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summary

It is well known that most of the energy of sea waves, which
causes a lot of damage to ships, off-shore structures and facilities on
coasts, is supplied by winds blowing over the ocean.

However, if a wind strong enough to generate gravity waves stops, the
gravity waves, far from dying out rapidly, will continue to run straight
on until they fetch up against something. Once waves have escaped from
the wind that made them, they can run for days with very little loss of
energy. Therefore, they travel long distance without the influence of
winds. Moreover, these wave elements change their properties owing to
the mutual interaction during this stage. Accordingly, to understand the
nature of sea waves, besides studying the mechanism of wind-wave inter-
action, it is also imperative to clarify the characteristics of propa-
gation of an individual wave train. In this paper, we deal with the non-
linear dynamics of the deep-water gravity waves and apply it to the
experiment to interpret the results concerning the mutual interaction
among waves.

The contents of each Chapter are as follows. In Chapterl, we
review the basic theory of water waves and formulate the problems from
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the point of view of a singular perturbation method. In the following
two Chapters, experimental and numerical .studies concerning the particu-
lar condition of the resonant wave interactions are described. In
Chapter 2, long term evolution of tertiary resonant waves are detected
experimentally and the direction of propagation of the resonant wave is
also obtained for the first time by aid of the cross-spectral analysis
The purpose of the observations is twofold:to examine quantitatively the
evolution of the amplitude modulation and to test the validity of weakly
non-linear wave theory (Zakharov equation) for the asymptotic behavior
of resonant waves by comparing the predicted and the observed properties
of the waves.

In Chapter 3, the Zakharov's integro-differential equation is
solved numerically and it is shown that the experimental data agree'with
the solutions in the case of comparatively small wave steepness. Calcu—
lations are also performed to determine the dependence of the maximum
amplitude of the resonant wave upon the amplitude of primary waves. In
Chapter 4, comparisons of the experimental results with theories are
made both for classical and that by Zakharov. It is .concluded that the
former is insufficient to explain quantitatively the long term evolution
of the tertiary resonant wave and that the latter model of non-linear
vater waves is applicable for describing the propagation of sea waves-
because of fairly good agreement of the theory with data. :

Several theoretical remarks, including the analytical investi-
gation into a particular solution of the discretized Zakharov equation,
are offered in Appendices.
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CHAPTER 1 NON-LINEAR DYNAMICS OF WATER WAVES

1. 1 Forevword

It is well known that the work of Stokes titled "On the theory
of oscillatory waves™ in 1847 is substantially the first study of the
non-linear property of water waves. In this pioneering paper, he gave a
stationary solution of a train of deep-water gravity waves by aid of the
power series expansion with respect to wave steepness. Many important
properties of non-linear waves, such as the dispersion relation depend-
ent on amplitude, the existence of highest limit of wave and the drift
motion of particles in a wave were shown in his work. Besides the above
mentioned theory, the Trochoidal wave, an exact particular solution of
water wave, found by Gerstner(1809), had been applied in the field of
naval architecture for a long time. These basic solutions are the most
important ones in the non-linear water wave theory.

On the other hand, the researches concerning the description of
ocean waves have been developed in a somewhat different manner. In this
field, the subject is divided into two main parts. One is to investigate
the mechanisms of wave generation by wind. The other is to describe the
actual configuration of ocean surface properly. -

In this paper, we deal mainly with the latter problem. The study
of the scientific description of sea waves was started at the beginning
of 1950s with the work of Pierson(1952) who introduced the concepts of
stochastic processes and of spectrum to oceanography. His investigation
for wave forecasting has been developed considerably by aid of
electronic computers. However, from the theoretical point of view, there
is enough ground for controversy in his method. Pierson, Neumann & James
(1955) assumed that the fluctuation of the ocean surface is composed of
many infinitesimal wave trains which travel independently to each other
in their own directions. According to this assumption, the spectrum of
sea wave is recognized as a distribution function of the energy of
component waves. On the contrary, the stochastic variation of surface
displacement, its velocity or acceleration satisfies the Gaussian
distribution and the moments can be determined by the spectrum. So far
as we admit the linear wave theory, there would be no problenm
conceptually. ’

Once we draw attention to the non-linear properties of water
waves and consider them in the framework of the PNJ method, most of the
concepts would become ambiguous. However, no one could have extended the
theory to contain the non-linear characteristics of waves: in the ages of



1950s, because the theory of non-linear waves had been no more improved
than that established in 19th century. To overcome this difficulty,.
there appeared many papers concerning the non~linear theory with regard
to multiple component wave system since 1960s. We mention some of them,
in relation to this paper such as Tick(1959) and Hamada(1966), which are
the second order theory for random. wave field. Huang & Tung(1976), Weber
& Barrick(1977), Barrick & Weber(1977), Masuda, Mitsuyasu & Kuo(1979)
and Mitsuyasu, Kuo & Masuda(1979) dealt with the third order random wave
field although they did not take the energy transfer among component
waves into account except for the.change of wave velocity. The last one
involves the experimental verification in a wind-vave flume. In earlier,
Phillips(1960) proposed the theory for accounting the energy transfer
between wave components however his mathematical formulation contained a
singular property and did not offer the solution describing the long-
time evolution of resonant waves. Benney(lQGZ) gave the equations which
describe the long-time behavior of four waves for the first time.
Zakharov(1968) derived the equation governing the mutual inter-
action among deep-water gravity waves of arbitrary number of components
in the most purely theoretical point of view. Stiassnie & Shemer(1984)
rederived it by somewhat elementary method with using Fourier transform
technique. They are most closely related ones to the present paper. In
this Chapter, we reexamine those works and discuss the non-linear
dynamics of water waves in the unified point of view. Some precise study
concerning the characteristics of Zakharov equation.containing the
numerical and analytical solution will be discussed in Chapter3 and in
Appendices. _ v : :
In addition, we also mention the book "The Dynamics of the Upper
Ocean” written by Phillips(1977) as the most excellent description and
the basic results of sea waves. The simple and fine explanations are
referred in the articles written by Nagata(1970) and Taira(1975).

1. 2 Basic Equations .

In this Chapter, we assume in regard to hydrodynamic natures of
water waves that the viscosity is neglected (perfect fluid) , and that
the motion is irrotational and the compressibility of the fluid is
neglected. Capillarity and air motion above the surface of fluid are not
taken into account. The density of water is assumed not to change
temporally and spatially. » ;

We deal the present problem as, in three dimensional space, that
is, two dimensional sufficiently large horizontal surface which is uni-
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form and isotropic. The depth of sea is infinite. We also assume that
the amplitude of the wave is small but finite.

