船舶技術研究所報告 第25卷 第5号 研究報告(昭和63年9月)

揚力体理論に基づいたプロペラ周りの ポテンシャル流の数値解析法(その1)

小山 鴻一*

A Numerical Method for Analyzing Potential Flow Around a Screw Propeller Based on the Lifting Body Theory (first report)

By

Koichi Koyama

Abstract

A numerical method is developed for analyzing the potential flow around a screw propeller based on the lifting body theory. The method is exact in the sense that the boundary conditions are satisfied on the surface of the lifting body and the time-dependent wake is predicted. Doublet and source distributed on the surface of the lifting body are determined by the internal Dirichlet boundary condition and the external Neumann boundary condition respectively. The problem is governed by the boundary integral equation in which the unknown is the velocity potential on the surface of the lifting body. The solution of the integral equation is obtained by employing a surface panel method. The general method is presented for calculating the surface integral over each of the panels. Accurate numerical solution can reach the exact solution for the potential flow around a propeller. The solution allows the calculation of the velocity and the pressure around the propeller as well as on the blade of the propeller.

目 次

1. 序	言	• • • • • • • • • •	•••••	•••••	2
2. 揚	力体のポテ	ンシャ	ル流の基礎	趣論	2
2.1	ポテンシャ	・ル流		•••••	2
2.2	ポテンシャ	・ル計算	の定式化	•••••	3
2.3	翼後縁条件	±	•••••		3
2.4	境界積分力	7程式	•••••		••••••4
3. 数	値計算法		•••••		••••••4
3.1	パネル法	•••••	•••••	•••••	••••••4

* 氷海技術部

原稿受付:昭和63年5月11日

3.2	ノ	ペル 正	面積分	·法	•••••	•••••	•••••	5
3.3	関	数 H"	Ink D	計算	法		•••••	8
3.4	関	数 H((<i>M</i> , .	Ν,	K) i	十算の漸	化式	8
3.5	低	次パオ	ネル法	; .	• • • • • • •	•••••	•••••	9
4. 7	° ロ -	ペラ解	析への	の応	用		•••••	9
4.1	境	界条件	ŧ		• • • • • • •		•••••	9
4.2	圧	力と涙	充体力	I	•••••			10
4.3	後	流渦0	り変形	1	•••••	•••••		11
5. 新	吉		• • • • • • • •	••••	•••••	•••••		12
附録	Α	パネ	ル座樽	票	•••••	•••••	•••••	12
附録	В	関数	H(0,	0,	1)		•••••	15
附録	С	関数	H(0,	0,	3)	••••••	• • • • • • • • • • • •	16
								(483)

附録	D	関数 H(1,	0,	3),	H(0,	1,	3)	18
附録	Е	関数 H(0,	0,	5)	•••••	••••	••••	18
附録	F	関数 H(1,	0,	5),	H(0,	1,	5)	20

1. 序 言

最近の数値流体力学の研究の進歩にはめざましいも のがあり、ナビア・ストークス方程式を扱ったその手 法が、多くの流体機械の流力現象を手軽にシミュレー トする日も遠くない様に思われる。しかしながら、粘 性影響を物体後流渦層で近似したポテンシャル流の解 析法は既に広く応用段階に達している。この方法は、 ポテンシャル流場の境界における境界条件から導かれ る境界積分方程式を解くもので、パネル法と広く呼ば れ、使い方さえ適切であるなら応用価値の高いもので ある。剝離位置が翼後縁となるプロペラ翼の場合は格 好の応用例と考えられ、この方法によって、プロペラ 周りの流場のシミュレーションを行うことは、実用上 極めて有益と考えられる。

一方今日のプロペラ理論の中心は薄翼理論を前提と した揚力面理論である"。その数値解析法は、電子計算 機の大型化により Mode Function 法から Discrete Function 法に移ってきた様である。前者は、理論の前 提を大胆に仮定し,数値計算は極力厳密に進める。後 者は、理論は汎用性の高いものにしておき、それを数 値計算で補なってゆく。従って後者の場合、前者に比 べて方程式のマトリックスはかなり大きくなる。しか し、汎用性が高いとは言え、揚力面理論である以上薄 翼理論の域を出ない。Discrete Function 法の様な大 マトリックスを用いるなら、それよりマトリックスを 2倍にすることにより翼上下面のパネルに未知数をと ったパネル法により完全に非線形な厚翼理論を展開す る方が、理論の汎用性は格段に高くなり有利である。 これは揚力面理論に対して揚力体理論と呼ばれる。こ の方法では、数値計算の精度を上げてゆくことによっ て、任意揚力体周りのポテンシャル流の厳密解に限り なく近づくことができる点が重要である。また、パネ ル法の応用は、古典的なプロペラ理論と同様にプロペ ラ翼特性を把握するという姿勢に変りはないが、プロ ペラ翼周りの局所的な流場を厳密に解析する点にかな りの比重がかけられているところに一つの特徴がある。

本論においては、プロペラ周りの3次元流に対して、 流体を非粘性非圧縮性非回転と仮定し、翼後流渦の厚 さを無限小とし、それ以外の流体には速度ポテンシャ ルが存在するものとして、3次元ポテンシャル流の非 線形問題を数値的に解析する方法を展開する。このよ うに、揚力体に対するパネル法をプロペラ解析に応用 した例は既に幾つかある2)~4)。凌ら2)は、境界要素法の 直接法によってプロペラ解析を行った。また、J. L. Hess et. al.³⁾は、揚力体表面に source 分布と渦層分 布を置く方法によってプロペラ解析を行った。パネル 法の計算法には、特異点をどこに分布させるか、特異 点としてどの様なものを用い、何を未知数に選ぶか、 また、境界条件をどの様な形で導入するか、等により、 多数のものがあるので5)~10)、揚力面理論の場合と同様 に、 今後幾種類もの計算法がプロペラ解析に応用され るものと思われる4)。本論においては、揚力体表面上の 速度ポテンシャルを未知数とする境界積分方程式を扱 った極力単純な計算法を採用する。揚力体表面に doublet と source を分布させ, doublet 分布は揚力体内側 の Dirichlet 境界条件により, source 分布は流体側の Neumann 境界条件により決定する。まず,高精度計算 のための一般論を展開し、その第1近似としての低次 パネル法の具体的数値計算式を示す。この方法は、B. Maskew⁷の定式化を踏襲したものであり、均一流中 のプロペラの場合は、L. Morino⁶⁾の方法を踏襲した凌 ら2)の計算法と基礎式が同一となるが、パネルの作成 法や計算法はかなり異なっている。

2. 揚力体のポテンシャル流の基礎理論

2.1 ポテンシャル流

無限に広がる流体中を揚力体が任意運動する場合を 考える。流体は非粘性の完全流体とし、揚力体後部の 自由渦を除く部分で渦無しと仮定すると、速度ポテン シャル **0** が存在し、速度ベクトル **v** は

$$\boldsymbol{v} = \boldsymbol{\nabla} \boldsymbol{\Phi} \tag{2.1.1}$$

と表される。更に流体は非圧縮と仮定すると、連続の 方程式は

$$\nabla^2 \boldsymbol{\Phi} = 0 \tag{2.1.2}$$

の様に Laplace の方程式となる。

この方程式を所定の境界条件のもとに解いて **0** が 定まると(2.1.1)式により速度が定まり,圧力方程式

$$\frac{p}{\rho} + \frac{1}{2}q^2 + \Omega + \frac{\partial \Phi}{\partial t} = C(t) \qquad (2.1.3)$$

又は

$$\frac{p}{\rho} + \frac{1}{2}q_r^2 + \Omega + \frac{\partial \Phi}{\partial t} - \frac{1}{2}V^2 = C(t) \qquad (2.1.4)$$

から圧力力を求めることができる。

ここに, Ω は外力のポテンシャル, C(t) は時間 t の任

(484)

意関数であり、

$$\begin{array}{c}
q = \mid \boldsymbol{v} \mid \\
q_r = \mid \boldsymbol{v} - \boldsymbol{V} \mid \\
V = \mid \boldsymbol{V} \mid \\
\boldsymbol{V} = \boldsymbol{U} + \boldsymbol{\omega} \times \boldsymbol{r}
\end{array}$$

$$(2.1.5)$$

である。Vは揚力体の運動速度ベクトルであり, (2.1.4)式は揚力体から観測した表示式で、その $\partial \phi / \partial t$ は揚力体固定座標系での時間偏微分である。

2.2 ポテンシャル計算の定式化

境界Sで囲まれた流場のポテンシャル場の解析を 考える。(Fig. 1)速度ポテンシャル ϕ はLaplace方

Fig.1 Fluid domain and boundary

程式(2.1.2)を満足するので, Green's identity formula により

ここで揚力体内にも流場を仮想しそこの速度ポテン シャルを O_i と書き、積分面の揚力体内側向の法線微 分を $\partial/\partial n_i$ と書くと、Green's identity formula によ り、流場内で

$$\begin{split} 0 &= -\frac{1}{4\pi} \iint_{S} \frac{\partial \Phi_{i}}{\partial n_{i}} \frac{1}{r} dS + \frac{1}{4\pi} \iint_{S} \Phi_{i} \frac{\partial}{\partial n_{i}} \left(\frac{1}{r}\right) dS (2.2.2) \\ \succeq t_{s} \ge t_{r} \ge t_{r}, \quad (2.2.1), \quad (2.2.2) \ \exists t_{r} \ge t_{r} \\ \Phi &= -\frac{1}{4\pi} \iint_{S} \sigma \frac{1}{r} dS + \frac{1}{4\pi} \iint_{S} \mu \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \\ &- \frac{1}{4\pi} \iint_{W+S} \frac{\partial \Phi}{\partial n'} \frac{1}{r} dS \end{split}$$

$$+\frac{1}{4\pi}\iint_{W+S_{\infty}} \mathbf{\Phi} \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (2\cdot 2\cdot 3)$$

$$t x a a c c c c a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a a a c c a a c c a c a c c a c a c c a c a c c a c a c c a$$

$$y = \frac{\partial \boldsymbol{\varphi}_i}{\partial \boldsymbol{\varphi}_i} + \frac{\partial \boldsymbol{\varphi}_i}{\partial \boldsymbol{\varphi}_i} \tag{2.2.5}$$

$$\boldsymbol{\varPhi} = \boldsymbol{\varPhi}_D + \boldsymbol{\varPhi}_S + \boldsymbol{\varPhi}_W + \boldsymbol{\varPhi}_{\infty} \tag{2.2.6}$$

$$\boldsymbol{\Phi}_{D} = \frac{1}{4\pi} \iint_{S} \mu \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (2.2.7)$$

$$\mathcal{D}_{s} = \frac{-1}{4\pi} \iint_{S} \sigma \cdot \frac{1}{r} dS \qquad (2.2.8)$$

$$\boldsymbol{\Phi}_{w} = \frac{1}{4\pi} \iint_{w} \Delta \boldsymbol{\Phi}_{w} \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (2.2.9)$$

$$\begin{split} \boldsymbol{\varphi}_{\infty} &= -\frac{1}{4\pi} \iint_{S_{\infty}} \frac{\partial \boldsymbol{\varphi}}{\partial n'} \frac{1}{r} dS \\ &+ \frac{1}{4\pi} \iint_{S_{\infty}} \boldsymbol{\varphi} \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \end{split} \tag{2.2.10}$$

と書ける。ここに、 ϕ_{ν} は物体表面 S上の強さ μ の doublet によるポテンシャル、 σ_{s} は S上の強さ σ の source によるポテンシャル、 σ_{w} は後流渦の寄与によ るポテンシャル、 σ_{∞} は物体が存在しない場合の速度 場のポテンシャルである。後流渦層は厚みが無いもの と仮定し、従って source 項は無く、(2.2.9)式の $\Delta \sigma_{w}$ は後流渦面の上下面におけるポテンシャル飛躍であり、 積分面 W は上面側片側のみとする。

2.3 翼後縁条件

場力体の後方には一般に自由渦が流される。本論に おいては、それを厚さの無い曲面 W で表わし、揚力体 表面 $S \ge W \ge$ の接点位置即ち剝離位置は既知 \ge 仮定 する。

Sから剝れた流れは W 上に乗る。この過程で翼後 縁の Kutta の流出条件が満たされる様にする。それに は、翼後縁 S 上の上面側のポテンシャルを o_{rv} ,下面 側を o_{rL} とし、それから続く W の最前部のポテンシ ャル飛躍を Δo_w とし、

$$\Delta \boldsymbol{\Phi}_{w} = \boldsymbol{\Phi}_{\tau \upsilon} - \boldsymbol{\Phi}_{\tau \iota} \qquad (2.3.1)$$

$$\boldsymbol{\xi} \neq \boldsymbol{\xi}_{\circ} \quad (\text{Fig.}2)$$

Fig.2 Condition at trailing edge

Wの後部においては、 $\Delta \phi_W$ の強さを保ったま、流

(485)

れに沿って流されるものとする。

2.4 境界積分方程式

ポテンシャル表示式(2.2.6)において,観測点が面 S上の場合, \boldsymbol{o}_{D} の積分は特異性を示し,流体側 S上の値 \boldsymbol{o}_{D+} と揚力体内 S上の値 \boldsymbol{o}_{D-} とはそれぞれ

$$\boldsymbol{\Phi}_{D\pm} = \pm \frac{1}{2} \mu + \frac{1}{4\pi} \iint_{S} \mu \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (2.4.1)$$

となる。ここに記号∬は,特異点近傍を除いた積分を 表す。

上式(2.4.1)及び(2.2.4), (2.2.6)式を用いて, S面 上の流体側のポテンシャル表示式を求めると,

$$-\frac{1}{2}(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{i})+\frac{1}{4\pi}\iint_{S}(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{i})\frac{\partial}{\partial n'}\left(\frac{1}{r}\right)dS$$
$$=\boldsymbol{\varphi}_{i}-\boldsymbol{\varphi}_{S}-\boldsymbol{\varphi}_{W}-\boldsymbol{\varphi}_{\infty} \qquad (2.4.2)$$

が得られる。

これは、パネル法における一般的な境界積分方程式 と考えられるが、境界面 S 上の揚力体内側のポテンシ ャル $\mathbf{0}_i$ と、流体側の法線速度 $\partial \mathbf{0}/\partial n'$ の値、揚力体内 側の Dirichlet 境界条件と流体側の Neumann 境界条 件とから与えると、 $\mathbf{0} - \mathbf{0}_i$ に関する第2種の Fredholm 型の積分方程式となり、これにより解は一意に 決定する。

我々は、ここで
$$\phi_i = \phi_{\infty}$$
 (2.4.3)

と置く。このとき(2.4.2)式は

$$-\frac{1}{2}(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{\infty})+\frac{1}{4\pi}\iint_{S}(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{\infty})\frac{\partial}{\partial n'}\left(\frac{1}{r}\right)dS$$
$$=-\boldsymbol{\varphi}_{s}-\boldsymbol{\varphi}_{w}$$
(2.4.4)

$$\boldsymbol{\Phi}_{s} = \frac{-1}{4\pi} \iint_{S} \left\{ \frac{\partial \boldsymbol{\Phi}}{\partial \boldsymbol{n}'} - \frac{\partial \boldsymbol{\Phi}_{\infty}}{\partial \boldsymbol{n}'} \right\} \left(\frac{1}{r} \right) dS \qquad (2.4.5)$$

$$\boldsymbol{\Phi}_{w} = \frac{1}{4\pi} \iint_{w} \Delta \boldsymbol{\Phi}_{w} \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (2.4.6)$$

