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ABSTRACT 

Computation of the two-dimensional incompressible turbulent flow around 

a wind section in cascade was made using the finite difference method. 

The computational scheme used in this paper is based on the Implicit 

Approximate Factorization scheme, which has been developed at the Ship 

Research Institute. 
The overlapping grid technique was used in order to generate well-condi-

tioned, body-fitted coordinates for the complicated computational domain 

around a cascade wing section easily. 
The computed results were compared in two steps. Firstly, the compara-

tive computational study between the present method and the higher-order 

boundary layer integral method was carried out and the merit and demerit of 

the present scheme were discussed in detail. Secondly, the. comparison with 

experimental data (lift and drag coefficient) was made. The present method 

showed reasonable agreement with them. 
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Propeller diameter 

Propeller pitch 

Turbulent kinetic energy 

Chord length of a wing section 

Static pressure 

Upstream static pressure 

Propeller radius 

Reynolds number based on upstream uniform velocity and chord 
length of a wing section 

Spacing of a wing cascade 

Upstream uniform velocity components in x and y direction 
Upstream uniform velocity components in x and y direction 
(nominal value) 

Cartesian coordinate system with its origin at the leading edge of 
a wing section 
Pressure coefficient 

Drag coefficient 

Lift coefficient 
Inflow angle 

Inflow angle (nominal value) 

Outflow angle 

Flow turning angle (= a2 -a1) 
Geometrical mean flow angle(= 0.5 x (a2 + a1)) 

Coefficient of pseudo-compressibility 

Staggered angle of a wing cascade 

Displacement thickness 

Momentum thickness 

Eddy viscosity 

Body-fitted curvilinear coordinate system 
Solidity of a wing cascade (= l /S) 

Coefficient of 4-th order numerical dissipation term 

(Notice: Non-dimensionalization is based on the upstream uniform velocity 
and the chord length of a wing section. The force is decomposed into com-
ponents parallel and perpendicular to the geometrical mean velocity) 
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1. INTRODUCTION 

The application of the Finite Difference Method (FDM) to the incom-

pressible viscous flow problem has been developed remarkably with the 

improvement of the computer hardware. In particular, computation of the 

two-dimensional turbulent flow can be regarded nearly as a practical tool 
of design and analysis judging from the CPU time and required memory. 

Nevertheless, we have few quantitative studies on the accuracy of the com-

puted results, especially of the lift and drag coefficients, which are of great 

importance in engineering problem. 

In the present study, as a first step toward the numerical simulation of 
turbulent flow around a marine propeller, a series computation of the 

two-dimensional incompressible turbulent flow around a cascade wing sec-

tion have been made using the finite difference method. 

The numerical scheme used here is based on the Implicit Approximate 
Factorization scheme, which was developed by Kodama1>2> into a computer 

code named "NICE2D". The grid generation is one of the most troublesome 

problem because of the complicated shape of computational domain around 

a cascade wing section. Nakahashi et al.3> proposed the FDM-FEM zonal 

approach. In this paper, the simple overlapping grid technique is used to 
overcome such difficulty. 

As a numerical method for the two-dimensional incompressible viscous 

flow, boundary layer calculation method, which is composed of boundary 

element method for outer inviscid flow and integral method for boundary 

layer, has been widely used, and it can predict the flow field well in case of 
rather simple flow geometry. 

Therefore, in this paper, the FDM computed results are compared with 
both the experimental data and those by Higher-order Boundary Layer 

calculation Method (HBLM)4>, in which viscous-inviscid interaction is 

introduced as a displacement effect of boundary layer. Surface pressure 

distribution, boundary layer characteristic distribution, location of transition 

point and drag and lift coefficients are examined quantitatively in detail 

in the comparative computational study. Finally, lift and drag coefficients 
are compared with the experimental data. 

2. COMPUTATIONAL METHOD 

2.1 Selection of a wing cascade 

The main purpose of this study is to investigate the applicability of the 
present scheme to the three-dimensional computation of flow field around a 
marine propeller. Then, as a representative of a marine propeller, MP0221, 
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which was used by Koyama et al.5> in order to investigate the blade-tip 
singularities and accuracy of the numerical scheme, is selected. 

The two-climensional cascade wing is obtained by developing the cylin-
drical surface at the radius of 0.7R (CASE-1). A wing section is NACA0006 
and symmetrical. Table 1 shows the principal particulars of the model 
propeller and the derived cascade wing. To investigate the blade interaction 
comprehensively, another computation is made with the same wing section 
but changing staggered angle and solidity (CASE-2). 

