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the Hermite kernel function including the quadratic transfer function, that is 

G2. 

(2) If the number of eigenvalues dominating the instantaneous probability 

densities is finite, this density function can be approximated by the Gram 

-Charlier expansion. The parameter of this expansion can be estimated from 

both the linear and quadratic transfer functions. 

(3) The consistent results to the quadratic transfer function of response are 

obtained through cross bispectral analysis in irregular waves and experimental 

data in amplitude modulation waves and regular waves. As the results it is 

confirmed that this function has the following characteristics : 

-The amplitude parts decrease as the difference frequency of the two wave 

components becomes high ; 

-The phase parts do not depend on the sum frequency of the two wave 

components ; 

-The diagonal values show the steady drift excursions in regular waves and 

are not proportional to the squared wave heights. 

(4) The transfer function g of horizontal response to slowly instantaneous 

wave energy, which is introduced newly in this case, is capable to evaluate 

quantitatively the characteristics of the quadratic transfer function. Within the 

range of this experiment it is confirmed that the Newman's approximation 

can be applied to the quadratic transfer function of external force and that g is 

nearly equal to the quadratic transfer function of the response. 

(5) The linear part of surge response can be separated from the total 

response in the frequency do_main and can be estimated by the usual linear 

motion prediction method taking into account of the viscous damping. Further 

it is not affected by the nonlinear part. The response function to external forces 

at the low frequency motion is different from that obtained from a free oscilla-

tion test in still water. As the reason it may be considered that these phenomena 

are attributed to "increase of damping force in waves" proposed by one of the 

authors25l and Wichers26l. 

(6) The instantaneous probability distribution of surge responses has the 

asymmetrical distribution, which broadens towards the direction drifted by 

waves even though the restoring force is linear. The variance, and the skewness 

which dominates the asymmetry of the distribution can be estimated from the 

frequency characteristics of the response. 

(7) In order to obtain the instantaneous probability distribution we propose 

the approximate method matching between the finite Gram-Charlier expansion 

and the asymptotic form derived from the exact probability density function. 

The estimated results due to the present method show fairly good agreement 

with the experimental results. 



(8) The new prediction methods for the probability distributions of extremal 
values and the extreme value are proposed under the assumptions that the 
response displacement and velocity are independent mutually and the response 
velocity is of Gaussian distribution with zero mean in addition to the Powell's 
assumptions. As a result it is confirmed that the Longuet-Higgin's method 
significantly underestimates the experimental result while the present method 
is in good agreement with the experimental one. 
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Appendix A 

Exact Solutions of the Instantaneous Probability Density Function of Second 

Order Response due to the Kac-Siegert l¥1ethod 10> 

From Eq. (2.1.5) the horizontal response of a moored floating structure can 

be represented as 

x(t) ＝ JT坤（て） g（t-T) ＋J d豆[d褪ほ， T砂g(t-T1)g(tーが
て1 て2

=xol+x(2) (A-1) 

Let s (t) be an equivalent filtered white noize process, or 

如＝f必h(T)N(t-T)，
て

(A-2) 

where h (-r) is the weighting function and N (t) is a unit white noize which 

satisfies 

E {N(t)N(t→)｝＝o(-r), (A-3) 

0('t) is the Dirac delta function. 

Then following Kac and Siegert10', we expand the white noize process in a 

stochastic series of orthogonal functions as 
00 

N (t -1:) = 2:! Xi (t) </J丘）
i=l 

(A-4) 

with the normalization 

J-OOOOd陥 (t)籾）＝屯， (A-5) 

where Xj (t) are the standard Gaussian variables with zero mean and unit 

variance and they are mutually independent. Then, in terms of the series 

expansion, the first term in (A -1) becomes 
00 

砂 (t)=~Ciぷ (t)' (A-6) 
i=l 

with 
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Ci=ff g1け） h(<i)い＋(j)むd<i,
o• T 