From the assumption of irrotational motion, there exists the
velocity potential ¢ in the fluid. By the assumption of incom-
pressibility, the equation of continuity is satisfied

Vig=0" (1—-1)

in the interior of the fluid. Here, we take the coordinate system as X -
and y -axes in horizontal and z - axis in the vertical upwards direction
respectively. At the fluid surface (z =7 ) the kinematic boundary
condition

37 | _ 99 _
g FVREVan= | (1-2)
and the dynamic boundary condition
5 ‘
a—‘f + tVVe=—g1 (1-3)

are satisfied. Where, 7 denotes the displacement of the surface and g
represents the acceleration due to the gravity. The operator YV, means
the horizontal components of gradient operator V. From the assumption,
the density of water is constant so that it does not ‘appear in these
equations. The difficulty of the problems on water waves lies on the
fact that the above equations (1 —2) and (1 — 3) are both non-linear
and the form of the boundary » is not determined ab initio but is an
unknown variable. Finally, from the assumption in the limit z —-co,

Vé—0 (1—-4)
is required.

1. 3 Some Aspects on Classical Theory

On the basis of the general theory in hydrodynamics, we restrict
ourselves to the problem of non-linear resonant wave interaction.
Phillips(1960) discovered that in the third approximation, it is
possible for a transfer of energy to take place from three primary waves
(of wave-numbers Kk, Kk, and k4)to a fourth wave(of wave-number Kks)in
such a way that the amplitude of the fourth wave increases linearly with



time. Thus, although the fourth wave amplitude at first is very small(
being of the third order)it may grow in time so as to be comparable
with the three primary waves. The condition for this- is that the wave-
numbers ki, ks, ks, kg4 and frequencies wi, w2, w3, ®g4 each
satisfy the dispersion relation:

=gl k| (i=1,2,3,4) ,  (1-5)
and that
k1ik2ik3ik4=0, a;1iw2ia)giw4=0 , (1—6)

with the same combination of signs in each case.

At first, we explain briefly the theoretical results obtained by
the direct use of a perturbation technique (REGULAR PERTURBATION) to
the basie equations. Longuet-Higgins(1962) has analysed this problem in
the case that ki =k, wi1=wy, the condition (1 — 6) turns out to be

Zk’1—k2=k3, 2(1)1“0)2:(1)3. »» (1—7)

Phillips(1960) showed that in the case that resonance condition (1 —7)
is satisfied, wave-number ki, K2 and ks should be correlated each
other as shown in Fig— 1 — 1. In the special condition that k1Lk2,
vy =w,/ w> would be 7 =9 g=1.7362---, :

The velocity potential ¢ and surface displacement 7 are
assumed to be expressed in expanded series such that

p=(a ¢igtB do1)+(a?drpta B d11+B2go)+

+(aPapta?B dporta BP¢ 2tB 3P gs)te---- (1-8-1)
and v _ :
n=(anietBne)H(a®nzota Bn1+BEnge)te -

t(a3nzptaB nota B?n 124830 gs)tererr (1 —-8-2)

with @ and B being independent small quantities representing the wave
steepness of each wave. Substituting (1 —8—1) and (1 —8—2) to
the basic equations (1 —2) and (1 —3), the calculations were
carried out up to the third order terms. We only pay attention to the
term ¢ 5., because it represents the tertiary resonant wave to be
considered here. Longuet-Higgins & Smith(1966) gave solution ¢ 5y at

z =0 as
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'¢ﬁ=—-g§1 sin (dkx) sin {(kKeg+Sk) X—wst},
(1-9)

under a slightly extended conditions that
21{1‘“1‘(2:1{3, 2(/.)1“(1)2""(1)3. (1“10)

In (1 —10) ,equality might not be satisfied strictly for frequencies.
In the equation (1 —9) , K is the growth rate and expressed as

K= (alkl) aagkggzwg-lG,
with non-dimensional coefficient G. kg equals to w2,/ g vwhere wg is

defined as weo=2 w1 — w2 and 261{:)}{3_1{9. 0K and § y=9—7g
are correlated as '

248K 4 : 8 74
L= - —_ —_— 5 . — 1
ks Csya i7q.0+1 207 (1 1

From the form of (1 —9) , we can recognize that amplitude of tertiary
wave varies slowly with X when & 7 #0. If 6 7 =0, the solution ¢
in (1 —9) appears to be infinite, however in such a limiting case, it
reduces to
Kx sindkx K
- — ~ — 1—-12
$ 21 P 5k x 2 ( )

Thus, tertiary wave grows linearly with x. Transforming it to the wave
amplitude a, the maximum amplitude a gy to be realized by tertiary wave
is obtained as

(31K1)232K2
| 6 k|

azy= G . (1—13)
The constant G is given by Longuet-Higgins(1962) as 0.442. In order to
express agy by the explicit function of 6 7, we eliminate 6 k in (1 —
9) by using (1 —1 1), we have a classical approximation
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~ 0. 491 S2ED

1—-14
- | 57 | ¢ )

1. 4 Expansion Procedure of the Solution _

In this section, we derive the equation which governs the inter-
action among components of grévity wave system. The method of derivation
is essentially different from the classical one as explained in §1. 3
and is applicable to developing stage of non-linear interactions. In
order to consider generally the two-dimensional multiple component wave
system, the velocity potential ¢ and sea surface displacement 7 in the
~ basic equations (1 —1) ~ (1 —4) are expressed as spatial Fourier
serieses of the forms,

¢ (r, z, t) =C A (k, z, t)exp (ikr) (1-15)
and
7 (r, t) =B (K, t)exp(_ik‘r). (1—186)

From the pure mathematical point of view, Fourier integral or Fourier-
Stieltjes integral representation must be used, but according to Weber &
Barrick(1977), in the case of the assumption that the horizontal area
considered here is finite though sufficiently larger than typical wave-
length, equations (1 —15), (1 —16) are hold good. As ¢ satisfies
the conditions (1 — 1) and (1 —4) , velocity potential ¢ has the
form

¢ (r, z, t);=EkA (k, rt) exp(kz+ikr)’. (li——17)'

In the process from now on, the several points-explained in
the following subsections should be considered carefully; -

1. 4. 1 Treatment of the boundary conditions on unfixed surface z =73

When we treat the basic equations (1 —2) and (1 — 3) on the
surface z =17, all the terms containing derivatives of ¢ are pro-
portional to exp(k#n ). We assume the wave steepness k7 <€1 and use the
Taylor expansion ‘ ‘

(259)
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exp(kn )=1+kn +(1/2)k2n 2+ (1/6)k3 7 3+ -+ .- .

For example, ¢ is calculated in the following way.