Table 1 ~f~~iS~[i~~ticulars of Model Propeller and Cascade 
Wing Section 

Propeller Number MP0221 

Pitch Ratio 〇.850

Expanded Ac-ea Ratio 0,515 

Boss Ratio 0.313 

Blade Thickness Ratio 0.048 

Number of Blades 3 

Rake Ang-le [deg) 0.0 

Blade Section NACA4-digit 

Cuscade Nu1nbet' CASE-1 

Ra.dial PosJtion 0.7R 

Solidity 0.656 

Staggered Angle [deg) 68.9 

Wing Section NACA0006 

The quantitative comparison between the computed results and experi-

mental data is essential for the development of the numerical scheme. There-
fore, a series of two-dimensional cascade computation of the compressor 
blade6> are also made (CASE-3,4,5,6,7) and the computed results are com-
pared with the experimental data. The wing section is NACA65-010, which 
is relatively thick (10% of the chord length) and symmetrical. 
The general arrangement of the wing section in cascade is shown in 
Fig. 1. 
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Fig. 1 General Arrangement of Cascade Wing 

Table 2 shows computational conditions for the above seven cases. In 

every case, attack angle is small and Reynolds number is so large that natural 

transition from laminar to turbulent flow occurs. 

Table 2 Computational Conditions 

CASE WING SECTION REYNOLDS STAGGERED SOLIDITY ATTACK 

NUMBER ANG.[deg) ANG. (deg) 

1 NACA0006 1000000 68.9 0.656 0.0 

2 NACA0006 1000000 45.0 1.286 0.0 

3 NACA65-010 245000 45.0 1.000 0.0 

4 NACA65-010 245000 42.0 1.000 -3.0 

5 NACA65-010 245000 39.0 1.000 -6.0 

6 NACA65-010 245000 45.0 1.500 0.0 

7 NACA65-010 245000 40.0 1.500 -5.0 

2.2 Grid generation 

2.2.1 Generals 

Grid generation often becomes a bottleneck for the numerical simula-
tion of flow using the finite difference method. Especially, the more com-
plicated the shape of the computational domain is, the more difficult it is. 
For the cascade problem treated in this paper, the large values of staggered 
angle and solidity cause such difficulty. (The staggered angle of a cascade 
wing derived from a marine propeller can be expressed by eq. (2.2.1), and 
it varies from 60 to 70 degrees.) 
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忙竺-tan―1(］!!_ （O<k ~ 1) 2 k1T D) (2.2.1) 

Moreover, taking applicability for the three-dimensional computation 
into consideration, it is desirable for the coordinate system to be generated 
adapting to the wake region (or the trailing vortex distribution in case of a 
marine propeller problem) as much as possible. 
Several remedies have been proposed3> and in this paper, simple over-
lapping grid technique is adopted. That is, firstly, the grid system is gener-
ated independently for the domain of a single wing section. Secondly, such 
grid systems for a single wing are piled and connected with each other by 
making overlapping area beyond the both side boundaries. Thus, a grid 
system for a wing cascade, which is adapted to the wake region and smooth 
enough for overall domain, can be obtained easily (see Fig. 1). The pro-
cedure of grid generation is given in the next section in detail. 

2.2.2 Procedure of grid generation 

(1) For each wing section, set a rectangular computational domain. In this 
study, an upstream boundary is set from three to seven times the chord 
length ahead of the wing section and a downstream boundary from five to 
ten times after that. 

(2) An H-type is selected as a grid topology because the aspect ratio of the 
rectangular domain is so large. Grid lines are controlled to have orthogonal-
ity near the body surface and side boundaries (AB, DC in Fig. 1). 
Fig. 2 shows an example of the grid system. This figure corresponds to 
the CASE-1, and the minimum grid spacing along the normal direction on a 
wing surface is equal to 0.2 / ✓瓦． The number of grid points is 120 in 
t-direction and 48 in r,-direction. 

庄タカ．—・雪言雷雪雪雷字己·--土
Fig. 2 Computational Grid -1 (CASE-1) 

(3) A grid system for a single wing section is piled to get a grid system for 
overall computational domain as shown in Fig. 1. Because the zonal match-
ing has not yet been done, the information cannot be transferred to the 
neighbouring rectangular domains beyond the side boundaries. 
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(4) A method of zonal matching is as follows; A rectangular computational 
domain is expanded beyond the both side boundaries to the neighbour 
regions (see hatched area of Figs. 1 and 2) to make overlapping zones. That 
is, extend the ~ = const.-line straight and normal to the side boundaries, 
and register the intersections with r, = const.-line in the neighbouring domain 
as new grid points. 

(5) In this study, 5-point central difference is used as a discretization 
formula in space. Therefore, at least two grid points are needed along one 
~ = const.-line in the overlapping zone. Although the use of more grid 
points are considered to improve the matching process, two-points is selected 
on account of economical constraint. 