and 

砂（t)＝苫ぷ(t)ふ（t)L[い） ¢J(/3）S(a,/3）dad/3， 

with 

S(a,/3）＝ili2h(aーがh(/3ー喜（虹2)d-r1 d花．

If'Pi are chosen as the orthogonal functions which satisfies 

1 S(a,/3）¢](/3）d/3＝屈(a)'

Eq. (A -8) becomes 
co 

x(2)=2ふXf. 
i=l 

Thus, Eq. (A -1) is given in the following form: 
oo oo 

x(t) =~ Ciぷ(t)+ ~ふXr(t)
i=l i=l 

with 

E {Xi(t)Xi(t) }=oi1 

(A-7) 

(A-8) 

(A-9) 

(A-10) 

(A-11) 

(A-12) 

(A -13) 

The instantaneous probability density functionか ofx (t) can be obtained 

from the inverse Fourier transform of its characteristics function. 

The characteristics function is defined by 
00 

<P ((J）＝E { exp (ifJx)} =)1, E〔欲p{i(J（cふ＋ふ幻） ｝〕．j=l 
(A-14) 

Since Xi have the probability density function as 

Px/x) =1/v勺百exp（一炉／2), (A-15) 

by using the following identity : 

J_= dx exp(itxー a,x2/2)＝/五戸exp(-t2 /2a) for a> 0 
--00 

(A-16) 

the characteristic function can be rewritten as 

<P ((J）=P=1 (1-2 i頴）一112exp{ -cうが／2(l -2i屈） ｝． (A-17) 

By the inverse Fourier transform of the characteristics function the instanta-

neous probability density function of x (t) becomes 

Px (x) = 1/2冗JOOd叫 (0)exp(-i0x).
-00 

Next we shall consider the integral equation (A-10). 

It can be simplified by defining 

(A-18) 



丸(t)=lh(u-t)心 u)du. (A-19) 

Then Eq. (A-10) can be rewritten as 

iduH(t, u)1//n (U)＝豆(t)
“ 

(A-20) 

with 

H (t, u) = 1むgパて， u)Rdt一't),
T 

(A-21) 

where Rt is the auto correlation and is given by 

Rg（て） ＝f心 h(-r1) h（て五）．
て1

(A-22) 

Automatically, the normalization relation for the eigenfunctions is obtained 

as 

ildTlfて2d-r:土（か炒n('!2) g2 ('!1,が＝以mn9

and the parameter Cn in (A -7) becomes 

Cn=f徊('!)1/fnけ）．
て

(A-23) 

(A-24) 

Finally we represent the integral equation (A-23) in the frequency domain. 

If the Fourier transform of氾 (t)exists and is defined by 

v心）＝ 1／ 冨J_=dtexp (-iwt)也(t), (A -25) 
- 0 0  

then the integral equation in the time domain, (A-20), can be represented in 

the following form : 

f dふ (v)S心） G心，一 v)＝賃心）．
II 

(A-26) 

The normalization condition (A -24) becomes 

Lidw1L2dwふ（叫叫（叫 Gパー知，ー叫＝知1mn•
W2 

(A-27) 

Since Eq. (A -26) is a Fredholm integral equation of the second kind with a 

Hermite-symmetric kernel,入willbe real and the eigenfunction satisfies 

'I'n(-w) ='I'~(w), 

where * denotes the complex conjugate. 

Appendix B 

Statistical Values of x (t) 

(A-28) 

From Appendix A the horizontal motion of a moored floating structure in 

irregular waves can be represented as 
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00 

x= ~ (ci十ふXJXi, (B-1) 
i=l 

or 

x=［徊（て） g（t-T) ＋f dTlf心g2国がg(t元）t（tーが． （B-2) 
. TI て2

From (B-1) the expected values up to third order are given as follows ; 

E{x}=~ liE {Xn+~ ciE {Xげ，
1 1 

E {x外＝~ cicjE {Xふ＋~CiAjE {Xふ｝，
l,) l.) 