First, we differentiate (1 — 1 7) with respect to t and insert
7 in place of z. Next, we use the Taylor expansion of the exponential
function above and substitute the expression (1 — 1 6) into the powers
of n. We finally obtain in the form of spatial Fourier series as

@
s

=F1+F2+F3+' s .

[
o+

Where, F, (n=1,2,3,++++) represents the n-th order quantities as

Fi=ZC Ay (k) exp(ikr),
Fo=Zyexp (i kr) [ E4i k1At (k1) B (k—k;y) )

Fs=+Z,exp (ikr) [ L,,4B (k—ky) {Ckok22Ay (Kp)

B (ki—k2)}],
and

Calculating V¢ in the similar manner, the results are substi-
tuted into (1 —2) and (1 —38) . Utilizing the orthogonality property
of Fourier series, we can transform the basic equations to the simul-
taneous differential equation with respect to A and B. We can finally
obtain the results up to the third order of A and B as follows

By (k) —kA (k) =Xy {ky* (k—Kky) +k 2 A (k)
B (k—“k1) +):le (k“‘lﬂ'{1),2k2»{kgk2' (k1“k2) +

Tko% A (k2) B (ki—kos) (1-18)
and
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Ay (k) +gB (k) =4E4 (ki (k—ky) — k| K-k}
A (ki) A (k—ky) —Zy1ki1Ay (ky) B (k—Kky) —
+C,1B (k—Kj) Crako?Ay (Ko) B (ki—ka) +

Zy1B (k—kiy) Zyp {koke (ki—ko) —k 2| ki—kal}
A (kz) A (ki—Kkp) . (1-19-1)

Here, suffix t means the time derivatives and from now on, we use the
expression A (k) instead of A (k,t) omitting independent variable t.
Except for Phillips(1960), Zakharov(1968) and Stiassnie & Shemer(1984),
theories by the other authors were restricted that A, B. are periodic.
functions so that the equations were reduced merely to algebraic re-
lations (in fact, setting A, Bocexp (— i w t) , we could show that
equations (1 — 1 8) and (1 —1 9 — 1) reduce to those in Weber &
Barrick(1977) after some simple algebraic manipulation) .

1. 4. 2 Transforming the equations to apply the singular perturbation
method ‘ S
In order to arrange the equations to apply the SINGULAR
PERTURBATION METHOD, time derivative A: in the right-hand side of (1 —
19 —1) has to be eliminated. At first, we neglect terms higher than
second order and we have

Ay (k) =—gB (k)

in the first order. Substituting this into (1 —1 9) iteratively, we
obtain the second order approximation as,

Ay (k) =—gB (k) +_:'?'{?Ek1k1' (k—ky) A (k])
A (k—kiy) +Cy1gk1B (ky) B (k—ky).
Using them in (1 — 1 9) again, up to the third order it is transformed

-into

(261)
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Ay (k) +gB (k) =+E4 {ki- (k—ky) —k; | k—ky |}
A (k) A (K—Ki) +CiigksB (k) B (K—kj) —
Tx1B (k—ki) Tragkas (k;j—%kz) B (ka) B (ki—kp)
—LB (k—Ky) Tue (ki—kp) {ka (Ki—kp) —
kol ki—kal} A (k2) A (ki—kp) . (1—-19-2)

The combination (1 —1 8) and (1 —1 9 — 2) reduces to the equations
of harmonic oscillation in the limit A, B—0.

1. 4. 3 Technique for eliminating the variable A or B with the con-
- sideration that ¢ and n are real quantities
~ A and Bare the Fourier coefficients of the velocity potential
¢ and the surface displacement n. As ¢ and » are real numbers, A
and B nust be complex numbers whose dependence on k have the anti- -~
symmetric nature

A (KR) =A* (—k) (1-20-1)
and
B (k) =B*(-k) . . - (1-20-2)

Where, AX is a complex conjugate of A. Thus, we can introduce such a
complex variable Z that

viakA(k)=Z(k)—1Z*(—l{) (1-21-1)
BvB (K) =2 (K) +Z*(~Kk) : (1-21-2)

for the reason that the relations (1 —20—1) and (1 —2 0 — 2) are
satisfied automatically. In these relations, @ and B are the real
constants dependent only upon the magnitude of the wave-number K.

If we execute the transformation (1 —2 1) , we can deal two
unknowns A and B as in one unknown Z formally.. The resultant equation
of Zagain reduces to that of harmonic oscillation only if the constants
ay and By satisfy the relation
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Kay2=gpBc 2 . - (1-22)
In this paper, according to Stiassnie & Shemer{1984),
a?=2 (k/g) '3 B*=2 (g/k) 17?2 (1-23)

is adopted.

- The equations (1 —18) and (1 —19 —2) are transformed by
means of (1 —2 1) . If Z*, is eliminated in these equations, the
linear part of Z* also vanishes owing to (1 — 2 2) . Thus, the
equation with respect to Z is obtained in the following such that

iZy— (gk)¥2z=7J (k, Z)

wvhere, J (k, Z) is yielded by i a~! times of the right-hand side of
(1—18) minus B! times of the right-hand side of (1 —-19—2) .
Explicit form of the equation is

T ?“’ (k, ki, k) Zmzkz‘*‘ﬁ:1 k%'l(z) (k,

iZkt—wka=kl K

ki, ka) Zklzk2*+})(:l'k§{(3.) (k, ki, k2

Zk1xzk2*+ﬁ,k2ﬁé“ (k, ki, k2, K3) Zx1Zye

\Zk3+k21,k2,Pi(é2) (k, ki, ko, k?) Zkikangks“*'

k1, k2, k3

v (a) . X %o X
kl,k2,ﬁ(3 (k, ki, ko, K3) Zu1™Z 2 Z s

B8 (K, ki, ke, Ki) Z*Z2 X2 o+

(1-24)

Where, @ is angular frequency given by wy= (g k) !“2 which is the
dispersion relation of deep-water graviﬁy wvaves. Equation (1'— 2 4) is
the MODE COUPLING EQUATION to describe the propagation of finite ampli-
tude water waves discussed in this paper. The concrete expression of the
coefficients H™ (k, ki, k) and F ™ (k, ki, kz, kg) are
presented in Appendix I . By use of the complex amplitude Z, surface
elevation » is represented as ‘

(263)
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7 (e, t) =4, B8 Z (K, t) +Z*¥(—Kk, t) ) exp(ikr).

