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ABSTRACTS

The purpose of this paper is to estimate the response statistics of a moored floating
structure that can be modelled as the two term Volterra series expansion subjected to a
stationary Gaussian random waves.

For estimating the instantaneous probability density function of response the approxi-
mate method using the finite Gram-Charlier expansion and the asymptotic form of the
exact solution which can be obtained from Kac-Siegert method is proposed. In order to
estimate the probability density function of extremal values consisting maxima and
minima and the extreme responses the assumptions in which response and response
velocity are mutually independent and the velocity is a Gaussian process with zero mean
are introduced in addition to Powell’s assumptions in the field of structural dynamics.

The frequency properties have been found experimentally through cross spectral and
cross bispectral analyses. »

Comparisons between the experimental results and the statistical ones estimated from
the frequency properties of response are discussed. As the results it has been confirmed
that both results show a fairly good agreement.

1. INTRODUCTION

For a moored floating structure if the static restoring force by mooring lines
is very small, it is possible that a highly tuned resonance generally occurs at
very low natural frequencies in horizontal plane. In irregular waves this Teso-
nance will be excited by the slowly varying second order wave excitation
which corresponds to the drifting force in regular waves. Thus, for the design
of mooring lines it is necessary to include these forces in the total load acting
on a structure moored by chains or cables.

Up to now, several investigations associated with these second order
responses (forces or motions) have been done.

These studies can be classified as follows :
1) Deterministic manner based on the numerical simulations.
2) Nondeterministic manner based on the stochastic process.

The former is the numerical prediction method based on the solution of the
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time dependent motion equation taking into account of both the first order
forces due to wave elevation and the second order forces which are obtained
from the direct integration of all second order prééSureé over the instantaneous
wetted portions of the hull surface. But since the nonlinear second order
response depends on the random phases of waves the results derived by this
manner are nothing but one sample. ‘

Therefore, in order to estimate the extreme value by means of this manner
numerous results of numerical simulations are required.

The latter is the statistical prediction method based on the Volterra func-
tional series expansion of responses to the given wave or force excitation. The
advantage of this method is that it is easily adaptable to the physical interpreta-
tion associated with the usual perturbation expansion solution of nonlinear
response problems because the n-th term in such a expansion gives the response
componerit resulting form n-th order interaction of the excitation.

Hasselmann? outlined the functional series approach to ship motions and
showed that the nonlinear transfer functions were related to higher-order
moments of ship motions. Dalzel® formulated the added resistance in waves as
the guadratic functional series and estimated the mean added resistance trans-
fer function in irregular waves.

Neal® formulated the exact probability density function of second order
responses by using the statistical theory of quadratic form.

Vinje? obtained the approximate expressions of peak distributions of second
order responses by use of the expansion of cumulants. Further he® expanded
Neal’s formulation to peak distribution under Powell’s assumptions. Hineno®
applied Vinje’s method to the nonlinear wave and the steady tilt problem for a
semisubmersible drilling platform.

The present authors et al.” showed that the probability densities of mooring
forces on the huge offshore structure can be represented by the finite Gram-
Charlier expansion.

Recently, Naess® discussed the dynamic reliability of second.order responses
under the Poisson distribution by means of Neal’s formulation and the slow
drift approximation.

The authors? have already shown that the Kac-Siegert method adopted in
Neal’s work is applicable to the horizontal responses of a moored floating
structure and the quadratic transfer function treated in Dalzel’s work is
required to estimate the higher-order statistical values (variance, skewness
and etc.) . '

As described in the above overview the statistical theory on second order
responses is nearly completed. But the discussions for the extreme responses
and the approximate theory have not been done sufficiently.



The purpose of this paper is to discuss the extreme values and the approxi-
mate statistical theory for the horizontal responses of a moored floating
structure.

In chapter 2 the Kac-Siegert theory'®'? on second order responses is discus-
sed in details.

In chapter 3 the approximate theory and the estimation method of extreme
value in case of the horizontal responses are developed.

In chapter 4 the applicability of the methods introduced in chapter 3 is
investigated through the comparisons between the experimental results and the
estimated values.

As the results the following items have been found :

(1) The transfer function of the horizontal response to the slowly instantane-
ous wave energy, which is introduced newly in this case, is able to evaluate
quantitatively the characteristics of the quadratic transfer function, and the
linear transfer function can be separated from the total response in the fre-
quency domain and can be estimated by the usual linear motion prediction
method taking the viscous damping into account.

By using these functions the variance and the skewness which dominate the
distribution of the horizontal response can be estimated.

(2) In order to obtain the instantaneous probability distribution we propose
the approximate method matching between the finite Gram-Charlier expansion
and the asymptotic form derived from the Kac-Siegert theory. The estimated
results due to the present method show fairly good agreement with the expéri-
mental ones.

(3) The new prediction methods for the probability distributions of extremal
values and the extreme response are proposed under the assumptions that the
response displacement and velocity are independent mutually and the response
velocity is of Gaussian distribution with zero mean in addition to the Powell’s
assumptions. As a result it is confirmed that the Longuet-Higgin’s method
significantly underestimates the experimental result while the present method
is in good agreement with the experimental one.

2. EXACT STATISTICAL THEORY

2.1 Basic Assumptions

The assumption of this theory is that the nonlinear responses can be re-
presented by the functional power series (or functional polynomials).

Let x(#) denote the nonlinear response of a moored floating structure to a
random excitation {&(#) |t € R'}. Since x(#) may be the responses to the
entire time history of &(t), we call x(t) a functional defined on a class of
excitation functions &(¢) as
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x()=F (&(£)) 2.1.1)

If F is a continuous functional of £(¢#) in the function space sense, then F can
be expanded in a functional power series such that

x(t)=§‘.0f ------ A A c )G G t) dbyeerdl,. (2.1.2)

If this series represents a causal physical system, then the kernel functions
satisfy

gn (ty tl: ...... > tn)zo)for ti>t' (2.1.3)

Series satisfying this property were studied by Volterra'®, and series of the
form (2.1.2) that satisfy Eq. (2.1.3) are called Volterra series.

If the nonlinear system is time invariant, then kernel functions in Eq. (2.1.2)
depend only on time difference. Thus,

x(0=3 [dr- [ dugi(n, o, w) fl e(t-m)+D.C, @.1.4)

where D. C. is a constant.

In general, the kernel functions in Eq. (2.1.4) may not be symmetric func-
tions of their arguments. However, a permutation of indices in any kernel only
affects the order in which the integration is carried out but does not affect the
response. Thus, for the purpose of analysis, symmetric kernel may be assumed
without loss of generality.

If the kernels are continuous and absolutely integrable and if the input is
bounded and the contribution from terms of order # in Eq. (2.1.4) decreases to
zero as # —oo, then it is proved that the functional power series (2.1.4)
converge uniformly.

We shall limit our analysis to include excitation effects through second order
except for D.C.. Thus Eq. (2.1.4) is truncated at »=2 and takes the following
form:

x(t)=frdrgl(r)g‘(t—r)+_/ndr1fndrzgz(rl, ) E(t—7)E(t—1) (2.1.5)

If &(¢) is the wave excitation, this series can be used to analyze the response
that is proportional to either the wave height or the squared wave height.