(6) Fig. 3 shows the grid system for a cascade wing (CASE-1), where coordi-
nate system is rotated in clockwise direction at an angle of'Y． 

Fig. 3 Computational Grid -2 (CASE-1) 

2.3 Computational scheme 

2.3.1 Generals 

The numerical scheme used here is based on "NICE2D" code, Implicit 
Approximate Factorization scheme. The detail of the algorithm was given 
by Kodama1>,2> and only the summary is presented below. 

(155) 
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2.3.2 Summary of the computational scheme 

(1) G ・oveming equations 
Governing equations are incompressible Reynolds-averaged N avier-Stokes 
equations (in non-conservation form) and the continuity equation with 
pseudo-compressibility. 
N on-dimensionalization is made using upstream uniform velocity, a 
chord length of a wing section and density of fluid. 

1 
Ut + UUx + VUy = -Px + ~ (Uxx + Uyy) -(u'2)x -(u'v')y 

Re 

1 
Vt + UVx + VVy = -Py + -;;-(Vxx + Vyy) -(u'v')x -(v'2)y 

Re 

(2.3.1) 

(2.3.2) 

Pt + ~ (ux +Vy) = 0 (2.3.3) 

where all subscripts denote partial differentiation. 
The above equations can be rewritten using the eddy viscosity expression 
given in eq.(2.3.4) in vector form., 

au;. auj 
-u,v;＝叫（一＋ー） 

axj ax; 

qt + Fqx + Gqy = CR (Qxx + Qyy) 

where, 

q=[>
G = [ ~ : : Y v ~ 2v y ~] 

u-2Vx -Vy 

F = ［ ou-VX  
{3 0 

CR = ［; v o 
0 0 

(2.3.4) 

(2.3.5) 

(2.3.6) 

゜
and for convenience, 

1 2 
—+ pt ~ v, p +-K~ p 
Re.'.  3 

(2.3. 7) 

(2) Coordinate transformation 
Transforming the x, y-coordinate into ~, 11-coordinate system, the 
derivatives on x and y can be replaced as follows; 

qx=aqt+bq'Tl, a=Jy'Tl, b三ーJyt (2.3.8) 
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Qy =dqr +eqri, d三 -Jxri,e三 Jxt

qxx+qyy= dqtt+ bqnn+ dqEn ＋和＋ hqn 

(2.3.9) 

(2.3.10) 

where J is the Jacobian and its definition is given in eq.(2.3.15). 
Therefore, eq.(2.3.5) can be expressed in the~, 11-coordinate system, 

qt + Aqt + Bq'T/ = Cn (dqH + bq'T/'T/ + dqt'Tl + gqt + hq'T/) (2.3.11) 

where, 

A三 aF+ dG, B三 bF+eG (2.3.12) 

and the summary of denifition of notation used above is as follows; 

d三 a2+ d2 b 三ザ＋e2

＾ d 三 2(ab+ de) g 三 aat+ bari + ddt + edri 

h三 abt+ bbri + det + eeri 

at三 JtYri + JYtri 

bt三ー (JrYt+ JyH) 

dと三ー (JtXri+ JXtri) 

eと三 JtXt+ JxH 

an三 JnYn+Jynn 

bri三ー (JriYt + JYtri) 

dri三ー (J荘 ri+ Jxriri) 

en三 JriXt+ Jxtri 

1 
J 三— S 三 XtY'Tl -X'TlYt 
s 

Jt三ー炉St Sと三 XttY'Tl+ XtY和― (xt'TlYt+ X'TlYtt) 

Jn 三— J2S'Tl S'Tl三 Xt'TlY'Tl+ XtY'Tl'Tl -(x'Tl'TlYt + x'Tl知）

l (2.3.13) 
(2.3.14) 

(2.3.15) 

(3) Numerical dissipation 

In order to improve the stability of numerical scheme, the 4-th order 
numerical dissipation terms are added. 

qt + Aqt + Bq'Y/ = CR (aqn + bq'Y/'Y/ + dq和項qt+hq孔

-WtqttH -Wが1nnnn

(2.3.16) 

(4) Discretization in time and local Iinearization of nonlinear term 
Using the Euler-implicit integration of time, and local linearization of 
convection term, eq.(2.3.16) can be converted into, 

(157) 
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{ 1 + Lit c A +A~ + 13 + n; -cR (a;; + 6 ~ I+ • t[A+A —+ B+  B--CR (d - ＋ b― 
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△qn三 qn+l_qn 

―

―

 

0

0

0

 

u
t
v
t
o
 

d

d

 

u
t
v
t
o
 

a

a

 

―

―

 ＿＿
一
Â 
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(2.3.17) 

(2.3.18) 

(2.3.19) 

In the above equation, the cross derivative term is treated explicitly. 