となる。

揚力体の運動条件から $\frac{\partial \boldsymbol{0}}{\partial n'}$ が与えられ,無限遠の流 場条件から $\frac{\partial \boldsymbol{0}_{\infty}}{\partial n'}$ が与えられると $\boldsymbol{0}_{s}$ は既知となる。ま た, $\Delta \boldsymbol{0}_{w}$ も前の時間ステップの値から既知であり, $\boldsymbol{0}_{w}$ もほゞ既知である。即ち,基本的には(2.4.4)式は,右 辺を既知とした $\boldsymbol{0} - \boldsymbol{0}_{\infty}$ に関する積分方程式となる。 たゞし,翼後縁の流出条件から,翼後縁に接する伴流 パネルの $\Delta \boldsymbol{0}_{w}$ は翼面のポテンシャル $\boldsymbol{0}_{nv}$, $\boldsymbol{0}_{n}$ を用 いて表されるので,その部分は未知項となる。その具 体的な式を示しておく。後流渦面 W を翼後縁近傍部

分の
$$W_T$$
 と残りの $W - W_T$ に分けて
 $\boldsymbol{\Phi}_W = \frac{1}{4\pi} \int_{WT} (\boldsymbol{\Phi}_{TU} - \boldsymbol{\Phi}_{TL}) \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS$
 $+ \frac{1}{4\pi} \iint_{W-WT} \Delta \boldsymbol{\Phi}_W \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS$ (2.4.7)

と書くと、右辺第1項には未知数 ($\boldsymbol{\sigma}_{nv} - \boldsymbol{\sigma}_{n}$) が含ま れ、右辺第2項は既知である。従って積分方程式は

$$-\frac{1}{2}(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{\infty})+\frac{1}{4\pi}\iint_{S}(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{\infty})\frac{\partial}{\partial n'}\left(\frac{1}{r}\right)dS$$
$$+\frac{1}{4\pi}\int_{WT}(\boldsymbol{\varphi}_{TU}-\boldsymbol{\varphi}_{TL})\frac{\partial}{\partial n'}\left(\frac{1}{r}\right)dS$$
$$=-\boldsymbol{\varphi}_{S}-\boldsymbol{\varphi}_{W-WT} \qquad (2.4.8)$$

$$\boldsymbol{\Phi}_{s} = \frac{-1}{4\pi} \iint_{S} \left\{ \frac{\partial \boldsymbol{\Phi}}{\partial n'} - \frac{\partial \boldsymbol{\Phi}_{\infty}}{\partial n'} \right\} \left(\frac{1}{r} \right) dS \qquad (2.4.9)$$

$$\boldsymbol{\Phi}_{\boldsymbol{W}-\boldsymbol{W}\boldsymbol{T}} = \frac{1}{4\pi} \iint_{\boldsymbol{W}-\boldsymbol{W}\boldsymbol{T}} \Delta \boldsymbol{\Phi}_{\boldsymbol{W}} \frac{\partial}{\partial \boldsymbol{n}'} \left(\frac{1}{r}\right) dS \qquad (2.4.10)$$

となる。但し、特別に定常翼の場合は、 $\boldsymbol{\sigma}_{W-wT}$ におい ても $\Delta \boldsymbol{\sigma}_{W} = \boldsymbol{\sigma}_{TU} - \boldsymbol{\sigma}_{TL}$ と置いて、 $\boldsymbol{\sigma}_{W-wT}$ も左辺の未知 関数として扱えば、W の形状を既知と仮定する場合、 時間ステップの逐次計算が不要となる。

積分方程式を解いて $\boldsymbol{\phi} - \boldsymbol{\phi}_{\infty}$ が求まると、速度場等

$$\boldsymbol{v} = \boldsymbol{\nabla} \boldsymbol{\Phi} = \boldsymbol{\nabla} (\boldsymbol{\Phi} - \boldsymbol{\Phi}_{\infty}) + \boldsymbol{\nabla} \boldsymbol{\Phi}_{\infty} \qquad (2.4.11)$$

$$\frac{\partial}{\partial t}\boldsymbol{\varphi} = \frac{\partial}{\partial t}(\boldsymbol{\varphi} - \boldsymbol{\varphi}_{\infty}) + \frac{\partial}{\partial t}\boldsymbol{\varphi}_{\infty}$$
(2.4.12)

から計算できる。

*Г0*の計算は、ポテンシャル場の微分で求められる が、次式の積分式で直接計算することもできる。

$$\nabla \boldsymbol{\Phi} = \nabla \boldsymbol{\Phi}_{D} + \nabla \boldsymbol{\Phi}_{S} + \nabla \boldsymbol{\Phi}_{W} + \nabla \boldsymbol{\Phi}_{\infty} \qquad (2.4.13)$$

$$\nabla \boldsymbol{\Phi}_{D} = \frac{1}{4\pi} \iint_{S} \mu \nabla \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (2.4.14)$$

$$\nabla \Phi_s = \frac{-1}{4\pi} \iint_s \sigma \nabla \left(\frac{1}{r}\right) dS \qquad (2.4.15)$$

$$\nabla \boldsymbol{\Phi}_{w} = \frac{1}{4\pi} \iint_{w} \Delta \boldsymbol{\Phi}_{w} \nabla \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (2.4.16)$$

3. 数値計算法

3.1 パネル法

$$\mu = \boldsymbol{\phi} - \boldsymbol{\phi}_{\infty} \tag{3.1.1}$$
と書くと、

$$-\frac{1}{2}\mu + \frac{1}{4\pi} \iint_{S} \mu \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS = -\boldsymbol{\Phi}_{S} - \boldsymbol{\Phi}_{W} \quad (3.1.2)$$

である。パネル法においては境界積分面を面素パネル に分割しその集合で表わす。揚力体表面 S をパネル曲 面 S_l の集合 ΣS_l で表わすと

(486)

$$-\frac{1}{2}\mu + \sum_{l} \frac{1}{4\pi} \iint_{S_{l}} \mu \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS = -\boldsymbol{\varphi}_{s} - \boldsymbol{\varphi}_{w}$$

(3.1.3)

となる。この境界積分方程式は、各パネルの標点ごと に立てられ、従って、パネルの数だけ連立することに なる。

パネルごとの積分

$$\boldsymbol{\Phi}_{Dl} = \frac{1}{4\pi} \iint_{S_l} \mu \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (3.1.4)$$

には未知関数 μが含まれるので、それを

$$\mu = \sum_{m,n} \frac{1}{m! n!} m_{mn} X'^m Y'^n$$

= $m_{00} + m_{10} X' + m_{01} Y' + \frac{1}{2} m_{20} X'^2$
+ $m_{11} X' Y' + \frac{1}{2} m_{02} Y'^2 + \dots$ (3.1.5)

とパネル座標 X', Y'の多項式で近似する。パネル座 標とは、パネル曲面 S_l を最も良く近似する平面をパネ ル平面と呼び、その面内に X, Y 軸をとり、それに垂 直に流体側向に Z 軸をとった座標系であり、それの具 体的な決め方は附録に示した。このとき係数 m_{mn} の値 は、当該パネル及びその近傍パネルの標点における μ の値 μ_k を用いて

$$\mu = \sum_{k=0}^{M} W_{k} \mu_{k} [C_{00}{}^{k} + C_{10}{}^{k}X' + C_{01}{}^{k}Y' + \frac{1}{2}C_{20}{}^{k}X'^{2} + C_{11}{}^{k}X'Y' + \frac{1}{2}C_{02}{}^{k}Y'^{2} + \cdots] \quad (3.1.6)$$

と表示することができる。ここに W_k は重み関数であり, 係数 C_{mn}^k は最小自乗法等で決める。これを用いる と境界積分方程式は

$$-\frac{1}{2}\mu + \sum_{l} \left[\sum_{k=0}^{M} W_{k} \mu_{k} \sum_{m,n} \frac{1}{m! \, n!} C_{mn}^{k} \cdot \frac{1}{4\pi} \iint_{S_{l}} X^{\prime m} Y^{\prime n} \frac{\partial}{\partial n'} \left(\frac{1}{r} \right) dS \right] = - \varPhi_{S} - \varPhi_{W} \qquad (3.1.7)$$
となる。特に低次パネルの場合 $M = 0$ と置いて、

$$-\frac{1}{2}\mu + \sum_{l} \mu_{l} \frac{1}{4\pi} \iint_{S_{l}} \frac{1}{\partial n'} \left(\frac{1}{r}\right) dS = -\boldsymbol{\varphi}_{S} - \boldsymbol{\varphi}_{W}$$

$$(3.1.8)$$

となる。

さて、後流渦の寄与によるポテンシャル \mathcal{O}_W も後流 渦面 W をパネル分割して計算するが、前節にも示し たとおり、翼後縁の Kutta の流出条件を満足するため に、W のうちの翼後縁に接するパネル W_T は特別の扱 いをして(2.4.7)式の様において、結局、積分方程式は

$$-\frac{1}{2}\mu + \sum_{l}\mu_{l}\frac{1}{4\pi}\iint_{S_{l}}\frac{\partial}{\partial n'}\left(\frac{1}{r}\right)dS + \sum(\mu_{TU} - \mu_{TL})$$

$$\frac{1}{4\pi} \int_{WT} \frac{\partial}{\partial n'} \left(\begin{array}{c} 1 \\ r \end{array} \right) dS = -\boldsymbol{\varphi}_{s} - \boldsymbol{\varphi}_{W-WT} \quad (3.1.9)$$

$$\boldsymbol{\Phi}_{s} = \sum_{l} \left\{ \frac{\partial \boldsymbol{\Phi}}{\partial n'} - \frac{\partial \boldsymbol{\Phi}_{\infty}}{\partial n'} \right\} \frac{-1}{4\pi} \iint_{s \,l} \left(\frac{1}{r} \right) dS \qquad (3.1.10)$$

$$\boldsymbol{\phi}_{W-WT} = \sum_{l'} \Delta \boldsymbol{\phi}_{W} \frac{1}{4\pi} \iint_{Wl} \cdot \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (3.1.11)$$

となる。

3.2 パネル面積分法

パネル法においては, 各パネルごとに面積分を行う が, ポテンシャル計算に対しては

$$\boldsymbol{\Phi}_{Dl} = \frac{1}{4\pi} \iint_{S_l} \mu \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (3.2.1)$$

$$\boldsymbol{\Phi}_{st} = \frac{-1}{4\pi} \iint_{s_t} \sigma\left(\frac{1}{r}\right) dS \tag{3.2.2}$$

$$\boldsymbol{\Phi}_{Wl} = \frac{1}{4\pi} \iint_{Wl} \Delta \boldsymbol{\Phi}_{W} \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (3.2.3)$$

速度計算に対しては

$$\nabla \Phi_{Dl} = \frac{1}{4\pi} \iint_{S_l} \mu \nabla \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (3.2.4)$$

$$\nabla \boldsymbol{\Phi}_{st} = \frac{-1}{4\pi} \iint_{s_t} \sigma \nabla \left(\frac{1}{r}\right) dS \qquad (3.2.5)$$

$$\nabla \boldsymbol{\Phi}_{wt} = \frac{1}{4\pi} \iint_{wt} \Delta \boldsymbol{\Phi}_{w} \nabla \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (3.2.6)$$

を計算することになる。パネル内で被積分関数及びパ ネル形状の変化率が小さいことを前提に近似計算を展 開する。

(3.2.3), (3.2.6)式の計算は(3.2.1), (3.2.4)式と 全く同様にすればよいので、以下に(3.2.1), (3.2.2), (3.2.4), (3.2.5)式の計算法を考える。

附録に示したパネル座標 XYZ を用いると、パネル 曲面 S_i は

 $B(X', Y', Z')=Z'-Z_B(X', Y')=0$ (3.2.7) と表わされ

$$\frac{\partial}{\partial n'} = \vec{n'} \vec{\nu}'$$

$$= \left\{ \frac{\partial B}{\partial X'} \frac{\partial}{\partial X'} + \frac{\partial B}{\partial Y'} \frac{\partial}{\partial Y'} + \frac{\partial B}{\partial Z'} \frac{\partial}{\partial Z'} \right\} / R_n$$

$$(3.2.8)$$

$$(3.2.9)$$

$$(3.2.9)$$

$$R_n = \sqrt{\left(\frac{\partial B}{\partial X'}\right)^2 + \left(\frac{\partial B}{\partial Y'}\right)^2 + \left(\frac{\partial B}{\partial Z'}\right)^2} \qquad (3.2.10)$$

となる。

次に関数 μ, σ 等が

$$\mu = \sum_{m,n} \frac{m_{mn}}{m! \, n!} X^{\prime m} Y^{\prime n} \tag{3.2.11}$$

(487)

$$\sigma = \sum_{m,n} \frac{s_{mn}}{m! \, n!} X'^m Y'^n \tag{3.2.12}$$

と, X', Y'の多項式で表わされるものとする。このと き, (3.2.2), (3.2.1), (3.2.5), (3.2.4)式を計算す るには次の関数を計算すればよい。

$$\begin{split} H_{0}^{mn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \left(\frac{1}{r}\right) R_{n} dX' dY' \qquad (3.2.13) \\ G_{0X}^{mn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial X'} \frac{\partial}{\partial X'} \left(\frac{1}{r}\right) dX' dY' \\ G_{0Y}^{mn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Z'} \frac{\partial}{\partial Y'} \left(\frac{1}{r}\right) dX' dY' \\ G_{0Z}^{mn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Z'} \frac{\partial}{\partial Z'} \left(\frac{1}{r}\right) dX' dY' \\ (3.2.14) \\ H_{X}^{mn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial}{\partial X} \left(\frac{1}{r}\right) R_{n} dX' dY' \\ H_{Y}^{mn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial}{\partial Z} \left(\frac{1}{r}\right) R_{n} dX' dY' \\ H_{Z}^{mn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial}{\partial Z} \left(\frac{1}{r}\right) R_{n} dX' dY' \\ \end{split}$$

$$\begin{split} G_{XX}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial X'} \frac{\partial^{2}}{\partial X \partial X'} \left(\frac{1}{r}\right) dX' dY' \\ G_{YX}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial X'} \frac{\partial^{2}}{\partial Y \partial X'} \left(\frac{1}{r}\right) dX' dY' \\ G_{ZX}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial X'} \frac{\partial^{2}}{\partial Z \partial X'} \left(\frac{1}{r}\right) dX' dY' \\ G_{XY}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Y'} \frac{\partial^{2}}{\partial X \partial Y'} \left(\frac{1}{r}\right) dX' dY' \\ G_{YY}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Y'} \frac{\partial^{2}}{\partial X \partial Y'} \left(\frac{1}{r}\right) dX' dY' \\ G_{ZY}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Y'} \frac{\partial^{2}}{\partial Z \partial Y'} \left(\frac{1}{r}\right) dX' dY' \\ G_{ZY}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Z'} \frac{\partial^{2}}{\partial X \partial Z'} \left(\frac{1}{r}\right) dX' dY' \\ G_{YZ}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Z'} \frac{\partial^{2}}{\partial X \partial Z'} \left(\frac{1}{r}\right) dX' dY' \\ G_{ZZ}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Z'} \frac{\partial^{2}}{\partial Z \partial Z'} \left(\frac{1}{r}\right) dX' dY' \\ G_{ZZ}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Z'} \frac{\partial^{2}}{\partial Z \partial Z'} \left(\frac{1}{r}\right) dX' dY' \\ G_{ZZ}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Z'} \frac{\partial^{2}}{\partial Z \partial Z'} \left(\frac{1}{r}\right) dX' dY' \\ G_{ZZ}^{nn} &= \frac{-1}{4\pi} \iint X'^{m} Y'^{n} \frac{\partial B}{\partial Z'} \frac{\partial^{2}}{\partial Z \partial Z'} \left(\frac{1}{r}\right) dX' dY' \\ (3.2.16) \end{split}$$