If the kernels in Eq. (2.1.5) are continuous and absolutely integrable, then
they possess Fourier transform. The transform pairs are defined as follows :

a(z)=1/2z fw explior) G (o) dw,
Gl(w)Z/;exp(—imr)gl(r) dr, : (2.1.6)
gz(fb Tz) :1/(2n)2/:‘)1idw1_/c.')2d&h'eXp {i(@171+@272)}G2 (&71: wz)a



Gz(&)l, (n)z) = -/;'I dle;zdfzeXp {_i(&)171+G)272) }gz (Tl; Tz)-

In Eq. (2.1.5) the kernel g, is a linear impulse response function, and its
transform, G, is a linear transfer function. The kernel g, is analogous to the
linear impulse response function and is called ”quadratic impulse response
function” . Its transform, G,, is called ”quadratic transfer function” . Tick® has
called Eq. (2.1.5) as a time-invariant quadratic system since it includes both
a first order and a second order term. '

Since the kernel g; (7, 7,) can be assumed to be symmetrical in its arguments

gz('fl, ) :gz(Tz, 71), (2.1.7)
thus
G (@1, @) = G; (@s, @1). ' (2.1.8)

Consequently, the quadratic transfer function is symmetrical about the line
@ =@, in the (@, @,) plane.
2.2 Transfer Functions and their Physical Properties

It is assumed that the surface elevation ¢(¢) is a stationary Gaussian process
with zero mean. The auto-correlation function of the process will be denoted as
Re(¢t) and is defined as follows :

Re(z)=E {¢(1)¢(t+7)}, (2.2.1)

where E { } denotes the ensemble average (or expectation).
If Re(7) is absolutely integrable, then a continuous nonnegative spectral
density function S¢(w) exists and satisfies

Re(7) :LeXp(z‘m)Sg(w)dm, (2.2.2)

Sc(w)=1/27th exp (—iw7) Re(7) dr, (2.2.3)

where S¢ is the two sided wave spectral density function defined over doubly
infinities. They are called the Wiener-Khintchine relations.
Taking the expected value of Eq. (2.1.5) we have

E {X}:)—(:fn d-n/;zdrzgz(rl, n)Re(ni— ). (2.2.4)

Applying Parseval’s formula and using the Dirac delta function ¢(w), then
Eq. (2.2.4) can be written as:

E {X}ZI:dez(w, —w)Se(w)
= [" dwG, (0, — ) Ut(w), (2.2.5)

where Ug is the one sided wave spectral density function defined over non-
negative frequencies by
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_ [ 2 Se(w) for 0 Sw<oo
Uslw) = { 0 otherwise.

Pinkster’® has shown that the time average X in Eq. (2.1.5) represents the
mean drift displacement due to the steady force.
According to his results, the following relation is satisfied :

%=2 /:deL(w)FD(@)U;(w), (2.2.7)

(2.2.6)

where Hi is the linear transfer fuction of displacement to the external force
and F;, is the drift force coefficient in regular waves.
Equating Eq. (2.2.5) and Eq. (2.2.7) the following relation

G2_<(0, —@):2HL(@>FD(@) (2-2-8)

is found out. Thus, it is found that G,(w, — @) represents the mean drift
displacement.

Using the fact that £(¢#) is a Gaussian process with zero mean, the second
term in eq. (2.1.5) becomes

[an [ dng(m, m)elt—m) Et—2)
=1/2R, Amﬁwcz(@h wz)eXD {l.(&)1+&72)t_i(81 +82)}

X~N2Ue (1) 2Ue (@,) dond e
+1/2Ref0°°fcz(w1, —w)exp {i(w —wp)t —i(e—&)}

X\/ZUC(C@J))ZUC(%)dGthﬂz, (229)

where ¢; are the random phases and statistically independent.

The first term in (2.2.9) represents the contribution of sums of wave fre-
quency pairs to the second order response, whereas the second term gives the
contribution of differences of wave frequency pairs.

Newman?® defined the second term as slowly varying second order response.

From this result it is found that G2 (w1, — w2) represents the property of
slowly varying second order response.

2.3 Transfer Functions and Response Spectrum

2.3.1 Cross Spectrum and Auto Spectrum

Forming the cross correlation function between x(t) and &(#) from Eq.
(2.1.5) :

EA{(x()-0¢(t—0)= [ dng(n)E (€(t—) gt~}
+ [ an [ dng(n w)E {(t-7)
XE(t—n)E(t—1)}—X E {€E(t—1)} (2.3.1)
(332)
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Because the wave is defined to be zero-mean, the last two terms are zero.
Thus :

E {(x(#) —i)é‘(t—r}}Z/;xdrlgl(rl)E {¢(t—m)e(t—1)} (2.3.2)

This result means that the cross spectrum between response x(¢) and wave
&(t) involves only the first (linear) term of the functional polynomials, and thus
that the linear transfer function G, (w) is derivable by standard cross-spectral
technique. If the cross spectrum is denoted as Sx¢(w) ; then:

G () =Sxelw) /Se(w) . (2.3.3)
Forming the auto correlation function of x (#):
E {(x(t)—%) (x(t+7) —i)}=fn d71£2d72g1(71)g1(;f2)
XE{E(t—n)Ettr—n)}
+fﬂ driee T ACR AV ACHEY
XE{C(Ut—n)e(t—n)E(t+tr—n)E(t+tr—1)} — %, (2.3.4)

and using the factorization relation for higher-order moments of Gaussian
process as

E{X XXX =FE (XX} E{XX}+E (XX} E{XX,}
+E (XX} E{XX), (2.3.5)
we obtain
Rxx (z‘):_/;l dnfndrggl ()& (n)Re(z+n—m) +./;1 driee Jozy A7
Xg(n, )& (n, o) {Re(r+n—n)Re(rtn—1)
+R:(z+zn—n)Re(r+n—7s) ). - (2.3.6)

The auto power spectrum of x (#) is the Fourier transform of Rxx (z) and is
computed from Wiener-Khintchine relations as

Si(@) =G (@)]* St(w) +2 [ d81G(w—5 8)|?
X Se(w—8) Se(8). (2.3.7)

2.3.2 Cross Bispectrum
Tick'® defined the cross bispectrum as the two dimensional Fourier trans-
form of a third moment function Reex(7;, ) which is defined as

Rey(n, &) =E {€(t+ ) E(t—=) (x(t— ) —%) }. (2.3.8)
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Noting that the expected value of odd products of Gaussian variable are
zero, then

Reex(z, %) =2 [ atr [, dba (4, ) Re {6+ (n+2)}
Re{t+(n—m)} (2.3.9)

Utilizing Parseval’s formula and the relation in which cross bispectrum is
defined by the double Fourier transform of Reex, we obtain

c@CX(&)l_wz, @ +@2) =G ;(wl; Cv)z)SC(wl)Sé‘(wz), (2-3-10)

where Cex is the cross bispectrum and * denotes the complex conjugate.
Thus the quadratic transfer function is obtained from (2.3.10) as

G (@1, @) = Cet, (@ — @,, @11 @) /Se(an) Se(ez) . (2.3.11)

2.4 Instantaneous Probability Density Function

We shall consider the distribution of the time invariant quadratic system
subject to a stationary Gaussian excitation.

If the system is represented by Eq. (2.1.5), then from Appendix A the
characteristic function can be written as

$(0) =1 ¢;(0)= 1 A—2i,0) "exp{—cf6?/2(1-200,8)}.  (2.4.)