(5) App roximate factorization 

By neglecting the term of order（△t) 2, the above equation can be 
factorized as follows; 

t-sweep: 
{ a a2 a a4 
[＋△t[A+A--CR (d —+ g —) ＋ Q ―-］△qn* ~-CR(aiど~) + Wt a?] } 

=—• t [Aqt + Bq11 -cR (aqtt + bqT/T/ + dqtT/＋和＋hqT/)

＋叫知tt十叫釦m]n十△tdCR△qt;l

(2.3.20) 

77-sweep: 

{I+ At [B + B-!:--CR (b ~ + h !:) + Wri -f. I+△t［B+B--CR (b--+h-） ＋ w--
研 呪 a11'・ -ri aが] }△が＝△が＊

(2.3.21) 

(6) Discretization in space 

Except for the neighborhood of the body surface, 5-point central 
difference is used for discretization of space derivatives. Finally, the 
following expressions are given. 
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とーsweep:

Kii△qf 2,i + Lii△qfl,j + M吟叱＋N吟qf+1.j+ 0ij△qi+2.j = Rij 
(2.3.22) 

r,-sweep: 

kij△Qi, j-2 +砂△qi,j-1+Mij△qi,j +Nh△qi,j+1 + 0b△qi,j+2 =Rij 
(2.3.23) 

where 

kij 

Lij 

△t 
三一 [A+(a -g)CR + 12wtl1 
12 

△t 
-~ [2A +(4a -2g)CR + 12wtl1 
3 

5 
Mij三 /+△t [A+ ~a CR + 6wtl1 

2 

Nij 
△t 
三ー[2A-（4a + 2g)CR -12wtl1 
3 

△t 
°ij三ー[-A+(a+ g)似＋ 12wtl1
12 

Rij —• t [Aqt + Bqri -cR (aqH + bqriri + dqtri＋如＋hqri)

+w臼叫＋ wnqnnnn] ＋△tdc心 q；訂

△t 
Kii三一[B + (b -h) CR + 12 WT/ I] 
12 

L' ij 
△t 

-~ [2B + (4b -2h)似＋ 12w71/]
3 

5 
Mb三 I+△t[B+―-bcR + 6叫 I]

2 

Nij 三竺 [2B-(4b + 2h)CR -12叫 J]
3 

△t 
oij三ー[-B+(b+h)CR+12叫 J]
12 

Rb △q… 

(2.3.24) 

(2.3.25) 

11 
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(7) Turbulence model 

In the range of Reynolds Number used in this study, transition from 

laminar to turbulent flow occurs and has a great influence on the flow 
characteristics. Unfortunately, we have no other existing turbulence model 
which can treat the transition phenomenon. Therefore, the zero-equation 
turbulence model, which can judge transition semi-empirically, is used. If 

there occurs no separation, the turbulent flow developing on a wing surface 

belongs to the relatively simple flow, which is considered to be able to be 
predicted well by the zero-equation turbulence model. 
In the present study, a Baldwin-Lomax zero-equation turbulence 

model7>, which has been used widely in aeronautics, is adopted. The 

comparison between the computed results with and without transition 
(i.e. turbulent from leading edge) is also made. 

(8) Boundary conditions 

1. Inflow boundary 
Naturally, the inflow conditions should have been set on the line AD' 
in Fig. 1. On account of the rectangular shape of the computational dom虹n
used in this study, the uniform flow conditions are specified at the inflow 
boundary ADD'. 

U = U1n, V = Vin, Q'. = 0'.1n, P = 0 (2.3.26) 

The computed results show some discontinuous behaviour near the 
inflow boundary. Therefore, "nominal" inflow conditions are modified as 

follows. That is, the inflow boundary (ADD') is set as far upstream as 

possible and "effective" inflow conditions are specified by averaging the 
flow properties between once and twice the chord length ahead of the 

leading edge in the upstream direction. 

u = U1, u = V1, a= 0'.1, P = P1 (2.3.27) 

2. Outflow boundary 

The flow properties are extrapolated with zero-gradient in 炉—direction.

au av ap 
ー＝ー＝一＝ 0 
昧昧咋

(2.3.28) 

3. Body surface 
Because the zero-equation turbulence model is used in the present 
study, no-slip condition for velocity components is given on the body 
surface. Boundary condition for pressure is derived from the momentum 
equations. 
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U = V = 0 

Pn 
1 
＝ 
Re 
(bu1111 + ev1111 +凡＋叫）

} (2.3.29) 

where, 

b三 YtJ[ 
x11xn + Y11Yn 

Xt2 + Yt2 
+ J (Xt Y1111―YtX1111)] 

x11xn + Y11Yn 
6 三—XとJ [ ~ + J(XtY1111―YtX1717)] 

ず＋Yt2

、

ン

，
(2.3.30) 

4. Side boundary 
Periodic boundary condition is given at the side boundaries. That is, 

information at the extended overlapping zone is given explicitly by 
interpolating the values at the corresponding inner grid points (see hatched 
area in Fig. 1). A four-point Lagrange interpolation is used as an inter-

polation formula. For example, at the side boundary (j = jm -2), eq.(2.3.23) 
can be modified as follows. 