(1-25)

1. 5 Perturbation Method and Zakharov Theory

In this section we apply the singular perturbation method to
analyse non-linear equation like (1 —2 4) in contrast to the regular
perturbation method used in 8 1. 3. As discussed briefly in 81. 3,
the application of the regular perturbation method to non-linear equa-
tion results in the solution infinitely increasing with time t. This
fact means that the method is not suitable to express the long-time
variation of the solutions. Therefore, to avoid such a difficulty and to
obtain the long-time evolution of solution, we adopt here the MULTIPLE
SCALE METHOD, a sort of the singular perturbation method. The essence
of the method lies on the technique introducing the slowly varying in-
dependent variables. We execute this procedure somewhat more systema-
tically than Zakharov(1968)or Stiassnie & Shemer(1984). This method is
applicable only to the non-linear equations of the form discussed in § 1.
4. 2 of the preceding section ( Bogoliubov & Mitropolskii(1965) called
them quasi-linear equation) . ‘

Now, we introduce a small parameter & and expand Z as

Z=eZ'V+e?Z®+%Z2F+ ... (1-26)

Furthermore, we introduce a group of independent variables T,=¢"t
instead of t. Then, Zis regarded as the function not only of t but also
of T, (n=1,2,3,++++, Tg=1t) . So, the equation (1 — 2 4 ) becomes a
partial differential equation. Differential operator is also expanded as

) _ 0 3 e O s 0 e e . —
3t DT, © 3T, % BaT. % 3T.T (1=27)

We substitute (1 —26) and (1 —2 7) into (1 —2 4) and rearrange
it with respect to the power series of &. Then, for the first order,

P Zy WV re—weZ, V=0 (1-238)

is obtained. If we take up to the second order of &, we have
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. ( — 7 {
1 Z B ye—wkZ'®=—12Z, ' V4

Zy V=X, MVexp(—iwTy) .

%_I(‘l) (k, kl’ k2) Zk1(1)Zk2“)+

=~

. k

oy

ky(??) (k, kl; k2) Zk‘(l)zk2(1)§€+

kF(B) (k, kl: ka) Zkl(l)ﬂézkell)%

0

(1-29)

Assuming the periodic solution of Tg, thevfirst order equation is im-
mediately solved as

(1-30)

X' is an arbitrary function which is independent of Tg. Substi-

tuting (1 — 3 0) to the second order of (1 —2 9) ', we have

i Zk(2)Ta—wka‘2)=— i Xk‘”nexp (—iwyTy +

(1)
E,kg{ (k; kiv

=
[N

) kF‘z) (k’ ki’

=
e

kzl k%_l(s) (k’ kly

ko) Xt P XaPexp {—i (w1 +wie) To} +
ko) Xui ‘P Xa M *exp {— i (wy1— ko) Tal +

ko) Xt ‘V*X oW *exp {1 (w1 +wye) Tal .

(1-31)

In this equation, we should notice to combinations for the first term of

the right-hand side with another term, say the second term, in the

right-hand side. These terms are summed up to the following way as

— [ixk(l)Ti—k

Lk

{I(i) (k, ki» k2) Xk1<1)xk2(1)

exp {— 1 (writwke—wy) Tal Jexp(—iwgTg) .

If under the summation L,

(1-32)

two conditions
(265)
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ki+ks>=k and WK1 T O™~ (1—-383)

are simultaneously satisfied, then the time dependence of (1 — 3 2) are
proportional to exp (— i wy¢Tg) . If there exists such a term in the
equation, the soultion Z‘®’ of (1 —38 1) is known to diverge with
respect to time Tg. To avoid the divergence of the solution, we should
recognize the whole sum of the terms in [] of (1 —38 2) to be zero.
In other words, under the condition (1 —3 3) ,

ixk(“n-]zﬁ1 k%{“) (k, ki, ko) X i P Xy =0

(1-314)

should be satisfied. By virtue of (1 —34) ,X ‘" is determined with
respect to T 4. The case of another combination is discussed in a
similar manner. If the conditions (1 — 3 3) are not satisfied simul-
taneously at all, only the equation

i Xk“)Tl =0

is required. It means that X ‘!’ is independent of T,. In reality, as
for the deep-water gravity waves, the relations (1 — 3 3) are not
satisfied (see, for example Kinsman(1965)) so that X ‘'’ is constant up
to this order. By use of this result, the equation (1 — 3 1) is easily
solved for Z,‘2’.

As the next step, the solution Z‘?’is substituted in the third
order equation and the caluculation is executed in the similar manner,
then the conditions corresponding to (1 — 3 3) are described as

k1+k2=k+k3 and wk1+wk2~wk+wk3. ~(1“‘3 5)

These are called the RESONANCE CONDITION of deep-water gravity waves.
The condition that the solution is valid for the long time is determined
by a similar equation to (1 —3 4) and it represents the T, dependence
of the first order solution X'’ . This is known as ZAKHAROV TYPE
EQUATION and is discussed in Chapter3 of this paper. The properties of
the equation are precisely interpreted in AppendixII~IX.
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There could be many other derivations to obtain the mutual
interaction equation for water waves. The most formal treatment of the
theory by use of CANONICAL THEORY is briefly interpreted in AppendixI.
These treatment was applied to the stochastic problems in wind wave
field by West(1981) slightly different mannér from that discussed. in
this paper. ' :

(267)
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CHAPTER 2 EXPERIMENT IN A WAVE BASIN

2. 1 Forevord ,

In this Chapter, the experiment of non-linear resonant wave
interactions performed in the SHIP EXPERIMENT BASIN of the Ship Research
Institute (see, Tomita & Sawada(1987)) is described.

Long-time evolution of tertiary resonant waves has not yet been
observed in a wave flume. Hence, the experiment is carried out to detect
the evolution at the locations spreading widely in a flume. The investi-
gation is performed to find what amount of interaction occurs under
several conditions being prescribed.

In this experiment, we choose the simplest feature for examining
the resonant interaction phenomena of growing up of the tertiary wave by
the perpendicularly intersecting two trains of waves generated with the
wave-makers. According to the theory of resonant wave interaction
discussed in Chapterl, the resonance takes place under the condition

k1—k2—k3+k4=0, wi—wg—w3+w4~0 . (2—1)

In particular, in this experiment, k;=k,, wi=w, and k, is
orthogonal to k. In this case, (2 — 1) are solved with respect to 7 =
w1,/ w2 so that the exact resonance condition is given by 7 =1.786--.
Under this condition, the short time behavior of tertiary wave was
discussed by Phillips(1960) and Longuet-Higgins(1962) theoretically,
to which we refered briefly in Chapterl. The experimental studies were
also made by Longuet-Higgins & Smith(1966) and McGoldrick, Phillips,
Huang & Hodgson(1966) in the smaller wave tanks with the sizes of not
exceeding 3 meters square. All these investigations mentioned above were
confined to discuss the initial growth of tertiary wave and to verify
its growth rate. On the contrary, in our experiment, the observations of
long term development of tertiary waves are carried out by use of a
comparatively large basin.