ただし,上式の積分範囲は,パネル平面 S'_{l} 即ちパネ ル曲面 S_{l} の XY 面上投影平面とする。

$$\boldsymbol{\Phi}_{Dl} = -\sum_{m,n} \frac{m_{mn}}{m! \, n!} \left[G_{0\chi}^{mn} + G_{0\chi}^{mn} + G_{0\chi}^{mn} \right] \qquad (3.2.17)$$

$$\boldsymbol{\Phi}_{Sl} = \sum_{m,n} \frac{S_{mn}}{m! \, n!} H_0^{mn} \tag{3.2.18}$$

また、(3.2.4)、(3.2.5)式に対し

$$\nabla \boldsymbol{\Phi}_{Dl} = -\sum_{m,n} \frac{m_{mn}}{m! n!} [\{G_{XX}^{mn} + G_{XY}^{mn} + G_{XZ}^{mn}\}\boldsymbol{I} + \{G_{YX}^{mn} + G_{YY}^{mn} + G_{YZ}^{mn}\}\boldsymbol{J} + \{G_{ZX}^{mn} + G_{ZY}^{mn} + G_{ZZ}^{mn}\}\boldsymbol{K}]$$
(3.2.19)

$$\nabla \boldsymbol{\Phi}_{St} = \sum_{m,n} \frac{S_{mn}}{m! n!} [H_X^{mn} \boldsymbol{I} + H_Y^{mn} \boldsymbol{J} + H_Z^{mn} \boldsymbol{K}]$$
(3.2.20)

となる。ここに *I*, *J*, *K* は *X*, *Y*, *Z* 軸方向の単位 ベクトルである。 一般にパネル *S*_l内において *Z*'=*Z*_B(*X*', *Y*') は微小 と考えてよいから $\frac{1}{r} \simeq \frac{1}{\rho} + \frac{Z}{\rho^3} Z' + \frac{1}{2} \left\{ \frac{-1}{\rho^3} + \frac{3Z^2}{\rho^5} \right\} Z'^2 + \cdots$ (3.2.21)

$$r = \rho + \rho^{3} Z' + 2 \left(\rho^{3} + \rho^{3} \right) Z' + (0.2.21)$$

$$\frac{1}{r^{3}} \simeq \frac{1}{\rho^{3}} + \frac{3Z}{\rho^{5}} Z' + \frac{1}{2} \left\{ \frac{-3}{\rho^{5}} + \frac{15Z^{2}}{\rho^{7}} \right\} Z'^{2} + \cdots$$

$$(3.2.22)$$

$$\frac{1}{r^{5}} \simeq \frac{1}{\rho^{5}} + \frac{5Z}{\rho^{7}} Z' + \frac{1}{2} \left\{ \frac{-5}{\rho^{7}} + \frac{35Z^{2}}{\rho^{9}} \right\} Z'^{2} + \cdots$$

$$(3.2.23)$$

$$(3.2.23)$$

$$r = \sqrt{(X - X')^{2} + (Y - Y')^{2} + (Z - Z')^{2}} \quad (3.2.24)$$

$$\rho = \sqrt{(X - X')^{2} + (Y - Y')^{2} + Z^{2}} \quad (3.2.25)$$

$$R_{n} \simeq 1 + \frac{1}{2} \left\{ \left(\frac{\partial B}{\partial X'} \right)^{2} + \left(\frac{\partial B}{\partial Y'} \right)^{2} \right\} + \cdots \quad (3.2.26)$$

ここで更に $Z' \equiv Z_B(X', Y') \simeq d_{10}X' + d_{01}Y' + \frac{1}{2}d_{20}X'^2$ $+ d_{11}X'Y' + \frac{1}{2}d_{02}Y'^2 + \cdots$ (3.2.27)

と仮定し,

$$H_{mnk} = \frac{-1}{4\pi} \iint_{S_{l'}} X'^m Y'^n \rho^k dX' dY' \qquad (3.2.28)$$

と定義すると、次の諸式を得る。但し、 S_i' はパネル平面、即ち、パネル曲面 S_i のXY面上投影平面である。

$$\begin{split} H_{0}^{mn} &\simeq H_{m,n,-1} + Zd_{10}H_{m+1,n,-3} + Zd_{01}H_{m,n+1,-3} \\ &\quad + \frac{1}{2}Zd_{20}H_{m+2,n,-3} + Zd_{11}H_{m+1,n+1,-3} \\ &\quad + \frac{1}{2}Zd_{02}H_{m,n+2,-3} + \dots \qquad (3.2.29) \\ G_{0X}^{mn} &\simeq -d_{10}(XH_{m,n,-3} - H_{m+1,n,-3}) \\ &\quad - d_{20}(XH_{m+1,n,-3} - H_{m+2,n,-3}) \\ &\quad - d_{10}(XH_{m,n+1,-3} - H_{m+1,n+1,-3}) \\ &\quad + \dots \\ G_{0Y}^{mn} &\simeq -d_{01}(YH_{m,n,-3} - H_{m,n+1,-3}) \\ &\quad - d_{11}(YH_{m+1,n,-3} - H_{m+1,n+1,-3}) \\ &\quad - d_{20}(YH_{m,n+1,-3} - H_{m,n+2,-3}) \\ \end{split}$$

6

(488)

+...

$$G_{0Z}^{mn} \simeq ZH_{m,n,-3} - d_{10}H_{m+1,n,-3} - d_{01}H_{m,n+1,-3}$$

$$-\frac{1}{2}d_{20}H_{m+2,n,-3} - d_{11}H_{m+1,n+1,-3}$$

$$-\frac{1}{2}d_{02}H_{m,n+2,-3}$$

$$+3Z^{2}d_{10}H_{m+1,n,-5} + 3Z^{2}d_{01}H_{m,n+1,-5}$$

$$+\frac{3}{2}Z^{2}d_{20}H_{m+2,n,-5}$$

$$+3Z^{2}d_{11}H_{m+1,n+1,-5} + \frac{3}{2}Z^{2}d_{02}H_{m,n+2,-5}$$

$$+\cdots$$

$$\begin{split} H_X^{mn} &\simeq -\{XH_{m,n,-3} - H_{m+1,n,-3}\} \\ &+ [-3d_{10}Z\{XH_{m+1,n,-5} - H_{m+2,n,-5}\} \\ &- 3d_{01}Z\{XH_{m,n+1,-5} - H_{m+1,n+1,-5}\} \\ &- \frac{3}{2}d_{20}Z\{XH_{m+2,n,-5} - H_{m+3,n,-5}\} \\ &- 3d_{11}Z\{XH_{m+1,n+1,-5} - H_{m+2,n+1,-5}\} \\ &- \frac{3}{2}d_{02}Z\{XH_{m,n+2,-5} - H_{m+1,n+2,-5}\}] \\ &+ \cdots \\ H_Y^{mn} &\simeq -\{YH_{m,n,-3} - H_{m,n+1,-3}\} \\ &+ [-3d_{10}Z\{YH_{m+1,n,-5} - H_{m+1,n+1,-5}\} \\ &- 3d_{01}Z\{YH_{m,n+1,-5} - H_{m+2,n+1,-5}\} \\ &- \frac{3}{2}d_{20}Z\{YH_{m+2,n,-5} - H_{m+2,n+1,-5}\} \\ &- \frac{3}{2}d_{02}Z\{YH_{m,n+2,-5} - H_{m,n+3,-5}\}] \\ &+ \cdots \\ H_Z^{mn} &\simeq -ZH_{m,n,-3} \\ &+ [d_{10}(H_{m+1,n,-3} - 3Z^2H_{m+1,n,-5}] \\ &+ \frac{1}{2}d_{20}[H_{m,n+2,-3} - 3Z^2H_{m+1,n+1,-5}] \\ &+ \frac{1}{2}d_{02}[H_{m,n+2,-3} - 3Z^2H_{m,n+2,-5}]] \\ &+ \cdots \\ \end{split}$$

$$(3.2.31)$$

$$G_{XX}^{mn} \simeq \left[-d_{10} \{ H_{m,n,-3} - 3X^2 H_{m,n,-5} + 6X H_{m+1,n,-5} - 3H_{m+2,n,-5} \} \right]$$
$$-d_{20} \{ H_{m+1,n,-3} - 3X^2 H_{m+1,n,-5} + 6X H_{m+2,n,-5} - 3H_{m+3,n,-5} \}$$
$$-d_{11} \{ H_{m,n+1,-3} - 3X^2 H_{m,n+1,-5} \}$$

$$\begin{split} & + 6XH_{m+1,n+1,-5} - 3H_{m+2,n+1,-5} \} \\ & + \cdots \\ G_{XY}^{mn} \simeq [-d_{01} \{-3XYH_{m,n,-5} + 3YH_{m+1,n,-5} \\ & + 3XH_{m,n+1,-5} - 3H_{m+1,n+1,-5} \\ & -d_{11} \{-3XYH_{m+1,-5} + 3YH_{m+2,n,-5} \\ & + 3XH_{m,1,-5} + 3YH_{m+2,n,-5} \\ & + 3XH_{m,n+2,-5} - 3H_{m+1,n+1,-5} \\ & -d_{02} \{-3XYH_{m,n,1,-5} + H_{m+1,n,-5} \} \\ & + \cdots \\ G_{ZZ}^{mn} \simeq -3Z \{XH_{m,n,-5} - H_{m+1,n,-5} \} \\ & + [-3d_{10} \{(-XH_{m+1,n,-5} + H_{m+2,n,-5}) \\ & + 5Z^2 (XH_{m,1,-7} - H_{m+1,n,-7}) \\ & - 3d_{01} \{(-XH_{m,n+1,-5} + H_{m+2,n,-7}) + 5Z^2 (XH_{m,n+1,-7} - H_{m+1,n+1,-7}) \} \\ & - \frac{3}{2} d_{20} \{(-XH_{m+2,n,-5} + H_{m+3,n,-5}) \\ & + 5Z^2 (XH_{m,n+1,-7} - H_{m+3,n,-7}) \} \\ & - 3d_{11} \{(-XH_{m,1,n+1,-5} + H_{m+2,n,1,-5}) \\ & + 5Z^2 (XH_{m,1,n+1,-7} - H_{m+2,n,1,-7}) \} \\ & - \frac{3}{2} d_{02} \{(-XH_{m,n+2,-5} + H_{m+1,n+2,-5}) \\ & + 5Z^2 (XH_{m,n+1,-7} - H_{m+1,n+1,-7}) \} \\ & - \frac{3}{2} d_{02} \{(-XH_{m,n,-5} + 3YH_{m+1,n,-5} \\ & + 3XH_{m,n+1,-5} - 3H_{m+1,n+1,-5} \\ & + 3XH_{m,n+1,-5} - 3H_{m+1,n+1,-5} \\ & + 3XH_{m,n+2,-5} - 3H_{m+1,n+1,-5} \} \\ & - d_{11} \{-3XYH_{m,n,-5} + 3YH_{m+1,n,-5} \\ & + 6YH_{m,n+1,-5} - 3H_{m+1,n+2,-5} \} \\ & - d_{11} \{H_{m,1,n,-3} - 3Y^2H_{m,n,-5} \\ & + 6YH_{m,n+1,-5} - 3H_{m+1,n+2,-5} \\ & - d_{02} \{H_{m,n+1,-5} - 3Y_{m,n+1,-5} \\ & + 6YH_{m,n+1,-5} - 3H_{m,1,n+2,-5} \} \\ & + \cdots \\ G_{YZ}^{mn} \simeq -3Z \{YH_{m,n,-5} - H_{m,n+1,-5} \\ & + 6YH_{m,n+1,-5} - 3H_{m,1,n+2,-5} \} \\ & + (-3d_{10}(\{-YH_{m,n+1,-5} + H_{m+1,n+1,-5} \\) \\ & + \cdots \\ G_{YZ}^{mn} \simeq -3Z \{YH_{m,n,-5} - H_{m,n+1,-5} \\ & + 6YH_{m,n+1,-5} - 3H_{m,n+3,-5} \} \right] \\ & + \cdots \\ G_{YZ}^{mn} \simeq -3Z \{YH_{m,n,-5} - H_{m,n+1,-5} \\ & + 6YH_{m,n+2,-5} - 3H_{m,n+3,-5} \} \right] \\ & + \cdots \\ G_{YZ}^{mn} \simeq -3Z \{YH_{m,n,-5} - H_{m,n+1,-5} \\ & + 6YH_{m,n+2,-5} - 3H_{m,n+3,-5} \} \right] \\ & + \cdots \\ G_{YZ}^{mn} \simeq -3Z \{YH_{m,n,-5} - H_{m,n+1,-5} + H_{m+1,n+1,-5} \\ & + 5Z^2 (YH_{m,n+1,-7} - H_{m,n+2,-7}) \right] \\ & - 3d_{01} \{(-YH_{m,n+1,-5} + H_{m,2,n+1,-5} + H_{m,n+2,-5}) \\ & + 5Z^2 (YH_{m,n+1,-7} - H_{m,n+2,-7}) \right] \\ & -\frac{3}{2} d_{20} (\{(-YH_{m+2,n,-5} + H_{m+2,n+1,-5} + H_{m+2,n+1,-5}) \right]$$

