた。しかし、999G/T型タンカーの上記の研究を第一次の研究とすれば、第一次の研究当時は、当該船舶への船首と船尾に対するバルブの装着及び、低回転大直径プロペラの採用についてまだ検討されなかったので、船首と船尾にバルブを持つ船の出現は極めて少ない。ただ、低回転大直径プロペラは、バルブ船型よりも検討しやすく、性能改善の効果が得やすい点から、採用例も次第に現れて来ているようである。このような観点から、999G/T型タンカーについて第1次研究(270)

から残された項目を主眼とする第2次研究の実施が強く希望されており、本研究では、これに応えてより高い省エネルギー効果を発揮する内航船舶を開発することにした。

2. 船型開発の基本方針と概要

最近の船型開発の方法については、ノウハウの関係もあってその実情は把握し難い。また、大規模な船型開発の例があまり報告されていない。しかしながら、特定の目的に限定して、高性能の船型を開発する場合は、比較的最近でも多数の模型船を使用した水槽試験が重視されているようである。この例としてかって米国でのSL-7、我が国での35ノット、3000個積みコンテナ船の開発があった。最近では、緒言で記したように499G/T型鋼材運搬船の船型開発が、6隻の模型船を使って行われ、約40%の馬力低下を得ている。我が国でのこの2例では、理論計算が船型開発に適用され、特に船体前半部の船型開発に寄与した。

本研究の999G/T型内航タンカーの船型開発も、上述の例における模型試験と理論計算の併用によって得られた技術的知見を活用することにした。

船型開発は、各開発段階に於ける種々の技術的要素 に重要な基礎を置きつつも、全体としては、これらの 要素が適正なバランスのもとに構成された総合方式と して遂行される必要があり、まさしくシンセシスの適 否が、開発成果の良否を決定づけるものである。

本研究では、はじめに、性能改善の対象船舶につい て、その主要目と性能の調査を既存船の資料によって 行い、これにより、船型開発の計画を立てる。続いて、 船型開発の基礎となり開発段階の性能比較基準となる 船型を決定し、その性能を定める。船型開発の第一段 階では, 実船の性能趨勢の調査をもとに, 主要目を輸 送コストの観点から検討し、それに基づく母型を定め、 その性能の調査を行う。即ち、主要目について選択し 得る範囲を検討し、主要目を変化させた場合の馬力を 推定する。次にこの馬力をもとに輸送コストを試算し, これが最小となる主要目の船型を船型開発用の母型と して選定することとする(船型開発用模型第1船)。第 2段階では、船体前半部の改善を、主として横断面積 曲線の評価、船首バルブの装着、フレームライン形状 の好適化によって図る(模型第2船)。第3段階では, 船体後半部の改善に移り,推進性能の改善を図るべく, 船体とプロペラの相互干渉理論を用いて、船体後半部 フレームライン形状の改善を行う(模型第3船)。第4 段階では、プロペラ高効率化のための低回転大直径プ ロペラの設計を行い、プロペラ前方の流れをプロペラ に集中させ、かつその均一化を図るため船尾バルブを 装着する(模型第4船)。次に、プロペラ起振力に関す る検討を加え、おわりに、本研究による性能改善成果 に対し経済性評価を加えるものとする。

このような研究の流れを図-1, 図-2 に示す。図-1 は概要を示し、図-2 は各段階ごとに用いた研究手法なども含め、本文の説明が研究全体の中に対応する位置をはっきりさせるために示した。

本研究では、実用化に即応した船型の開発を行うことを重要な基方方針としつつ、本研究における船型開発法についてその有効性を実証し、次いで、他の内航船舶の性能改善に対するガイドラインとすることも目的の一つとした。

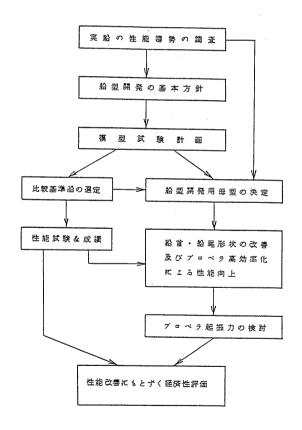


図-1 研究の概要流れ図

3. 内航船舶の主要目および性能に関する調査

船型開発の着手に当って、対象の既存船が如何なる 主要目と性能を有するかを知る必要があるので次の調 査を行った。

3.1 主要目の調査

出来るだけ最近に建造された対象船舶20数隻について船体主要目などを調査した。その一例を図-3, 4に示す。一方,昭和36年から48年に至る,今から20年前から約10年間の対象船舶の主要目などの調査結果[3]では,主要目などは急激な変化を見せている。垂線間長さ $L_{\rm PP}$ は,62mから72.5mへ,幅Bは10.2mから12mへ,深さDは5.2mから5.8mへ,満載排水量 $\Delta_{\rm F}$ は2,200tonから3,400tonへ,載貨重量DWは1,520tonから2,530tonへと年度を追って変化し,然も一様に大型化している。特にDWの増加が著しい。48年から58年に至る10年間では,ここでは,経過を追ったデータはないが,文献3)中の昭和48年度船のデータと今回の調査データの比較がほぼこれに対応し,これによると主要目の変化は比較的緩やかとなっている。

今回の調査結果に見られるように、最近建造された 対象船は、特にL/B=6.4と大きく、方形係数 $C_B=0.67$ と小さいので細長く痩せており、フルード数 F_n も 高い。

大型タンカーの性能改善では形状影響係数を含む粘性抵抗の軽減と、伴流係数の増加による推進効率の向上が重視されてきたが、内航タンカーでは満載状態の計画速力が12/yトであり、 $F_n = 0.22$ と高くなっているので、大型タンカーの性能向上を図る検討項目に加えて、船体前半部形状や、 1_{CB} についても検討を加え、造波抵抗の減少を図る必要があると判断された。また、プロペラも徐々に低回転大直径化が進む傾向が見られる。船型の特徴については、正面線図や横断面積曲線を検討する必要がある。

3.2 性能の調査

対象とする内航タンカーの海上速力試運転は,標準 試運転施行要領と同等に行われているが,海象・気象 の影響は大型船よりも受け易く,算定される馬力の精 度も十分でない場合がある。

試運転解析は、20数隻の中から10隻を選び、標準解析法に沿って実施された。可変ピッチプロペラ船の場合は、翼角一定の試運転データが対象とされた。

解析結果を文献 4)から引用して、図-5 、6 に示すが、図-6 は BHP に基くアドミラリテー係数 C_{adm} である。両図には、何等かの省エネルギー対策を行って

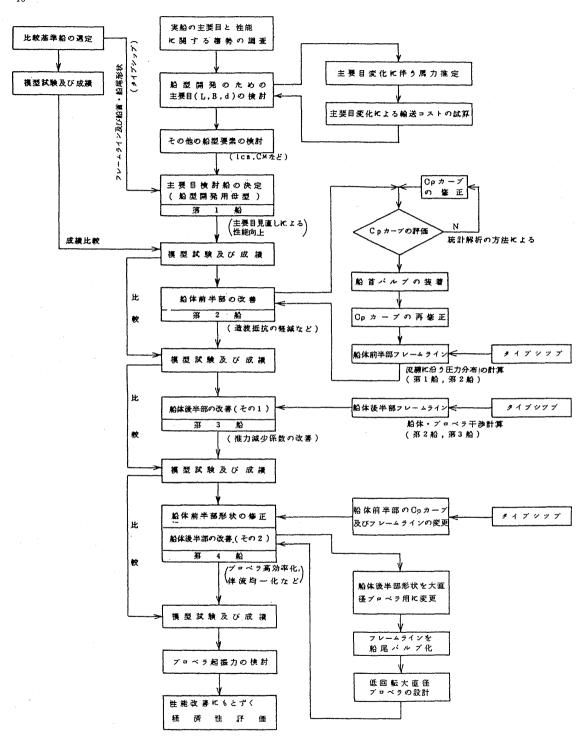


図-2 研究全体の説明図

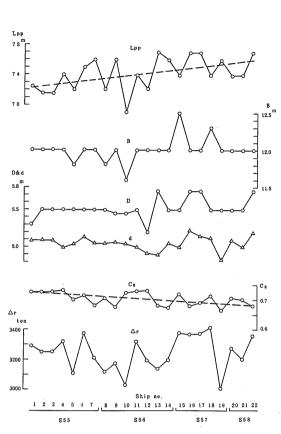


図-3 999G/T 型タンカーの主要目調査(L, B, D, d, C_B , Δ_F)

いる船を白抜き記号で、そうでない船を黒塗り記号で示している。図-5では、省エネルギー対策船とそうでない船との差が馬力、回転数ともに明瞭に現れており、更に、省エネルギー対策船の中でも回転数が上下のグループに別れている。回転数の低いグループ3隻は何れも減速機付き低回転大直径プロペラ(直径 $D_{\rm F} \times$ 回 転数 $N_{\rm S}$ =2.80m×212rpm、2.80×228rpm、3.00 m×194rpm)を装備した船であり、これを馬力で見ると、何れも一番低いグループに入っている。(〇)印は、回転数は正しく計測されているが、馬力の算定に疑問点があるので、一応()付きとした。図中の曲線はグループ毎の平均を参考として示した。図ー6 に於いても、省エネルギー対策船とそうでない船のグループは、はっきりと 2 分されている。計画速力の $V_{\rm S}$ '=12ノットでは、 $C_{\rm adm}$ =330~340であることが判明した。

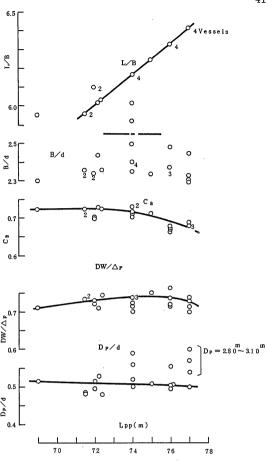
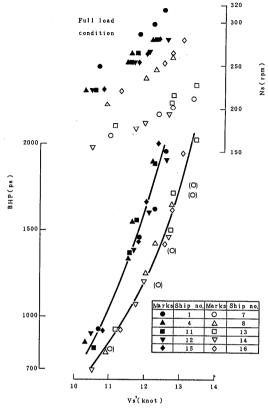


図-4 999G/T 型タンカーの主要目調査(L/B, B/d, DW/ Δ F, DP/d)

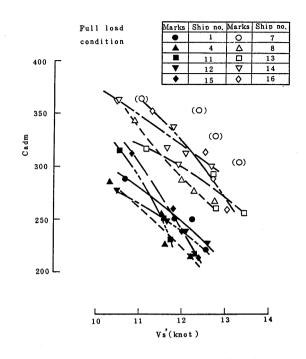

4. 船型開発の順序と模型試験

本研究は、999G/T型内航タンカーについて、少なくとも15%以上所要馬力の少ない高経済性船型を、通常用いられている理論計算の援用のもとに、極力少ない模型試験によって開発しようとするものである。