Several remarkable results are obtained in this experiment.
Above all, it is confirmed that the large amplitude resonant waves which
are comparable to that of primary waves appear at the longer fetches
than those in previous experiments. These resonant waves travel in the
direction which the theory predicts. Moreover, resonant waves are
directly observed by photo as an evidence of their existings, for the
first time in the field of pure gravity-waves. We examine in the next
place the short fetch behavior of resonant wave growth to compare it
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with those of the papers above. Finally, we advance further to the long
fetch behavior of resonant waves and find the recurrence properties (see
for example Waters & Ford(1966)) of interaction among-gravity waves.
The results are compared with the theory given by Zakharov(1968) which
could be applied to the case of this experiment.

In addition to these studies, the observation of the resonant
interacting wave system by photographic. technique was recently carried
out by Strizhkin & Ralentnev(1986)in real open ocean.

2. 2 Description of the Apparatus :

As is seen in Fig— 2 — 1, the basin has the size of 80 m in
length, 80 m in width and 4.5m in depth. Two wave-makers.are installed
in the adjacent sides of the basin. The first one is plunger type of. 54
m in width drived with 24 sets of 6k w minertia motor, the second one
is flap type of 80 m in width drived with two sets of 90k w DC motor.
Many trains of waves advancing in different directions can be generated
with them. There exists absorbing artificial beaches at the opposite
side of each wave-maker. The precise specification of the facility is
explained in Shiba(1961) and Takaishi et.al.(1973a, b).

All wave gauges are capacitance type with nominal precision of
+1% and are arranged on the wire rope suspended above the surface of
the basin. Each probe is fixed vertically by anchor settled on the
bottom. Three examples of the measurement are shown in Fig— 2 — 2. In
this figure, the cases that (a) first wave only, (Db) second wave only
and (c) both waves are simultaneously generated are shown. Upper six

.rows represent the water surface variations detected by each probe, lower
two rows are for the strokes of both wave-makers.

Data collection system is schematically drawn in Fig— 2 — 3.
Qutput signals are sent into the recorder and they are also transferred
into disquet of a desktop computer through A D converter. Length of
each run is limited to 200 seconds for suppressing the effect of wave
reflection. Data are digitized every 0.1 second so that we keep the
Nyquist frequency as 5H z. This is sufficiently large value for the -
present problem. :

The effect that the strokes of the wave-makers are f1n1te is
considered to be negligible in this experiment. We set the strokes as
small as possible to avoid the unfavourable effects of wave breaking,
second order wave generation and/or third order wave instability.
Nevertheless, diffraction is not completely neglected because the total
widths of the partitions are not infinite (diffraction effect was

(269)
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examined by Ishida et.al. (1980) for this basin applying the wave making
theory) . In order to avoid the ambiguity that the height of mechani-
cally generated waves is not constant along its crest, average values
for the waves are used. ' ‘

2. 3 Method of Experiment .

Having described the experimental apparatus, let us now turn to
the method of measurement. The measurements are executed on two sorts of
arrangement of wave gauges shown in Fig— 2 — 4 (Casel) and Fig— 2~ 5

(Casell) . The former is used to reexamine the short term behavior of
tertiary wave which was carried out by McGoldrick's experiment and for
the first time to detect the direction of propagation of tertiary
resonant wave. The latter is used for the measurement of long term
developement of tertiary resonant waves. At each measurement, the
anmplitudes of three component waves which would simultaneously exist in
the basin are estimated by the power spectral analysis by means of FF T
as follows

Ak2/2=(Pk-1+Pk+Pk+1).Af . (2“‘2)

In this equation, Ay and P, denote the amplitude and component energy
density corresponding to the frequency f =k A f (A f =0.0098 sec™ ') .
As is well known in spectral analysis, the energy at single frequency is
apt to disperse to its neighbourhoods caused by that the length of data
is finite. The precision of this method is tested by aid of dummy data
made with electric oscillator. By this test a single component of energy
is apparntly broadened in width of -=10A f band at the attenuation of
—30d B. Considering the noise property of real data, the band width of
3A £ =0.029 sec”! is adopted as shown in (2 —2) . By using (2 —2) ,
restoration ratio of the test data is about 97%.

Our experimental situation and the size of facility lie between
most of smaller-scale indoor laboratories and large natural sea field.
So the unfavourable affections caused by viscosity and capillarity of
water are negligible. All the works are conducted during calm weather,
because the basin is in open air. Several runs are tested and checked
for inspection over the total inevitable effects due to deformation of

_Waves by wind, reflection, diffraction, breaking, instability of waves
“and interference with sensors. The primary waves detected repeatedly at

the positions closely located as Fig— 2 — 4 show a good agreement in
each other. However, the records of the tertiary wave fluctuates with
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about 8% of standard deviation. For the frequency, although the motor
speeds could be kept constant to within 0.16%, the spectral estimate (2
— 2 ) has a width of A f so that the precision of 7 is evaluated to A 7
=Af//f,~0.017.

The elements of the mechanically generated waves used in the
experiment are shown in Table— 2 — 1.

2. 4 Initial Growth of Tertiary Resonant Wave

First of 'all, we é€xamine whether the tertiary resonant wave
ks predicted by the theory grows in a basin or not, when we generate a
pair of waves kg and Kk, mechanically by the wave-makers. An example is
shown in Fig— 2 — 6. In this case, 7 =1.793 and the sensor is located
at 45 m from the first wave-maker (nearly mid-point of the basin) . In
this figure, there appear clearly three line spectra, the lower two
lines corresponding to f1=w,,/ 2 7 =1.016 and fo=ws,,/ 2 7 =0. 566
are due to the waves generated by the wave-makers. Remaining one found
in higher range is the wave generated by the waves of frequencies f
and f . The frequency of this component is f 3=1.475 and it just
agrees with the theoretically predicted 2 f1— fo=1.466 within the
resolution A f =0.0098. This relation holds good in every case of
different values of f, and f .. From this Figure, one can see that the
resonant wave which is to be a third order quantity in theory exceeds
the other second order harmonic components and the amount reaches as 50~
60% of the first order primary wave. This ratio is more than twice as
large as those reported in the previous experiments.

In order for reexamining the previous experimental results, we
evaluate the initial growth rate of resonant waves and its dependence
upon the frequency ratio 7 of the primary waves. As explained in § 1.
3, the initial growth rate G is connected to observable quantities
such that

Az/d (Aky) 2 (Azkg) -=G (y, 6) lsinSKd/akd b,
(2-3-1)

26 k 4 878°

=-( T7e—1 4;;717“) (7-70).