E ｛炉｝＝~. cicjckE { Xぷふ｝＋ 2cふckE{Xぷぅ Xk}
1.）． K 1.J.K 

+~ふcjckE {X~ X.ふ｝＋ 2 ふ入jckE{X~ X; X砂
z.．J. K l. J. K 

+ 2 cz•CふE{Xふxi} ＋ ~cふふE{Xぷぅ Xi}
i.j.k i.J.k 

(B-3) 

(B-4) 

+ 2 LcふE {X?Xぷい＋ 2 いふE{X~Xぅ Xi}. (B-5) 
i. J.．K 1.．). K 

Since Xi (i= 1,.・．， oo) are the standard Gaussian variables with mutual 
independence, the following relations are satisfied: 

E{XJ=O, 

E{Xふ｝＝心

E{Xぷふ｝＝0,

E{Xぷぷぷ｝＝如泣＋ふふ＋如鯰

E{Xぷぷxlふ｝＝0,

E{XぷぷぷXふ｝＝ふ・J0←+ふ・心ふ＋企ぶふ＋釦如伝

＋如ふm釦＋ふ・K§訊 01m十ふ'/OjkOmn十ふ'IふmOkn

＋ふ・I心0km+oim心似＋OimOj 10kn + Oim心似＋ふ・n似Oim

＋ふ'nOj/Okm十ふ'nOjmOk/,

for i, j, l, m, n = I,..., oo, 

where oij is the Kronecker delta. 

(B-6) 

(B-7) 

(B-8) 

(B-9) 

(B-10) 

(B-11) 

Using the above relations, the mean valueえ， thevariance び~ and the skew-
ness μ of x (t) are obtained as 

x=E{x}=~ ふ，
1 

パ＝E{x2} 一寮＝ ~cr+2~ 店，
1 [ 

μび炉＝E{x外ー3E{x2} ・文＋ 2茫＝8~ い＋6~crふ

(B-12) 

(B-13) 

(B-14) 



From (B-2) the expected values are written as follows: 

E {x} ＝ JdTlf 崎（在がR凸—か， （B-15) T] T2 

E {x外＝ildTlfて2咋gl は） gl は） R凸—か＋JTI dm……J 心g2ほ， て砂T4 

XgパT3,か {Rtは一T1)Rd T4ーか＋Rtは一T3)Rtは一か

+RsほーかRd1:'3 -1:'1)} (B-16) 

E{x3}= f-r1 dn……f 心g2 ほ，花図（責（か {6R凸— T1)R凸—か
T'!.JT'4  

+3Rs（花ぇ）Rg(T4国｝＋｛・l1dnJ2疇（り尋（"£'2元）｝3 

＋f 丘……f咋 g2("£'1, "£'2国（花，亨（'l'5, か {6Rsは一かR凸— "t3)
てl 匹

xRs(T5ーが十8Rt(1:亡 T1)Rt（稔一T]Rg(T6ーか｝ （B-17) 

Accordingly we can obtain the statistical values of x (t) as 

叉＝f 如G心—叫Sdw), (B-18) 
Q 

正 fQ虹 G心）ドS心） ＋ 2f心 f d叫 G心， Q→12Q1 02 

XSs（叫Sg（叫，（B-19)

μパ＝6f心 f d砂 (-w叫(-叫 G心，叫S心）Sg（叫Ql Q2 

可 d→1fdQ2f如 G心，叫 G;（砂，叫 G心，ー叫Q1 02 &3 

X Sdw1) Sdw2) St(w3), (B-20) 

where * denotes the complex conjugate. 