船型開発の順序および各段階の模型試験の概要については既に図−1,2に示したとおりである。

模型試験は、低速領域を含めた抵抗試験、プロペラ 単独性能試験、自航試験及び伴流計測を基本とした。 その他、プロペラの荷重度変更による自航試験、波形 計測、船尾表面の圧力分布計測、舵力計測、船体周り の波形撮影も適宜行った。

これらの模型試験は、長さ6mのパラフィン製模型 船が用いられ、船舶技術研究所第二(長さ400m、幅18


図-5 999G/T 型タンカーの実船性能調査 (Vs'~BHP)⁴

m, 深さ8m), 第三(長さ150m, 幅7.5m, 深さ3.5m) 船舶試験水槽で実施された。

4.1 比較基準船の選定と模型試験結果

4.1.1 比較基準船の選定

船型開発を行うに当って、開発の各段階で性能の改善性を確認するための比較基準を定める必要がある。比較基準を定めるには、色々な考え方が出来るが、ここでは、研究の継続性に重点を置く立場を取ることとした。昭和55年度に船舶整備公団が、それ以前の在来船に対し船型改良試験を行って試設計を行っているので[1]、この試設計船を本研究に於ける比較基準として選定することにした。比較基準船の要目その他の詳細は表-1に示す通りである。この比較基準船には1,900ps×245rpmのディーゼル主機が搭載され、プロペラは主機と直結駆動である。Dp=2.70mの4翼で固定ピッチと可変ピッチの2種のプロペラについて試設計が行われている。比較基準船の等吃水に於ける満載状態での横断面積曲線、正面線図及び船首・船尾の側面(274)

図-6 999G/T 型タンカーの実船性能調査 (Vs'~Cadm)

形状を後述の開発第1,第2船型とともに図-7,8,9にそれぞれ示す。

4.1.2 比較基準船の模型試験結果

試験状態は、排水量 Δ_s =3,200ton,トリム 0 の計画 満載及び、航海実績の平均値と考えられる Δ_s =1,800 ton,トリム 3 %のバラストの 2 状態とする。試験状態 表を表-1 に、バラスト状態に於ける横断面積曲線を図 -7 中に示す。

使用した模型プロペラは、実船換算で直径2.70mであり、その要目を表-2に示す。プロペラ形状及び単独性能曲線を図-10に示す。

比較基準船の舵つき模型船による満載,バラスト両 状態の抵抗試験結果を図-11に示した。

満載、バラスト両状態の形状影響係数Kは、シェンへル線ベースでK=0.19、0.26となり、平均的な値を示したと判断される。Kの値は、粘性圧力抵抗との関連が強いので、船型評価の重要な尺度である。

本研究での馬力算定は、中小型船に通常使用されている剰余抵抗係数 r_R による 2 次元解析法によった。抵抗試験から求めた r_R と表面粗度修正係数 ΔC_F = 0.0005を用いて実船の有効馬力 EHP を算定し図-12 に示した。

表-1 供試船の要目及び試験状態(その1)

		比較	基準	船				銷	1		船		角	Œ	2	4	沿		
	MOD	EL SHIP			SHIF	, м		L SHI	P		JAL SH	10 м		SHI			AL S	HIP	
LPP (I		.0000		6.0		111		0000	•		8.0000	15 10		000			.000		
		-1624		8.0				1623			0.1100			623			.110		
	M) 0	.9474		2.0				9231			2.0000			231			.000		
		.5132	_		000			4462			5.8000			462			.800		
		.3987			500			4077			5.3000			077			.300		
	M) 0	.0395		0.5	000			0192			0.2500			192			.250		
		.0474			000			0462			0.6000			462			.600		
		.0789			000			0769			1.0000			769			.000		
							••	4.07		•	2.0000		•••			-			
			DESI	GN	FULL	LOAG) (CONDI	HOIT			ВА	LLAS	T	CONDI	TIO	N		
MODEL SHIP	P	比	較基準	組組	郭	1	舡	第	2	船	比	較基:	追船	郭	1	船	第	2 身	K }
TA	(M) (0.398	70	0.	407	70	0	.407	70		336	50	Ò.	32839)	0.	32192	
ŤM	СH		0.398			407			-407			246			23839		0.	23192	
ŤF	ČH.		0.398	70		407		0	.407	70		156			14839		0.	14192	
TRIM	(M		0.0			.0		. 0	.0			180			18000		0.	18000	
DISV(N)	(CUB.M		1.535	37		518	27	1	.523	63		0.864			79932			79932	
DISV(A)	(CUB.M		1.535	37		518			.523			.864			79932			79932	
5N	(S0.M		7.931	31		944		8	.036	40		.000	85	5.	78771		5.	76606	
SA	(S0.H		8.206	92		217		8	.309	02		5.276		6.	06148		6.	03869	
ACTUAL SH		•					-												
TA	(H)	5.05	02	:	5.30	01		5.30	01		4.26	23	4	.2691		4	.1849	
TM	ĊМ		5.05	02	:	5.30	01		5.30	01		3.12	23	3	.0991			.0149	
TF	(M)	5.05	02		5.30	01		5.30	01		1.98		1	.9291			.8449	
TRIM	(M)	0.0			0.0			0.0			2.28			.3400			.3400	
DISV(N)	(CUB.M)	3120		:	3335	.6		3347			1756	- 1		756.1			756.1	
DISV(A)	(CUB.M)	3120			3335			3347			1756	. 1		756.1			756.1	
DISV(A)	(TON)	3198		:	3419	.0		3431			1800			800.0			800.0	
SN	(S0.M		1272			1342			1356			962			978.1			974.5	
SA	(50.14)	1316	. 8		L388	. 8		1404	. 2		1007	.0	1	024.4	•	1	020.5	
COEFFICIE	NT								_								_		
CBA			0.66			0.65			0.65			0.69			.6665			.6831	
CBF			0.69			0.69			0.69			0.54			.5444			.5616	
CB			0.67			0.67			9.67			0.61			.6054			.6224	
CPA			0.69			0.66			0.66			0.75			.6992			.7175	
CPF			0.72		(71	42		0.71			0.58			.5712			.5899	
CP			0.71		(0.69	14		0.69			0.67			.6352			.6537	
CM			0.94			97			0.97			0.91			.9532			.9520	
CWA			0.86			3.85			0.80			0.78			.7559			.7215 .7199	
CWF			0.80			.800			0.75			0.72			.7052				
CW			0.83			.830			0.78			0.75			.7306			.7207 .8636	
CVP	<u>.</u> .		0.81			.81			0.86			0.81			.8287			3065	
LCB	(%)	6.33).990 5.499			1.00			6.33			.4998			.4998	
LPP/B			2.37			2.26			6.49			3.84			.8722			.9803	
B/T	. 2 .		7.10			7.029			2.26 7.05			4.00			.7006			.7006	
CVOL*(E	1SV)FULL		1.00			1.000			1.00			0.56			.5265			.5246	
0124/(0	13475066		1.00	00			00		00	00		3.70		•	,		·		

次に、やはり舵つき模型船による自航試験から得られた自航要素(図-13)と有効馬力曲線を使って制動馬力 BHP(図-14)を算定した。このとき、(1-w)のみについて、満載とバラストの両状態でそれぞれ e_i = 1.05, 1.08の尺度影響を考慮した。伝達効率 η_T は、船尾機関の通常値として η_T = 1/1.03とした。 C_{adm} は満載の12ノットで約290である。比較基準船の成績を表-3 にまとめた。これらの成績は以後比較基準として使用する。

4.2 船型開発のための主要目検討

主要目の適切な選定は、かなりの性能改善となる場合があるので、性能改善の第一ステップとして重視さ

れる。

新測度法では、従来と同一総トン数でも容積が若干 大きく取り得ること、また、軽油、灯油、ガソリンな どの通称白油積みが多くなり、貨物油槽容積を大きく する機運などがあることなどを踏まえて、主要目の検 討を輸送コストが最小となる観点から行うこととし た。

4.2.1 主要目の検討範囲と馬力推定

図-3に示す20隻余の実船の主要目調査によると,主要目は下記の範囲にある。

 $L_{pp} = 69.0 \sim 77.0 \text{m}, B = 11.6 \sim 12.5 \text{m}, D = 5.2 \sim 5.75 \text{m}, d = 4.83 \sim 5.22 \text{m}, C_B = 0.665 \sim 0.731,$

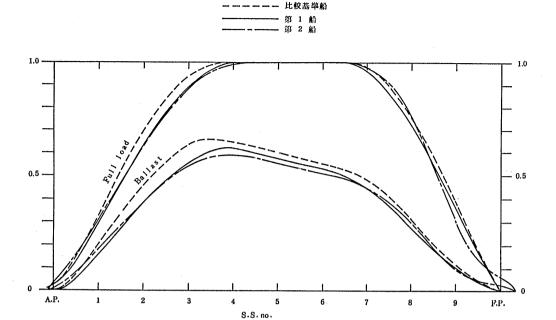


図-7 横断面積曲線(その1)

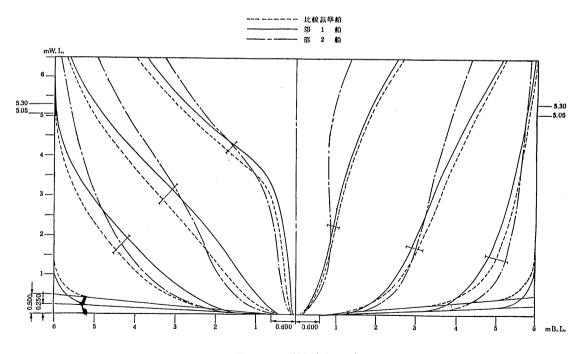


図-8 正面線図(その1)

(276)

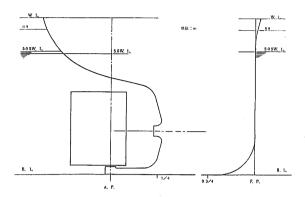


図-9 比較基準船の船首・船尾の側面形状

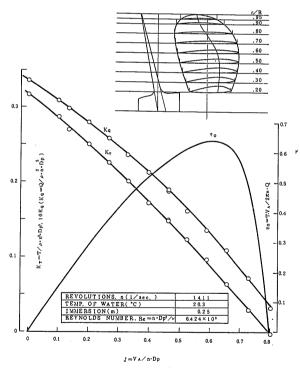


図-10 模型プロペラの単独性能曲線(その1)

表-2 模型プロペラの要目

	通常プロペラ	低回転大直径 プロペラ
模型プロペラ番号	M. P. NO. 2195	M. P. NO. 0230
直 径	0.213m*1	0.238 m*2
ボス比	0.170	0.155
ピッチ比	0.700	0.774
展開面積比	0.570	0.461
最 大 翼 幅 比	0.3194	0.2532
翼 厚 比	0.0414	0.0409
レーキ 角	10°-0′	10°-0′
翼数	4	4
翼断面形状	AU	ÁU