=
w

(2-3-2)
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Where, d is the fetch of interaction, & k is the detuning wave-number
of primary waves and 6 is the angle of intersection.

The initial growth rate G was evaluated 0.442 when 8 =7 /2
and 7 @=1.736 (the value of G is nearly constant with 7 around 7o) .
In Fig— 2 — 7, the values of the left-hand side of (2 —8 — 1) calcu-
lated from the measurement data at the location in Fig— 2 — 4 (Casel)
are shown against 7. In this case, the wave gauges are located near to
the wave-maker 1l to obtain the initial growth data. The solid curve is
drawn by the right-hand side of (2 —3) fitted by inspection with G
and 7 as parameters. From Fig— 2 — 7, it is estimated that G =0. 50
and 7 9=1.79. A comparison with McGold;ick's result is shown in Table—
2—2. In this initial stage, the results of 7y agree fairy well and
are somewhat greater than that of the theory. This fact will be partly
explained by the concept of NON-LINEAR RESONANCE CONDITION introduced in
Chapter 3. The value G in this experiment lies between the value of
their experiment and the classical theory.

Also by means of this location of wave gauges (these six gauges
are tightly attached to a stainless steel bar with the mutual distances
of 0.45m, 1.05m, 1.20m, 0.60m,0.30m as consisting a linear array) ,
the determination of the direction of tertiary wave which has not
executed in the previous papers is examined. By the theory due to
Longuet-Higgins (1962), the angle of tertiary wave to the primary first
wave is predicted 9.24 degrees for the case of exact resonance.

Defining the mutual distance between wave gauges Do and the
relative angle to the wave a shown as in Fig— 2 — 8, the phase
difference ¢ ,, of the wave for D, is written as

$12=KkDyps ina , : (2—-4)

where, K is the wave-number concerned. Otherwise, phase difference can
be calculated from the data obtained at two wave gauges by their CROSS
SPECTRUM. If co-spectrum and quadrature-spectrum are expressed as Cq»
and Qi2, ¢ 12 is correlated by them as

p12=tan"! (Qq2/ Ci2) . (2—-5)

In Fig— 2 — 9, ve show the coherence among the data measured with the
vave gauges 1 and 3. Although there appears some broadening around
the second primary wave, the coherence is almost nearly unity at around
the three wave frequencies considered here. Fig— 2 — 1 0 shows the



phase spectrum of this data. Choosing every pair of gauges from six, the
phase 6§ = ¢ = of three waves f, f, f3 is described against D,
(Dn (I,m=1,2,+-+,6) is distributed not to be equal for every pair of
the gauges) in Fig— 2 = 1 1.(a), (b), (c) respectively. Using the data
k,1=3.993, Kk>=1.291, k3=28.188 in the formulae

Sn= (knDl.m/”)Sinan, (2-6)
where n=1273and 1,m=1,2,---- , 6,

we can determine a4, @2, a3z from the tangent of each plot. The
straight lines in Fig— 2 — 1 1 are obtained by means of the least square
method. By these Figures, we can estimate that a,=1.09, a‘g=73.'40 and
@ 3=—1 85degrees so that the direction of tertiary wave from the first
primary wave is ag— @ =-8.94degrees, while the theoretical prediction
in this case is -9.19 degrees. We can recognize that the agreement of
both values is satisfactory.

2. 5 Long Term Evolution of Tertiary Resonant Wave

In this section, we investigate the long term behavior of the
tertiary resonant wave. In order to perform this task, wave gauges are
arranged as shown in Fig— 2 — 5 (Casell) . Six wave gauges are set at
the distance from the first wave-maker of 26.56 m, 35.96 m, 41.15 m,
45.36 m, 50.95 m and 61.15 m along the direction of tertiary waves.
They are the very longer fetches than those.of the CaseI and those of
the previous works (their maximum span of observation is about 15 m
after transforming the size to the present experiments) .

The results are explained in the following. In Fig—2 —1 2
through Fig— 2 — 1 8, the amplitudes of tertiary waves are plotted
against the distances along the direction of propagation. '

For describing the observational results clearly, we explain
them corresponding to the experimental conditions in order:

1) 7 ~1.172 (nearly resonant) , Ay and A, (~2.5cm) are both small.
{Fig—2—12} '

In this case, the growth of resonant waves are nearly straight. The
broken line shows the theory of Longuet-Higgins(1962) (equation (2°
—38)) . The long fetch behavior can be explained in this case
qualitatively by the classical theory.
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2) 7 ~1.72 (nearly resonant) , A, (~4cm) is larger than the case @.
{Fig—2—1 3}

¥hile A, (~2.5cm) is as same as the case @, resonance does not

strongly occur and the amplitude of tertiary wave is in every point

small. The curve represents the quasi-stationary solution given by (3 —
8) by means of the Zakharov theory.

3) 7 ~1.79 (off resonant) , A, is small and A, (~ 5cm) is moderate.
{Fig—2—14}

In this case, A3 is nearly constant (slowly varying) thorughout the

fetch where the measurements are made. The manner of variations looks

almost parallel and the values are found 'larger as A; increases from

-1.80 to 2.84. In the last case (A is the largest) , the values of As
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amounts to about 1.5 cm. The appreciable values of resonant waves are
observed in the first time in such a off resonant cases.

4) 7 ~1.79 (off resonant) , Ay is larger than the case 3) while A, is
small. {Fig—2 -1 5}

This is rather curious result. Although the condition is so far from

the case 1), the growth of Aj; is clearly straight. The broken line in
this figure is the ‘theoretical one like the item 1) (omitting the de-
tuning factor) . The dashed-and-dotted line is determined by the least
square fitting. Looking at the discrepancy between both lines, it
suggests that in this case, a sort of non-linear resonance condition
including the amplitude dependence to. the wave velocity would hold and
it suppresses the free evolution of tertiary wave.

5) 7 ~1.79 (off resonant) , Ay is larger than case 3). {Fig—2—1 6}
A3 clearly decreases as the fetch increases and diminish to zero (re-
currence phenomena) instead that the asymptotic steady states take place
in a longer fetch.

6) 7 ~1.82 is larger, A, and A, are both large. {Fig—2—1 7}

In this case, it is characteristic under this condition that. the
magnitudes of Az decrease initially as the fetch increases and then grow
up once again. Subsequently resonant waves repeat the same process.
However this is not sure in the present experiment. because the length of
the basin is not enough long to pursuit this character. This tendency
appears the faster (at the shorter fetch) with the larger A,.