Since the instantaneous probability density function is defined by the Fourier
transform of the characteristic function, it becomes

b () =1/2x [~ dbexp(—itx)$(6), (2.4.2)
where A, are real eigenvalues given by the following integral equation
[ avSe () Go (@, =) ¥, (v) = 1%, (@), (2.4.3)
where ¥,(w) are the eigenfunctions satisfying the orthogonal relation as
fwldwlﬁndwz‘lfn(wl)\lfm(wz) G (— @1, — @2) = 1,8 (2.4.4)
The parameter ¢, representing the linear response can be obtained from
6= [ doG (@) ¥, (o). (2.4.5)
From Appendix B the statistical values up to third order can be obtained as
E {x}:ia:f dwG; (@, — @) S¢(w), (2.4.6)
=S c1r2311= [ dolGi(o) S (o)
+2f dwfd’:/le(cu, )12S¢ (@) Se(v), (2.4.7)

" oi= -El%-&-GtZ}lci/l,:8fmdw1fma’wzfmdw362(w,, )
334 ‘



XG 1 (@r,3) Gy (@3, — 1) s (@) St (wr) Sewx) +6 [ dw, [ den
XGl(_&Jl) G (— ) Gz(&)b G)z)SC(COL)SC(GJz), (2-4-8)

where o § and u are the variance and the skewness of x(¢), respectively.
Eqs.(2.4.6), (2.4.7) and (2.4.8) show the most important relations between
the transfer functions of second order response and statistical values.

2.5 Probability Density Functions of Extremal Values and Extreme value

2.5.1 Probability Density Function of Extremal Values

First we will define that the extremal values consist of the maxima and the
minima of a random process while the extreme value is the largest value of
the maxima or the minima that will occur in some observations.

It has been known that statistical prediction of the extremal values of a
random process may be made by using the Rayleigh distribution, if the follow-
ing conditions are satisfied :

1) Random process is a stationary Gaussian process with zero mean.

2) Extremal values are statistically independent.

3) Linearity must hold between input and output processes.

But since in the case of the horizontal response of a moored floating structure
the linearity is not satisfied as described in the previous section, the Rayleigh
distribution may no longer be applicable for predicting properties of the
extremal values. Thus, the new prediction method of probability den51ty func-
tion of extremal values is required.

POSITIVE MAXIMA

\
MEAN /J\ /\I\ /\
/ \[&ﬂvﬁ/leMA \'/ W .

O MAXIMA 1 gxTREMAL VALUES
® MINIMA }

Fig. 1 Explanatory sketch of a random process x (¢)

Fig.1 is an explanatory sketch of a random process x(¢) for which the
extremal values could be anywhere in the range of (—o0,0) and several
extremal values could occur during one cycle as defined by mean crossings.
Here, the extremal values called "maxima” are defined as peaks which satisfy
the condition % (¢)=0 and % (#) <0. Whereas “minima” are defined as troughs
satisfying the condition x(¢#)=0 and % (¢#) >0. As shown in Fig.1 maxima and
minima can be both negative values and positive values. The magnitude of the
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maxima with positive values {x(#)>0,%(¢)=0,%(¢#) <0} or the minima with
negative values {x(#) <0, x(¢#) =0,%(¢) >0} would be critical if they exceed a
certain value, and hence the statistical extreme values of these maxima and the
minima provide valuable information for the engineering design purpose.

For the problem of a mooring system the positive maxima are the most
important, if the direction drifted by waves is positive. Since the statistical
properties of negative minima can be estimated from those of positive maxima
by means of the transform of random variables, the latter are considered in the
following analysis.

It can be assumed that x(¢#) is stationary and zero mean without loss of
generality. Then the expected number of maxima above a specified level x (¢)=
&, denoted as E {M(&)} , is obtained by

EAM &)= [ ]3] pusls 0, 2) a. (2.5.1)

The expected number of maxima with positive values, denoted as E {M(0) },
then becomes

E{M(0)}= fdc[ | | puss(x, 0, ©) s, (2.5.2)

where p,;x is the joint probability density function of x, % and %.

Huston and Skopinski'® has assumed that the ratio of their two expected
number is approximately equivalent to the probability in which the maximum
values exceed a level &.

Under this assumption the probability in which the maximum positive values
exceed a level & becomes

B(&=1-E{ME&/ " MO}~1-E{M(&}/E{MQO)}. (2.5.3)

Then the probability density function of the maxima is given by

1 0 .
po(&) = —m[m dx ipxii(&, 0, %) (2.5.4)

In the case that x(¢) is the Gaussian process p, already has been obtained by
Cartwright and Longuet Higgins'®. But in the case of nonlinear response p, has
not been found out yet.

When x(¢) is narrow banded, Powell'” has proposed the following assump-
tions :

1) The response is narrow banded. That is, the negative maxima and the
positive minima are negligible.

2) The response is stationary.

3) The random number crossing a specified level at positive gradient is

equal to one of maxima above it.

Here, the random number crossing a specified level & at positive gradient is



defined as
N* (&) =%6(x—8&). (2.5.5)
From these assumptions
M(&) = N*(&). (2.5.6)
Thus, Eq. (2.5.4) becomes

P &)= F T o o ditelE D% (2.5.7)

where p,, is the joint probability density function of x and x.

Powell also indicated these assumptions can even be applied to the case in
which the response is wide banded. Because the positive minima and the
negative maxima are negligible since these values do not exist at which the
threshold level is sufficiently large.

In general, since E{M(0)} = E {N*(0) }, the probability of maxima is overes-
timated in Powell’s assumptions.

2.5.2 Extreme Value

In this section, the extreme value will be derived by applying the order
statistics. The extreme value defined here is the largest value of the maxima
that .will occur in N observations.

Let (y;, ya, = , yn) be an ordered sample of size N, where y; is the observed
maxima of a random process x(¢), then all y; have the same probability density
function given in (2.5.7). Let (7, 7, ===+ , 7n) be an ordered sample of y; with
MS g S =, then each # can be regarded as the output of a independent
random variable z;. Thus the random variable zy, which is the largest #y in the
ordered sample, has the following probability density function :

glm) =Nf(mpy) {F () 1V, (2.5.8)

where

g (my): Probability density function of the largest value in N observations,

f () : Probability density function given by replacing & with #y in Eq.
(2.5.7),

F () :Cumulative distribution function given by integrating Eq. (2.5.7)
with respect to & and replacing & with zy,

N:The number of observations.

Thus the extreme value estimate is obtained by

E{Zm}zﬁ)mdﬂnmg(m). (2.5.9)
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3. APPROXIMATE THEORY

3.1 Approximation to the Quadratic Transfer Function

If the horizontal response of a moored floating structure is expressed by
(2.1.5) the second term in Eq. (2.1.5) represents the response which is in
proportion to the squared wave height, that is, instantaneous wave energy. The
authors'® have introduced the linear response function g between the horizon-
tal response and the instantaneous wave energy, and have shown that g is
approximately equivalent to the quadratic transfer function. Here, we shall
quote their results.