実船寸法 *1 比較基準船用

第1 船~第3 船用

2.70 m 2.77 m

*2 第4 船用

3.10m

 Δ_F =3,010~3,378ton などであり,今日までの数年の間にも, L_{pp} は大きくなり, C_B は小さくなる傾向が見られる。主要目の検討範囲は,設定航路,港湾などの事情その他を考慮のうえ決めるべきものであるが,比較基準船の主要目が既にこれらの要件を含んでいるので,これを参考に下記のように設定した。

- a) L_{pp} : 船の長さを許容範囲で延ばし、少しでも痩せ型を図ることによって性能向上を狙うことにした。 ただし、検討範囲は L_{pp} =76.0m, 77.0m, 78.0m とした。
- b) B: 実船調査を参考に次の場合を設定した。 B=12.0m, 12.5m
- c) d:長さ、幅、所要排水量に対し、吃水と肥瘠係数はバランスの良い選択が必要であるが、検討範囲は、港湾の水深を考慮して、5.2m、5.3mとした。
- d) 乾舷F: 乾舷に関する調査結果から,白油積みの d=5.2m と5.3m に対する乾舷は,ほぼ0.55m と0.45 m になるが,一方,初期設計としての乾舷計算は,上記の L_{pp} , B, d の各変化の組み合わせに対し,基本乾舷,深さ修正値とも変化する。しかし,ここでは詳細設計ではなく,船価と馬力の推定に用いるので,一律にF=0.500m と設定した。
- e)中央横断面形状:中央横断面積係数 C_M を大きく取れば、 C_B 一定のもとで柱形係数 C_P がそれに従って小さくなり、造波抵抗上は好ましい。 L_{pp} =78.0m、B=12.0m、d=5.30mの要目で Δ_F =3,420ton、 C_B =0.672のもとに C_M を0.92から0.98まで変化させ、その時の制動馬力の変化をテーラーの設計図表を用いて調

表-3 計画速力における性能

	T.	K							
	満載	バラスト		準料 1 2	, ,		r _R	= = 1 125 /	
比較基準船	0.19	0.26	17:-	満載,12				ラスト, 13.5/	
第1船	0.1 6	0.2 6		0223 で 0.00 0220 で 0.00		100		51 C 000 473	100%
第2船	0.20	0.3 6	rn-		292	64		48 で 0.00420	89%
第3船	0.21	0.3 4			292	64		0.00560	118%
第4船	0.15	0.2 7			284	62		0.00495	117%
N2 4 ND	0.20		<u>**</u>	鼓状態 , 1			70	0.00433	103/6
		1 - WT	(pa)	1-1		<u> </u>	, , ,	7 _R	
比較基準船	0.660	1 -		0.786	<u> </u>		0.9 9 7	···	
第1船	0.708	7%悪		0.8 2 7	5 9	を 良	1.002	1 %良	
第2船	0.6 6 7		る悪	0.813		- 	0.983	1%悪	
第3船	0.667		る悪	0.8 2 9		6良	0.9 9 7	0%	
第4船	0.715		る悪	0.8 4 7		76良	0.968	3 %悪	
<u> </u>				ラスト状態,			·	1	
		$\overline{1-W_{T}}$			t			7 R	
比較基準船	0.655		_	0.790			1.012		
第1船	0.693	6 9	6悪	0.805	29	6良	1.005	1 %悪	
第2船	0.643	2 9	6良	0.804	2 9	る良	0.993	2%悪	
第3船	0.6 5 0	19	6良	0.8 1 8	49	6良	0.9 9 3	2 % 悪	
第 4 船	0.698	7 9	る悪	0.8 4 0	6 9	%良	0.9 62	5 %悪	
			Ì	載 状態,	12/	2 F			
	EHP(ps) \ \Dag{s}	ton)	EHP/4s		% .	DW(ton)	EHP/DW	%
比較基準船	792	319	8.3	0.248	1	00	2350	0.3 3 7	100
第1船	835	34	L 9.0	0.2 4 4		98	2487	0.3 3 6	100
第2船	725	343	3 1.1	0.211		8 5	"	0.292	87
第3船	725	342	29.5	0.211		8.5		0.292	87
第4船	718	342		0.210		85		0.289	86
				, 13.5 / >	<u> </u>				
	EHP(ps		ton)	EHP/4s		%			
比較基準船	840		σο	0.467		100			
第1船	805			0.447		96	ļ		
第2船	903		"	0.502		07			
第3船	913		···	0.5 0 7		109	}		
第4船	856		• 	0.476 黄戟状態,		102	L		
	BHP(ps	1 4-7	ton)	BHP/4s	12/	%	DW(ton)	BHP/DW	1 %
比較基準船	1340		8.3	0.419	-	00	2350	0.5 7 0	100
第1船	1362	341		0.400	+-	9.5	2487	0.5 4 8	96
第2船	1132	343		0.330		79	"	0.455	80
第3船	1106	342		0.322		77		0.4 4 5	78
第4船	1018		21.6	0.298		71	• "	0.409	72
		パラス			<u> </u>			<u> </u>	لسنينسا
	BHP(ps		ton)	BHP/4s	Ť	%	注) 注	第1船~第3船	n
比較基準船	1310	`	00	0.7 28	1	00	-	プロペラは M.P.N	
第1船	1270		-	0.706		9 7	1	第4船のプロペ	•
第2船	1390		·	0.772	1	06	1	M.P.NO. 0230	
第3船	1370	 ,	,	0.761		105	1 '	WLF.NO. 0230	
第4船	1210	<u> </u>	,	0.672	_	92	1		

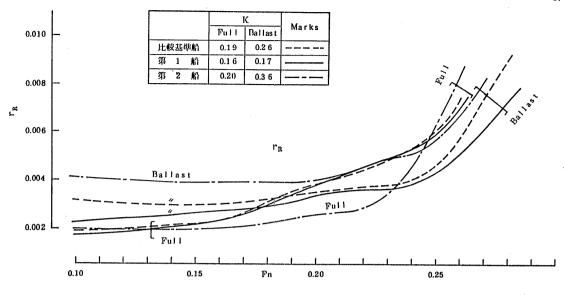


図-11 抵抗試験結果(その1)

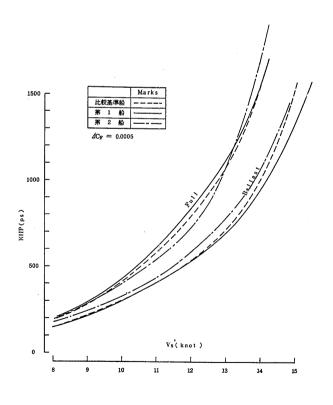


図-12 有効馬力曲線(その1)

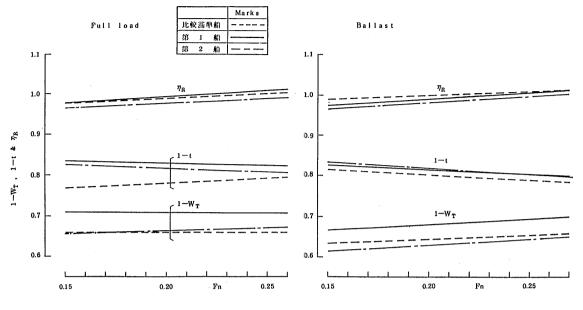


図-13 目航要素(その1)

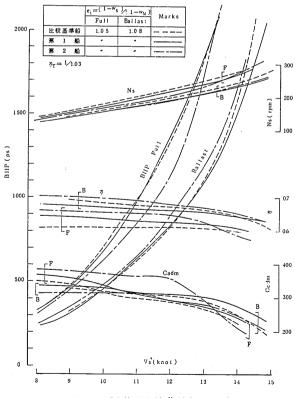


図-14 制動馬力等曲線(その1)

査した。その結果、 C_M =0.92では BHP=1,200ps から C_M =0.98で1,060ps まで比較的単調に減少する傾向にあることがわかったので、これを参考にして C_M の増加を図るため、55年度の試設計船の船底勾配 F_R =0.500m を0.250m にした。これは、試設計船が黒油積みであったのに対し、白油積みでは、 F_R を半減しても荷油の集合性に問題は無いと判断した。弯曲部半径 R(=1.000m)と平板竜骨半幅 R(=0.600m)は試設計船と同一に保った。弯曲部半径を小さくしなかったのは、同一構造・寸法のビルジキールを取り付けることによって耐横揺れ性能の低下を防ぐとともに、ビルジ渦発生による抵抗増加を懸念したためである。

- f) DW: 載貨重量の想定を新測度法の適用との関係で次のようにした。
- ア) 荷油重量 CW: 荷油容積を調査実船の実績から推定して白油を2,850m³ (試設計船は約2,340m³) とすると,荷油重量は約2,247ton(試設計船は約2,111ton)となる。

以後も試設計船の値を参考として,()内に示す。

- イ) 燃料油重量 F₀W: 試設計船, 調査実船の値を参考にし, 所要馬力の低下を想定して幾分少なく155ton (150ton) と想定する。
- ウ) その他:清水重量 $F_wW=60$ ton (56ton), 潤滑油重量 $L_oW=5$ ton (4.6ton), 乗員, 所持品及U余裕などを20ton (28.1ton) とする。

以上の重量和として DW=2,487ton (2,350ton) となり, 試設計船に比べて約5.8%の増加となった。

g) 軽荷重量 LW と Δ_r : 軽荷重量は、新測度法適用 以後の実船データを使い、サーフェス・ナンバーによって推定した。

主要目範囲の D, LW, Δ_F , C_B , C_M , C_P などを求めたのが表-4である。

これらの主要目に対する BHP を推定する馬力推定 図表としては、中造工図表 [5] が一番最近に作られたものであり、本対象船の馬力推定には最も適していると思われる。これは入力される要目の船に対する最適プロペラによって馬力の推定計算が行われるものである。馬力計算の結果を図-15に示すが、本図によると、DW 一定の条件下では、長さを長く、幅を大きく、吃水を深くするに伴って BHP は減少していくが、これはLの増加によってフルード数が減少し、造波抵抗が小さくなること、Bとdの増加によって C_B , C_P が減少し、船体の痩せ型化による抵抗減少があったためである。