(489)

$$\begin{split} &+5Z^{2}(YH_{m+2,n,-7}-H_{m+2,n+1,-7})\}\\ &-3d_{11}\{(-YH_{m+1,n+1,-5}+H_{m+1,n+2,-5})\\ &+5Z^{2}(YH_{m+1,n+1,-7}-H_{m+1,n+2,-7})\}\\ &-\frac{3}{2}d_{02}\{(-YH_{m,n+2,-5}+H_{m,n+3,-5})\\ &+5Z^{2}(YH_{m,n+2,-7}-H_{m,n+3,-7})\}]\\ &+\cdots\\ G_{ZX}^{mn} \simeq [-d_{10}\{-3Z(XH_{m,n,-5}-H_{m+1,n,-5})\}\\ &-d_{20}\{-3Z(XH_{m+1,n,-5}-H_{m+2,n,-5})\}\\ &-d_{11}\{-3Z(XH_{m,n+1,-5}-H_{m+1,n+1,-5})\}]\\ &+\cdots\\ G_{ZY}^{mn} \simeq [-d_{01}\{-3Z(YH_{m,n,-5}-H_{m,n+1,-5})\}\\ &-d_{11}\{-3Z(YH_{m,n,-5}-H_{m,n+1,-5})\}\\ &-d_{02}\{-3Z(YH_{m,n,-5}-H_{m,n+2,-5})\}]\\ &+\cdots\\ G_{ZZ}^{mn} \simeq \{H_{m,n,-3}-3Z^{2}H_{m,n,-5}\}\\ &+[-d_{10}\{9ZH_{m+1,n,-5}-15Z^{3}H_{m+1,n,-7}\}\\ &-d_{01}\{9ZH_{m,n+1,-5}-15Z^{3}H_{m,n+1,-7}\}\\ &-d_{02}\{9ZH_{m,n+2,-5}-15Z^{3}H_{m,n+2,-7}\}]\\ &+\cdots \end{split}$$

3.3 関数 H_{mnk}の計算法

(3.2.28)式で定義された関数 H_{mnk} の計算は、関数 $H(M,N,K) = \iint_{S_{l'}} \frac{(X-X')^{M}(Y-Y')^{N}}{\rho^{K}} dX' dY'$ (3.3.1)

を定義して $H_{mnk} =$ $\frac{-1}{4\pi} \sum_{r=0}^{m} {m \choose r} X^{m-r} (-1)^{r} [\sum_{s=0}^{n} {n \choose s} Y^{n-s} (-1)^{s} H(r,s,-k)],$ ${n \choose r} = \frac{n!}{r!(n-r)!}$ (3.3.2)

から計算する。ここに ρは(3.2.25)式で定義されてい る。

3.4 関数 H(M, N, K) 計算の漸化式

(3.3.1)式で定義された関数 H(M, N, K)を計算するには、以下の漸化式を利用する。たべし、以下においては、パネル平面 S_i の形状は多辺形と仮定する。

$$H(M+2,N,K) = \frac{M+1}{K-2}H(M,N,K-2)$$

$$+ \sum \frac{1}{K-2} F_{\epsilon}(M+1,N,K-2) \quad (3.4.1)$$
$$H(M,N+2,K) = \frac{N+1}{K-2} H(M,N,K-2)$$
$$+ \sum \frac{1}{K-2} F_{\eta}(M,N+1,K-2) \quad (3.4.2)$$

 $(K-M-N-2)H(M,N,K)=KZ^{2}H(M,N,K+2)$ + $\sum F_{\epsilon}(M+1, N, K) + \sum F_{\eta}(M, N+1, K)$ (3.4.3) ここに \sum は多辺形パネル S_{l} の各辺についての総和 を表し、また

$$F_{\ell}(M, N, K) = \int_{Y_1}^{Y_2} \frac{(X - X_{12})^M (Y - Y')^N}{\rho |_{X' = X_{12}}^K} dY'$$

$$(3.4.4)$$

$$F_{\eta}(M, N, K) = -\int_{X_1}^{X_2} \frac{(X - X')^M (Y - Y_{12})^N}{\rho |_{Y' = Y_{12}}^K} dX'$$

$$(3.4.5)$$

$$Y_{\mu} = Y_{\mu}^{0} + Y_{\mu}^{1} Y'$$

$$Y_{12} = Y_{12}^0 + Y_{12}^1 X'$$
(3.4.7)
$$Y_{12} = Y_{12}^0 + Y_{12}^1 X'$$
(3.4.7)

である。ここに (X₁, Y₁), (X₂, Y₂) は辺12の両端点の 座標である。

次に関数

$$I_{\xi}(m, k) = \int_{Y_1}^{Y_2} Y'^m \sqrt{a_X Y'^2 + b_X Y' + c_X}^k dY'$$

$$(3.4.8)$$

$$I_{\eta}(m, k) = \int_{X_1}^{X_2} X'^m \sqrt{a_Y X'^2 + b_Y X' + c_Y}^k dX'$$

$$(3.4.9)$$

を定義すると、 $F_{\epsilon}(M, N, K)$ 、 $F_{\eta}(M, N, K)$ は $I_{\epsilon}(m, k)$ 、 $I_{\eta}(m, k)$ の線形結合で表される。

*I*_ℓ(*m*, *k*), *I*_n(*m*, *k*) を計算するには次の公式を利用 する。

$$I(m, k) = \int X^{m} \sqrt{aX^{2} + bX + c}^{k} dX \qquad (3.4.10)$$
$$I(m, k) = \frac{1}{(m+k+1)a} \{X^{m-1} \sqrt{aX^{2} + bX + c}^{k+2}\}$$

$$-\frac{(2m+k)b}{2}I(m-1, k)-(m-1)cI(m-2, k)\},$$

$$(m+k \neq -1)$$
 (3.4.11)

$$I(m, k) = aI(m+2, k-2) + bI(m+1, k-2) + cI(m, k-2) \quad (3.4.12)$$

$$I(0, k) = \frac{2(2aX+b)}{(k+2)(b^2-4ac)} \sqrt{aX^2+bX+c} x^{4/2}$$

$$+\frac{4(k+3)a}{(k+2)(b^2-4ac)}I(0, k+2), (k\neq-2) \quad (3.4.13)$$

$$I(0, -1) = \frac{1}{\sqrt{a}} \log |2aX + b + 2\sqrt{a(aX^2 + bX + c)}|,$$

(a>0) (3.4.14)

(490)

3.5 低次パネル法

パネル法の中で最も低次の単純なパネルの場合を本 節に示す。

まず、未知関数等をパネル
$$S_{\iota}$$
内で一定と仮定し、
 $\mu = m_{00} \quad (m = n = 0)$
 $\sigma = s_{00} \quad (m = n = 0)$
次に、パネル S_{ι} の形状を平面と仮定し、
 $Z' \equiv Z_{B}(X', Y') = 0, \quad d_{10} = d_{01} = d_{20} = d_{11} = d_{02} = 0$
(3.5.2)
とする。このとき(3.2.29)~(3.2.32)式から

$$\begin{array}{l}
G_{0X}^{mn} = G_{0Y}^{mn} = 0 \\
G_{0Z}^{mn} = ZH_{0,0,-3}
\end{array}$$
(3.5.3)

$$H_0^{mn} = H_{0,0,-1}$$
(3.5.4)

$$\begin{array}{l}
G_{XZ}^{mn} = -3Z\{XH_{0,0,-5} - H_{1,0,-5}\}\\G_{YZ}^{mn} - 3Z\{YH_{0,0,-5} - H_{0,1,-5}\}\\G_{ZZ}^{mn} = H_{0,0,-3} - 3Z^2H_{0,0,-5}\\H_X^{mn} = -\{XH_{0,0,-3} - H_{1,0,-3}\}\\H_X^{mn} = -\{YH_{0,0,-2} - H_{0,1,-2}\}\\\end{array}$$

$$(3.5.6)$$

$$H_Z^{mn} = -ZH_{0,0,-3}$$

となり、従って
$$\phi_{DJ} = -m_{00}ZH_{0.0,-3}$$

$$\nabla \Phi_{Dl} = -m_{00} [-3Z \{XH_{0,0,-5} - H_{1,0,-5}\} I
-3Z \{YH_{0,0,-5} - H_{0,1,-5}\} J
+ \{H_{0,0,-3} - 3Z^2 H_{0,0,-5}\} K] (3.5.9)
\nabla \Phi_{Sl} = s_{00} [-\{XH_{0,0,-3} - H_{1,0,-3}\} I
- \{YH_{0,0,-3} - H_{0,1,-3}\} J
-Z \hat{H}_{0,0,-3} K] (3.5.10)$$

となる。

上式の値を求めるには,次の計算式を用いればよい。 次式の導出は附録に示してある。

$$H(0, 0, 1) = \sum \{R_{12}Q_{12} + |Z|J_{12}\} - |Z|\Delta\theta$$

$$H(0, 0, 3) = \frac{\operatorname{sgn}(Z)}{Z} [-\sum J_{12} + \Delta\theta]$$

$$H(1, 0, 3) = \sum S_{12}Q_{12}$$

$$H(0, 1, 3) = -\sum C_{12}Q_{12}$$

$$H(0, 0, 5) = \frac{1}{3Z^2} [H(0, 0, 3) + \sum \frac{R_{12}}{(R_{12})^2 + Z^2} \{\frac{s_2}{\rho_2} - \frac{s_1}{\rho_1}\}]$$

$$H(1, 0, 5) = \frac{1}{3} \sum \frac{S_{12}}{(R_{12})^2 + Z^2} \{\frac{s_2}{\rho_2} - \frac{s_1}{\rho_1}\}$$

$$H(0, 1, 5) = -\frac{1}{3} \sum \frac{C_{12}}{(R_{12})^2 + Z^2} \left\{ \frac{s_2}{\rho_2} - \frac{s_1}{\rho_1} \right\}$$
(3.5.11)

ここにパネル形状は多角形であり,∑は各辺に沿う積 分の総和を意味している。(Fig.3)添字1,2は頂点1

Fig.3 Integration over a side of a polygon

から頂点2までの意味である。また、辺の順序は、 θ 積 分の積分方向に従って、Z軸の正側からX、Y面を見 て反時計回りにとる。また、

$$Q_{12} = \log |(\rho_2 + s_2)/(\rho_1 + s_1)|$$

$$J_{12} = \arctan\{|Z|s_2/R_{12}\rho_2\} - \arctan\{|Z| \cdot s_1/R_{12}\rho_1\}$$

$$R_{12} = S_{12}((X' - X) + C_{12}(Y' - Y))$$

$$s = C_{12}(X' - X) + S_{12}(Y' - Y)$$

$$C_{12} = (X_2 - X_1)/d_{12}, \quad S_{12} = (Y_2 - Y_1)/d_{12}$$

$$d_{12} = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$$

$$\rho_1 = \sqrt{(X - X_1)^2 + (Y - Y_1)^2 + Z^2}$$

$$\rho_2 = \sqrt{(X - X_2)^2 + (Y - Y_2)^2 + Z^2}$$

$$\Delta \theta = \begin{cases} 2\pi \ \text{点}(X, Y, 0) \ \text{isseries} \text{isseries}$$

である。 R_{12} は点(X', Y')が辺12上にある限り一定 で、点(X, Y)が辺12の左側のとき正、右側のとき負 となる。 $s \circ (X', Y')$ も辺12上にあるが、その値は X'又は Y'の関数である。

4. プロペラ解析への応用

4.1 境界条件
第2.4節の境界積分方程式を再記すると、
$$-\frac{1}{2}(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{\infty}) + \frac{1}{4\pi} \iint_{S}(\boldsymbol{\varphi}-\boldsymbol{\varphi}_{\infty}) \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS$$
$$+ \frac{1}{4\pi} \int_{wT} (\boldsymbol{\varphi}_{TU} - \boldsymbol{\varphi}_{TL}) \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS$$

(491)

$$= - \boldsymbol{\varphi}_{s} - \boldsymbol{\varphi}_{w-wT} \qquad (4.1.1)$$

$$\boldsymbol{\varphi}_{s} = \frac{-1}{4\pi} \iint_{s} \left\{ \frac{\partial \boldsymbol{\varphi}}{\partial n'} - \frac{\partial \boldsymbol{\varphi}_{\infty}}{\partial n'} \right\} \left(\frac{1}{r} \right) dS \qquad (4.1.2)$$

$$\boldsymbol{\Phi}_{W-WT} = \frac{1}{4\pi} \iint_{W-WT} \Delta \boldsymbol{\Phi}_{W} \frac{\partial}{\partial n'} \left(\frac{1}{r}\right) dS \qquad (4.1.3)$$

である。

上式において、 $\partial \phi / \partial n'$ 、 $\partial \phi_{\infty} / \partial n'$ は境界条件から与えられるが、それを本節において示す。

第2章においては慣性系の空間固定座標 *x*, *y*, *z*を 用い,第3章においてはパネル固定座標 *X*, *Y*, *Z*を 用いたが,第4章においてはプロペラ固定座標を用い, それを改めて *x*, *y*, *z*座標とし, Fig.4の方向に定義す る。

Fig.4 Coordinate system and definition of forces and moments

直角座標系 x, y, z と同時にプロペラ軸を中心とした 円柱座標系 x, r, θ も定義しておく。プロペラ翼の半 径 r における基準螺線のピッチを $2\pi p$ とすると, 半径 r における翼断面形状は基準螺線に沿って計った \bar{x} 座標とそれに直角方向の \bar{z} 座標を用いて表すことが できる (Fig.5)。

Fig.5 Helical pitch angle

プロペラ翼のレーキとスキューに対応させて、翼オ フセット原点のr軸に対する相対位置を(x_0 , θ_0)とす るとオフセット座標(\bar{x} , \bar{z})とx, y, z座標の関係は y軸を $\theta=0$ とすると、

$$\begin{cases} x = x_0 + \bar{x}\sin\varepsilon - \bar{z}\cos\varepsilon \\ r\theta = r\theta_0 + \bar{x}\cos\varepsilon + \bar{z}\sin\varepsilon \\ y = r\cos\theta \end{cases}$$

$$(4.1.4)$$

 $z = r \sin \theta$

となる。

プロペラの作動状態は, x 軸の負の方向に速度 U で 進みながら x 軸の負の向きに角速度 Ω で回転してい るものとする。(Fig.6)

Fig.6 Inflow velocity vector

プロペラ形状が

B(x, y, z)=0 (4.1.5) で与えられたとすると、プロペラ翼面の単位法線ベク トル $n = n_x i + n_y j + n_z k$ は

$$n_{x} = \frac{\partial B}{\partial x} / R_{n}, \quad n_{y} = \frac{\partial B}{\partial y} / R_{n}, \quad n_{z} = \frac{\partial B}{\partial z} / R_{n}$$
$$R_{n} = \sqrt{\left(\frac{\partial B}{\partial x}\right)^{2} + \left(\frac{\partial B}{\partial y}\right)^{2} + \left(\frac{\partial B}{\partial z}\right)^{2}} \qquad (4.1.6)$$

で与えられる。この具体形は附録に示された様に計算 すれば得られる。

プロペラ翼の運動速度ベクトルを

$$\boldsymbol{V} = -\boldsymbol{U}\boldsymbol{i} - \boldsymbol{\Omega}\boldsymbol{i} \times \boldsymbol{r} \tag{4.1.7}$$

と書くと,境界条件は

$$\frac{\partial \boldsymbol{\mathcal{O}}}{\partial \boldsymbol{n}'} = \boldsymbol{V} \cdot \boldsymbol{n} = -\{U\boldsymbol{n}_x - \boldsymbol{\varOmega} \boldsymbol{z} \boldsymbol{n}_y + \boldsymbol{\varOmega} \boldsymbol{y} \boldsymbol{n}_z\} \qquad (4.1.8)$$

となる。ここに r = yj + zh は境界条件を与える点の位置ベクトルである。定常作動状態の場合は U, Ω 一定であり,過渡状態の場合は,U, Ω は時間の関数として変動する。