The cross correlation function Rx¢ between the instantaneous wave energy
¢2(¢) and the second order nonlinear response x (¢) is defined by

Reer(r) =E {(x(¢) —%) (&2 (t+7) — &) }. . (3.1.1)
Applying Parseval’s formula, the cross spectrum Sx¢ is given by

Sxﬁ(@)=2fva’VSc(w—u)Sc(v)Gé‘(w—v, v), (3.1.2)
and the auto power spectrum of instantaneous wave energy is obtained from

Ss(w):.?fude:(w—u)Sg(u). (3.1.3)

Thus, g representing the response property between the instantaneous wave
energy and x(¢) is given as follows :

g=_/ldeS¢(w—v)S¢(u)G§(w—-v, u)/_/;deg-(w—v)S;(v) (3.1.4)

From Eq. (3.1.4) it is found that g indicates the average of G, with respect
to the instantaneous wave energy spectrum and depends on the wave spectral
density. If the following identity

fm dcmfm dw, g (@1) St (@ — @) St ()
:L; dwlLZ.dszc(wl—w)Sc(w)G Hon—w, @) (3.1.5)
is satisfied, we obtain
9* (@ + @) = G (@, @). (3.1.6)

This means that ¢ is approximately equal to the quadratic transfer function
under a fixed wave spectrum.
If this approximation is applicable, we have

X(t)=£dfg1(r)§‘(t—r)+1/7zf7dzf;e(r)§‘2(t—r), (3.1.7)
where

(338)



fo(0)=1/27 [ dw g (w)exp(ion). (3.1.8)

Thus the second term in (3.1.7) can be regarded as the output through a
filtered square law detector and £:(z)is interpreted as the filter impulse response.
3.2 Approximation to the Instantaneous Probability Density Function

From Appedix B the horizontal response of a moored floating structure in
irregular waves is alternatively represented in the following form :

x:é(ciXi-!-liX%), (3.2.1)

where X; are standard Gaussian random variables with zero mean and their
variances are equal to unity.

Here, we shall assume that the number of eigenvalues A; is finite and suffi-
ciently large.

If we introduce the new random variables Z; as

Zi=:X; A X 3, (3.2.2)

then it is shown that Z; and Z;(i#;) are mutually independent and each Z has
the same probability density function. Thus, if the higher moments of Z are
finite, x (t) is subject to the local limit theorem'?, that is, x (#) will asymptotical-
ly become Gaussian.

Now, we replace x—% by y and introduce the error function & () defined by

e () =p(v) =1,/ 2rcsexp (—y2 20 %). (3.2.3)

If & can be represented by the family of orthogonal functions with weighting
function, {w(¥) ()}, it can be expanded in the following form :

e () =3 anhn () w ), (3.2.4)

where ., are the orthogonal functions and w(¥) is the weighting function,
and where «, are the coefficients given by

= [ dvha()e (). (3.2.5)

If w(y) is the Gaussian density function it is well known that %.(y) are given
by the Hermite polynomials'®. :

From the properties of the Hermite polynomials the instantaneous probabil-
ity density function can be approximated by the Gram-Charlier expansion® :

b (0)=1//Zzoy {1433 b/ (n ! 0D Hy((x—%) [0}
X exp{—(x—x)?/20 %}, (3.2.6)

where H, are the Hermite polynomials and b, represent the higher moments
defined by '
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b,=E {(x—%)"} Jfor n=3. (3.2.7)
From Egs.(3.2.7) and (2.4.8) the following relation is satisfied :
b3.:(7§/l. (3.2.8)

IfEq. (3.2.6) is truncated at finite order, the finite Gram-Charlier expansion
can not represent the asymptotic behaviour of the probability density as
|x|—oco. Thus it is necessary to investigate it from the exact solution.

We assume that 1; can be ordered and A, (max ;) is positive and 4, (min 2;)
is negative. For x —o the integration path of Eq. (2.4.2) can be deformed such
that it goes along the branch-cuts in the left half plane and the main contribu-
tion to this integral will be that from the neighbourhood of the branch-point
closest to the imaginary axis (see Appendix C).

We introduce the following function® :

&(6) = (1—241,0)~"2exp { —c26%/2(1—2i1,6) } }i é;(—i/2A;) (3.2.9)

Since ¢/ is analytical in the vicinity of the branch point closest to the
imaginary axis, the first approximation to p, (x) can be found as

p )= 1/2n [ dbF(@exp(—ite) fi, 4,(~i/20). (3210

Since (Z,/ l;-l—cﬁ/ 42,%) is of non-central x? distribution with one degree of
freedom, the following form® is found out by means of the asymptotic expan-
sion of the non-central x? distribution as x —0:

P, (%) =1/ 270.x €xp{— (x+ ¢ 2/21,) /2A,} cosh(n/ %/ X, ¢, /21;)  (3.2.11)

The same expression can easily be derived for x — —o0,

These results show that x/A; is asymptotically of x? distribution with one
degree of freedom and with a slight modification caused by the linear term.

If the second term in (2.1.5) is dominant, from Appendix C we get :

Dy (X)=1/27 /A Aol €xP { (A — |4, 1) 2/4 241 2]}
X Ko {|xl(ll+|/12')/4/\1|112l} dSle_)oo (3.2.12)

where K, is the modified Bessel function of the second kind.

Thus, the approximate solution for the instantaneous probability density
function will be obtained by matching between the finite Gram-Charlier expan-
sion and the asymptotic form derived from the exact solution.

3.3 Approximation to the Probability Density Function of Extremal Values

By expanding the one dimensional Gram-Charlier expansion to the two
dimensional form joint probability density funcion of x and X can be approxi-
mately represented in the following form:



Dxi (%, %) =1/270v0% exp{— (x—X)2/202—%%/26 i} 3 bun

mn

X Hy {(x—%)/0x} H,(%/0%), (3.3.1)

where ba. is a function of the higher moments of x and x.

The above equation is called "two dimensional Gram-Charlier expansion”
and is equivalent to the results given from the series expansion of cumulants by
Vinje®.

In the case of the nonlinear response, x and x are not mutually independent
even though x is stationary. But since the low frequency response of a moored
floating structure is limited in the low frequency regions, it will be expected
that the contribution of the low frequency response to the motion velocity is
very small. Thus x may be expressed as '

x:frdrgl(r)é‘(t—r), (3.3.2)

where dots denote time derivatives.

Since the surface elevation £(f) is assumed to be the stationary Gaussian
process with zero mean, &(¢#) and é‘(z‘) are mutually independent.

Since it will be proper to assume that x is Gaussian distributed and x and x
are mutually independent,

we obtain the following form:

pxi (x, ) = 1/ 270x0% {1+§‘,b,,/(n! o) Hy{(x—%)/oy}
Xexp {—(x—X)?/20 i —4*/20 1}, (3.3.3)

where % and ¢  are the mean and the variance of x (¢) respectively ando % is
the variance of x.

Then replacing & by #+Xx in Eq. (2.5.7), the probability density function of
maxima can be represented as: '

po(p)=—{—n/ciexp(—»*/2c%) [1+§bn/(n ! o) Hy(n/0x)]
+eXp(—772/26§)§ b/ (nle? ') Hy (/04 }
X(1+Z b/ (n!e?) H (0))7 (3.3.4) .

This means that p, is equivalent to the derivative form of Eq.(3.2.6). Thus
Pr for some sufficient large » will asymptotically approach to the following
form:

po~—d/dn (V %/(x+7n)exp(—2/21,) cosh {~/ (n+%) /A (c./22,) }
/cosh {~/ %/ A (c;/224) }) (3.3.5)

If the low frequency motion is dominant, the asymptotic form for » —oo
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is given as follows :
po~—d/dy (exp { (A, —A.]) /42,]2,]}
X Ko {(77+§) (/11"1"/121)/411]/12‘}

/Ko {x(A 4 12,0) /42, 12,19) (3.3.6)

Using Egs. (3.3.5) of (3.3.6) the extreme responses can be obtained from
Eq. (2.5.9).