4.2.2 輸送コストの試算

前項で船体寸法と所要馬力が求められたので,これらをもとに,船価を求め,次いで輸送コストを計算し,この輸送コストが最小となる船体主要目を選定することにする。

表-4 主要目検討の範囲

F = 0.500 m LW=CH • L • (B+D) CH=0.6709 DW=2487 ton

Lpp(m)		7	6			7	7		7 8				
B (m)	1 :	2.0	1 2	2.5	1	1 2.0 1 2.5		1 2.0		1 2.5			
d (m)	5. 2	5. 3	5. 2	5. 3	5. 2	5. 3	5. 2	5. 3	5. 2	5. 3	5. 2	5. 3	
D (m)	5. 7	5.8	5. 7	5.8	5. 7	5. 8	5. 7	5. 8	5. 7	5. 8	5. 7	5. 8	
LW(ton)	902.6	907.5	9 2 8.5	9 3 3.5	9 1 4.4	9 1 9.6	9 4 0.2	9 4 5.4	9 2 6.5	931.5	9 5 2.5	9.5 7.5	
∆r(ton)	3 3 8 9.6	3 3 9 4.5	3415.5	3 4 2 0.5	3 4 0 1.4	3 4 0 6.6	3 4 2 7.2	3 4 3 2.4	3 4 1 3.5	3418.5	3 4 3 9.5	3 4 4 4.5	
Св	0.697	0.685	0.675	0.663	0.691	0.679	0.668	0.656	0.684	0.672	0.662	0.650	
C M	0.972	0.973	0.972	0.973	0.972	0.973	0.972	0.973	0.972	0.973	0.972	0.973	
Ср	0.7 1 7	0.704	0.6 9 4	0.681	0.710	0.698	0.687	0.675	0.704	0.691	0.681	0.6 6 9	
L√B	6.33	6.3 3	6.08	6.08	6.4 2	6.42	6.1 6	6.1 6	6.50	6.5 0	6.24	6.2 4	
B/d	2.3 1	2.2 6	2.4 0	2.3 6	2.3 1	2.2 6	2.40	2.3 6	2.3 1	2.2 6	2.4 0	2.36	

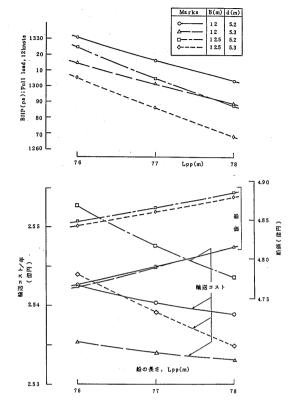


図-15 主要目検討のための馬力、船価、輸送コスト

(1)船価 So: 次のように示される。

船価=製造原価 (=船殼費±艤裝費+機関部費+電機 部費)+管理費+金利+利益 (1)

ここでは、個々の内容について積算することはせず、 サーフェス・ナンバーと所要馬力を基にして次の形で 求めることにした。

即ち、船殼費=
$$C_1 \cdot L \cdot (B+D)$$
,
 艤裝費= $C_2 \cdot L \cdot (B+D)$,
 機関部費+電機部費= $C_3 \cdot 主機主力$,

ただし, 所要馬力=(常用出力)/(シーマージン)= (主機出力×0.85)/1.15

 C_1 、 C_2 、 C_8 は,新測度法適用船の平均値を取った。 計算した船価を図-15に示したが,船の長さ,幅が増す に従って船価は増大するが,幅の影響の方が大きい。 深さは変化が0.1mであり,影響は大きくない。

(282)

(2)輸送コスト:次のように区分される。

船費:直接船費=船員費 (Y_1) +船用品費 (Y_2) +潤滑油費 (Y_3) +修繕費 (Y_4) +保険料 (Y_5) +固定資産税 (Y_6) +雑費 (Y_7)

間接船費=店費 (Y_8) +金利 (Y_9) +償却費 (Y_{10}) 運航経費:=主機燃料費 (Y_{11}) +補機燃料費 (Y_{12}) + 港費 (Y_{13}) +貨物費 (Y_{14})

従って、輸送コスト=船費+運航経費 (3)

以上の各項目を計算の便のため下記のように集約する。

ア) 船価に関係するもの(Ys)

 $Y_s = Y_s + Y_9 + Y_{10}$ として表わされ、 S_1 を乗り出し船価とすると、最近の実績からこれらを計算すると、次のようにまとめられる。

 $Y_S = 0.1532 \cdot S_1 = 0.1593 \cdot S_0$

イ) 主機馬力に関係するもの (Y11)

 Y_{11} =燃料価格×常用出力×航海時間×燃費 C重油の価格、比重、航海時間及び燃費に関す る最新のデータを使って Y_{11} を求めると、

 Y_{11} =35.7×常用出力×千円/年で計算が出来る。

ウ)その他…乗組員数,総トン数に関係する経費 及び補機燃料費 Y。

 $Y_1+Y_2+Y_3+Y_4+Y_6+Y_7+Y_8+Y_{13}+Y_{14}=103,053$ 千円/年…実績より推定した。 ただし,乗組員数は対象船の場合は12名となっている。 Y_{12} は発電機類,甲板機械類,ポンプ類,ボイラーなどの燃料費であるが,A重油焚きの補機類の平均馬力×稼動時間(年)×燃費及びC重油焚きのボイラーの燃料消費量×稼動時間(年)を夫々推定し,結局 $Y_{12}=20,632$ 千円/年と推定した。これらを合計して $Y_0=123,685$ 千

円/年とした。 従って輸送コストは、

輸送コスト= {0.1593×船価 (千円)+35.7×常用出力 (ps)+123,685}×千円/年で計算ができる。

この計算方法に従って、主要目範囲の輸送コストを計算した。その結果を図-15に示す。輸送コストは、船の長さが長く、幅が狭く、吃水が深くなるに伴って低くなっていくが、長さを長くする場合の輸送コストの低下率は、幅が12.5mの時は、12.0mの時に比べてかなり急激である。この原因は主機関連費によるものであり、図-15中の15中の15中の15中の15中のである。検討した主要目

範囲内で L_{pp} =78.0m, B=12.0m, d=5.3m の場合 の輸送コストが最小値を示したので,この主要目を船型開発船の主要目にした。

4.2.3 主要目以外の船型要素の検討

主要目の決定のほか次の事項についても検討を加えた。船型開発用の第 1 船(母型)は、比較基準船の主要寸法を見直し、その効果を調査しようとするものである。従ってこの狙いからは主要寸法以外は変更を加えないようにしなければならないが、母型選定の時点から考慮した方が望ましいものとして $1_{\rm CB}$ がある。多数の船の実績について調査された例やシリーズ60 チャートによる $1_{\rm CB}$ 変化の調査によると、 $1_{\rm CB}$ の最適位置は凡そ $1_{\rm CB}$ = $0 \sim -1.5\%$ $1_{\rm CP}$ となっている。この間での馬力変化は緩やかであり、従って計画船の目安として $1_{\rm CB}$ = $-0.5\sim -1.0\%$ $1_{\rm CP}$ とした。

4.2.4 主要目検討船の模型試験結果

比較基準船の横断面積曲線(C_P カーブ)を使って,狙いの C_B , 1_{CB} を得るためには数種の幾何学的な変更方法があるが,ここでは,船首,船尾の C_P カーブの傾向を極力変更しないジャンボ法 [6] を用いた。次に,このようにして得られた C_P カーブをもとに比較基準船の正面線図をタイプシップとしてステーション移動法により新船型のフレームラインを決めたが,新船型のフレームラインは,元のフレームラインの特徴を殆んど失っていない。船首,船尾の側面形状は,タイプシップに長さ方向と深さ方向の寸法比を乗じて作製された。

第1船の主要目と試験状態を,表-1に, 横断面積曲線, 正面線図を比較基準船(以後基準船と呼ぶ)とあわせて, 図-7, 8に示す。

 C_P カーブでは、基準船と肥瘠係数、 1_{CB} の違いによる差は有るもののカーブの傾向は満載、バラスト両状態とも良く似ている。正面線図では、船底勾配と、計画満載吃水を変更し、中央横断面係数 C_M が少し大きくなった他は、フレームラインはタイプシップの傾向を良く保持したものとなった。 1_{CB} を基準船の $-0.68L_{PP}$ から $-0.996L_{PP}$ に変化させたので、フレームラインの変化としては、船体前半部のU型が少し進み、船体後半部の痩せ型が大きくなった。

試験状態は、実船で排水量3,420ton の等吃水 d=5.30m である満載状態と、排水量1,800ton の 3% L_{pp} 船尾トリムのバラスト状態とした。試験に使用した模型プロペラは基準船のものと同一である。

試験結果を基準船と比較して示す。剰余抵抗係数 r_R を形状影響係数とともに図-11に,基準船と全く同じ方

法で算定した実船有効馬力を図-12に、自航要素及びこの自航要素と有効馬力から基準船の場合と全く同じ方法で算定した実船制動馬力を図-13、14に示す。基準船と第 1 船は実船長さがそれぞれ76.0m と78.0m であるが、実船性能推定係数である ΔC_F 、 e_i は同じ値を使用した。また、計画速力に於ける馬力等の性能を表-3にまとめた。

第1船の試験結果を基準船と比べると、形状影響係数Kが満載、バラスト両状態とも改善され、これは船体の痩せ型化が寄与したものと思われる。船尾の痩せ型は、自航要素において(1-t)の改善、 $(1-w_r)$ の悪化を招いたが、これは普通の船尾痩せ型化による自然な結果と言える。

第1船の制動馬力は満載状態で基準船より2%増加したが、排水量が7%増加しているので、排水量当りの制動馬力では5%の改善となった。バラスト状態の馬力改善は3%であった。結局、排水量当りの馬力で5%の改善率は、中造工図表による馬力推定から予想した改善率8%を少し下まわった。その主な理由は、第1船の船型と中造工図表の基礎となった船型とが異っているためであろう。

4.3 船体前半部の改善

造波抵抗に対する最も重要な支配要素である船体前 半部形状に関し、造波抵抗の少ない船型を開発する方 法として、純理論的な方法、理論に実験を援用した波 形解析法の応用による方法及びデータの統計解析と理 論を組み合わせた方法などがある。最近は、船首バル ブや船体前半部の横断面積曲線およびフレームライン などの最適化が最新の造波抵抗理論の適用によって行 われつつある。

しかし、ここでは出来るだけ簡単で効果的に性能改善の出来る方法をとることにした。即ち、横断面積曲線は統計解析の方法に従い、船首バルブとフレームラインは良好な成績を示したタイプシップによりそれぞれ製作し、船体に沿う流れの圧力変化をポテンシャル計算によってチェックすることにした。

4.3.1 横断面積曲線と船首バルブ

a) 横断面積曲線

横断面積曲線の評価は、統計解析の方法によるのが、 実用的、精度的に好都合である。本方法の利点は、理 論と実験の両者を組合せた統計解析の方法をとってい るため、定量性の良好な資料が多ければそれだけ精度 の高い結果が期待出来る点であろう。このような意味 合いから、大水槽で試験が行われた800余隻の船型試験 資料を収録している統計解析による方法 [7]を使っ て本研究の船体前半部改善用の横断面積曲線を作製することにした。

中造工試設計船 H 改型 (M. S. No. 3704) [2]の C_P カーブを図-16に示すが、この C_P カーブは非線型性の船首波による造波抵抗の軽減も図るべく検討されたものであり、試験結果に於いて良好な成績を示した。 H 改型の C_P カーブはエントランス部を細くえぐり、前肩を張らせ、後肩を落した特徴を有している。第2船の C_P カーブにも、この特徴を取り入れるとともに、H 改型と同等の6%船首バルブを装着し、 C_P 値、 1_{CP} 値、船体平行部長さは第1船と等しくすることにした。はじめに、 C_P カーブの評価として、第1船の C_P カーブをもとに5、6種の C_P カーブを作製し、統計解析の方法で示される C_W 'の計算を行った結果、 C_W 'の小さい C_P カーブを得ることができた(図-16中の原型)。更に、この C_P カーブを中心に前肩、後肩について適度な"張り"と "落ち"を作り、各組み合わせ合計9通りの C_P