また,船尾伴流の速度ベクトルを

 $\boldsymbol{W} = w_x \boldsymbol{i} + w_y \boldsymbol{j} + w_z \boldsymbol{k} \tag{4.1.9}$

と書くと、境界条件は

$$\frac{\partial \boldsymbol{\mathcal{D}}_{\infty}}{\partial \boldsymbol{n}'} = \boldsymbol{W} \cdot \boldsymbol{n} = w_x \boldsymbol{n}_x + w_y \boldsymbol{n}_y + w_z \boldsymbol{n}_z \qquad (4.1.10)$$

となる。

均一流中の場合は W=0 である。不均一流中の場合 一般に空間に固定された分布であるので、W は本章の プロペラ固定座標系からは Ωt で時間的に回転してゆ く。更に、空間に固定された分布自体が時間的に変動 する場合も W でシミュレートすることができる。

4.2 圧力と流体力

ポテンシャル場,速度場が定まると,圧力は第2.1節 の式に従って計算できる。また,それを積分すると流 体力を求めることができる。

(492)

本章においてはプロペラ翼に固定した座標を用いて *M*₂の値は いるので、圧力は

$$\frac{p}{\rho} + \frac{1}{2} q_r^2 + g_y + \frac{\partial \Phi}{\partial t} - \frac{1}{2} V^2 = C(t) \qquad (4.2.1)$$

から計算する。ここに γ 軸を鉛直上方にとり ρ は流体 密度, g は重力加速度,

$$\begin{array}{l} q_r = \mid \boldsymbol{v} - \boldsymbol{V} \mid \\ V = \mid \boldsymbol{V} \mid \end{array} \right\} (4.2.2)$$

である。無限前方の値に添字0を付けると

$$\frac{p}{\rho} + \frac{1}{2}q_r^2 + gy + \frac{\partial \Phi}{\partial t} - \frac{1}{2}V^2 = \frac{p_0}{\rho} + gy_0 + \frac{\partial \Phi_0}{\partial t}$$
(4.2.3)

であり

$$C_{P} = \frac{p - p_{0}}{\frac{1}{2}\rho V^{2}}$$

= $1 - \frac{qr^{2}}{V^{2}} - \frac{2g}{V^{2}}(y - y_{0}) - \frac{2}{V^{2}} \cdot \frac{\partial(\mathbf{\Phi} - \mathbf{\Phi}_{0})}{\partial t}$
(4.2.4)

更に、 p_0 、 y_0 、 $\boldsymbol{\phi}_0$ として着目点の p_{∞} 、 y_{∞} 、 $\boldsymbol{\phi}_{\infty}$ を用い ると

$$C_{p} = \frac{p - p_{\infty}}{\frac{1}{2}\rho V^{2}} = 1 - \frac{q_{r}^{2}}{V^{2}} - \frac{2}{V^{2}} \cdot \frac{\partial(\boldsymbol{\Phi} - \boldsymbol{\Phi}_{\infty})}{\partial t} \quad (4.2.5)$$

となる。

1パネル S_l が流体から受ける力 \vec{f}_{sl} は上述のpを 用いて

$$\vec{\mathcal{T}}_{s\iota} = -\iint_{s\iota} n\rho dS = -n\rho S_{\iota} \qquad (4.2.6)$$

である。ここに、上記の最後の式においては、n, p と もにパネルの代表値であり、S₁はパネルの面積であ る。

$$S_l = H(0, 0, 0) = \sum \frac{X_1 Y_2 - X_2 Y_1}{2}$$
 (4.2.7)

ここに∑は各辺に対する総和を表す。 スラストT、トルクQの値は $T = \sum_{l} (-\mathbf{i}) \cdot \overrightarrow{f}_{sl} = \sum_{l} p \cdot S_{l} (\mathbf{i} \cdot \mathbf{n}) = \sum_{l} p \cdot S_{l} n_{x}$ (4.2.8)

$$Q = \sum_{l} (\mathbf{i} \times \mathbf{r}) \cdot \overline{f}_{sl} = \sum_{l} - pS_{l} (\mathbf{i} \times \mathbf{r}) \cdot \mathbf{n}$$

$$= \sum_{l} - pS_{l} \{\mathbf{i} \times (y\mathbf{j} + z\mathbf{k})\} \cdot \mathbf{n}$$

$$= \sum_{l} - pS_{l} \{y\mathbf{k} - z\mathbf{j}\} \cdot \mathbf{n} = \sum_{l} - pS_{l} \{yn_{z} - zn_{y}\}$$

(4.2.9)

ここに
$$\sum_{l}$$
 は全パネルの総和を表す。
プロペラシャフトフォース $F_y \cdot F_z$ とモーメント M_y

$$F_{y} = \sum_{l} \mathbf{j} \cdot \vec{f}_{sl} = \sum_{l} -pS_{l}(\mathbf{j} \cdot \mathbf{n}) = \sum_{l} -pS_{l} \cdot n_{y}$$

$$(4.2.10)$$

$$F_{z} = \sum_{l} \mathbf{k} \cdot \vec{f}_{sl} = \sum_{l} -pS_{l}(\mathbf{k} \cdot \mathbf{n}) = \sum_{l} -pS_{l}n_{z}$$

$$(4.2.11)$$

$$M_{y} = \sum_{l} [z\mathbf{i} \cdot \vec{f}_{sl} - x\mathbf{k} \cdot \vec{f}_{sl}] = \sum_{l} -pS_{l}\{zn_{x} - xn_{z}\}$$

$$(4.2.12)$$

$$M_{z} = \sum_{l} [y(-\mathbf{i}) \cdot \vec{f}_{sl} + x\mathbf{j} \cdot \vec{f}_{sl}]$$

$$M_{z} = \sum_{l} [y(-l) \cdot f_{sl} + x j \cdot f_{sl}]$$

= $\sum_{l} -pS_{l} \{-yn_{x} + xn_{y}\}$ (4.2.13)

無次元表示は慣例に従って

$$K_{T} = \frac{T}{\rho n^{2} D^{4}} = \frac{\sum_{l} \rho S_{l} n_{x}}{\rho (\Omega/2\pi)^{2} (2r_{0})^{4}} = \frac{\sum_{l} \frac{1}{2} \rho V^{2} C_{\rho} S_{l} n_{x}}{\rho (\Omega/2\pi)^{2} (2r_{0})^{4}}$$
$$= \sum_{l} \frac{1}{2} \left\{ J^{2} + \pi^{2} \left(\frac{r}{r_{0}}\right)^{2} \right\} C_{\rho} \frac{S_{l}}{(2r_{0})^{2}} n_{x} \qquad (4.2.14)$$
$$K_{Fy} = \frac{F_{y}}{\rho n^{2} D^{4}} = -\sum_{l} \frac{1}{2} \left\{ J^{2} + \pi^{2} \left(\frac{r}{r_{0}}\right)^{2} \right\} C_{\rho} \frac{S_{l}}{(2r_{0})^{2}} n_{y} \qquad (4.2.15)$$

$$K_{F_z} = \frac{F_z}{\rho n^2 D^4} = -\sum_l \frac{1}{2} \left\{ J^2 + \pi^2 \left(\frac{r}{r_0}\right)^2 \right\} C_p \frac{S_l}{(2r_0)^2} n_z$$
(4.2.16)

$$K_{q} = \frac{Q}{\rho n^{2} D^{5}} = \frac{\sum_{l}^{l} - \rho S_{l} \{yn_{z} - zn_{y}\}}{\rho (\Omega/2\pi)^{2} (2r_{0})^{5}}$$
$$= \sum_{l}^{l} - \frac{1}{2} \{J^{2} + \pi^{2} \left(\frac{r}{r_{0}}\right)^{2}\} C_{p} \frac{S_{l}}{(2r_{0})^{2}} \frac{yn_{z} - zn_{y}}{2r_{0}}$$
$$(4.2.17)$$

$$K_{My} = \frac{M_y}{\rho n^2 D^5} = \frac{\sum_l - \beta S_l \{z n_x - x n_z\}}{\rho (\Omega/2\pi)^2 (2r_0)^5}$$

= $\sum_l - \frac{1}{2} \{J^2 + \pi^2 \left(\frac{r}{r_0}\right)^2\} C_p \frac{S_l}{(2r_0)^2} \frac{z n_x - x n_z}{2r_0}$
(4.2.18)

$$K_{M_{z}} = \frac{M_{z}}{\rho n^{2} D^{5}} = \frac{\sum_{l} - p S_{l} \{-yn_{x} + xn_{y}\}}{\rho (\Omega/2\pi)^{2} (2r_{0})^{5}}$$
$$= \sum_{l} -\frac{1}{2} \left\{ J^{2} + \pi^{2} \left(\frac{r}{r_{0}}\right)^{2} \right\} C_{p} \frac{S_{l}}{(2r_{0})^{2}} - \frac{-yn_{x} + xn_{y}}{2r_{0}}$$
$$(4.2.19)$$

ここに、nはプロペラ回転数、Dは直径、nは半径、 J = U/nDは前進定数である。

4.3 後流渦の変形

プロペラ固定座標から見た流速は $v - V = \nabla \phi - V$

=
$$\nabla \phi_{D} + \nabla \phi_{s} + \nabla \phi_{w} + \nabla \phi_{\infty} - V$$
 (4.3.1)
で表されるので,この値を用いて渦の流出位置を決め

る。

 $V, \Gamma \phi_{\infty}$ は、流速の主要項であり、入力として与え られる。 $\Gamma \phi_{D}, \Gamma \phi_{S}, \Gamma \phi_{W}$ は、攪乱項であり、前章の 方法により計算される。

流速の計算値は、パネル内の所定の位置で与えられ るので、パネルエッヂの流向は内挿計算が必要となる。

5. 結 言

プロペラ翼を揚力体とみなし、その周りの3次元ポ テンシャル流を、パネル法によって数値的に解析する 計算法を展開した。

本論においては、パネル法の一般的な計算法を示し たが、数値計算は低次パネル法で行う予定である。計 算結果は続報で示したい。本論の計算法は、極めて単 純な方法であり、汎用性の高いものと考える。将来は、 プロペラ流場のシミュレーション等に活用したい。

本計算法の特徴は、数値計算の精度を上げることに よって、厳密解に限りなく近付くことができる点であ る。高次パネル法に対して、本論の結果を利用するこ とができるが、別の機会に発表したい。

参考文献

- 花岡達郎, "プロペラ理論と揚力面理論",船研報告 Vol. 14, No. 5, Sept. 1977
- 2)凌志浩,佐々木康夫,高橋通雄,"境界要素法の直接法によるプロペラまわりの三次元流れ解析(第1報:均一流中の計算)"日本造船学会論文集, Vol. 157, June 1985
- Hess, J. L., and Valarezo, W. O., "Calculation of Steady Flow About Propellers Using a Surface Panel Method," J. Propulsion and Power, Vol. 1, No. 6 (Nov.—Dec., 1985)
- 4) Koyama, K., Kakugawa, A. and Okamoto, M., "Experimental Investigation of Flow Around a Marine Propeller and Application of Panel Method to the Propeller Theory," 16th Symposium on Naval Hydrodynamics, Berkeley, July 1986.
- 5) Hunt, B., "The Panel Method for Subsonic Aerodynamic Flows : A Survey of Mathematical Formulations and Numerical Methods and an Outline of the New British Aerospace Scheme," Computational Fluid Dynamics, edited by Kollmann, W., Hemisphere Publish-

ing Corp., 1978.

- 6) Morino, L. and Kuo, C. C., "Subsonic Potential Aerodynamics for Complex Configurations : A General Theory," AIAA J., Vol. 12, No. 2, Feb. 1974.
- Maskew, B., "Prediction of Subsonic Aerodynamic Characteristics : A case for Low-Order Panel Method," J. Aircraft, Vol. 19, No. 2, Feb. 1982.
- Johnson, F. T., "A General Panel Method for the Analysis and Design of Arbitrary Configurations in Incompressible Flows," NASA CR-3079, May 1980.
- Ebihara, M., "A Method for the Calculation of Lifting Potential Flow Problems (1) Theoretical Basis," Tech. Rep. of National Aerospace Laboratory (Japan), TR-240T, July 1971
- 10) 柳沢三憲, "境界要素法を用いた亜音速流中の三次 元揚力物体の空力特性の計算,"航空宇宙技術研究 所報告, TR-835, Sept. 1984

附録 A パネル座標

附録Aにおいては、パネル平面の作成法、パネル座 標の決定法、及び基準座標系からパネル座標系への変 換法について記す。

境界積分面を分割して作られたパネル形状は一般に 幾つかの角を持った平面に近い曲面である。この曲面 を良く近似する平面内に X, Y 軸をとり, X, Y 軸に 直交し流体側に向いた方向に Z 軸をとる。X, Y, Z 軸は右手系の直角座標とする。これをパネル座標と呼 ぶことにする。パネル平面 X, Y 面に投影されたパネ ル曲面の形状を多角形と近似し,各頂点はパネル曲面 の頂点から投影されたものとする。従って,一般にパ ネル平面は多角形である。具体的なパネル分割は物体 の形状に合せて適宜行う。この時出来たパネル形状は 3 頂点(三角パネル)又は4 頂点(四角パネル)を持 つものとする。

A1. パネル平面 (X, Y 面)の決定

パネル平面は、パネル曲面を良く近似するものが好ましい。パネル平面の決定は、その平面内に含まれる 1点の座標 (x_0 , y_0 , z_0)と、その平面に直交し、流体 側を向く単位ベクトル

n=n_xi+n_yj+n_zk
の決定によってなされる。ここに i, j, k はそれぞれ

(494)

x 軸, y 軸, z 軸方向の単位ベクトルである。即ち,パ ネル平面(XY 面)を基準座標系で表わすと

 $n_x(x-x_0) + n_y(y-y_0) + n_z(z-z_0) = 0$

である。

点 (x₀, y₀, z₀)の位置には任意性があるが,パネルの 境界条件を与える標点が好ましく,パネルの重心や Null Pointを採用する。

三角パネルの場合,パネル平面は3頂点を含む平面 とする。3頂点をABCとすると

$$\overline{AB} = x_{AB}\mathbf{i} + y_{AB}\mathbf{j} + z_{AB}\mathbf{k}$$

= $(x_B - x_A)\mathbf{i} + (y_B - y_A)\mathbf{j} + (z_B - z_A)\mathbf{k}$
 $\overline{BC} = x_{BC}\mathbf{i} + y_{BC}\mathbf{j} + z_{BC}\mathbf{k}$
= $(x_C - x_B)\mathbf{i} + (y_C - y_B)\mathbf{j} + (z_C - z_B)\mathbf{k}$
 $\overrightarrow{n} = \overline{AB} \times \overline{BC}$
= $(y_{AB}z_{BC} - z_{AB}y_{BC})\mathbf{i} + (z_{AB}x_{BC} - x_{AB}z_{BC})\mathbf{j}$
+ $(x_{AB}y_{BC} - y_{AB}x_{BC})\mathbf{k}$
からパネルの法線ベクトル \overrightarrow{n} が得られる。たヾし,
ABC はパネルを流体側から見て反時計回りに名付け