Kt,im -2△q7,jm -4 + Lt,jm -2△q7,jm-3 + M;,jm-2△q7, jm -2 

= R;,jm-2 -N;,jm-2△q7,,;い-o;,jm-2△q7,此 (2.3.31) 

(9) Others 

Following are the values of parameters used in the computation. 

f3 = 10, 叫＝叫＝10 (2.3.32) 

Convergence is attained after 3000 (CASE-1, 2), and 2000 timesteps 
(CASE-3, 4, 5, 6, 7). CPU time required per timestep is 20 seconds, using 
SUN-4/260 workstation. 

3. COMPUTED RESULTS AND DISCUSSIONS 

3.1 Pressure contours 

Pressure contours for CASE-1 and 2 are shown in Figs. 4 and 5. Dashed 

lines indicate negative pressure and the pitch（△p) is 0.01. 

Although there is great discrepancy of the grid resolution in←-direction 
in the overlapping zones (see Fig. 3), the equi-pressure lines are connected 
smoothly beyond the periodic boundaries. Therefore the zonal-matching 
technique used in this study is found to be successful to the cascade problem 

and the corresponding marine propeller problem. 

(161) 
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In CASE-2, because wing sections are located closer to each other, 
pressure contours are more unsymmetrical, which is mainly due to the 
displacement effect of a wing section. On the other hand, judging from 
Fig. 4 (CASE-1), the pressure contours are nearly symmetrical and the 
contribution of such displacement effect is found to be small. It suggests 
that the effect of trailing-vortex distribution rather than the displacement 
effect of a blade itself contributes blade interaction in case of a marine 
propeller problem. 
Although not visible in Figs. 4 and 5, there is some pressure vibration 
near the leading edge of the wing section. The wing sections used in this 
study have a relatively large radius of the leading edge and it is very dif-
ficult to be fitted in the vicinity of the leading edge by using an H-type 
grid. Such condition will be improved in the marine propeller problem, 
because the leading-edge radius of a marine propeller is generally smaller. 
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3.2 Comparative computational study 

3.2.1 Surface pressure distribution 

Computed surface pressure distribution for every case is shown with 

HBLM results in Figs. 6 to 12. The definition of upper/lower surface of a 
wing section is given in Fig. 1. 

The two computed results show reasonable agreement except for the 

following two points. 

Firstly, for cases of a thick wing section (NACA65-010), it is more 
prominent for the FDM results to make a hollow in the vicinity of the 

trailing edge. It is considered to be due to the acceleration effect by the 

wake region, which the parabolic-type numerical scheme such as HBLM 

cannot treat easily. 

Secondly, the negative pressure peak near the leading edge is generally 
lower in the FDM result than in the HBLM result. As one of the reasons, it 
can be pointed out that mass flux cannot be conserved well near the leading 
edge. Because the continuity equation to be solved is modified as follows 
and the contribution of the fourth-order numerical dissipation term becomes 

greater in the region where pressure changes steeply. (In the present calcula-
tion, w, the coefficient of the fourth-order numerical dissipation term is 
set 10, which is relatively large.) 

Pt+(3 （Ux + Vy) + WtPnn十叫Pnnnn= 0 (3.2.1) 
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3.2.2 Boundary layer characteristic ・distribution 

Displacement thickness and momentum thickness distributions are given 
in Figs. 13 to 19 and in Figs. 20 to 26 respectively. 
In the HBLM results, displacement thickness changes discontinuously at 
the transition point because numerical method changes from Thwaites' 
(laminar) to Head's method (turbulent boundary layer), keeping the momen-