25

7) The largest wave obtained in this experiment is shown in Fig— 2 -1
8. In this experiment, tertiary resonant waves has never exceeded 2. 5
cm in amplitude (5 cm in wave height) . This limitation. may depend
upon the wave-steepness of the primary waves used in this experiment.
Local breaking of waves is apt to arise particularly in such a composed
wave system -that mechanically and spontaneously generated waves consist
of a comparatively wide spread frequency components. These local
breakers possibly prevent the resonance mechanlsms from being suf-
ficiently enhanced.

8) In the case of y far from 7o , say v <1.6 or 7 >2.0, it is verified
that no wave is:generated at all.

In general, the straight resonant growth is seriously dependent
on the conditions among the frequencies and amplitudes of primary waves.
On the contrary, the recursive resonant growth occurs in somewhat soft
conditions whereas the maximum values of them are comparative to the
former. The decreasing of amplitudes of tertiary waves at the longer
fetch rather reveals that the strong interaction takes place even in
this region, otherwise the resonant waves which are once generated at
shorter feteh would travel to the outer region without decaylng their
amplitude at all. c ’

The tertiary resonant waves generated by mutual interaction of
primary waves can be observed by the naked eye in this experiment.
Since the wave velocity of tertiary wave is much less than the primary
waves, it can be left in the basin after stopping the wave-makers and
passing the primary waves away to the absorbing beaches. This fact is
another confirmation that these tertiary waves are free waves in ac-
cordance with the theory. Three photographs on the experiment of the
generated resonant wave are shown in Fig— 2 — 1 9. The direct photo-
graphic observation of deep-water gravity wave interaction had not been
known in the past. From the picture of Fig—2—19 (c) , wavelength
of the tertiary wave taken in the photo is measured as 72.5 cm. While
the theoretical length is 71.7 ¢ m.
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CHAPTER 3 NUMERICAL SOLUTION OF ZAKHAROV EQUATION

3. 1 Foreword :

The non-linear theory described in 8§ 1. 5 gives an integro-
differential equation which governs the slow variations of first order
amplitude and phase components among multiple directional waves. This
type of equation was first derived by Zakharov(1968), and is called
the ZAKHAROV EQUATION. In general, it is difficult even to obtain the
solution of this equation by numerical method, not to mention to solve
it analytically. So, the Zakharov equation has never been applied except
for the stability problems of monochromatic wave train.

In this Chapter,we deal with this equation in the most important
case of three waves mutual interaction by regarding it as a system of
ordinary differential equations. At first, a simple approximate solution
to this system of equations is derived analytically assuming that the
energy transfer among waves is not so large. This solution lends itself
to consider the resonance condition with the amplitude effect taking
into account. In the next place, the measurements at shorter fetches
given by McGoldrick et.al. (1966) is successfully compared with this
theory. A simple and clear evaluation of the limiting wave height of
resonant waves is also put forward in terms of the first primary wave
amplitude. The result is confirmed numerically by the repeated execution
of long-time numerical integration of this system of equations. Through
this calculation, recurrence properties which are found and described to
some extent in Chapter2 are reproduced.

The comparison of the results are made with experiments de-
scribed in Chapter2, and the comprehensive discussion on the resonant
interaction phenomena are yielded in Chapter4. At the last section of -
this Chapter, a related problem on instability prorerties of a quasi-
monochromatic wave train are treated by the same method. The relation of
this equation with Hasselmann's energy flux equation among continuous
spectral component is interpreted in AppendixIl. -The relation with Non-
linear Schroedinger equation is also explained in AppendixIV.

3. 2 Numerical Experiment
The fundamental integro-differential equation has the form
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. 0B (k, t
22X 1

B* (ki, t) B (kp t) B (ks, t) 6 (k+ki—ka—ksy)

exp {i (wtwi—wa—w3) t} . . (3-1)
This is conceptually equivalent to (1 — 3 4) . In this expression, the
simbol & is Dirac delta-function. The explicit form of the kernel T 1is

‘presented in AppendixV. Using the quantity B, surface elevation 7 is
expressed as

7 (x, t) =) Tk 20) TdkB (k, t) expi (k-Xx-0t).
(3-2)

Pulling out from (8 — 1) the three components discussed in Chapter 2,
it is transformed into ordinary differential equations as’

_dB ~ ~ .
i d_ti-= [T1111B1B1*+ T1221B2B2*+ T1531B3Bs™] B+
~ iAwiisat
Tirese 1123 "B, ¥B, B, (3-38—-1)
.d_B2_ ~ ¥ ¥, ™ %
i = [T2112B1B 1™+ T2222B2Bs™+ T2332B3B3™] Ba+t
Toazir € 2311 "B ¥B B, (3—-3-2)
and
. dBs_ ¥ n . ¥ ™ * *
P - [Ta113B1B1™+ Tg223BoB2™+ Tgz33B3Bs™] Ba+
iAow 2 ‘t
Tz211€ 211 "B, ¥B, B . (3—3—-3)

These are actually the six degree non-linear equations with respect to
the real and imaginary parts of B.
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Where, T 1234 denotes T (ki, Kk, ks, k,4) and conventional notations

?1‘234=T’1234+T1243, Awiogs=wi1twe—wsz—wy are used. It is
confirmed that this discretized approximation is self-consistent and the
other components play no role at least in the first order, if they does
not exist a priori. The first terms in the right-hand sides of (3 — 3 —
1) ~ (3—=3~—3) represent the phase velocity effect in tertiary wave
interaction which is briefly interpreted in AppendixVI.

Before solving (3 —3—1) ~ (3—-3—3), we discuss about
the conservation laws of this system.

Taking notice on the magnitude of B, the symmetrical property
of the equations leads that

2Ti1237 ' | By |28+ Toas117 | Bo| 2+ Tga117 ' | By | 2= const
and (3—4—-1)
Tes11 ' | Bo|2—Tse117' | Bs| 2= const . (83—-4-2)

From the expressions (83 —8 —1) ~ (83 -4 —2) , one can immediately
notice for the energy transfer among these three waves that the first
primary wave B shears its energy to B, and B3 for growing them, that
is, the energy flows from B toward B_a and Bg,or vice versa. The first
primary wave B, plays the most fundamental role in this interaction and
unlike it, the role of the second primary wave B, is subsidary.