カーブ (図-16) について C_w 'を計算した結果,前肩張り,後肩落ちが一番良好な結果を示した(図-17)。肩張り,肩落ちの組合わせによって排水量と l_{CB} 位置が変化するので・これらを所定値にするための C_P カーブの再調整を行った。このようにして一応 C_P カーブを作製し,次いで船首バルブを付加し,エントランス部の水線入角を小さくするための"えぐり"を加える。船首バルブについては次節で記すが,このようにして製作された第 2 船の C_P カーブを図-7に示した。

b)船首バルブ

最新の研究によると、船首バルブは線形分散波の軽減に役立つばかりでなく、非線形性造波に対しても軽減効果のあることが報告され、前述のとおり、H改型の船首バルブにはこの研究成果が取り入れられた。本対象船は満載状態の計画速力が $F_n=0.22$ と高く、船首バルブ面積はH改型の6%より多少大きくしたほうが良好と考えられたが、投揚錨時の障害を防止する観点

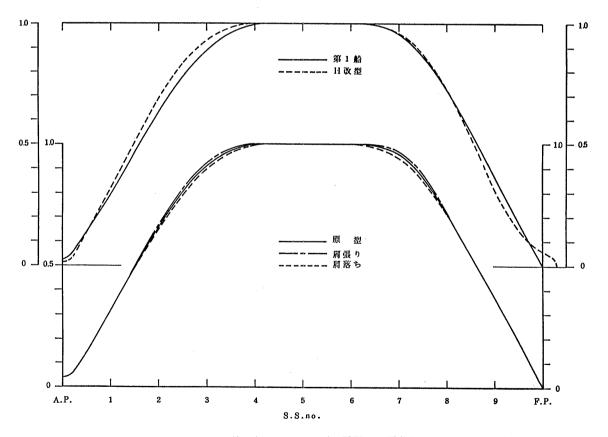
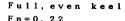



図-16 第2船用 C_P カーブの肩張り、肩落ち

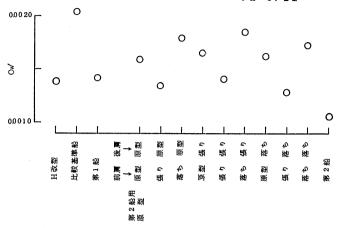


図-17 第2船用 Cp カーブの評価

からH改型に倣って、実用上6%程度の大きさが適当と判断された。錨鎖管位置のフレアーを大きくするにも限度があり、従って6%バルブにしながらも、縦長形状を取ることにした。縦長の薄い船首バルブは水線入角を小さくし、船首波の波頂線角度を小さくするので造波抵抗の低減に役立つものである。このような条件によって決定された船首バルブを図-18に示す。

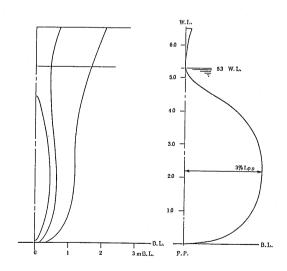


図-18 第2船の船首バルブ

4.3.2 フレームライン形状

フレームライン形状について理論を背景とした検討 も次第に可能となりつつあるが,実際の設計段階では, 経験などによる知見がまだ大幅に活用されているよう である。ここでは、理論研究による結果を定性的に導 入しつつ、良好な成績を示した船型をタイプシップと する方法を取ることにした。船型試験で蓄積された結 果では、高速船、肥大船とも船体前半部はU型、後半 部は中程度のV型フレームラインが好ましいとされて きたが、最近の研究では、C_Pカーブ、水線面形状のエ ントランス部に対する考え方が次第に変化してきた。 最近はブラントな船首形状を避け、水線面形状も水線 入角を極力小さく抑え, 非線形性造波抵抗の軽減が図 られる。本対象船のフレームライン計画についてもこ の設計思想を適用することにした。既に発表されてい るフレームラインシリーズ「8]の中から船首の水線 面形状が細く, フレームラインがU型で抵抗性能の良 い船型 (M. S. No. 0239) をタイプシップとして, 既に決定している Cpカーブをもとに第2船のフレー ムラインを作製した。後半部のフレームラインは、抵 抗面からはV型、推進性能面からは、ややU型が好ま しいとされるので、中間からややV型に寄った標準的 なフレームラインとした。第2船のフレームラインを 図-8に示した。水線入角は約17.5度でかなり小さくす ることが出来た。フレームラインのU型を大きくすれ ば船体下方に沿う流れの圧力勾配が大きくなり, ビル

ジ渦発生による粘性圧力抵抗の増加を来すおそれがあ るので、第1船と第2船の船体周りの流れをポテンシ ャル計算によって調査した。図-19に見られる特徴と して、第1は、船首バルブの効果であり、第1船は S.S.9·3/4 より前方では計算値がないものの, 9·3/4 よりF.P.にかけて圧力の高いことが推察されるが、 第2船では、船首端での圧力が低くなるとともに、圧 力の山が後方にずれている。第2は、肩張りの影響で あり、水深の浅いNo.1~3の流線上のS.S.7·1/2 付近の肩部で、第2船の圧力が第1船より少し低くな っている点である。第3は、フレームラインU型化の 影響として,流線に沿う負の圧力勾配が第2船でやや 大きくなるとともに、 船底部に入る箇所の圧力低下も 大きくなっている。第2、第3の傾向が強くなれば抵 抗増加を招くが、特に第3の傾向は、船体前半部から もビルジ渦が発生し、このため、粘性圧力抵抗が増加 する可能性を示唆している。

その他の船体設計として, 中央横断面形状, 船尾部

側面形状、舵形状及びプロペラシャフトのベースライン上の高さ (=1.800m) などは第1船のそれらと同じくした。模型プロペラ直径の実船換算値は2.77m となり、プロペラ上部のチップクリアランス比 z_t/D_P は約25%である。第2船の船体主要目などを表-1に示す。

4.3.3 模型試験結果

試験状態は,第1船と等しくした。模型プロペラも 比較基準船,第1船と同一のものを使用した。

試験結果を、比較基準船、第1船と比較して、図-11~14中に示した。これらの試験結果は、前述の2船と全く同じ解析方法に基ずいて求めたものである。また、計画速力に於ける馬力などの性能を表-3中に示した。

試験結果によると、第2船の形状影響係数Kは、第1船に比べて満載状態では0.16から0.20へ、バラスト状態では0.17から0.36へと増加した。このようにKが増加した理由は、第2船のフレームラインが第1船より全体的にU型となり、このために発生したビルジ渦

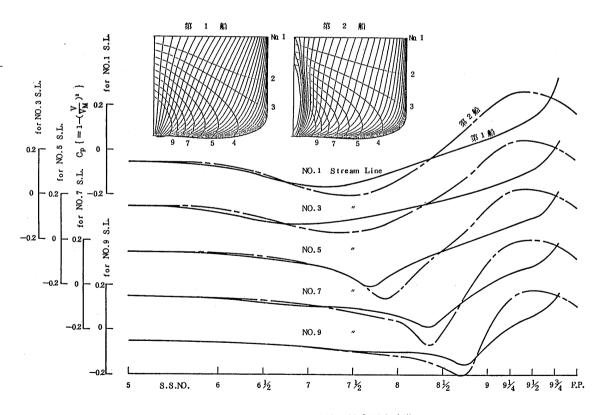


図-19 第1船, 第2船の流線に沿う圧力変化

による可能性が考えられる。バラスト状態で特に大きく増加したのは、後半部フレームラインのU型化が、 船尾トリムによって船尾肥大度を大きくし、このため 二次流れが強くなることによる渦抵抗などの増加があったためと考えられる(表-1のバラスト時の C_{BA}値を 参照)。

次に、満載の F_n =0.22付近で、第 2 船の r_R は第 1 船のそれに比べて約35%の大幅な低下を示した(図-11)。ただし、バラスト状態の定格速度 F_n =0.248で、第 2 船の r_R は第 1 船より約30%の増加を示したが、これは造波抵抗の増加によるものではなく、形状影響係数の大幅な増加によってもたらされたものである。

満載の r_R が大幅に改善された理由として、 C_P カーブの十分な検討、適正なバルブの装着、フレームラインのU型化による水線入角の減少などがあげられ、これらの相乗効果が与ったものと思われる。 r_R 改善の理由

を調べる情報の一つに波形計測があり、この計測によって得られた波形造波抵抗の大小を調べるものである。

第1船,第2船の波形計測によって得られた波形記録,振幅関数A(θ)の無次元表示A*(θ)を図-20,21に示す。満載状態の波形記録によると,第2船は第1船に比べて,船首波の波高が低くなり,波頂線角度も小さくなったが,これは何れも船首バルブの効果として現われたものである。ただし,第2船の後続波の波高が第1船より大きくなっているのは,前肩の"張り"により,大きな前肩波が発生したためと考えられる。バラスト状態では,トリムによって,船首バルブの最大突出位置が水面に一致し,バルブが露出状態となったため,バルブが吹出し特異点としての造波抵抗軽減の機能を失ったものである。第1船のバラスト状態における振幅関数が第2船より小さくなっているの

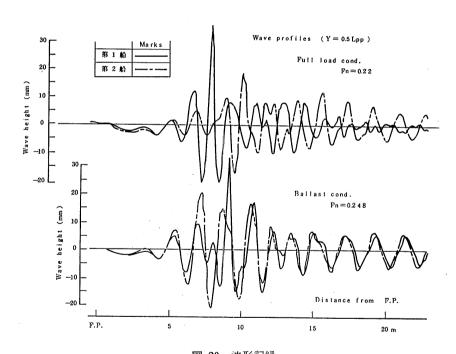
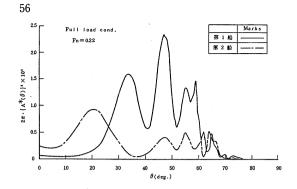



図-20 波形記緑

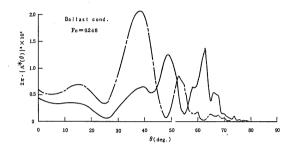


図-21 振幅関数

Marks

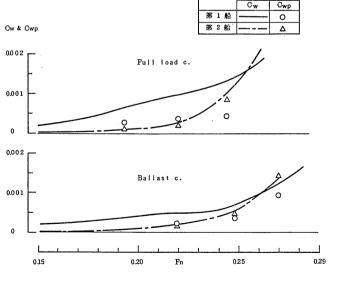
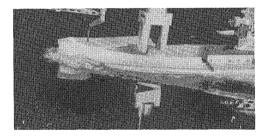