tum thickness continuously. The similar phenomenon can be found in the 
FDM results (for example see Fig. 15, upper surface), although it is not so 
remarkable there. 
Both displacement and momentum thicknesses are apt to diverge near 
the trailing edge in the HBLM results, while the FDM results often make a 
hump. It is considered to correspond to the behavior of surface pressure 
near the trailing edge. Because the HBLM cannot treat the strong, elliptic 
interaction between boundary layer and wake region, the pressure increases 
monotonously toward the trailing edge and boundary layer develops too 
much. 
In the laminar flow region, the thicknesses in the FDM results are gener-
ally smaller than those in the HBLM's. That is mainly due to insufficiency 
of the grid resolution in this region. For example, only 6 grid points are 
included within the boundary layer at 30% chord position, (while 11 points 
at 95% chord) for the lower side of CASE-5. Stock et aI.8> pointed out that 
similar under-prediction can be improved by using the solution-adaptive 
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grid generation technique and improving the grid resolution within the 
boundary layer. Moreover, smaller value of negative pressure peak predicted 
by FDM and the corresponding pressure gradient aggravate such trend. 
Table 3 shows the comparison of momentum and displacement thickness 
near the trailing edge (95% chord position). Fig. 27 gives the correlation of 
these data. In this figure, the sum of the upper and lower surface values are 
plotted. 
The agreement is generally good and the difference is within士20%for 
momentum thickness. The discrepancy of displacement thickness data is 
greater because of the discontinuous behavior at the transition point in the 
HBLM results. 

Table 3 ~OP.,I!_arl_~on ?t Di~P.lacement and Momentum Thickness 
at 95% Chord Position 

MOMENTUM THICKNESS・100 DISPLACEMENT THICKNESS・100

CASE F D M II B L M F D M II B L M 

UPPER LOWER UPPER LOWER UPPER LOWER UPPER LOWER 

1 0.1397 0.1382 0.1660 0.1566 o. 2147 o. 2117 0.2461 0.2312 

2 0.1321 0.1021 0.1952 0.0774 0.1994 0.1577 0.2890 0.1113 

3 0.2475 0.1821 0.2213 0.1914 0.4330 0.3296 0.3412 0.2924 

4 0.2379 0.2371 0.2112 0.2165 0. 4147 0.4157 0.3259 0.3360 

5 0.2399 0.3341 0.2142 0.2368 0.4174 0.5789 0.3322 0.3703 

6 0.2000 0.2164 0.2270 0.1728 0.3466 0.4358 0.3481 0.2664 

7 0.2162 0.2238 0.2199 0.2160 0.3760 0.4033 0.3393 0.3404 
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3.2.3 Location of the transition point 

Comparison of the location of the transition point is shown in Table 4. 
In case of HBLM, laminar separation occurs before transition except in 
CASE-1, while such phenomenon cannot be observed in FDM results. 
In the computation of NACA65-010, the agreement is very good. It is 
mainly because of the shape of wing section. That is, strong adverse pressure-
gradient region starts at the mid-chord position after the flat pressure distri-
bution in the former half. On the other hand, the pressure gradient is more 
moderate overall in case of NACA0006. Therefore, it is more difficult in 
the NACA0006 results to prescribe the transition point. It also should be 
pointed out that the natural transition is apt to be predicted farther down-
stream than experimental data by Cebeci-Smith's criterion used in the HBLM 
calculation when pressure distribution is relatively flat. (For example, a 
lower surface of CASE-2) 

Table 4 Comparison of Location of Transition Point (Chord Length= 1.0) 

F D M II B L M II B L M 
(LAtttlNAR SEPARATION) 

CASE 

UPPER LOWER UPPER LOIYEI~ UPPER LOWER 

1 0.3643 0.3643 0.5470 0.5782 -----・ ---~ 

2 0.3121 0.4243 0.3910 0.9302 ------ 0.8291 

3 0.7026 0.7401 0.6985 0.7809 0.5510 0.6169 

4 0. 7729 0.7729 0.7269 0. 7269 0.5621 0.5729 

5 0. 7729 0.7026 0.7269 0.6985 0.5723 0.5391 

6 0.7026 0.8872 0.6693 0.8305 0.5206 0.6746 

7 0.6600 0.7026 0.6985 0.7544 0.5336 0.6015 

3.2.4 Drag and Lift coefficients 

Table 5 shows the comparison of drag and lift coefficients between the 
FDM and the HBLM results. Forces are evaluated by pressure and shear 
stress integration on a wing surface and decomposed parallel and perpen-
dicular to the geometrical mean velocity. 
The drag coefficients by FDM are larger than those of HBLM in all cases. 
Especially, such difference becomes greater in the N ACA0006-computation 
(CASE-1, 2). The following two are pointed out as the reasons for this. It 
was reported that the shear stress is generally overpredicted by Baldwin-
Lomax turbulence model in the adverse pressure gradient region8 >. More-
over, the difference of the location of natural transition point makes such 
difference greater in CASE-1 and 2. 