4. COMPARISONS BETWEEN STATISTICAL ESTIMATIONS
AND EXPERIMENTAL RESULTS

4.1 Model Test

4.1.1 Configuration of Model

The model used in the test and the co-ordinate system are shown in Fig.2 and
the principal dimensions of the model are given in Table 1.
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Fig. 2 Configuration of offshore structure

4
ﬂ Table. 1 Principal dimensions
| X
o] ‘ WAVE ITEMS ACTUAL MODEL
E@ i "4 LENGTH (m) 30.0 2.1
3 BREADTH 20.0 1.40
Y DENE L, | 490.0 0.168
A T A DRAFT (m) 5.5 0.385
K6 (m) 4,758 0.330
5| @— r“j 5 X Kyy 42.6%L 4471
- GML (m) 3.845 0.269
SCALE
=/ =/ ) RATIO 1.0 1/14.3
21m MOORING CATENARY LINEAR
SPRING

and system of coordinate

4.1.2 Model Test and Measurement Items

The long duration measurements in irregular waves are required for the
low frequency surge motions to get the reliable data in statistics.

Furthermore, the data obtained must contain a number of oscillations with
randomness at the frequencies of interest. Therefore, in order to generate the
irregular waves over long duration the filtered signals were used, which were
obtained by passing the white noize signals generated from a noize generator
into the bandpass filter. The rolloff (the cutoff characteristics) of the bandpass
filter was 24db,oct.. Besides, regular waves and amplitude modulation waves



were also used to investigate the steady drift displacement and the quadratic
transfer function of surge motions.

Four kinds of irregular waves were generated. The central frequencies f, of
the bandpass filter used for the generation of each waves were 0.4, 0.5, 0.6, and
0.7Hz. These frequencies correspond to 9.45, 7.56, 6.30, and 5.40 sec. respectively
in the scale of real structures.

In the case of f,=0.7Hz the duration time was about 5.7hr in real scale, and
for the other cases it was about 2.8hr. The model tests were carried out at the
Mitaka No. 2 Ship Experimental Tank (400m in length, 18m in breadth, 8m
in depth) in Ship Research Institute. The test set-up is shown in Fig. 3.

)

Vertical Gyro LED -S—QML/

Camera

» \4— 7 l\ B
N ] -
M % S

e
Survo Needle
Wave Probe,

Fig.3 Set-up of model test

As shown in Fig. 3, the model was restrained by two soft springs through the
device which restricted the yaw motion. Their spring coefficients were 1.683
kg m. The encounter angle to waves was zero degree.

The measured items are as follows:

~Surge and heave motion measured by the optical motion measuring system
using L. E. D.;

-Pitch motion measured by the vertical gyroscope ;

~Surface elevation measured by the servo needle wave probe fixed at a
position, the x coordinate of which is equal to that of the centre of gravity of
the model in still water.

4.2 The Investigation to Irregular Waves

The spectra of irregular waves generated are shown in Fig. 4, where f,
denotes the centre frequency of bandpass filter used for generating the irregular
waves and & 2 are the estimated variances obtained by integrating the wave
spectra with respect to the wave frequency.

The Blackman-Tukey method was used in the spectral analysis, in which the

33

(343)



34

f=0.447 2061z
* o
S ) WAVE L fo(HZ) %(cmZ) 20 %= 11593 ca? 20k 622 12.69 co?
c (cmPsec) _— 0.5 11.8 —GAUsS \ © = 0.098 ——GAUSS 6= 0.1045
————— 0.6 134
0.7 142 i
f,=0.4
10.0f—
EIR 2 3 % -3 -2 40 3
&ios
’ £.205hz » £207;
5.0 20F | et 20- o2= 1479 el
B — . .
B = 0.088 ——GAUSS 70,232
| M‘, | |
0 I I | | 1_ |
° 0 . R B “

(344)

3
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) (radlsec)

Fig.'5 Comparisons between observed histograms

Fig.4 Wave spectra and Gaussian probability distributions

number of lags was 256 and the window used was the Hamming type. The
number of data used for the analysis was about 45000 in the case of f,=0.7Hz,
and it was about 23000 in. the other cases. The sampling interval was 60 msec.
in all cases. Fig. 5 shows the instantaneous probability distributions of waves.
In Fig.5 3 2 and j is the sample variance and the sample skewness given from
the time average respectively.

From Figs. 4 and 5 it is found that the spectrum shapes are different from
the standard wave spectra as the 1. S. S. C type or the J ONSWAP type, which
have the narrow band spectra.

x? tests were carried out to test the hypothesis that the wave is of Gaussian
process. From these results it has been found that this hypothesis is acceptable
at significant level of 0.05. :

Next, we shall investigate whether the random phases of waves are strongly
homogeneous and uniformly distributed. »

In general, even though the wave &(¢) satisfies the Ergodicity, &2 correspond-
ing to the instantaneous wave energy does not always satisfy it. ‘

This means that the correlation function of £%(¢) can not be obtained from the
time average, that is, the correlation function of & obtained from the time
average is the sample function because it depends on the random phases of
waves, and also the spectrum is the sample. But if the random phases of waves
are homogeneous, it may be considered that the time average correlation
function represents the average value in the sample functions, or the closest
value to the ensemble average.
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Fig. 6 Comparisons between slowly instantaneous
wave energy spectra obtained from time
average and their true spectra

Thus we compare the spectrum Sg which is given from the time average
correlation function of &* with the true spectrum S; defined in Eq. (3.1.3).
These results are shown in Fig. 6. From Fig. 6 it is found that both spectra are
in good agreement except for the vicinity of @w=0. Accordingly it may be
assumed that the random phases of waves are nearly homogeneous.

4.3 Investigation to Transfer Functions

The surge spectra given in the same manner as the wave spectra are shown
in Fig. 7. From this figure it is found that the surge response in the case of f,=
0.7Hz is the largest and responses are dominated by the low frequency motion.
Fig. 8 shows the linear transfer function G, obtained from the standard cross
spectral analysis between the surge motions and the waves. In this figure the
solid line represents the theoretical value due to the usual linear motion
prediction method which takes into account of the viscous damping?”. From
this figure it is found that the theoretical value is in good agreement with the
experimental results.

Thus it is considered that only the linear response can be separated from the
surge response including the low frequency motion in the frequency domain.

In order to get the quadratic transfer function of the response the cross
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Fig. 7 Surge spectra Fig.8 Linear transfer function (G1 (®)) of

surge motion

bispectrum between the waves and the surge motions is required. The utiliza-
tion of the Fast Fourier Transform (F.F.T) has significant advantage in the
computation of the full cross bispectrum. For the present purpose, however, the
full computation is not required, because we need only the results on or near
@1 = @;. »

Accordingly we used the method developed by Dalzel?. The window function
used in the computation of the cross bispectrum was the Hamming type
extended to two dimensions. Fig. 9 shows a part of the results of the cross
bispectrum. :

The quadratic transfer function obtained from the experiments in amplitude

‘modulation waves (A. M. waves) and irregular waves is shown in Fig. 10. This
function in irregular waves was estimated from the cross bispectral analysis
within the frequency range corresponding to the 25% power bandwidth of the
wave spectrum and that in A. M. waves, which was indicated by the black
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circles in the figure, was obtained from the envelope analysis?. For each value
of the difference frequencies the amplitude parts and the phase parts of the
quadratic transfer function are indicated in this figure and the abscisa is based
on the mean frequency of the two wave components.