図-22 Cwp と Cw の比較

は、波崩れによるものである。

波形造波抵抗の無次元係数 Cwpを三次元解析法から 求めた造波抵抗係数 Cwとともに図-22に示す。満載の $F_n=0.22$ での C_{WP} は、第2船が第1船の1/2となって いるが、Cwの減少量を説明するには至らない。第2船 のCwとCwpは満載、バラストとも良く一致している が、第1船はその一致度が悪く、特に満載では差が大 きい。両船の満載状態に於ける船首波の観測(写真参 照)によれば、第1船では波高、波頂線角度とも第2 船より大きく、波崩れも多いのに対し、第2船では、 船首の波崩れは見られなかった。これらの情報から考 えると、第1船の満載状態では、水線入角の大きい船 首に発生する非線形性の船首波が発生したが, 第2船 の適正な船首バルブによってこの船首波の発生が効果 的に抑制されたものと解釈される。バラスト状態では バルブの効果が少ないものの、幾分かは Cwの減少と して現れている。第1船のCwpは両状態ともCwより 小さく、バラスト状態でも同様な船首波の発生があっ た模様である。非線形性の船首波は(Cw-Cwp)で考え られているが、急な波傾斜のため波崩れを起すので、 波形計測では捕捉出来ない特性を持つとされている。

有効馬力では、満載状態の改善が大きく、比較基準船、第1船に対し、 EHP/Δ_s が約85%となったが、バラスト状態では、Kが大きくなったため EHP は増加した。

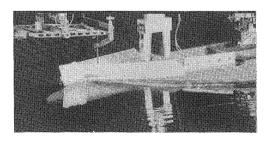


写真 満載状態に於ける船首波の観測

自航要素では,第2船の船尾形状がU型フレームラインのため第1船より肥大化したので,満載で(1-t)が2%悪くなったが, $(1-w_T)$ は満載・バラスト両状態とも良くなり,船尾フレームラインシリーズの試験結果にしばしば現れる成績と同様となった。

満載状態の制動馬力は、抵抗減少と推進効率の向上によって BHP/Δ_s 或は BHP/DW が比較基準船の80%となった。しかし、バラスト状態では、推進効率は向上したものの、抵抗が増加したため、 BHP/Δ_s が比較基準船より 6%も増加する結果となった。

4.4 船体後半部の改善

船体前半部の改善では、バラスト状態の形状影響係数が大きく増加した問題点があるものの、満載状態では約20%の馬力軽減の成果が得られたので、第3船からは船体後半部の改善に入ることにした。船体後半部形状は、推進性能に関する主要な支配要素である。

船体後半部の改善は 2 段階に分けて実施する。その第1段階では、推力減少係数(1-t)の向上を試みる。第 2 段階ではプロペラ効率 no向上を図るため、低回転大直径プロペラの採用を考え、同プロペラに適合する船尾形状として、伴流利得の低下の抑制と伴流均一化を図るための船尾ベルブ船型を検討する。第 2 船において残されたバラスト 状態の抵抗性能の改善は、推進性能の向上を図る過程に含めて検討を加えることにする。

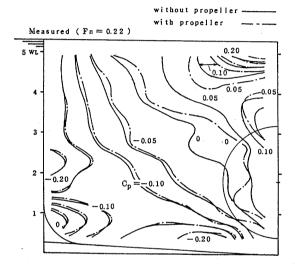
4.4.1 推力減少係数の改善

(1) 船尾形状の計画―その1

推力減少係数(1-t)の改善を図ることは、プロペラの作動による船体抵抗の増加を抑制することにほかならない。自航時の船体抵抗増加量G(T)は、船体、プロペラ、舵の相互干渉成分とプロペラによる造波成分の4成分よりなるが、この内、船体とプロペラの干渉による船体抵抗増加量 F_{PH} が、G(T)のかなりの割合(例えば80%)を占めるので、 F_{PH} を抑制することが t の改善に最も効果的である。船体とプロペラの干渉力 (F_{PH}) については、多くの理論的研究が発表されて来た [9]。ここでは、 F_{PH} を船尾形状に直接関係ずけた干渉係数 B_0 を使って次のように示した [10]。

$$F_{PH} = \rho \cdot B_{o} \cdot \Gamma_{o},$$

$$\Gamma_{o}/U_{o} = -\overline{U}_{ao} + \sqrt{\overline{U}_{ao} + C_{T}}, \quad \overline{U}_{ao} = U_{ao}/U_{o},$$


$$C_{T} = T/ \quad (^{1/2}_{z} \cdot \rho \cdot A_{P} \cdot U_{o}^{2})$$

$$(4)$$

 Γ_0 はプロペラの吸い込み強さ、 U_0 は船速、 U_{ao} と A_P はプロペラ円の平均流速と面積である。

この関係を使って、船尾形状の修正による性能改善

の定量化を試みる。干渉係数 B_o は,t の向上に寄与する船尾形状修正の local な性状を示していないので,実際に船尾部のどの部分を如何に変化させるかを明らかにしなければならない。この目的のために,第 2 船の船尾圧力分布を調査した。図-23は,満載状態の $F_n=0.22$ に於ける,プロペラ有無による船尾圧力計測結果であるが,プロペラの作用による大きな圧力低下を示す領域が見出される。また,プロペラを単一渦円筒モデルに置き換えて,プロペラ作用時の圧力分布をポテンシャル理論によって計算した結果も図-23に示すが,

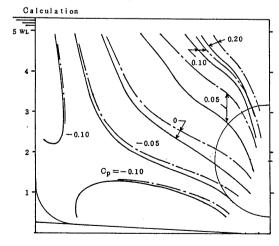


図-23 第2船の船尾表面圧力分布(満載状態のプロペラ有り,無し)

計算値と計測値は大体一致していると言える。自航時の抵抗増加は、「プロペラの作用による船尾表面の圧力変化量×面積の x 方向成分」に比例することから、上記の領域に於いて、プロペラの吸い込み作用により、船体表面の圧力回復が抑えられ、その結果圧力抵抗が増加したと考えられる。従って、プロペラの吸い込み作用から生じた圧力低下量の x 方向成分を減少させるためには、上記の圧力低下を示した領域の痩せ型化を図る必要がある。

船体後半部のフレームライン変形とS. S. $1 \cdot ½$ から船尾に向かっての C_P カーブを僅かに変更することによって該当箇所の痩せ型を図るものとする。手持ちのタイプシップを検討した結果,第2船の前半部形状の決定に使用した船型 (M. S. NO. 0239) の船尾フレームラインを用いて,第3船の船尾形状を決定することにした。 $L_{PP}=95$ m, $C_B=0.74$ の中速貨物船について,その船尾形状変化と B_0 , (1-t)の関係を調査した結果 [11],[12] を参考に,タイプシップをベースとしたフレームラインの設計を行うが,(1-t)の予想向上値となる B_0 値を設定し,船尾フレームラインはこの B_0 値になるように修正を加えながら決定した。このフレームラインは,主機室,軸室のスペースをも考

慮していることは勿論である。 舵形状, 船尾側面形状, 軸心高さ, プロペラ及びその周辺配置などについては, 第2船に変更を加えなかった。

決定された,第3船の船体後半部正面線図,横断面積曲線,船体主要目など,干渉係数などを第2船との比較で図-24、25、表-5、6にそれぞれ示す。第3船では4.5WL以下を第2船に比べてかなり痩せさせたので,それより上方から甲板に向ってフレームラインが広がった(図-24)。表-6には,図-23で見出された部分の痩せ型を図った第3船の B_0 $\{=B_0/(1/2\cdot A_P\cdot U_0)\}$ とそれによる推力減少率 t_T $(=F_{PH}/T)$ と定義する)の計算値を,第2船のそれらとともに示したが,これによると($1-t_T$)は約2%の向上が見込まれる。なお,表中には,有効伴流推定係数(境界層に対するプロペラ作用を示す) C_0 ,舵と船体の干渉係数 E_0 および W_E なども併記した。 C_0 , E_0 , W_E については文献10)にその定義などが示されている。

(2) 模型試験結果

舵ありの通常の抵抗試験結果 (図-26) では、形状影響係数は満載、バラストでそれぞれ、K=0.21、0.34 となり、バラストでは第2船よりやや改善されたが、第3船の有効馬力を計算した結果では、満載、バラス

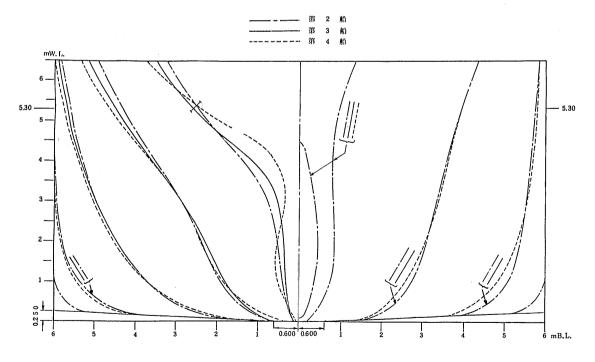


図-24 正面線図(その2)

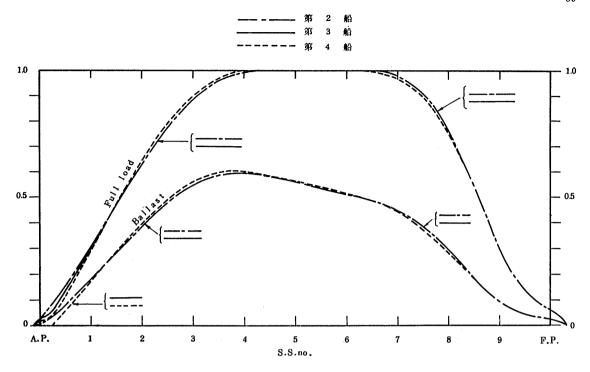


図-25 横断面積曲線(その2)

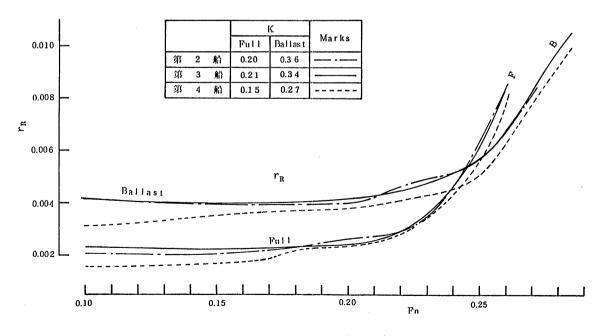


図-26 抵抗試験結果(その2)

表-5 供試験の要目及び試験状態(その2)