る。

$$\begin{split} \bar{n}_{x} &= (y_{A} - y_{B})(z_{B} - z_{C}) - (z_{A} - z_{B})(y_{B} - y_{C}) \\ \bar{n}_{y} &= (z_{A} - z_{B})(x_{B} - x_{C}) - (x_{A} - x_{B})(z_{B} - z_{C}) \\ \bar{n}_{z} &= (x_{A} - x_{B})(y_{B} - y_{C}) - (y_{A} - y_{B})(x_{B} - x_{C}) \\ n_{x} &= \bar{n}_{x}/\sqrt{(\bar{n}_{x})^{2} + (\bar{n}_{y})^{2} + (\bar{n}_{z})^{2}} \\ n_{y} &= \bar{n}_{y}/\sqrt{(\bar{n}_{x})^{2} + (\bar{n}_{y})^{2} + (\bar{n}_{z})^{2}} \\ n_{z} &= \bar{n}_{z}/\sqrt{(\bar{n}_{x})^{2} + (\bar{n}_{y})^{2} + (\bar{n}_{z})^{2}} \\ x_{0} &= (x_{A} + x_{B} + x_{C})/3 \\ y_{0} &= (y_{A} + y_{B} + y_{C})/3 \\ z_{0} &= (z_{A} + z_{B} + z_{C})/3 \end{split}$$

四角パネルの場合、4 頂点は一般に同一平面内に含 まれるとは限らないので、三角パネルの様に単純では ない。4 頂点を流体側から見て反時計回りに ABCD と名付ける。ABCD は一般に同一平面内にはないが、 各辺の中点を結ぶと平行四辺形となり、その辺は対角 線 AC, BD に平行である。その平行四辺形を含む面を パネル平面にとると次式を得る。

$$\overrightarrow{AC} = x_{AC} \mathbf{i} + y_{AC} \mathbf{j} + z_{AC} \mathbf{k}$$

= $(x_C - x_A) \mathbf{i} + (y_C - y_A) \mathbf{j} + (z_C - z_A) \mathbf{k}$
$$\overrightarrow{BD} = x_{BD} \mathbf{i} + y_{BD} \mathbf{j} + z_{BD} \mathbf{k}$$

= $(x_D - x_B) \mathbf{i} + (y_D - y_B) \mathbf{j} + (z_D - z_B) \mathbf{k}$
$$\overrightarrow{n} = \overrightarrow{AC} \times \overrightarrow{BD}$$

= $(y_{AC} z_{BD} - z_{AC} y_{BD}) \mathbf{i} + (z_{AC} x_{BD} - x_{AC} z_{BD}) \mathbf{j}$
+ $(x_{AC} y_{BD} - y_{AC} x_{BD}) \mathbf{k}$

$$\begin{split} \bar{n}_{x} &= (y_{A} - y_{C})(z_{B} - z_{D}) - (z_{A} - z_{C})(y_{B} - y_{D}) \\ \bar{n}_{y} &= (z_{A} - z_{C})(x_{B} - x_{D}) - (x_{A} - x_{C})(z_{B} - z_{D}) \\ \bar{n}_{z} &= (x_{A} - x_{C})(y_{B} - y_{D}) - (y_{A} - y_{C})(x_{B} - x_{D}) \\ n_{x} &= \bar{n}_{x}/\sqrt{(\bar{n}_{x})^{2} + (\bar{n}_{y})^{2} + (\bar{n}_{z})^{2}} \\ n_{y} &= \bar{n}_{y}/\sqrt{(\bar{n}_{x})^{2} + (\bar{n}_{y})^{2} + (\bar{n}_{z})^{2}} \\ n_{z} &= \bar{n}_{z}/\sqrt{(\bar{n}_{x})^{2} + (\bar{n}_{y})^{2} + (\bar{n}_{z})^{2}} \\ x_{0} &= (x_{A} + x_{B} + x_{C} + x_{D})/4 \\ y_{0} &= (y_{A} + y_{B} + y_{C} + y_{D})/4 \\ z_{0} &= (z_{A} + z_{B} + z_{C} + z_{D})/4 \end{split}$$

上式からパネル平面が決定するので,パネル座標を 決めれば,座標変換により4頂点 ABCD のパネル平 面への投影点 A', B', C', D'の座標は自動的に計算で きるが,ここに表示式を示しておく。

$$\overline{AA'} = \left(\frac{1}{2}\overline{AB} \cdot n\right)n$$

$$= \frac{1}{2}\{(x_{B} - x_{A})n_{x} + (y_{B} - y_{A})n_{y} + (z_{B} - z_{A})n_{z}\}n$$

$$\overline{BB'} = \left(\frac{1}{2}\overline{BC'} \cdot n\right)n$$

$$= \frac{1}{2}\{(x_{C} - x_{B})n_{x} + (y_{C} - y_{B})n_{y} + (z_{C} - z_{B})n_{z}\}n$$

$$\overline{CC'} = \left(\frac{1}{2}\overline{CD'} \cdot n\right)n$$

$$= \frac{1}{2}\{(x_{D} - x_{C})n_{x} + (y_{D} - y_{C})n_{y} + (z_{D} - z_{C})n_{z}\}n$$

$$\overline{DD'} = \left(\frac{1}{2}\overline{DA'} \cdot n\right)n$$

$$= \frac{1}{2}\{(x_{A} - x_{D})n_{x} + (y_{A} - y_{D})n_{y} + (z_{A} - z_{D})n_{z}\}n$$

A2. パネル座標 (*XYZ* 座標)の決定

前述の過程でパネル平面と標点が決定されたので、 $n_x(x-x_0)+n_y(y-y_0)+n_z(z-z_0)=0$

となり、パネル座標の Z 軸が決定された。

次に条件を付加して X, Y 軸を決定するとパネル座 標が完成する。条件の与へ方によって色々のパネル座 標ができる。但しいずれの場合にも, X, Y, Z 軸は 右手直交座標系とし, Z 軸はパネル平面に直交し,流 体側を向くものとする。

以下の解析において, x, y, z 軸方向の単位ベクト ルを i, j, k とし, X, Y, Z 軸方向の単位ベクトル を I, J, K とし

 $I = A_{Xx}i + A_{Xy}j + A_{Xz}k$ $J = A_{Yx}i + A_{Yy}j + A_{Yz}k$ $K = A_{Zx}i + A_{Zy}j + A_{Zz}k$

(495)

14 $A_{zx} = n_x$, $A_{zy} = n_y$, $A_{zz} = n_z$ である。 **A2.1** X 軸を、 v 成分零、 x 軸の正の方向にとる場 合。x軸の方向に進む翼の解析等に利用できる。 $I = A_{xx}i + A_{xy}j + A_{xz}k$ において $A_{Xy} = 0$ $A_{Xx}n_x + A_{Xy}n_y + A_{Xz}n_z = 0$ $A_{xx}^{2} + A_{xy}^{2} + A_{xz}^{2} = 1$ であるから、Axx>0を考慮して $A_{xx} = \frac{\operatorname{sgn}(n_z)n_z}{\sqrt{n_x^2 + n_z^2}}, A_{xy} = 0, A_{xz} = -\frac{\operatorname{sgn}(n_z)n_x}{\sqrt{n_x^2 + n_z^2}}$ となる。 $\boldsymbol{K} = A_{zx}\boldsymbol{i} + A_{zy}\boldsymbol{j} + A_{zz}\boldsymbol{k} = n_x\boldsymbol{i} + n_y\boldsymbol{j} + n_z\boldsymbol{k}$ $\boldsymbol{J} = A_{\boldsymbol{Y}\boldsymbol{x}}\boldsymbol{i} + A_{\boldsymbol{Y}\boldsymbol{y}}\boldsymbol{j} + A_{\boldsymbol{Y}\boldsymbol{z}}\boldsymbol{k}$ $J = K \times I$ $=[n_x \mathbf{i} + n_y \mathbf{j} + n_z \mathbf{k}] \times [n_z \mathbf{i} - n_x \mathbf{k}] \frac{\operatorname{sgn}(n_z)}{\sqrt{n_x^2 + n_z^2}}$ $=\frac{\operatorname{sgn}(n_z)}{\sqrt{n_z^2+n_z^2}}[-n_yn_x\mathbf{i}+(n_z^2+n_x^2)\mathbf{j}-n_yn_z\mathbf{k}]$ であるから $A_{Yx} = -n_y n_x \frac{\operatorname{sgn}(n_z)}{\sqrt{n_x^2 + n_z^2}}, A_{Yy} = (n_z^2 + n_x^2) \frac{\operatorname{sgn}(n_z)}{\sqrt{n_x^2 + n_z^2}},$ $A_{Yz} = -n_y n_z \frac{\operatorname{sgn}(n_z)}{\sqrt{n^2_x + n^2_z}}$ **A2.2** Y 軸を, x 成分零, y 軸の正の方向にとる場 合。 $\boldsymbol{J} = A_{\boldsymbol{Y}\boldsymbol{x}}\boldsymbol{i} + A_{\boldsymbol{Y}\boldsymbol{y}}\boldsymbol{j} + A_{\boldsymbol{Y}\boldsymbol{z}}\boldsymbol{k}$ において $A_{Yx}=0$ $A_{Yx} \cdot n_x + A_{Yy} \cdot n_y + A_{Yz} \cdot n_z = 0$ $A_{yx}^{2} + A_{yy}^{2} + A_{yz}^{2} = 1$ $A_{yy} > 0$ から $A_{Yx}=0, A_{Yy}=\frac{\mathrm{sgn}(n_z)n_z}{\sqrt{n_y^2+n_z^2}}, A_{Yz}=-\frac{\mathrm{sgn}(n_z)n_y}{\sqrt{n_y^2+n_z^2}}$ となる。 $I = J \times K$ $= (A_{Yx}\mathbf{i} + A_{Yy}\mathbf{j} + A_{Yz}\mathbf{k}) \times (A_{Zx}\mathbf{i} + A_{Zy}\mathbf{j} + A_{Zz}\mathbf{k})$ $= (A_{yy}A_{zz} - A_{yz}A_{zy})\mathbf{i} + (A_{yz}A_{zx} - A_{yx}A_{zz})\mathbf{j}$ $+(A_{Yx}A_{Zy}-A_{Yy}A_{Zx})\mathbf{k}$ $=[(n_{z}^{2}+n_{y}^{2})\boldsymbol{i}-n_{y}n_{x}\boldsymbol{j}-n_{z}n_{x}\boldsymbol{k}]\frac{\mathrm{sgn}(n_{z})}{\sqrt{n_{y}^{2}+n_{z}^{2}}}$ であるから

$$\begin{aligned} A_{xx} &= (n_y^2 + n_z^2) \frac{\text{sgn}(n_z)}{\sqrt{n_y^2 + n_z^2}}, \\ A_{xy} &= -n_y n_x \frac{\text{sgn}(n_z)}{\sqrt{n_y^2 + n_z^2}}, \\ A_{xz} &= -n_z n_x \frac{\text{sgn}(n_z)}{\sqrt{n_y^2 + n_z^2}}, \\ A 2.3 \quad X \ \text{the } \xi, \ \mathbf{r} < \mathcal{I} \models \mathcal{I} \land (y_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I} \models \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I} \models \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \vdash \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \land (z_0 \mathbf{j} + z_0 \mathbf{k} < \mathcal{I}) \land (z_0 \mathbf{k} < z_0 + A_{xy} \cdot y_0 + A_{xz} \cdot z_0 = 0) \land A_{xx} \cdot n_x + A_{xy} \cdot n_y + A_{xz} \cdot n_z = 0 \land A_{xx}^2 + A_{xy}^2 + A_{xz}^2 = 1 \land A_{xz} > 0 \cr \xi \neq \delta \not{E} \land A_{xx} = \text{sgn}(n_x y_0) (n_y \cdot z_0 - n_z \cdot y_0) \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land A_{xy} = -\text{sgn}(n_x y_0) n_x \cdot z_0 \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land A_{xz} = \text{sgn}(n_x y_0) n_x y_0 \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0) - (n_x^2 y_0)} \land (\sqrt{(n_y z_0 - n_z y_0) - n_x^2 y_0}) \mathbf{j} \land (\sqrt{(n_y z_0 - n_z y_0) - (n_x^2 y_0) - n_x^2 y_0}) \mathbf{j} \land (\sqrt{(n_y z_0 - n_z y_0) - (n_x^2 y_0) - (n_x^2 y_0)} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land \sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land (\sqrt{(n_y z_0 - n_z y_0)^2 + (n_x z_0)^2 + (n_x y_0)^2}} \land ($$

 $A_{yz} = \operatorname{sgn}(n_x y_0) \{ -n_x^2 z_0 - n_y (n_y z_0 - n_z y_0) \}$

A3. 座標変換

 $I = A_{Xx}i + A_{Xy}j + A_{Xz}k$ $\boldsymbol{J} = A_{\boldsymbol{Y}\boldsymbol{x}}\boldsymbol{i} + A_{\boldsymbol{Y}\boldsymbol{y}}\boldsymbol{j} + A_{\boldsymbol{Y}\boldsymbol{z}}\boldsymbol{k}$

 $\boldsymbol{K} = A_{Zx}\boldsymbol{i} + A_{Zy}\boldsymbol{j} + A_{Zz}\boldsymbol{k}$

 $\sqrt{(n_{y}z_{0}-n_{z}y_{0})^{2}+(n_{x}z_{0})^{2}+(n_{x}y_{0})^{2}}$

パネル座標 X, Y, Z が前述の様に決定されると

に

(496)

の係数行列が与えられる。このときまた逆に $i = A_{Xx}I + A_{Yx}J + A_{Zx}K$ $\mathbf{j} = A_{Xy}\mathbf{I} + A_{Yy}\mathbf{J} + A_{Zy}\mathbf{K}$ $\boldsymbol{k} = A_{Xz}\boldsymbol{I} + A_{Yz}\boldsymbol{J} + A_{Zz}\boldsymbol{K}$ でもある。 そこでベクトル $\vec{a} = x\mathbf{i} + y\mathbf{j} + z\mathbf{k}$ $\vec{o} = x_0 \mathbf{i} + y_0 \mathbf{j} + z_0 \mathbf{k}$ $\vec{A} = XI + YJ + ZK$ において $\vec{a} = \vec{o} + \vec{A}$ とすると $x = x_0 + A_{Xx}X + A_{Yx}Y + A_{Zx}Z$ $y = y_0 + A_{Xy}X + A_{Yy}Y + A_{Zy}Z$ $z = z_0 + A_{Xz}X + A_{Yz}Y + A_{Zz}Z$ $A_{Xx}(x-x_0) + A_{Xy}(y-y_0) + A_{Xz}(z-z_0) = X$ $A_{Yx}(x-x_0) + A_{Yy}(y-y_0) + A_{Yz}(z-z_0) = Y$ $A_{ZX}(x-x_0) + A_{ZY}(y-y_0) + A_{ZZ}(z-z_0) = Z$ となり、この式により、 $x, y, z \rightleftharpoons X, Y, Z$ の座 標変換を行うことができる。

