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the Hermite kernel function including the quadratic transfer function, that is
G,.

(2) If the number of eigenvalues dominating the instantaneous probability
densities is finite, this density function can be approximated by the Gram
—Charlier expansion. The parameter of this expansion can be estimated from
both the linear and quadratic transfer functions.

(3) The consistent results to the quadratic transfer function of response are
obtained through cross bispectral analysis in irregular waves and experimental
data in amplitude modulation waves and regular waves. As the results it is
confirmed that this function has the following characteristics :

—The amplitude parts decrease as the difference frequency of the two wave
components becomes high ;

-The phase parts do not depend on the sum frequency of the two wave
components ;

-The diagonal values show the steady drift excursions in regular waves and
are not proportional to the squared wave heights.

(4) The transfer function g of horizontal response to slowly instantaneous
wave energy, which is introduced newly in this case, is capable to evaluate
quantitatively the characteristics of the quadratic transfer function. Within the
range of this experiment it is confirmed that the Newman’s approximation
can be applied to the quadratic transfer function of external force and that ¢ is
nearly equal to the quadratic transfer function of the response.

(5) The linear part of surge response can be separated from the total
response in the frequency domain and can be estimated by the usual linear
motion prediction method taking into account of the viscous damping. Further
it is not affected by the nonlinear part. The response function to external forces
at the low frequency motion is different from that obtained from a free oscilla-
tion test in still water. As the reason it may be considered that these phenomena
are attributed to “increase of damping force in waves” proposed by one of the
authors®® and Wichers®,

(6) The instantaneous probability distribution of surge responses has the
asymmetrical distribution, which broadens towards the direction drifted by
waves even though the restoring force is linear. The variance, and the skewness
which dominates the asymmetry of the distribution can be estimated from the
frequency characteristics of the response.

(7) In order to obtain the instantaneous probability distribution we propose
the approximate method matching between the finite Gram-Charlier expansion
and the asymptotic form derived from the exact probability density function.
The estimated results due to the present method show fairly good agreement
with the experimental results.



(8) The new prediction methods for the probability distributions of extremal
values and the extreme value are proposed under the assumptions that the
response displacement and velocity are independent mutually and the response
velocity is of Gaussian distribution with zero mean in addition to the Powell’s
assumptions. As a result it is confirmed that the Longuet-Higgin’s method
significantly underestimates the experimental result while the present method
is in good agreement with the experimental one.
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Appendix A
Exact Solutions of the Instantaneous Probability Density Function of Second
Order Response due to the Kac-Siegert Method'?”
From Eq. (2.1.5) the horizontal response of a moored floating structure can

be represented as

X(If) =_/;d1g1(r)§‘(z‘—f) +fn dTledfzgz(Th Tz)é(t—‘ﬁ)g(t_fa)

= x4 x@ (A—1)
Let &(¢) be an equivalent filtered white noize process, or
¢)= [ deh(z)N (t-7), (A-2)

where 2(7) is the weighting function and N(#) is a unit white noize which
satisfies

E{NW)N(t—1)}=06(1), (A—3)

& (z) is the Dirac delta function.
Then following Kac and Siegert'®, we expand thé white noize process in a
stochastic series of orthogonal functions as

N (t=7) =5 Xi(£) $i(x) (A—4)
with the normalization
IO IGETS (A=5)

where X;(¢) are the standard Gaussian variables with zero mean and unit
variance and they are mutually independent. Then, in terms of the series
expansion, the first term in (A—1) becomes

x (£) =§,lciX,.<r>, (A—6)

with
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c,:fdfT & () k(o) ¢:(r+0) drdo, (A1)
and

x® () =2 XD X0 [, [ #:(a) 6,(8)S (@) dad, (A-8)
with

Step) = [ [ hla—=) k(=) & () dndn. (A-9)
If ¢, are chosen as the orthogonal functions which satisfies

[, S(a8) ,(8) ds=1,65(a), (A-10)
Eq. (A—8) becomes

x®) = g LX 2 (A—11)
Thus, Eq. (A—1) is given in the following form:

x(1) =3 aXi(t) + 5 X2 () (A—12)
with

E {X:() X;(t)} =gy (A—13)

The instantaneous probability density function p, of x{¢) can be obtained
from the inverse Fourier transform of its characteristics function.
The characteristics function is defined by

¢ (6) =E {exp(i6x)}= 1 E (exp{if (cX;+L,X })}1). (A—14)
Since X; have the probability density function as

px;j(x) =1//27m exp(—x%/2), (A—15)
by using the following identity :