Appendix C 

Integral Evaluation to Instantaneous Probability Density Function of x(t) as 

X → CX) 

From Eq. (2.4.2) the instantaneous probability density function of x (t) may 

be rewritten as 

p心）＝朽001/27t『:exp (-i肱） c/>(0) d0. (C-1) 

First, we expand Eq. (C-1) to complex space. By regarding this integral as 

a complex integral and replacing -i0 by s we obtain the following form: 

広(x)＝朽OO1/2冗1.f成 ~l (1 +2入jS)一112exp{sx+cぅ炉／2(1+2入js)}ds. (C-2) 
-iR j=l 

Then without loss of generality it can be assumed thatふ＞ふ＞．．．＞入n>O

and 0>入n+l> • • •＞入m•
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For x→ CXJ only the positive eigenvalues are of interest. Thus in the case in 

which n is even we take the branch cuts from -1/2入2j-ltO -1/2入2j(j= 1,...' 

n/2) along the real axis as shown in Fig. (C-1). If n is odd the branch-cut 

from -1／叫 to-CXJ is added. 

ODD  EVEN 
I3 
'iR 

B 
'iR 

0 c’ 
-.  lj l'i r, 

E, 
.．̂..．Â、-1 /2 Al -1 /2A2 -1 /2 A l 

A.-,R A.-iR 

Fig. C-1 Contours of integration 

Since 1 +2ふstakeseither positive value or negative value whens moves on 

the negative real axis, we define the brach of 1/✓ 1+2入Js as 

11+2入jSl-112 for l +2入js>O,

-ii 1 +2入jS|―112for l +2入js<O.
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Then, the integrand of (C-1) is regular except for branch points -1/2入j(j=

1,..., n). 

Thus, by Cauchy's theorem the integral along ABC ~ rj E becomes zero. The 

integrals along each path are as follows: 

1) Integral along BC 

Setting s=Re沿（冗/2~0~ 冗） we have the following inequalities : 

lexp(c？炉／2(1 +2入Js))I~ exp (c~ Rcos0/4 入J)~l,

(366) 



I exp (sx) I= exp (xR cos0) ~ 1, 

11+2ふs| ― 112~I 1-2入jR|―1/2.

Thus the integral along BC becomes zero as R→ co. 

(2) Integral along EA 

It can be proved that the integral along EA also becomes zero as R→ co. 

(3) Integral along the semi circle of rJ 

Setting s= pei8ー 1/2入i(7l ~ 0 ~ 0) we get the following inequalities : 

I exp (c 3炉／2(1+2入js))I~ exp {cう／2入鼻iP(p2 cos0-p／入”j+cos0／入う）｝，

I exp (sx) I~ exp (px cos0) 

I 1+2ふsJ-112~ 1／国．

Thus, if pis taken such that it is equal to c/ (2ふ汀躙，whichis a stationary 

point, this integral becomes zero as x→ co. 

Since the integrand of (C-1) is bounded at all points except for branch 

points, we obtain the following form as the evaluation of Eq. (C-1): 

-1/2入砂l
Px(x) ＝ 1/7lご(-1)J-lf-1/2入2J eSXリ|1+2ふs1-112 

Xexp{cぅsツ2(1+2ふs)}ds if n is even, (C-5) 

か(x)= 1/ 1t ~ (-1) j-l f―1/2入幻―leSX I1 | 1+2入jSJ-112 
J 

-1/2入幻
J 

X exp { c~s2/2 (1 +2入js)}ds+ 1／が一1)nf―1/2入”esx
-00 

〉<IT11+2入jS1-112 exp{ cぅs2/2(1 +2入js)}ds if n is odd (C-6) 

If it is assumed thatふ／ふ (j=2,.... n) < 1, the main contribution to the 

integral (C-1) will be from the vicinity of the branch point il1. 

Samely the integral as x→ -oo is also evaluated by taking the branch-cuts 

on positive real axis. 

In the case of n = 2 and入ふく0and入戸ci(j=l,2) the integral (C-1) is 

evaluated exactly as 

か(x)= l/2n 1: de exp(-ix0) ／爪—2iふ 0) (1 -2 iil2 0) 
-00 

=l/2nへexp{（入l―|入ヽ 21)/4入，1|入、21}K。{Ix|（入、1+|入ヽ21)/ 4入、1I入，21},

(C-7) 

where K。isthe modified Bessel function of the second kind. 
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