The comparisons between G, (w, —®) obtained from the experiments in
irregular waves and the steady drift displacement obtained in regular waves
are shown in Fig. 11. In this figure the difference between white circles and
black circles indicates the effect of wave heights, and the solid line is the value
obtained from the theoretical computation taking into account of the
hydrodynamic interactions among floating elements under the fixed
condition®®. From Fig. 10 it is found that the result from the tests in amplitude
modulation waves are in good agreement with that in irregular waves and the
amplitudes of quadratic transfer function decrease with the increase of the
difference frequency and the phases do not depend on the mean frequency of the
two wave components. From Fig. 11 it is seen that the steady component of
quadratic transfer function, G2 (w,— ), represents the effect of wave height

RG{CQX((‘W "'0)2)}
2
STSEC - w00 oy )
~200 —— 05
---- 0§
— 0.7
-100 Y A
7 ‘\A\“‘__.ﬁ\- L,{Cm(ﬁ), .—0.)2)}
Wy Wy (RADSec) 200 w1-w2=0_4095(RAM — 02;
~200— o T T T e T %
Wi~ W2=0.4095 0.
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J
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T w- ws0.8181

-100—
100 Wi - wr0.8181

5

200 10 o

Fig.9 Cross bispectra (wave-wave-surge)
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Fig. 10 Quadratic transfer function G2 (@1, — a2) of surge. motion

of the steady drift displacement in regular waves and it is not proportional to
the square of wave heights.

Let G (@, —@,) be the quadratic transfer function of the low frequency
second order force in head waves and H, (w) be the response function of surge
motions to external forces at the low frequency motion.

Then G2 (w1,—w2) can be represented as
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Fig. 11 Comparisons between G2 (w, —®) and
the steady drift excursions derived from
experimental results in regular waves

Golw1,—w2)= Gl w1,— w2) H. (01— w2).
For Gi(w1,—w2) Newman?? has suggested the following approximation :
G%(@b _Ce)z): G;(G)l, _&)1) (4.3.2)

This means that G} (e, —w,) can be replaced by the diagonal components of
a matrix of quadratic transfer function of low frequency second order force.

Since H. consists of the mass coefficient, the damping coefficient and the
restoring force coefficient at low frequency motion, the additional components
of hydrodynamic forces caused by encounter waves may be contained in H,.

If the relation (3.1.6) is satisfied, Hv can be represented in the following form :

H(0)=9*(w)/ 9(0)=H.K, ‘ (4.3.3)

where K is the linear restoring force coefficient and ¢ is the response
function obtained from standard cross spectral analysis between surge motions
“and squared surface elevations. H, is the non—dimensional form of H,.
The properties of g obtained from exprimental data in irregular waves are
shown in Fig. 12. In this figure the marks indicate the results obtained from G,
by use of (3.1.6). From Fig. 12 it is found that both results agree well except for
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Fig. 13 Linear transfer function Hi. of surge

motion to external force at low frequency
motion

the vicinity of peaks. Thus it is considered that the relation (3.1.6) is approxi-
mately satisfied in this case. H, estimated from under Newman’s approxima-
tion and H, obtained from a free oscillation test in still water are compared in
Fig. 13. From this figure it is found that both results have a same tendency in
terms of the characteristics of frequency, but that the natural frequency of H,
is shifted towards low frequency side in comparison with that of A, and the
damping coefficient of Hvis larger than that of H:, and that in particular these
phenomena are remarkable when the peak frequency of wave spectrun becomes
high. However since H, overestimates Hy, it is concluded that the quadratic
transfer function of surge motions, G, can be predicted from g by taking into
account of the effect of wave heights for the steady drift displacement and by
using the frequency response function of surge motions obtained from a free
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Fig. 14 Comparisons in time domain between simulated low frequency motions and

measured results of surge motion
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oscillation test in still water.

We shall check this fact in time domain. The result simulated by using the
above results and the measured result are compared in Fig. 14. From this figure
it is confirmed that the above approximation is applicable in this case.

Finally, the following results are derived within the range of this experiment:

1) The low frequency motion is dominant in the total surge motion;

2) G:(w, —w) which represents the steady drift displacement is not propor-
tional to the square of wave heights;

3) The response function g of surge motions to the instantaneous wave
energy, which is introduced newly, is approximately equal to the
quadratic transfer function of surge motions;

4) The frequency response function of surge motions to external forces, H,
is approximated by the response function obtained from a free oscillation

' test in still water ;

5) The linear transfer function of surge motions, G,, can be estimated from

the usual linear motion prediction method and does not depend on the
low frequency motion.

Thus the following relations can be obtained by applying these results to Egs.
(2.4.7) and (2.4.8).

515201420 = [ [T Gilw, ~0)?Us(w) | Hlw—) [2Us(v) dvde

(4.3.4)
53580 1-19 =3 [ [ 16 1(e) G (1) G 1w, —w) H (@)
+G(@)G1(W) G w, —o)H tlo—v)} Uslw)Us(v) dody
+j:](;°°f0mUc(w1) Ue(ewr) Us(3) G i (w1, —w1) G § (@2, — o)
X G §(ws, —w3) {H(wi—w)H }(w—ws) H (05— @)
+C. C.} dodw,dws (4.3.5)

Where C. C. denotes the complex conjugate of the previous term.

4.4 Investigation to the Instantaneous Probability Density Function of
Response

Comparisons between the sample statistical values obtained from time aver-
age over total duration time and the estimated ones from Egs. (4.3.4) and (4.
3.5) are shown in Table2. Fig. 15 shows sample statistical values as a time
function. From Table2 and Fig. 15 it is found that sample variances do not
depend on the duration time and show constant values, while the sample
skewnesses are distributed around the estimated values and depend on the
duration one. But the longer the duration time, the smaller the variation of the
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sample skewness around the estimated value. Thus it may be considered that
the statistical values of surge motions including the low frequency motion can
be predicted up to third order by using the present approximate theory.

The instantaneous probability distributions of surge motions are indicated in
Fig. 16. In this figure the broken line is the estimated curve from the three term
Gram-Charlier expansion and the solid line is that from the asymptotic solution
of exact probability density function. From Fig. 16 it is found that the probabil-
ity distribution is asymmetry with respect to x=% and has the tendency
broadening towards the direction drifted by waves. Further it is seen that the
degree of the breadth depends on the skewness of the distribution considerably.
The results of the three term Gram-Chalier expansion are found to better fit the
experimental results, while the results of the asymptotic solution do not well
approximate the probability distribution. However, the latter results represent
the behaviour of the probability distribution well at which x is significantly
large. Thus it may be considered that the probability density function of surge
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Table. 2 Comparisons with statistical values
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motions is given by matching between the both approximate solutions.
4.5 Investigation to Probability Distributions of Extremal Values and
Extreme Value

If the co—ordinate system is taken as shown in Fig. 2, minima in extremal
values are more important than maxima for the mooring design purpose. The
probability distributions of minima are shown in Fig. 17 and that of the negative
minima which are the most important in the estimation of the maximum
mooring force are shown in Fig.18. In Fig. 18 the solid line is the curve
estimated from the asymptotic solution of exact instantaneous probability
density function, and the broken line is that from the three term Gram-Charlier
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Fig. 18 Comparisons between observed histograms and estimated
probability distributions of negative minima of surge motion
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expansion and the dash-dot line is that from the Rayleigh distribution function.
All curves in this figure are evaluated by using the estimated statistical values
obtained from Table. 2. From these figures it is found that the probability
distributions of minima depend remarkably on the skewness of the instantane-
ous probability distribution and the breadth of the distribution becomes wide
with the increase of the absolute value of skewness and that the probability distribu-
tions of negative minima are fairly well represented by the curves estimated
from the asymptotic solution of the exact instantaneous distribution. Fig. 19
shows the extreme values based on N, observations of negative minima. The
solid line shows the results obtained from the asymptotic solution, and the
broken line shows those given the three term Gram—Charlier expansion, and the
dash-dot line is the calculated value obtained by Longuet-Higgins?®. The black
circles indicate the experimental results obtained from each samples in total
measuring data. The extreme values are normalized by the standard deviation
of surge response, ox. From these figures it is found that the results from
Longuet-Higgins’s method significantly underestimate the extreme values of
negative minima whereas those estimated from the asymptotic solution of the
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Fig. 19 Comparisons between observed extreme
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instantaneous probability density function show fairly good agreement with the
experimental results.