附録 B 関数 H(0, 0, 1)

$$H(0, 0, 1) = \iint \frac{1}{\rho} dX' dY'$$

ここに
$$\rho = \sqrt{(X - X')^2 + (Y - Y')^2 + Z^2} = \sqrt{R^2 + Z^2}$$

$$R = \sqrt{(X - X')^2 + (Y - Y')^2}$$

と書き、円柱座標を用いて $dX' dY' = Rd\theta dR$
とすると、

$$H(0, 0, 1) = \iint_{0}^{R} \frac{RdRd\theta}{\sqrt{R^{2} + Z^{2}}}$$
$$= \iint_{|z|}^{\rho} d\rho d\theta$$
$$= \oint [\rho - |Z|] d\theta$$
$$= \oint \rho d\theta - |Z| \cdot \Delta\theta$$

ここに

 $\Delta\theta = \begin{cases}
 2\pi & \underline{\land} (X, Y, 0) \, \text{がパネル内部の場合} \\
 0 & \underline{\land} (X, Y, 0) \, \text{がパネル外部の場合} \\
 更に$

 $\varphi_{12} = \int_{\theta_1}^{\theta_2} \rho d\theta$ と書くと

 $H(0, 0, 1) = \sum \varphi_{12} - |Z| \cdot \varDelta \theta$

$$\arccos x = \frac{\pi}{2} - \arcsin x = \frac{\pi}{2} - \arctan \frac{x}{1-x^2}$$

を用いると $\arccos \frac{|Z|\cos(\theta-\alpha)}{\sqrt{R_{12}^2+Z^2}} = \frac{\pi}{2} - \arctan\left\{\frac{|Z|\cdot s}{|R_{12}|\cdot \rho}\right\}$ であるので、 φ_{12} の後半の項を φ_{12}^2 と書くと $\varphi_{12}^{2} = \left[-\operatorname{sgn}(R_{12}) \cdot |Z| \left\{\frac{\pi}{2} - \operatorname{arctan}\left(\frac{|Z| \cdot s}{|R_{12}| \cdot \rho}\right)\right\}\right]_{\theta_{1}}^{\theta_{2}}$ $= |Z| \left\{ \arctan\left(\frac{|Z|s_2}{R_{12}\rho_2}\right) - \arctan\left(\frac{|Z|s_1}{R_{12}\rho_1}\right) \right\}$ または、変形して $\varphi_{12}^{2} = |z| \arctan \left\{ \frac{R_{12}|Z|(\rho_{1}s_{2}-\rho_{2}s_{1})}{\rho_{1}\rho_{2}R_{12}^{2}+Z^{2}s_{1}s_{2}} \right\}$ とも書ける。 以上から,結局,次式が得られる。 $H(0, 0, 1) = \sum \{R_{12}Q_{12} + |Z|J_{12}\} - |Z|\Delta\theta$ $Q_{12} = \log \left| \frac{\rho_2 + s_2}{\rho_1 + s_1} \right| = \log \left| \frac{\rho_1 + \rho_2 + d_{12}}{\rho_1 + \rho_2 - d_{12}} \right|$ $J_{12} = \arctan\left(\frac{|Z|s_2}{R_{12}\rho_2}\right) - \arctan\left(\frac{|Z|s_1}{R_{12}\rho_1}\right)$ $= \arctan\left\{\frac{R_{12}|Z|(\rho_{1}s_{2}-\rho_{2}s_{1})}{\rho_{1}\rho_{2}R_{12}^{2}+Z^{2}s_{1}s_{2}}\right\}$ $R_{12} = S_{12}(X' - X) - C_{12}(Y' - Y)$ $s = C_{12}(X' - X) + S_{12}(Y' - Y)$ $C_{12} = (X_2 - X_1)/d_{12}, S_{12} = (Y_2 - Y_1)/d_{12},$ $d_{12} = \sqrt{(X_2 - X_1)^2 + (Y_2 - Y_1)^2}$ $\rho_1 = \sqrt{(X - X_1)^2 + (Y - Y_1)^2 + Z^2},$ $\rho_2 = \sqrt{(X - X_2)^2 + (Y - Y_2)^2 + Z^2}$ $\Delta \theta = \begin{cases} 2\pi & \text{点}(X, Y, 0) \text{ がパネル内部の場合} \\ 0 & \text{点}(X, Y, 0) \text{ がパネル外部の場合} \end{cases}$ ここに、∑は多辺形の各辺の総和を意味する。

附録C 関数 H(0, 0, 3)

第3.4節の漸化式

$$(K-M-N-2)H(M, N, K)$$

 $=KZ^{2}H(M, N, K+2)+\sum F_{\ell}(M+1, N, K)$
 $+\sum F_{\eta}(M, N+1, K)$
において、 $M=0, N=0, K=1 \geq i \leq 2$
 $-H(0, 0, 1)=Z^{2}H(0, 0, 3)+\sum F_{\ell}(1, 0, 1)$
 $+\sum F_{\eta}(0, 1, 1)$
これを用いると
 $H(0, 0, 3)=\frac{1}{Z^{2}}[-H(0, 0, 1)-\sum F_{\ell}(1, 0, 1)]$
まず $F_{\ell}(1, 0, 1)$ の計算式を求める。定義から

$$\begin{split} F_{\mathfrak{e}}(1,0,1) &= \int_{Y_{1}}^{Y_{2}} \frac{X - X_{12}}{\rho \mid_{X'=X_{12}}} dY' \\ &= \int_{Y_{1}}^{Y_{2}} \frac{X - X_{12}}{\sqrt{(X - X_{12})^{2} + (Y - Y')^{2} + Z^{2}}} dY' \\ &= (X - X_{12}^{0})I_{\mathfrak{e}}(0, -1) - X_{12}^{1}I_{\mathfrak{e}}(1, -1) \\ \\ \overline{\mathbf{p}}(z, I(m, k) \circ) \overline{\mathbf{m}}' \mathbb{L} \overrightarrow{\mathbf{x}} \\ I(1, -1) &= \frac{1}{a} \Big\{ \sqrt{aX^{2} + bX + c} - \frac{b}{2}I(0, -1) \Big\} \\ \\ \overline{\mathbf{k}} \overline{\mathbf{n}} \lor \mathbf{\delta} \succeq \\ F_{\mathfrak{e}}(1, 0, 1) &= -X_{12}^{1}\frac{1}{a}\sqrt{aY'^{2} + bY' + c} \Big|_{Y_{1}}^{Y_{2}} \\ &+ \Big\{ (X - X_{12}^{0}) + X_{12}^{1}\frac{b}{2a} \Big\} I_{\mathfrak{e}}(0, -1) \\ \\ \\ \overline{\mathbf{c}} \subset \mathbb{L} \\ aY'^{2} + bY' + c &= (X - X_{12})^{2} + (Y - Y')^{2} + Z^{2} \\ &= \{1 + (X_{12}^{1})^{2}\} Y'^{2} - 2\{Y + X_{12}^{1}(X - X_{12}^{0})\} Y' \\ &+ \{(X - X_{12}^{0})^{2} + Y^{2} + Z^{2} \} \\ \\ \\ \overline{\mathbf{p}} \vdash a = 1 + (X_{12}^{1})^{2}, \quad b = -2\{Y + X_{12}^{1}(X - X_{12}^{0})\}, \\ c &= (X - X_{12}^{0})^{2} + Y^{2} + Z^{2} \\ \\ \\ \overline{\mathbf{c}} \circ \succeq \mathring{\mathbf{s}} \\ (X - X_{12}^{0}) + X_{12}^{1}\frac{b}{2a} \\ &= (X - X_{12}^{0}) - X_{12}^{1}\frac{Y + X_{12}^{1}(X - X_{12}^{0})}{1 + (X_{12}^{1})^{2}} \\ \\ &= \frac{(X - X_{12}^{0}) - X_{12}^{1}\frac{Y}{1} + (X_{12}^{1})^{2}}{1 + (X_{12}^{1})^{2}} \\ \end{aligned}$$

$$F_{\epsilon}(1, 0, 1) = \frac{X_{12}^{1}}{1 + (X_{12}^{1})^{2}} \sqrt{aY'^{2} + bY' + c} \Big|_{\gamma_{1}}^{\gamma_{2}} + \frac{(X - X_{12}^{0}) - X_{12}^{1}Y}{1 + (X_{12}^{1})^{2}} I_{\epsilon}(0, -1)$$

更に

$$I_{\varepsilon}(0, -1) = \frac{1}{\sqrt{a}} \log |2aY' + b|$$

$$+2\sqrt{a(aY'^2+bY'+c)} ||_{Y_1}^{Y_2}$$

$$aY' + \frac{1}{2}b = \{1 + (X_{12})^2\}Y' - \{Y + X_{12}^1(X - X_{12})\}$$
$$= Y' - Y - X_{12}^1\{X - X_{12}^0 - X_{12}^1Y'\}$$

であるから

$$I_{\epsilon}(0, -1) = \frac{1}{\sqrt{1 + (X_{12}^{1})^{2}}}$$

$$\cdot \log \left| \frac{(Y_{2} - Y) + X_{12}(X_{2} - X) + \sqrt{1 + (X_{12}^{1})^{2}} \rho_{2}}{(Y_{1} - Y) + X_{12}(X_{1} - X) + \sqrt{1 + (X_{12}^{1})^{2}} \rho_{1}} \right|$$

更に第3.5節で用いた次の定義による変数を用いる。

$$d_{12} = \sqrt{(X_{2} - X_{1})^{2} + (Y_{2} - Y_{1})^{2}}$$

16

(498)

$$C_{12} = \frac{X_2 - X_1}{d_{12}} = \frac{X_{12}}{\sqrt{1 + (X_{12}^{1})^2}}$$

$$S_{12} = \frac{Y_2 - Y_1}{d_{12}} = \frac{1}{\sqrt{1 + (X_{12}^{1})^2}}$$

$$R_{12} = S_{12}(X' - X) - C_{12}(Y' - Y)$$

$$s = C_{12}(X' - X) + S_{12}(Y' - Y)$$

$$Q_{12} = \log \left| \frac{\rho_2 + S_2}{\rho_1 + S_1} \right|$$

Fig.7 Definition of coefficient X_{12}^1

このとき

$$\frac{(X - X_{12}^{0}) - X_{12}^{1}Y}{1 + (X_{12}^{12})^{2}}$$

$$= \frac{X - X_{12}^{0} - X_{12}^{1}Y' + X_{12}^{1}Y' - X_{12}^{1}Y}{1 + (X_{12}^{12})^{2}}$$

$$= \frac{(X - X') - X_{12}^{1}(Y - Y')}{1 + (X_{12}^{12})^{2}}$$

$$= S_{12}(S_{12}(X - X') - C_{12}(Y - Y'))$$

$$= -S_{12}R_{12}$$
であるから
 $F_{\ell}(1, 0, 1) = -S_{12}C_{12}(\rho_{2} - \rho_{1}) - S_{12}R_{12}I_{\ell}(0, -1),$

$$I_{\ell}(0, -1) = S_{12}\log\left|\frac{S_{12}(Y_{2} - Y) + C_{12}(X_{2} - X) + \rho_{2}}{S_{12}(Y_{1} - Y) + C_{12}(X_{1} - X) + \rho_{1}}\right|$$

$$= S_{12}\log\left|\frac{S_{2} + \rho_{2}}{S_{1} + \rho_{1}}\right|$$

$$= S_{2}\log\left|\frac{\rho_{1} + \rho_{2} + d_{12}}{\rho_{1} + \rho_{2} - d_{12}}\right|$$

$$= S_{12}Q_{12}$$
次に、同様にしてF₉(0, 1, 1)を計算する。
 $F_{\eta}(0, 1, 1) = -\int_{X_{1}}^{X_{2}} \frac{Y - Y_{12}}{\rho_{|Y'=Y_{12}}}dX'$

$$\begin{split} &= -\int_{x_1}^{x_2} \frac{Y - Y_{12}}{\sqrt{(X - X')^2 + (Y - Y_{12})^2 + Z^2}} dX' \\ &= -[(Y - Y_{12})I_{\eta}(0, -1) - Y_{12}I_{\eta}(1, -1)] \\ &= -\left[-Y_{12}\frac{1}{a}\sqrt{aX'^2 + bX' + c} \right|_{x_1}^{x_2} \\ &+ \left\{ (Y - Y_{12}^0) + Y_{12}\frac{b}{2a} \right\} I_{\eta}(0, -1) \right] \\ \vdots \vdots i, \\ &aX'^2 + bX' + c = (X - X')^2 + (Y - Y_{12})^2 + Z^2 \\ &= \{1 + (Y_{12}^1)^2\} X'^2 - 2\{X + Y_{12}^1(Y - Y_{12}^0)\} X' \\ &+ \{X^2 + (Y - Y_{12}^0)^2 + Z^2\} \\ &\exists I^5, \\ &a = 1 + (Y_{12}^1)^2, \quad b = -2\{X + Y_{12}^1(Y - Y_{12}^0)\}, \\ &c = X^2 + (Y - Y_{12}^0)^2 + Z^2 \\ &\vdots \mathcal{O} \succeq &\\ F_{\eta}(0, 1, 1) = -\left[-\frac{Y_{12}}{1 + (Y_{12}^1)^2} \sqrt{aX'^2 + bX' + c} \right|_{x_1}^{x_2} \\ &+ \frac{(Y - Y_{12}^0) - Y_{12}^1 X}{1 + (Y_{12}^1)^2} I_{\eta}(0, 1) \right] \\ &I_{\eta}(0, -1) = \frac{1}{\sqrt{1 + (Y_{12}^1)^2}} \\ &\cdot \log \left| \frac{(X_2 - X) + Y_{12}(Y_2 - Y) + \sqrt{1 + (Y_{12}^1)^2}\rho_2}{(X_1 - X) + Y_{12}^1(Y_1 - Y) + \sqrt{1 + (Y_{12}^1)^2}\rho_1} \right] \\ &\vdots \vdots c, &\\ C_{12} = \frac{X_2 - X_1}{d_{12}} = \frac{1}{\sqrt{1 + (Y_{12}^1)^2}} \\ &S_{12} = \frac{Y_2 - Y_1}{d_{12}} = \frac{Y_{12}^1}{\sqrt{1 + (Y_{12}^1)^2}} \\ &= C_{12}\{C_{12}(Y - Y') - S_{12}(X - X')\} \\ &= C_{12}R_{12} \end{aligned}$$

Fig. 8 Definition of coefficient Y_{12}^1

(499)

18
従って

$$F_{\eta}(0,1,1) = -[-C_{12}S_{12}(\rho_{2}-\rho_{1})+C_{12}R_{12}I_{\eta}(0, -1)],$$