第	3 船		第	4. 船
MODEL SHI LPP (M) 6.0000 LDWL (M) 6.1623 B (M) 0.9231 D (M) 0.4462 T (M) 0.4077 FR (M) 0.0192 FK (M) 0.0462 R (M) 0.0769	78.0 80.1 12.0 5.8 5.3 0.2	000 100	MODEL SHIP 6.0000 6.1623 0.9231 0.4462 0.4077 0.0192 0.0462 0.0769	ACTUAL SHIP 78.0000 80.1100 12.0000 5.8000 5.3000 0.2500 0.6000 1.0000
	FULL LOAD	CONDITION	BALLA	ST CONDITION
MODEL SHIP	第 3 船	第 4 船	第 3	船 第 4 船
TA (M) TM (M)	0.40770 0.40770	0.40770	0.323	
TF (M)	0.40770	0.40770	0.233	
TRIM (M)	0.0	0.0	0.143 0.180	
DISV(N) (CUB.M)	1.52291	1.51942	0.799	
DISV(A) (CUB.M) SN (SQ.M)	1.52291	1.51942	0.799	
SN (S0.M) SA (S0.M)	8.12614 8.39877	8-06964	5.815	
ACTUAL SHIP	0.39011	8-34640	6.088	07 6.03210
TA (M)	5.3001	5.3001	4.20	00 4 2000
TM (M)	5.3001	5.3001	3.03	02 4.2099 02 3.0399
TF (M)	5.3001	5.3001	1.86	
TRIM (M)	0.0	0.0	2.34	
DISV(N) (CUB.M) DISV(A) (CUB.M)	3345.8	3338.2	1756	
DISV(A) (CUB.M) DISV(A) (TON)	3345.8 3429.5	3338.2	1756	
SÑ (S0.M)	1373.3	3421.6 1363.8	1800	
SA (SQ.M)	1419.4	1410.5	982 1028	
COEFFICIENT		2,1000	1020	-9 1019.4
CBA	0.6499	0.6502	0.67	60 0.6793
CBF	0.6991	0.6957	0.56	
CB CPA	0.6745	0.6730	0.61	
CPF	0.6681 0.7188	0.6685	0.70	
CP	0.6934	0.7152 0.6918	0.59	
CM	0.9727	0.9727	0.65 0.95	
CWA	0.8325	0.8343	0.72	
CWF	0 <u>.755</u> 8	0.7559	072	
CA	0.7941	0.7951	0.72	
CVP LCB (%)	0.8493	0.8464	0.85	67 0.8604
LCB (%) LPP/B	-1.0130 6.4998	-1.0022	2.07	
B/T	2.2642	6.4998 2.2642	6.49	
CVOL*(E+3)	7.0505	7.0344	3.966 3.706	
DISV/(DISV)FULL	1.0000	1.0000	0.52	

ト両状態とも改善効果はなかった(図-27)。

舵つき自航試験の結果 (図-28), 第 3 船の (1-t) は第 2 船のそれに対し、満載、バラストの両状態でともに 2 %良好となり、狙い通りの改善効果が確かに現れ、プロペラと船体の干渉計算により推力減少係数の向上を図る本方法の有効性が確認された。(1-t)の改善方法は、フレームラインを痩せさせるので、殆んどの場合は伴流係数 w を小さくし、船殼効率 η {= (1-t)/(1-w)} には、変化のない場合が多いが、本船の場合は η の改善もみられた。制動馬力の計算結(292)

果を図-29, 表-3に示す。第3船の満載状態の BHP/ Δ_s は,第2船のそれに比べて2%強改善されたが,これは(1-t)の改善によるものである。ただし,バラスト状態の性能改善は1%弱に止まった。

船尾変形に用いた船体・プロペラ干渉計算から求められる自航時抵抗増加量 C_G $\{=F_{PH}/(½ \cdot \rho \cdot A_P \cdot U_0^2)\}$ と推力減少係数 t_T の実験値との比較を図-30に示す。計算値は表-6 に示した \bar{B}_0 を用いている。 C_G , t_T の変化は,計算,実験とも同一傾向を示し,計算と実験の値は,中速貨物船の場合 [11] と同様本船型の第2 船,

表-6 干渉係数,伴流係数,推力減少係数など (満載,舵なし,Fn=0.22)

			第 2 船*1	第 3 船*1		
	$rac{\overline{B}_0}{\overline{C}_0}$		0.2293 0.1480 -0.0380	0.1935 0.1510 "		
ర్	MPP*2		1.008	1.042		
	SPP *3		0.830	0.819		
	MPP SPP	CAL.	0.876	0.897		
$1-t_T$		EXP.	0.875	0.895		
1		CAL.	0.873	0.890		
	3FF	EXP.	0.870	0.890		
	MPP	CAL.	0.748	0.759		
1-we	WIFF	EXP.	0.740	0.745		
1-	SPP	CAL.	0.736	0.745		
	SFP	EXP.	0.730	0.740		
1-w	'n		0.615	0.627		

- *1 with M. P. NO. 2195
- *2 Model propulsion point
- *3 Ship propulsion point

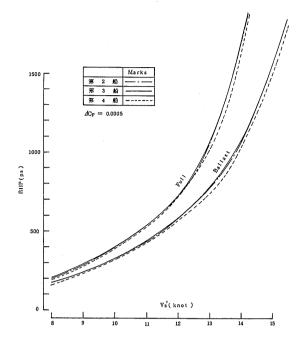


図-27 有効馬力曲線(その2)

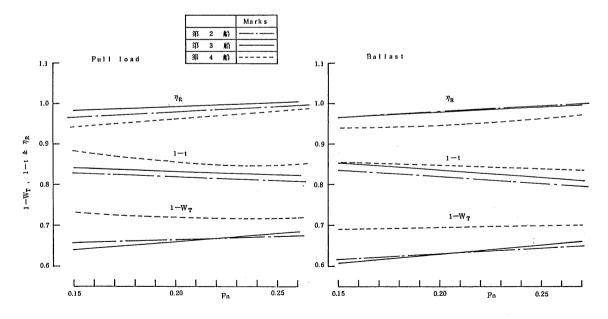


図-28 目航要素(その2)

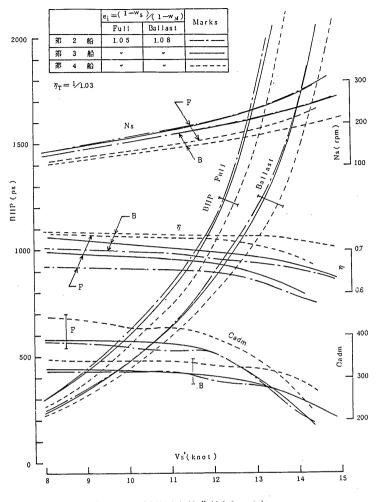


図-29 制動馬力等曲線(その2)

第3船でもほぼ一致した。このことは、船体とプロペラの干渉計算に於いて簡単なプロペラモデルを用い、かつ伴流の不均一性も考慮に入れていないにもかかわらず、(4)式の関係が実用的には成立していると言えるであろう。

また、舵の自航性能に及ぼす影響としては、プロペラ前方の船体に及び、 $\bar{\mathbf{E}}_0 < 0$ であることから、船体抵抗の増加を抑制していることが判明した。 $\bar{\mathbf{C}}_0$ は、表-6 のように、第 2 船と第 3 船は殆んど同じ大きさであるため、 $(1-\mathbf{w}_{\mathrm{R}})$ の大小関係はそのまま $(1-\mathbf{w}_{\mathrm{E}})$ の大小関係となった。舵の排除効果による堰止め影響 $\Delta \mathbf{w} = 0.08$ と顕著に現れており、ITTC 性能委員会が提示した伴流値に対する舵の修正量0.04よりかなり大き (294)

くなっている。

4.4.2 船尾バルブ船型と高効率プロペラ

本研究の船型開発第4船では、低回転大直径プロペラとそれに適合する船尾形状を採用することによって 更に性能を改善しようとするものである。

(1) 船尾形状の計画―その2

プロペラ直径を増加させると、伴流率 w が低下し、このため伴流利得の減少をきたすと共に、伴流の不均一性が強くなりプロペラ起振力の増加を招くおそれがあるので、第4船の船尾形状は、これらのディメリットを補うように考慮する必要がある。これらのディメリットを極力抑えつつ、船尾の境界層流れをプロペラに導入するためには、船尾バルブが最も有効であると

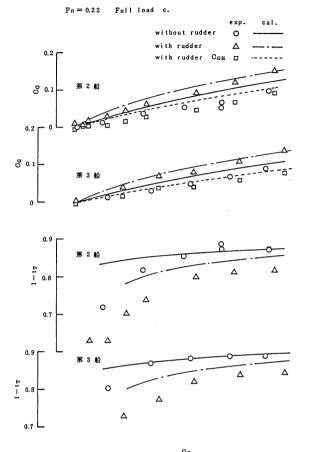


図-30 C_Tに対する C_G, 1-t_Tの関係 (第2船, 第3船)

考え, 第4船では船尾バルブ船型を採用することにした。船尾バルブによって上記の伴流制御を行うためには,抵抗増加を招かない限度において,寸法的にある程度の大きさが必要である。

理論計算による船尾バルブの計画法はまだ殆んど開発されていないので、ここでは資料の検討を基礎とした計画を実施することにした。中小型船の船尾バルブとその性能に関する公表資料は極めて乏しく2、3の例を見るに過ぎない。ここでは、日本中型造船工業会が開発したH改尾船型[2]と呼ばれる船尾バルブを検討することによって、バルブの膨みを約30%減じ、バルブ上方の凹型フレームラインの"窪み"を多少緩和させることにした。

船尾バルブの大きさに関する数値的判断はなかなか 困難であるため、ここでは、過大過少を避けるような 選択を行った。

第4船では、上記のほか、次のような船型変更も併せて行うことにした。第2船から第3船のフレームライン変形は、主として船尾部のS.S.2より後方の、吃水中央部分を中心とした痩せ型を図ったが、形状影響係数に与える影響は僅かであった。第1船から第2船へのフレームライン変形に戻って注目すると、船首付近と船尾付近のビルジ部(船底から吃水の約½位の範囲)をかなりU型にしたため、形状影響係数の増加を招いたが、これらの結果を検討すると船体前半部もビルジ渦の発生による形状影響係数の増加をもたらす可能性があり、結局、第4船では、第3船の船首尾のビルジ部をU型からややV型のフレームラインに戻すことにした。また、第2船、第3船の波形計測で見出された波高の大きい前肩波を減少させるため、前肩部に当るS.S.7½周辺の C_P カーブの変化も緩やかにさせた。

船尾側面形状は、大直径プロペラの配置のため、ソールピースを除去し、舵も吊舵に変更した。

最終的に決定された正面線図, 横断面積曲線, 船尾側面形状及び船体主要目などを図-24,25,31及び表-5にそれぞれ示す。

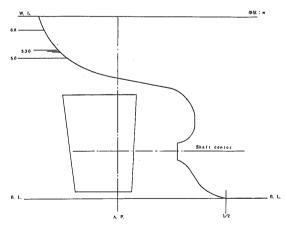


図-31 第4船の船尾側面形状

(2) 高効率プロペラ

設計時の検討事項は以下の通り。

a) 直径 D_P

○ソールピースを除去すれば,プロペラチップ とベースラインの間隔は,入出渠時の安全性 を考慮して許容最小値を取る必要がある。

- ○主機, 減速機を上下異芯に配置するが, プロペラ軸芯の高さは出来るだけ低くする。
- ○バラスト航行時にプロペラチップが露出しな いようにする。
- ○プロペラ上部に配置するアフトピークタンク には、トリム調整に必要な容積を確保する。
- ○プロペラ上方のチップクリアランスは25%程 度を確保する。