Finally, Fig. 20 shows 1/n th highest expected amplitudes for the negative
minima as a time function. In this figure the broken line is the result obtained
from linear theory. From this figure it is found that 1/3 th highest expected
amplitude is smaller than that from linear theory and in the case of 1/10 th
highest amplitude the frequence exceeding the value of linear theory become
high. In the estimation of these highest amplitudes Hineno’s method?# which
extended Vinje’s method to wide band random processes may be used.

5. CONCLUSIONS

The results of investigations on the statistical analysis of horizontal response
of a moored floating structure are summarized as follows:

(1) If it is assumed that the horizontal response of a moored structure can be
represented by two term Volterra series of incident wave, the instantaneous
probability density function can be obtained exactly from both the eigenvalues
and eigenfunctions of the Fredholm type integral equation of second kind with
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the Hermite kernel function including the quadratic transfer function, that is
G,.

(2) If the number of eigenvalues dominating the instantaneous probability
densities is finite, this density function can be approximated by the Gram
—Charlier expansion. The parameter of this expansion can be estimated from
both the linear and quadratic transfer functions.

(3) The consistent results to the quadratic transfer function of response are
obtained through cross bispectral analysis in irregular waves and experimental
data in amplitude modulation waves and regular waves. As the results it is
confirmed that this function has the following characteristics :

—The amplitude parts decrease as the difference frequency of the two wave
components becomes high ;

-The phase parts do not depend on the sum frequency of the two wave
components ;

-The diagonal values show the steady drift excursions in regular waves and
are not proportional to the squared wave heights.

(4) The transfer function g of horizontal response to slowly instantaneous
wave energy, which is introduced newly in this case, is capable to evaluate
quantitatively the characteristics of the quadratic transfer function. Within the
range of this experiment it is confirmed that the Newman’s approximation
can be applied to the quadratic transfer function of external force and that ¢ is
nearly equal to the quadratic transfer function of the response.

(5) The linear part of surge response can be separated from the total
response in the frequency domain and can be estimated by the usual linear
motion prediction method taking into account of the viscous damping. Further
it is not affected by the nonlinear part. The response function to external forces
at the low frequency motion is different from that obtained from a free oscilla-
tion test in still water. As the reason it may be considered that these phenomena
are attributed to “increase of damping force in waves” proposed by one of the
authors®® and Wichers®,

(6) The instantaneous probability distribution of surge responses has the
asymmetrical distribution, which broadens towards the direction drifted by
waves even though the restoring force is linear. The variance, and the skewness
which dominates the asymmetry of the distribution can be estimated from the
frequency characteristics of the response.

(7) In order to obtain the instantaneous probability distribution we propose
the approximate method matching between the finite Gram-Charlier expansion
and the asymptotic form derived from the exact probability density function.
The estimated results due to the present method show fairly good agreement
with the experimental results.



(8) The new prediction methods for the probability distributions of extremal
values and the extreme value are proposed under the assumptions that the
response displacement and velocity are independent mutually and the response
velocity is of Gaussian distribution with zero mean in addition to the Powell’s
assumptions. As a result it is confirmed that the Longuet-Higgin’s method
significantly underestimates the experimental result while the present method
is in good agreement with the experimental one.
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Appendix A
Exact Solutions of the Instantaneous Probability Density Function of Second
Order Response due to the Kac-Siegert Method'?”
From Eq. (2.1.5) the horizontal response of a moored floating structure can

be represented as

X(If) =_/;d1g1(r)§‘(z‘—f) +fn dTledfzgz(Th Tz)é(t—‘ﬁ)g(t_fa)

= x4 x@ (A—1)
Let &(¢) be an equivalent filtered white noize process, or
¢)= [ deh(z)N (t-7), (A-2)

where 2(7) is the weighting function and N(#) is a unit white noize which
satisfies

E{NW)N(t—1)}=06(1), (A—3)

& (z) is the Dirac delta function.
Then following Kac and Siegert'®, we expand thé white noize process in a
stochastic series of orthogonal functions as

N (t=7) =5 Xi(£) $i(x) (A—4)
with the normalization
IO IGETS (A=5)

where X;(¢) are the standard Gaussian variables with zero mean and unit
variance and they are mutually independent. Then, in terms of the series
expansion, the first term in (A—1) becomes

x (£) =§,lciX,.<r>, (A—6)

with
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c,:fdfT & () k(o) ¢:(r+0) drdo, (A1)
and

x® () =2 XD X0 [, [ #:(a) 6,(8)S (@) dad, (A-8)
with

Step) = [ [ hla—=) k(=) & () dndn. (A-9)
If ¢, are chosen as the orthogonal functions which satisfies

[, S(a8) ,(8) ds=1,65(a), (A-10)
Eq. (A—8) becomes

x®) = g LX 2 (A—11)
Thus, Eq. (A—1) is given in the following form:

x(1) =3 aXi(t) + 5 X2 () (A—12)
with

E {X:() X;(t)} =gy (A—13)

The instantaneous probability density function p, of x{¢) can be obtained
from the inverse Fourier transform of its characteristics function.
The characteristics function is defined by

¢ (6) =E {exp(i6x)}= 1 E (exp{if (cX;+L,X })}1). (A—14)
Since X; have the probability density function as

px;j(x) =1//27m exp(—x%/2), (A—15)
by using the following identity :

[:dx exp(itc—ax?/2)=~/2%/a exp(—t?/2a) for a>0 (A—16)
the characteristic function can be rewritten as

$(6)= Il (1—2id,6)~ exp{—c3 /2 (1-2i;6)}. (A—17)

By the inverse Fourier transform of the characteristics function the instanta-
neous probability density function of x(¢#) becomes

p(x)=1/22 f_ " d6g (8)exp(—ibx). (A—18)

Next we shall consider the integral equation (A—10).
It can be simplified by defining
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b= [ hu—1) ¢, () du (A—19)
Then Eq. (A—10) can be rewritten as

[ (4,0, () = A (1) (A—20)
with

H(t w)= [ dug(z u)Re(t—7), (A—21)

where R¢ is the auto correlation and is given by
Re(7r) = j;. doh(n) h(z+). (A—22)

Automatically, the normalization relation for the eigenfunctions is obtained
as

[ ani [ dng () v ()2 (5, %) =100 (A-23)
and the parameter ¢ in (A—7) becomes
c,,ZfT drg () ¥ (7). (A—24)

Finally we represent the integral equation (A —23) in the frequency domain.
If the Fourier transform of ¥, (¢) exists and is defined by

W, () =1/~ 27 [ _dt exp(—iwt) (1), (A—25)

then the integral equation in the time domain, (A —20), can be represented in
the following form:

[ v, (v) St (@) G (0, —v) = 0¥ (). (A—26)
The normalization condition (A—24) becomes
[ dor [ dow¥u(en) Walen) G~ o1, = @) = i, (A—27)

Since Eq. (A—26) is a Fredholm integral equation of the second kind with a
Hermite-symmetric kernel, A will be real and the eigenfunction satisfies

Y, (~w) =¥ (w), (A—28)

where * denotes the complex conjugate.