 $I_{\eta}(0,-1) = C_{12}\log\left|\frac{C_{12}(X_{2}-X)+S_{12}(Y_{2}-Y)+\rho_{2}}{C_{12}(X_{1}-X)+S_{12}(Y_{1}-Y)+\rho_{1}}\right|$
 $= C_{12}\log\left|\frac{s_{2}+\rho_{2}}{s_{1}+\rho_{1}}\right|$
 $= C_{12}\log\left|\frac{\rho_{1}+\rho_{2}+d_{12}}{\rho_{1}+\rho_{2}-d_{12}}\right|$
 $= C_{12}Q_{12}$
以上から
 $F_{\ell}(1, 0, 1)+F_{\eta}(0, 1, 1)$
 $= -S_{12}C_{12}(\rho_{2}-\rho_{1})-S_{12}R_{12}I_{\ell}(0, -1)$
 $-[-C_{12}S_{12}(\rho_{2}-\rho_{1})+C_{12}R_{12}I_{\eta}(0, -1)]$
 $= -S_{12}R_{12}I_{\ell}(0, -1)-C_{12}R_{12}I_{\eta}(0, -1)$
 $= -S_{12}^{2}R_{12}Q_{12}-C_{12}^{2}R_{12}Q_{12}$
 $= -R_{12}Q_{12}$
また、附録 Bから
 $H(0, 0, 1)=\Sigma\{R_{12}Q_{12}+|Z|J_{12}\}-|Z|\Delta\theta$
であるから
 $H(0, 0, 3)=\frac{1}{Z^{2}}[-H(0, 0, 1)-\Sigma F_{\ell}(1, 0, 1)-\Sigma F_{\ell}(1, 0, 1)]$

$$= \frac{1}{Z^2} [-\Sigma | Z | J_{12} + | Z | \Delta \theta]$$
$$= \frac{\operatorname{sgn}(Z)}{Z} [-\Sigma J_{12} + \Delta \theta]$$

特別に、Z=0のときは極限値 Z→0をとって ZH(0, 0, 3)=sgn(Z)Δθ

となる。これは、標点(X, Y, Z) がパネル S_1 上にあ るとき、流体側と揚力体内側とで、ZH(0, 0, 3)には $2 \Delta \theta$ の飛躍があることを示している。これは、本文の (2.4.1)式を具体的に示したことになる。この特異性は \boldsymbol{o}_{D1} 及び $\boldsymbol{\Gamma} \boldsymbol{o}_{S1}$ に表れる。但し、積分方程式(2.4.2), (3.1.2)等の左辺は $\boldsymbol{o}_{D+} - \mu$ の形となっていることを 付記しておく。

附録 D 関数 H(1, 0, 3), H(0, 1, 3)

漸化式

$$H(M+2, N, K) = \frac{M+1}{K-2}H(M, N, K-2)$$

+ $\Sigma \frac{1}{K-2}F_{\epsilon}(M+1, N, K-2)$
において、 $M=-1$, $N=0$, $K=3$ とおくと
 $H(1, 0, 3) = \Sigma F_{\epsilon}(0, 0, 1)$
ここで第3.4節の諸式を用いて

附録 E 関数 H(0, 0, 5)

漸化式

$$(K-M-N-2) H(M, N, K)$$

 $=KZ^2 H(M, N, K+2)$
 $+\Sigma F_{\ell}(M+1, N, K)+\Sigma F_{\eta}(M, N+1, K)$
において、 $M=0, N=0, K=3$ とおくと

 $H(0, 0, 5) = \frac{1}{3Z^2} [H(0, 0, 3)]$

$$-\sum \{F_{\boldsymbol{\ell}}(1, 0, 3) + F_{\eta}(0, 1, 3)\}\}$$

附録 C と同様な方法によりこれを計算する。まず $F_{\epsilon}(1, 0, 3)$ は定義から

$$F_{\ell}(1,0,3) = \int_{Y_1}^{Y_2} \frac{X - X_{12}}{\sqrt{(X - X_{12})^2 + (Y - Y')^2 + Z^2}} dY'$$

= $(X - X_{12}^0) I_{\ell}(0, -3) - X_{12}^1 I_{\ell}(1, -3)$
更に, $I(m, k)$ の漸化式よ¹)
 $I(1, -3) = \frac{1}{-a} \left\{ \sqrt{aY'^2 + bY' + c}^{-1} - \frac{-b}{2} I(0, -3) \right\}$
であるから

(500)

$$F_{\ell}(1, 0, 3) = \frac{X_{12}}{a} \frac{1}{\sqrt{aY'^2 + bY' + c}} \Big|_{Y_1}^{Y_2} \\ + \left\{ (X - X_{12}^0) + X_{12}\frac{b}{2a} \right\} I_{\ell}(0, -3)$$

$$E_{\ell} = \xi_{\ell} = \xi_{\ell}$$

 $aY'^2+bY'+c=(X-X_{12})^2+(Y-Y')^2+Z^2$ であり、附録Cと全く同様にして

$$F_{\ell}(1, 0, 3) = \frac{X_{12}^{1}}{1 + (X_{12}^{1})^{2}} \frac{1}{\sqrt{aY'^{2} + bY' + c}} \Big|_{Y_{1}}^{Y_{2}} + \frac{(X - X_{12}^{0}) - X_{12}^{1}Y}{1 + (X_{12}^{1})^{2}} I_{\ell}(0, -3)$$

更に

$$\begin{split} F_{\xi}(1, 0, 3) &= S_{12}C_{12} \left(\frac{1}{\rho_2} - \frac{1}{\rho_1}\right) - S_{12}R_{12}I_{\xi}(0, -3) & \ddagger \\ \xi & \vdots \\ \xi & \vdots \\ \xi & \vdots \\ I_{\xi}(0, -3) &= \frac{4aY' + 2b}{-(b^2 - 4ac)} \frac{1}{\sqrt{aY'^2 + bY' + c}} \Big|_{Y_1}^{Y_2} & b \\ \vdots \\ \zeta & \vdots \\ I_{\xi}(0, -3) &= \frac{4aY' + 2b}{-(b^2 - 4ac)} \frac{1}{\sqrt{aY'^2 + bY' + c}} \Big|_{Y_1}^{Y_2} & b \\ \vdots \\ z & = C^{\infty}, a, b, c \\ \phi & \Rightarrow \\ b^2 - 4ac &= -4[\{(X - X') - X_{12}(Y - Y')\}^2 + \{1 + (X_{12}^{12})^2\}Z^2] \\ &= -4\{1 + (X_{12}^{12})^2\}[\{S_{12}(X - X') - C_{12}(Y - Y')\}^2 + Z^2] &= \\ &= -4a[(R_{12})^2 + Z^2], & = \\ b &= -2[(Y - Y') + X_{12}^{12}(X - X') + \{1 + (X_{12}^{12})^2\}Y'] &= \\ &= -2a[-S_{12}s + Y'] &= \\ z & z & \vdots \\ -S_{12}s + Y' &= -S_{12}s_1 + Y_1 = -S_{12}s_2 + Y_2 \\ \forall & \Rightarrow \\ \tilde{u} \Rightarrow \\ \tilde{u}$$

$$T_{\ell}(0, -3) = \frac{(R_{12})^2 + Z^2}{(R_{12})^2 + Z^2} \left\{ \frac{1}{\rho_2} - \frac{1}{\rho_1} \right\} \\ + \frac{S_{12}S_1 - Y_1}{(R_{12})^2 + Z^2} \left\{ \frac{1}{\rho_2} - \frac{1}{\rho_1} \right\} \\ = \frac{1}{(R_{12})^2 + Z^2} \left\{ \frac{Y_2}{\rho_2} - \frac{Y_1}{\rho_1} \right\} \\ + \frac{1}{(R_{12})^2 + Z^2} \left\{ \frac{S_{12}S_2 - Y_2}{\rho_2} - \frac{S_{12}S_1 - Y_1}{\rho_1} \right\} \\ = \frac{S_{12}}{(R_{12})^2 + Z^2} \left\{ \frac{S_2}{\rho_2} - \frac{S_1}{\rho_1} \right\}$$

が得られる。

次に
$$F_{\eta}(0, 1, 3)$$
 も定義から
 $F_{\eta}(0, 1, 3) = -\int_{X_1}^{X_2} \frac{Y - Y_{12}}{\sqrt{(X - X')^2 + (Y - Y_{12})^2 + Z^2}} dX'$
 $= -[(Y - Y_{12}^0)I_{\eta}(0, -3) - Y_{12}^1I_{\eta}(1, -3)]$
 $= -\frac{Y_{12}^1}{a} \frac{1}{\sqrt{aX'^2 + bX' + c}} \Big|_{X_1}^{X_2}$

$$\begin{split} & - \Big\{ (Y - Y_{12}^{0}) + Y_{12}^{1} \frac{b}{2a} \Big\} I_{7}(0, -3) \\ \exists z : iz \\ & aX'^{2} + bX' + c = (X - X')^{2} + (Y - Y_{12})^{2} + Z^{2} \\ \forall z, 0, 1, 3) = \frac{-Y_{12}^{1}}{1 + (Y_{12}^{1})^{2}} \frac{1}{\sqrt{aX'^{2} + bX' + c}} \Big|_{X_{1}}^{X_{2}} \\ & - \frac{(Y - Y_{12}^{0}) - Y_{12}^{1}X}{1 + (Y_{12}^{1})^{2}} I_{7}(0, -3) \\ \hline \\ & \overline{F}_{7}(0, 1, 3) = -C_{12}S_{12} \Big(\frac{1}{\rho_{2}} - \frac{1}{\rho_{1}}\Big) - C_{12}R_{12}I_{7}(0, -3) \\ \hline \\ & \overline{E}_{7}(0, -3) = \frac{4aX' + 2b}{-(b^{2} - 4ac)} \frac{1}{\sqrt{aX'^{2} + bX' + c}} \Big|_{X_{1}}^{X_{2}} \\ & z : \forall, n, 0, -3) = \frac{4aX' + 2b}{-(b^{2} - 4ac)} \frac{1}{\sqrt{aX'^{2} + bX' + c}} \Big|_{X_{1}}^{X_{2}} \\ & z : \forall, n, 0, -3) = \frac{4aX' + 2b}{-(b^{2} - 4ac)} \frac{1}{\sqrt{aX'^{2} + bX' + c}} \Big|_{X_{1}}^{X_{2}} \\ & z : \forall, n, b, c & 0 \forall \Xi \& h^{5} \land b \\ b^{2} - 4ac = 4[X + Y_{12}^{1}(Y - Y_{12}^{0})]^{2} \\ & -4[1 + (Y_{12}^{1})^{2}][X^{2} + (Y - Y_{12}^{0})^{2} + Z^{2}] \\ & -4[(Y - Y_{12}^{0}) + Z^{2} + (Y_{12}^{1})^{2}X^{2} \\ & + (Y_{12}^{1})^{2}Z^{2} - 2XY_{12}^{1}(Y - Y_{12}^{0})]^{2} \\ & = -4[(Y - Y_{12}^{0} - Y_{12}^{1}X)^{2} + (1 + (Y_{12}^{1})^{2}]Z^{2}] \\ & = -4[(Y - Y_{12}^{0} - Y_{12}^{1}X)^{2} + (1 + (Y_{12}^{1})^{2}]Z^{2}] \\ & = -4[(Y - Y_{12}^{0} - Y_{12}^{1}X)^{2} + (1 + (Y_{12}^{1})^{2}]Z^{2}] \\ & = -4[(Y - Y_{12}^{0} - Y_{12}^{1}X)^{2} + (1 + (Y_{12}^{1})^{2}]Z^{2}] \\ & = -4[(Y - Y_{12}^{0} - Y_{12}^{1}X)^{2} + (1 + (Y_{12}^{1})^{2}]Z^{2}] \\ & = -4[(X + Y_{12}^{1}(Y - Y_{12}^{0})]^{2} \\ & = -2[X + Y_{12}^{1}(Y - Y_{12}^{0})]^{2} \\ & = -2[(X - X') + Y_{12}^{1}(Y - Y') + X' + (Y_{12}^{1})^{2}X'] \\ & = -2[(X - X') + Y_{12}^{1}(Y - Y') + X' + (Y_{12}^{1})^{2}X'] \\ & = -2[(X - X') + Y_{12}^{1}(Y - Y) + X' + (Y_{12}^{1})^{2}X'] \\ & = -2[(X - X') + Y_{12}^{1}(Y - Y) + X' + (Y_{12}^{1})^{2}X'] \\ & = -2[(X - X') + Y_{12}^{1}(Y - Y) + X' + (Y_{12}^{1})^{2}X'] \\ & = -2[(X - X') + Y_{12}^{1}(Y - Y) + X' + (Y_{12}^{1})^{2}X'] \\ & = -2[(X - X') + Y_{12}^{1}(Y - Y_{12}^{0}) + (Y_{12}^{0}) \\ & = -\frac{1}{(R_{12}^{1}^{2}^{2} + Z^{2}} \Big(\frac{1}{\rho_{2}} - \frac{1}{\rho_{1}}\Big) \\ & + \frac{1}{(R_{12}^{1}^{2}^{2} + Z^{2}} \Big(\frac{1}{\rho_{2}} - \frac{1}{\rho$$

(501)

 $-C_{12}R_{12}I_{\eta}(0, -3)$

$$= \frac{-R_{12}}{(R_{12})^2 + Z^2} \left\{ \frac{s_2}{\rho_2} - \frac{s_1}{\rho_1} \right\}$$

従って

$$H(0, 0, 5) = \frac{1}{3Z^2} \left[H(0, 0, 3) - \sum \frac{-R_{12}}{(R_{12})^2 + Z^2} \left\{ \frac{s_2}{\rho_2} - \frac{s_1}{\rho_1} \right\} \right]$$

附録 F 関数 H(1, 0, 5), H(0, 1, 5)

漸化式

$$H(M+2, N, K) = \frac{M+1}{K-2} H(M, N, K-2) + \sum \frac{1}{K-2} F_{\epsilon}(M+1, N, K-2)$$

$$I \ge \frac{1}{K-2} F_{\epsilon}(M+1, N, K-2)$$

$$I \ge \frac{1}{K-2} F_{\epsilon}(M+1, N, K-2)$$

$$H(1, 0, 5) = \sum \frac{1}{3} F_{\epsilon}(0, 0, 3)$$

$$= \sum \frac{1}{3} \int_{Y_{1}}^{Y_{2}} \frac{1}{\rho^{3}} dY'$$

$$= \sum \frac{1}{3} I_{\epsilon}(0, -3)$$

ここで
$$I_{\epsilon}(0, -3)$$
 は附録 E の結果を用いて
 $I_{\epsilon}(0, -3) = \frac{S_{12}}{(R_{12})^2 + Z^2} \left\{ \frac{s_2}{\rho_2} - \frac{s_1}{\rho_1} \right\}$
漸化式
 $H(M, N+2, K) = \frac{N+1}{K-2} H(M, N, K-2)$
 $+ \sum \frac{1}{K-2} F_{\eta}(M, N+1, K-2)$
において、 $M=0, N=-1, K=5$ とおくと
 $H(0, 1, 5) = \sum \frac{1}{3} F_{\eta}(0, 0, 3)$
 $= -\sum \frac{1}{3} \int_{x_1}^{x_2} \frac{1}{\rho^3} dX'$
 $= -\sum \frac{1}{3} I_{\eta}(0, -3)$
ここで、 $I_{\eta}(0, -3)$ は附録 E の結果を用いて

$$I_{\eta}(0, -3) = \frac{C_{12}}{(R_{12})^2 + Z^2} \left(\frac{s_2}{\rho_2} - \frac{s_1}{\rho_1}\right)$$

(502)