存のものを超えることは難しく、結局既存船の最大直径と同じ3.100mとした。

b) プロペラへの供給馬力 P

第3船の水槽試験をもとに、主機出力を1,800psと 仮定する。第4船で更に馬力低下が得られれば、1,800 ps エンジンをディレートさせ、例えば、1,700ps で使用するものとする。

主機出力からプロペラに至るまでに必要な馬力として、主機冷却用ポンプの駆動馬力、減速機損失馬力、航海中に使用する軸発電用馬力及び軸系の摩擦損失を考慮して結局、プロペラへの供給馬力は1,591.3psと

した。

c) プロペラの前進速度 V_Aの推定

大直径プロペラの有効伴流値は、第3船の通常プロペラ($D_P=2.77m$)による自航試験から得られた有効伴流値に、第3船の曳航時伴流分布をもとに $D_P=3.10$ m と2.77m の各直径で求められた公称伴流値の比を乗じ、更にこれに尺度影響の修正を行って推定した。

d) プロペラ回転数 Ns

プロペラ回転数を仮に140~220rpmの範囲に選んで、プロペラの単独効率が最大となるピッチを調査した。ただし、回転数マージンを3%と見込んだ。

以上の結果によって、プロペラの出力係数 B_P と直径係数 δ を計算し、MAU の設計図表からピッチ比 H/D_P 、プロペラ単独効率 mを求めた。

次に展開面積比 a_E は、バリルのキャビテーション判定図表をもとに通常の方法で求めた。

以上により、回転数に対する H/D_P , η_0 , a_E の変化を求めたものが図-32である。本図によると Ns=180rpmで η_0 が最大となり、その時の H/D_P , a_E を採用した。これらの要目を表-2 に、輪郭形状などを、本プロペラ

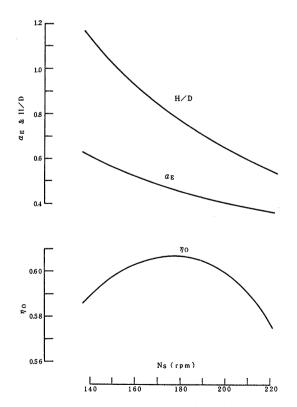


図-32 高効率プロペラの設計

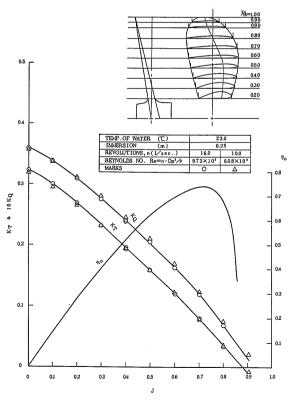


図-33 模型プロペラの単独性能曲線(その2)

(296)

の単独性能試験結果とともに図-33中に示した。

(3) 模型試験結果

抵抗、自航の各試験結果を図 $-26\sim29$ 及び表-3に示した。形状影響係数は満載、バラスト両状態とも第2船、第3船よりもかなり小さくなり、ビルジ部のU型フレームラインをややV型に戻した効果が得られた。図-26に示す r_R については、満載、バラストとも定格速力付近で、第2船、第3船よりも低くなり、これは、 C_P カーブの前肩張りを緩和させたことによる前肩波の軽減効果が得られたためと考えられる。

次は自航要素について調べると、第4船では、大直径プロペラによる伴流利得の減少を抑制するため、船尾バルブを採用したにもかかわらず、 $(1-w_T)$ は満載、バラスト両状態とも第3船に比べ $6\sim7$ %も増加した。直径が約12%(3.1m/2.77m)増加したことによる $(1-w_T)$ の増加は、例えば文献5)によると、約5%と推定されるので、 $6\sim7$ %の増加そのものは妥当のようであるが、船尾バルブの狙いはそれほど発揮されなかった。

(1-t)は、両状態とも第3船に比べて、 $2\sim3$ %改善されたが、その理由としては次のように考えられる。即ち、第2船の(1-t)を向上させるため、プロペラの上方・前方に当るフレームラインを痩せさ

せた第3船で、その成果が得られたと同じ効果が第4船でも得られたものと考えられる。図-24に見られるように、第4船のプロペラ上方部のフレームラインは第3船に比べて、かなり痩せ型になっているが、これは、船尾バルブを形成させたことによるものであり、(1-t)の改善は、船尾バルブの間接的効果と言えよう。

 n_R は、 K_T 一致法と呼ばれる解析法のもとに、均一流中のプロペラ効率に対する船後不均一流中のプロペラ効率の比を示すが、円周方向の不均一性が強いほど n_R が大きくなるといわれている。第4船の n_R が低下したのは、船尾バルブによって、伴流分布が第3船より均一化されたためとも考えられるが、図-34に示すプロペラ位置での伴流計測の結果を見ると、船尾バルブによる伴流均一化の効果に期待に反して少なかったと考えられるので、結局 n_R が低下した原因は不明である。(1-t)、 n_R の、第3船から第4船へのこのような変化は、船型計画時の推定がなかなか困難であり、船型開発がまだかなり模型試験に依存しているのもこのような理由によるものと思われる。

 η_0 は,図-28に示していないが,大直径プロペラの設計時にプロペラ性能を推定した結果によると,普通プロペラによる第3船に比べて,大直径プロペラによる第4船で26%近く向上し, $(1-w_T)$ の悪化などを十分

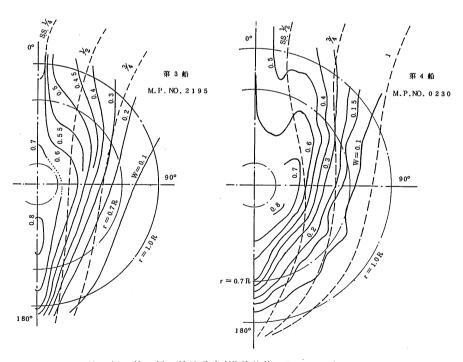


図-34 第3船, 第4船の伴流分布(満載状態, Fn=0.22)

補って結局推進効率 η の改善としては、12%が見込まれた。これに対し、実験結果では、満載の計画速力で、 η_0 の向上は約12%であり、 $(1-w_T)$ の悪化の他(1-t)、 η_R も変化し、結局 η の向上は約8%であった。

第4船の制動馬力は、図-29に示すように第3船のそれより更に低下し、特にバラスト状態で顕著であった。 比較基準船と比べると、満載状態で約30%、バラスト 状態で10%近い省エネルギー効果が得られた。

また,第4船の満載の計画速力における C_{adm} は,400近くとなり,就航実船の性能調査を示した図-6に於ける省エネルギー対策船が $C_{adm}=330\sim340$ であるのに比べて性能が格段に向上したことを示した。

伴流分布については既に述べたが、この均一化を十分に図るためには、更に大きいバルブをもう少し下方

に形成させるとともに、バルブの上流に当るフレームラインをU型にする必要があると考えられるが、これらは抵抗の増加を招く可能性があり、この兼合いから最適の選択を行うことはかなり難しいことである。

4.5 プロペラ起振力の検討

激しい船尾振動は、航海計器、自動化機器並びに海 員の居住性能に対し悪影響を及ぼすので、これを未然 に防止する立場から、船尾振動の主要な原因となるプ ロペラ起振力の検討が、船型開発や基本設計の段階で 実施される。

プロペラ起振力は大別して 2 種類の起振力からなっており、1 つは変動圧力 (Propeller induced flactuating pressure) に基く、いわゆるサーフェス・フォースである。このサーフェス・フォースの推定方法は種々

	本 船 999G/T	199G/T		A A	À	1 軸大型コンテナ船			
	内航タンカー	カーフェリー	A	В	С	A	В	С	
Lpp (m)	78.00	29,00	49.50	49.70	3920	200.0	1680	195.0	
Dp (m)	310	185	2.26	2.65	194	7.4	5.7	7.1	
Zt / Dp	0230	0.254	0273	0248	0284	0.22	024	0.282	
z	4	4	4	3	3	5	4	. 5	
Fo(ton)	0.83	5.3 1	1.2	7.7	19	19	23	15	
Fo/(Dp²):(ton/m²)	0.09	1.55	023	1.1	051	0.35	0.71	0.30	

表-7 サーフェス・フォースの比較

表-8 ベアリング・フォースの比較(計算値)

	本船:99	9 G/T	199 G⁄T	ä	à A	A A	2 軸大型	1 軸
	内航タンカー		カーフェリー	A	В	С	コンテナ船	貨物船
Z	4		4	4	3	3	5	4
伴流分布	実 船	模型船	同左	同左	同左	同 左	同左	同左
KT	0.2125	02357	0177	0.1930	01348	0.2090	01963	0.2442
$\Delta K_T / \overline{K}_T$	0.079	0.023	0.095	0.034	0262	0136	0.075	0.031
K _{FY} /K _T	0039	0.035	0.017	0000	0.020	0.028	0.008	8 0 0.0
∆K _{FY} ∕K _T	0.029	0.032	0.032	0026	0.086	0.085	00 43	0021
K _{FZ} /K _T	0.002	0.011	0.084	0073	0064	0066	01 60	0.087
∆K _{F 2} ∕K _T	0.017	0.015	0013	0.048	0124	0.105	0032	0.025
KQ	0.0 28 0	00302	0.0183	0.0192	0.0164	0.0 30 1	00382	0.0364
∆K _Q ∕K _Q	080.0	0.021	0094	0031	0.256	0.135	0.061	00 30
K _{M Y} /K _Q	0.259	0.274	0.790	0.697	0.522	0.366	0.383	0.385
∆K _{MY} /K _Q	0.135	0.135	0760	0.306	1.140	0.610	0.088	0157
$\overline{K_M}_Z/\overline{K}_Q$	0.005	0D 77	0150	0045	0.203	0157	0.024	0056
∆K _M z/Ko	0.1 53	9800	0480	0094	0.744	0.455	0.137	0109

$$\begin{array}{lll} \text{N.B.}, & K_{T}, & K_{FY}, K_{FZ} = \frac{1}{\rho \cdot n^2 \cdot D \cdot p^4} (\text{ T , } | \text{ F}_{Y}| , | \text{ F}_{Z}|) \\ & & K_{Q}, & K_{MY}, K_{MZ} = \frac{1}{\rho \cdot n^2 \cdot D \cdot p^4} (\text{ Q , } | \text{ M}_{Y}| \text{ , } | \text{ M}_{Z}|) \end{array}$$

---: mean

△ : Peak to peak