3.2.5 Summary of the comparative study 

(1) Near the leading edge, the HBLM predicts flow properties with better 
accuracy than the FDM, and vice versa near the trailing edge. 

(2) In case of NACA65-010 computation, the both results coincide well, 
while poor agreement is shown in CASE-1 and 2. In particular, the differ-
ences of predicted drag coefficients and transition points between the two 
are large. 

CASE METIIOD 

l fo'DM 
1113LM 

2 FDM 
IIULM 

3 FOM 
IIBLM 

4 FDM 
IIBLM 

5 ドDM
IIBLM 

6 F1)M 
IIBLM 

7 ドI)M
IIULM 

Table 5 Comparison of Lift and Drag Coefficient 
between FDM and HBLM 

Re r 〇＇ “1  a 2 △ a 

1000000 68.9 0.656 -0.3 -0.5 0.2 
1000000 68.9 0.656 -0.3 -0.5 0.2 

1000000 45.0 1.286 -0.2 -l. 3 1.1 
1000000 45.0 1.286 -0.2 -1. 5 1. 3 

245000 -i~.o 1.000 -0.3 -1. 7 l. 4 
2-15000 45.0 1.000 -0,3 -2.0 1. 7 

245000 -12.0 1.000 -2.4 -l. 8 0.6 
245000 42.0 1.000 -2.4 -2.0 0.4 

245000 39,0 1. ooo ---1. 7 -1.8 2.9 
2-15000 39.0 1.000 -4.7 -2.0 2.7 

2-15000 -15.0 1.500 -0.4 -2.6 -2.2 
2-15000 -15.0 1.500 -0.4 -3.2 -2.8 

245000 40.0 1.500 --1. 3 -2.5 1.8 
245000 40.0 1.500 -4.3 -2.9 1. 4 

3.3 Influence of transition in the FDM results 

CDl CLl 

0.0073 0.0381> 
0.0054 0.0325 

0,0075 0.0494 
0.0054 0.0521 

0.0097 0.0862 
0.0087 0.0921 

〇.0096 -0.0242 
0.0087 -0.0213 

0.0098 -0.1256 
0.0088 -0.1239 

0.0115 0.0947 
0.0097 0. 102-t 

0.0099 -0.0495 
0.0005 -0.0-123 

Computation with judgement of transition usually deteriorates the 
convergence rate of the numerical scheme. Therefore, some computations 
have been made without transition (i.e. assumed turbulent flow developing 
from leading edge) or with fixed transition point. Then, comparison of 
boundary layer characteristic distributions between with and without 
transition is made and discuss the significance of the judgement of natural 
transition. 
Figs. 28, 29 show the comparison of displacement and momentum 
thicknesses in CASE-1 and Figs. 30, 31 in CASE-3. In both cases, the thick-
nesses without transition show greater by about 30% than those with transi-
tion. It naturally leads to the overestimation of drag coefficient (see next 
section). Therefore, judgement of transition should be included in the 
computation of turbulent flow, however it may make the convergence 
history worse. 
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3.4 Comparison with experimental data 

3.4.1 Accuracy of the experimental data 

NACA made extensive series tests on the performance of a compressor 
blade at low speed6>. At the University of Tokyo, three cases were chosen 
from reference6> and tested in order to check the accuracy of his experi-
mental results9 >. Table 6 shows a comparison of both experimental results. 

Lift coefficients and the flow turning angles（△a) agree well. On the 
other hand, the difference in the drag coefficients is about 15% and that of 
the inflow attack angles (a1) is at most 10%. Therefore, it can be concluded 
that the measurement-error included in the experimental data is around 10%. 

Table 6 Accuracy of Experimental Data 
(NACA from Ref. 6 and T.U. from Ref. 9) 

CASE EXPERIMENT Re r 6 a 1 a 2 △ a CDl CLl 

7 NACA 245000 40.0 1.500 -5.0 -1. 2 3.8 0.011.5 -0.0934 
T.U. 282000 40.0 1.500 -5.6 -2.0 3.6 0.0099 -0.0804 

8 NACA 245000 34.0 1,500 -11.0 -1.6 9.4 0.0106 -0.2360 
T.U. 327000 34.0 1.500 -11.6 -2.2 9.4 0.0119 -0.2400 

， NACA 245000 28.0 1.500 -17.0 -2.3 14.7 0.0218 -0.3350 
T.U. 344000 28.0 1.500 -17.6 -2.8 14.8 0.0186 -0.3380 

3.4.2 Comparison of lift and drag coefficients 

Table 7 shows the comparison of lift and drag coefficients among com-
puted (FDM and HBLM) and experimental data6>. Correlations of drag and 
lift coefficients are given in Figs. 32 and 33 respectively. 
The FDM results show better agreement with the experimental data 
than the HBLM results. In particular, in CASE-3, 4 and 5, both lift and drag 
coefficients show very good agreement between FDM and experiment and 
the differences are within 10%, which is the same value as the measurement-
error noted above. 
As the solidity increases (CASE-6 and 7), the discrepancy between the 
computed results and the experimental data increases. Especially, the 
accuracy of the predicted lift coefficient becomes worse. That may be due to 
the limitation of the simple zonal-matching technique used in this study, 
although the value of solidity is generally not so large when treating the 
problem of the blade interaction of a marine propeller. 