[:dx exp(itc—ax?/2)=~/2%/a exp(—t?/2a) for a>0 (A—16)
the characteristic function can be rewritten as

$(6)= Il (1—2id,6)~ exp{—c3 /2 (1-2i;6)}. (A—17)

By the inverse Fourier transform of the characteristics function the instanta-
neous probability density function of x(¢#) becomes

p(x)=1/22 f_ " d6g (8)exp(—ibx). (A—18)

Next we shall consider the integral equation (A—10).
It can be simplified by defining
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b= [ hu—1) ¢, () du (A—19)
Then Eq. (A—10) can be rewritten as

[ (4,0, () = A (1) (A—20)
with

H(t w)= [ dug(z u)Re(t—7), (A—21)

where R¢ is the auto correlation and is given by
Re(7r) = j;. doh(n) h(z+). (A—22)

Automatically, the normalization relation for the eigenfunctions is obtained
as

[ ani [ dng () v ()2 (5, %) =100 (A-23)
and the parameter ¢ in (A—7) becomes
c,,ZfT drg () ¥ (7). (A—24)

Finally we represent the integral equation (A —23) in the frequency domain.
If the Fourier transform of ¥, (¢) exists and is defined by

W, () =1/~ 27 [ _dt exp(—iwt) (1), (A—25)

then the integral equation in the time domain, (A —20), can be represented in
the following form:

[ v, (v) St (@) G (0, —v) = 0¥ (). (A—26)
The normalization condition (A—24) becomes
[ dor [ dow¥u(en) Walen) G~ o1, = @) = i, (A—27)

Since Eq. (A—26) is a Fredholm integral equation of the second kind with a
Hermite-symmetric kernel, A will be real and the eigenfunction satisfies

Y, (~w) =¥ (w), (A—28)

where * denotes the complex conjugate.

Appendix B
Statistical Values of x (¢)

From Appendix A the horizontal motion of a moored floating structure in
irregular waves can be represented as
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x= 3 (ci+ LX) X, (B—1)

=

—

or
x=fdr () E(t—71) +fﬁ dnfr;drzgz(rl, ) Et—7)Elt—n). (B—2)

From (B—1) the expected values up to third order are given as follows :

E{X}zz’liE {X%}+2 aE {X.t, (B—3)
E {Xz}zz CiCjE {X,XJ}+12C,I1JE {X,Xg}, (B_4)

E {x*} =3 acak (XXX + 2 eaE (XX5 X,
+i§}kkicjckE (X3 XX+ 5 AdeE (X7 X3 X
+ 3 aolE (X X,X3) + 32 alAE (X, X2 X1)
+i§:kaicjxkE {X%X’XiH,% AAME {X2 X2 X5, (B—5)

Since X:(;=1,...,90) are the standard Gaussian variables with mutual
independence, the following relations are satisfied :

E{X:}=0, (B—6)
E{X.X;}=¢,, (B—17)
E {X.X;X,}=0, (B—8)
E { XX, X X\} = 0100+ 6120, F 61,05, (B—9)
E{X XXX, X,}=0, (B—10)

E A X X;Xo X, Xn X} = 6:,6010mn + 6150kmOin T 01;0unOym + 0405 Omn
+ 8:40im O in+ 0ix0inGim + 8:10;.0mn T 8510 mOnn
+ 0:105200m + OimOinOin + 8:m3510un + SimOinGni+ 512010 m
+ 0:n05:0um + 8:2CimSni,
for i, 7,1, m n=1,..., co, (B—11)

where d;; is the Kronecker delta.
Using the above relations, the mean value X, the variance ¢ 2 and the skew-
ness p of x (¢) are obtained as

ci=E (X —%=2c?+23 1%, (B—13)
uo i=FE {x*} —3E {x*} - x+2x®=82 A} +62c?A,. (B—14)
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From (B—2) the expected values are written as follows:
E{x}Zfﬂ dﬂj;?drzgz(ﬁ, ) Re(n,— 1), (B—15)
E {xz}:_/;ldnfndrzgl(Tl)gx(rz)]?;(rz~rl)+fﬂd11 ------ j;4dr4gz(rl, )
X & (7, 7)) {Re(nn—n) Re(za— 1) + Re(n,— ) Re(nn — %)
+Re(n—n) Re(m—m) ) (B—16)