Appendix B
Statistical Values of x (¢)

From Appendix A the horizontal motion of a moored floating structure in
irregular waves can be represented as
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x= 3 (ci+ LX) X, (B—1)

=

—

or
x=fdr () E(t—71) +fﬁ dnfr;drzgz(rl, ) Et—7)Elt—n). (B—2)

From (B—1) the expected values up to third order are given as follows :

E{X}zz’liE {X%}+2 aE {X.t, (B—3)
E {Xz}zz CiCjE {X,XJ}+12C,I1JE {X,Xg}, (B_4)

E {x*} =3 acak (XXX + 2 eaE (XX5 X,
+i§}kkicjckE (X3 XX+ 5 AdeE (X7 X3 X
+ 3 aolE (X X,X3) + 32 alAE (X, X2 X1)
+i§:kaicjxkE {X%X’XiH,% AAME {X2 X2 X5, (B—5)

Since X:(;=1,...,90) are the standard Gaussian variables with mutual
independence, the following relations are satisfied :

E{X:}=0, (B—6)
E{X.X;}=¢,, (B—17)
E {X.X;X,}=0, (B—8)
E { XX, X X\} = 0100+ 6120, F 61,05, (B—9)
E{X XXX, X,}=0, (B—10)

E A X X;Xo X, Xn X} = 6:,6010mn + 6150kmOin T 01;0unOym + 0405 Omn
+ 8:40im O in+ 0ix0inGim + 8:10;.0mn T 8510 mOnn
+ 0:105200m + OimOinOin + 8:m3510un + SimOinGni+ 512010 m
+ 0:n05:0um + 8:2CimSni,
for i, 7,1, m n=1,..., co, (B—11)

where d;; is the Kronecker delta.
Using the above relations, the mean value X, the variance ¢ 2 and the skew-
ness p of x (¢) are obtained as

ci=E (X —%=2c?+23 1%, (B—13)
uo i=FE {x*} —3E {x*} - x+2x®=82 A} +62c?A,. (B—14)
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From (B—2) the expected values are written as follows:
E{x}Zfﬂ dﬂj;?drzgz(ﬁ, ) Re(n,— 1), (B—15)
E {xz}:_/;ldnfndrzgl(Tl)gx(rz)]?;(rz~rl)+fﬂd11 ------ j;4dr4gz(rl, )
X & (7, 7)) {Re(nn—n) Re(za— 1) + Re(n,— ) Re(nn — %)
+Re(n—n) Re(m—m) ) (B—16)

X RC(Ts - 74) +8R§<Tz - 71) RC(TS - Tz) R&(Ts - 1’4) } (B— 17)
Accordingly we can obtain the statistical values of x(#) as

f:fwd@c;z(w, —@)Se(w), (B—18)

GQZde\Gl(w)VSc(wH— medw_/;ndclez(wl,mz))z
X S¢(w1)Se(@s), (B—19)
w0 3=6 [ don [ dinG,(~ @) Gi(= @) G (@, @) Se(wn) St (en)
+8L1dw1L2dsz3dws@(w1, @) G 3 (@, ms)Gz(cas,—@)
X S (1) Se (@2) St (ws), (B—20)
where * denotes the complex conjugate.
Appendix C

Integral Evaluation to Instantaneous Probability Density Function of x(¢#) as
X —CO

From Eq. (2.4.2) the instantaneous probability density function of x(¢) may

be rewritten as

po(x)=lim1/2x f * exp (—ix) ¢ () d. Cc—1)
R —o0 —-R

First, we expand Eq. (C—1) to complex space. By regarding this integral as
a complex integral and replacing —i6 by s we obtain the following form:

b, () = lim 1/27i f ’; Ml (1+22,5) 74 exp{sc+c357/2(1+24,8) ds. (C—2)
R —o0 —iR j=

Then without loss of generality it can be assumed that L>A> ... >0
and 0> A, > .. > A
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For x —o0 only the positive eigenvalues are of interest. Thus in the case in
which # is even we take the branch cuts from —1/21,,_, to —1/2A,; (j=1,...,
n/2) along the real axis as shown in Fig. (C—1). If # is odd the branch-cut
from —1/21, to —o0 is added.

=1/22s =120 =1/22y =1/22 =112

—iR

Fig. C-1 Contours of integration

Since 1+2A;s takes either positive value or negative value when s moves on
the negative real axis, we define the brach of 1/~/1+224;s as

[1+21,5]712 for 1+21;5>0, (C—-3)
—i|1+2A,8]72 for 1+24;5<0. (C—4)

Then, the integrand of (C—1) is regular except for branch points —1/21;(j=
C, ).
Thus, by Cauchy’s theorem the integral along ABC 2] T E becomes zero. The
integrals along each path are as follows: !

1) Integral along BC

Setting s=Re®(z/2=0§=z) we have the following inequalities :

1,

lexp(c2s2/2(1+24;5))| =< exp (¢% Rcosf/4A,) =1,
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|exp (sx) |=exp(xRcosd) <1,
|14+22,s|"112< ]| 1—2A,R|- V2,

Thus the integral along BC becomes zero as R — oo,

(2) Integral along EA

It can be proved that the integral along EA also becomes zero as R —co,
(3) Integral along the semi circle of T}

Setting s=pe?—1/22;(z<6=0) we get the following inequalities :

lexp(c2s?/2(1+2;8))| = exp {¢2%/24;0 (p®cosf—p/A;+ cosf/A2)},
| exp (sx)| < exp (px cosh)
’1+2Aj3|—1/2§ 1/\/ ZA.J‘/J.

Thus, if p is taken such that it is equal to ¢;/(21;+/22;x),which is a stationary
point, this integral becomes zero as x—co .

Since the integrand of (C—1) is bounded at all points except for branch
points, we obtain the following form as the evaluation of Eq. (C—1):

— Vi1 —1/212;-1 sx -1z
0 =V/z 2 (=D f_l/m e T |1+422]

Xexp{c2s¥/2(1+2A,5)} ds if niseven, (C—5)

,_ —1/222j-1 x _
P =Ur B0 [0 e T 142,50

Xexp{cis¥/2(1+22;8)} ds+1/z(—1)" f_—lmn -

o0

XTI |1424,5|" 2 exp{c2s¥/2(1+2A,5)} ds if nisodd (C—6)
7

If it is assumed that A;/A,(7=2,....%) <1, the main contribution to the
integral (C—1) will be from the vicinity of the branch point A,.

Samely the integral as x — —o0 is also evaluated by taking the branch-cuts
on positive real axis.

In the case of n=2 and 2,2,<0 and 1;>¢;(=1,2) the integral (C—1) is
evaluated exactly as

p(0)=1/2z [ dbexp(—ix6) //T—2i1:0) (1~ 2iA,0)
= 1/271' N /hllzl €Xp { ( A “‘I/12|) /4/11“2” K, {!x!(M +|/12|) /4/11|/12|},
(C—7

where K, is the modified Bessel function of the second kind.
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