Unless taking the transition into consideration, the FDM results would 
overestimate the experimental data by more than 30% (CASE-3) and it 
corresponds to the boundary layer characteristic data. 

25 

(173) 



26 

Table 7 Comparison of Lift and Drag Coefficie_nt 
between FDM  and Experimental Data6> 

CASE METHOD Re r o~ a 1 “2  △ a CDl CLl REMAltKS 

FDM-1 1000000 68.9 0.656 -0.3 -0.5 0,2 0,0073 0.03!16 
l l'DM・2 1000000 68.9 0,656 -0.4 -0.5 0.1 0.0081 0.0352 Fully Turbulent 

HBLM 1000000 68.9 0.656 -0,3 -0.5 0.2 0.0054 0.0325 

2 FDM 1000000 45.0 1.286 -0.2 -1.3 1.1 0.0075 0.0494 
HBLM 1000000 45.0 1.286 -0.2 -1.5 1.3 0.0054 0.0521 

FDM-1 245000 45.0 1.000 -0.3 -1. 7 1. 4 0,0097 0,0862 
3 FDM-2 245000 45.0 1.000 -0.3 -l. 8 1.5 0.0139 O.Olltl8 ドullyTurbu l t:nl 

IIBLM 245000 45.0 1.000 -0.3 -2.0 1.7 0.0087 0.0921 
EXP 245000 45.0 1.000 0.0 -l. 2 1 2 0.0106 0.0879 

FOM 245000 42.0 l.OOU -2. -I -l. 8 0.6 U.0096 -0.0242 

4 HBLM 245000 42.0 1.000 -2.4 -2.0 〇．4 0.0087 -0.0213 
EXP-1 2-i5000 42.0 1,000 -3.0 -1. 7 1.3 0.0099 -0.0264 
EXP-2 245000 42.6 1.000 -2.4 -1. 5 〇.9 0.0100 -0.0044 Interpolated 

FDM 245000 39.0 1.000 -4.7 -1.8 2.9 0.0098 -0.1256 

5 IIBLM 245000 39.0 1.000 -4.7 -2.0 2.7 0.0088 -0.1239 
BXP-1 245000 39.0 1.000 -6.0 -2.2 3.8 0.0104 -0.1379 
EXP-2 245000 40.3 1.000 -4.7 -1.8 2.9 0.0103 -0.0934 Interpolated 

FDM 245000 45.0 l. S(）0 -0.,t -2.6 -2.2 0.0115 0.0947 

6 IIBLM 245000 45.0 1.500 -0.4 -3.2 -2.8 0.0097 0.1024 

EXP 245000 45.0 1.500 0,0 -1. 5 -1. 5 0.0107 0.0286 

FDM 245000 40.0 1.500 -4.3 -2.5 1. 8 0,0099 -0.0495 

7 lt81,M 245000 .io.o 1.500 -4.3 -2. 9 1. 4 0.0095 -0.0-123 

HXP-1 245000 40.0 1.500 -5.0 -1. 2 3.8 0.0125 -0.0593 

BXP-2 245000 41.o 1.500 -4.0 -1. 5 2.5 0.011~ -0.0934 
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4. CONCLUDING REMARKS 

1) Computation of the two-dimensional turbulent flow past a wing section 
in cascade was made using a simple zonal-matching technique. 

2) Computed results were compared with those of the existing numerical 
method (Higher-order Boundary Layer integral Method). Boundary layer 
characteristic distribution, surface pressure distribution, location of the 
transition point, lift and drag coefficients were found to show reasonable 
agreement. 

3) Computed lift and drag coefficients showed good agreement with the 
experimental data when solidity of the cascade is not so large. 

4) In higher Reynolds number flow around a thin wing, the discrepancy 
between the FDM and the HBLM results become larger. Further research is 
needed especially on the improvement of the turbulence model and the 
numerical dissipation. 

5) Simple zonal-matching technique adopted in the present study may be 
useful to the problem of the blade interaction of a marine propeller. Taking 
the extension of the present code to the three-dimensional problem into 
consideration, the trailing-vortex adapted grid generation is necessary to be 
investigated. 
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