X RC(Ts - 74) +8R§<Tz - 71) RC(TS - Tz) R&(Ts - 1’4) } (B— 17)
Accordingly we can obtain the statistical values of x(#) as

f:fwd@c;z(w, —@)Se(w), (B—18)

GQZde\Gl(w)VSc(wH— medw_/;ndclez(wl,mz))z
X S¢(w1)Se(@s), (B—19)
w0 3=6 [ don [ dinG,(~ @) Gi(= @) G (@, @) Se(wn) St (en)
+8L1dw1L2dsz3dws@(w1, @) G 3 (@, ms)Gz(cas,—@)
X S (1) Se (@2) St (ws), (B—20)
where * denotes the complex conjugate.
Appendix C

Integral Evaluation to Instantaneous Probability Density Function of x(¢#) as
X —CO

From Eq. (2.4.2) the instantaneous probability density function of x(¢) may

be rewritten as

po(x)=lim1/2x f * exp (—ix) ¢ () d. Cc—1)
R —o0 —-R

First, we expand Eq. (C—1) to complex space. By regarding this integral as
a complex integral and replacing —i6 by s we obtain the following form:

b, () = lim 1/27i f ’; Ml (1+22,5) 74 exp{sc+c357/2(1+24,8) ds. (C—2)
R —o0 —iR j=

Then without loss of generality it can be assumed that L>A> ... >0
and 0> A, > .. > A
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For x —o0 only the positive eigenvalues are of interest. Thus in the case in
which # is even we take the branch cuts from —1/21,,_, to —1/2A,; (j=1,...,
n/2) along the real axis as shown in Fig. (C—1). If # is odd the branch-cut
from —1/21, to —o0 is added.

=1/22s =120 =1/22y =1/22 =112

—iR

Fig. C-1 Contours of integration

Since 1+2A;s takes either positive value or negative value when s moves on
the negative real axis, we define the brach of 1/~/1+224;s as

[1+21,5]712 for 1+21;5>0, (C—-3)
—i|1+2A,8]72 for 1+24;5<0. (C—4)

Then, the integrand of (C—1) is regular except for branch points —1/21;(j=
C, ).
Thus, by Cauchy’s theorem the integral along ABC 2] T E becomes zero. The
integrals along each path are as follows: !

1) Integral along BC

Setting s=Re®(z/2=0§=z) we have the following inequalities :

1,

lexp(c2s2/2(1+24;5))| =< exp (¢% Rcosf/4A,) =1,
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|exp (sx) |=exp(xRcosd) <1,
|14+22,s|"112< ]| 1—2A,R|- V2,

Thus the integral along BC becomes zero as R — oo,

(2) Integral along EA

It can be proved that the integral along EA also becomes zero as R —co,
(3) Integral along the semi circle of T}

Setting s=pe?—1/22;(z<6=0) we get the following inequalities :

lexp(c2s?/2(1+2;8))| = exp {¢2%/24;0 (p®cosf—p/A;+ cosf/A2)},
| exp (sx)| < exp (px cosh)
’1+2Aj3|—1/2§ 1/\/ ZA.J‘/J.

Thus, if p is taken such that it is equal to ¢;/(21;+/22;x),which is a stationary
point, this integral becomes zero as x—co .

Since the integrand of (C—1) is bounded at all points except for branch
points, we obtain the following form as the evaluation of Eq. (C—1):

— Vi1 —1/212;-1 sx -1z
0 =V/z 2 (=D f_l/m e T |1+422]

Xexp{c2s¥/2(1+2A,5)} ds if niseven, (C—5)

,_ —1/222j-1 x _
P =Ur B0 [0 e T 142,50

Xexp{cis¥/2(1+22;8)} ds+1/z(—1)" f_—lmn -

o0

XTI |1424,5|" 2 exp{c2s¥/2(1+2A,5)} ds if nisodd (C—6)
7

If it is assumed that A;/A,(7=2,....%) <1, the main contribution to the
integral (C—1) will be from the vicinity of the branch point A,.

Samely the integral as x — —o0 is also evaluated by taking the branch-cuts
on positive real axis.

In the case of n=2 and 2,2,<0 and 1;>¢;(=1,2) the integral (C—1) is
evaluated exactly as

p(0)=1/2z [ dbexp(—ix6) //T—2i1:0) (1~ 2iA,0)
= 1/271' N /hllzl €Xp { ( A “‘I/12|) /4/11“2” K, {!x!(M +|/12|) /4/11|/12|},
(C—7

where K, is the modified Bessel function of the second kind.
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