Considering that the complex amplitude B has a relation with
the actual wave amplitude A as

| B (k) | == (?kw Y2 A (K), (3-5)
it leads to
| B (k) 12=rz2('-2w—g)A(k)2 . (3-6)

Because A2 is proportional to the energy of waves, | B (k) | 2 means

the wave action (see Leibovich et.al. (1974) or Phillips(1977)) in this

system. Conservation laws are interpreted in more details in AppendixVi.
In the next step, we examine an approximate analytical solution
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of equation (3 —8—1) ~ (3—=38-—3) . In this approximation, we
assume that the amplitude of resonant wave is much less than those of
the primary waves. By use of this assumption, we neglect the terms con-
taining Bz in(8—3—-1) ~ (3—3—3) ..1n this manner, the ampli-
tudes of the primary waves are regarded as constants so that the quanti-
ties in []J of (83 —=3—1) ~ (3 —3— 3) should be also constants.
They are denoted by 61, 62 and 6 3 (Aw=0 is set without loss of
generality) , that is,

61 = [T1111By1B*+ Tiz21B2B2"] ,
and @s = [Ta112B 1B ¥+ To222B2B2¥]
&3 = [Ts113B1B ¥+ T3223B2B2*] .

Representing B, (t) =b, (t) expi ¥, (t) ,(n=1,2,3) under the
constraint of b,, X, being real functions, we get from (3 —3 —1)
and (3 —3 —2) that by (t) =Dbyg, b (t) =bsp, 21 (t) =—6t
and ¥» (t) =—8@,t+x /2. Using them to the last equation (3 — 3 —
3), it reduces to ' '

db |
d t3 =Tgp11 b1gZbogeos { (201—602) t +x3s}

and (3-7-1)
q ; |
d)is ,=—93“Tsznbmz‘bzabg"’sm { (26,—6,) t+x3}

(8—-7-2)
which are non-linear equations with respect to bz and x 3. Considering
the initial condotionbz=0, x 3=0,at t=0, we introduce an undetermined
constant B8 as xs=—A8 t and integrate (3 —7 —1) . The result is

bs= {K,/ (206{—6:,—8)} sin (261—6,—B8) t

where K= Tg3o11b1g2bog . Substituting xs and b into (3 -7 —2) ‘,
we can determine B as follows

—B=—0;— (26,—6,— B) , that is, /9=91;“'é_62+_é;03

(279)
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Thus,
xa=— (01— +%6,++63) t.
Accordingly, time variation of b can be decided as
bs= {K/ (81— %602—%503)} sin(01—+60,—+03) t
(3-8)

[t is easy to verify that this pair of solutions X3 and b satisfies

the equation (3 —7 — 1) and (8 — 7 — 2) exactly. In the initial stage
of evolution, the solution (3 — 8) reduces to bz=K t, which would be
equivqlent to the classical result (Longuet-Higgins(1962)) . In order to
verify whether the theory of Zakharov equation to be applicable to the

phenomena or not, we now compare (3 — 8) with the experimental results
given by McGoldrick et.al. (1966)as the initial growth of tertiary waves.
In accordance with their experimental parameters, we rewrite (3 — 8) as

az= (472T3ap1,) ("w‘s) (33) “2a,2a,d , (83-9)
[ (AP

where d is the fetch of interaction. We adopt concrete values on the
basis of their experiment as a;=0.32 cm, ap=0.895 cm, w;=16.87
sec™!, w2=9.65 sec™! and w3=24.0 sec™! . Thus, we can calculate the
amplitude of tertiary waves against fetch d by evaluating the coupling
coefficient Tgp1;=40.964 from the Zakharov theory. The results under
the condition mentioned above, together with the case that aps=0.45cm
(one-half of the former) with the symbols O and A respectively are
drawn in Fig— 3 — 1. Their data on two series of experiment show good
agreement with the Zakharov theory. In this paper, we call (3 — 8) the
QUASI-STATIONARY solution of the equations (3 —3 —1) ~ (3 — 3
-3).

Using the quasi-stationary solution verified to be valid
immediately before, we consider the NON-LINEAR RESONANCE CONDITION, that
is, the dependence of 75 upon the amplitudes of primary waves. Slight
extension to the solution (3 — 8) when A w %0 yields the modification
of its argument as 61— 56 ,— 560 3+ +A w. Therefore, by this approxi-
mation the non-linear resonance condition is expressed as



Aw+26=0, (3-10)

where 6 1is given such that

26 = [2T1111— Ta112— Ta113] B1B ¥+

(2T 1201~ Toz2e— Ta223 ] BaBo*¥. (3—-11)

It is obvious that for the linear resonance condition, (3 — 1 0) merely
reduces to Aw =0 and 7 g=1.7357++--- . For evaluating the small
correction 77, we assume that the non-linear resonance condition 7y is
expressed by v w=7p+ v~ and approximate (3 —1 0 ) up to the first
order of 7 7. The result is

;- T (876%—1279%+670—1)
2 (6791272 +670— 1)

(28) . (83—-12)

(3 —12) together with (3 — 1 1) represents a correction of the
resonance condition by finite amplitudes of primary waves.

If we apply the Zakharov's coefficients, the non-dimensional
formula is derived that '

v’ =1.66055 (a ki) 2—2.74992 (akp) 2. (3—-13)

An example for the case calculated in 8§ 3. 8, that a;=4.7T ¢cm, a,=
5 cm, A1=1.66 m andA>,=4.99 m leads to 7 "=0.051838+¢+---, '
Thus we obtain the value 7 z=7 ¢+ v “=1.788 which agreesvfairly well

with the value 7 =1.800 adopted in the caluculation. '

In the following section, we mention how tertiary wave ampli-
tude A is correlated with the changes of the amplitudes Ay, Az and
the frequencies i, wo of the primary waves. The details of the numeri-
cal procedur are referred to Tomita(1987).

3. 3 Behavior of -the Tertiary Resonant Waves

We can integrate the equation (3 -3 —-1) ~ (3 —3 —3) nu-
merically under the condition that amplitudes A; and A, are given as
concrete values in the experiment. The amplitude Az is assumed to be
zero initially. The phase difference between the primary waves has no
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influence upon the results. Corresponding to various values of A, and
A, 1‘ong time variations of three waves are shown in Fig— 3 — 2, and
Fig— 3 — 3. It is shown that the energy exchange occurs among the three
waves and the amplitudes of waves vary periodically (not always sinu-
soidal) and never reach any equillibrium (this problem is discussed in
more detail by the analytical investigation of these equations at the
latter part of this paper) . Fig— 3 — 2 corresponds to the case 7 =1.7
35(near resonant). Initial values of A; are prescribed (a) lcm (b)
2cm (c) 3cm and (d) 4cm in order, while A, is fixed as 5¢ m.
The growth of A3 is apparently limited. The straight line A3” in Fig—
3—2 (b) is the solution given by Longuet-Higgins{(1962). It means
that the solution of Zakharov equation reduces close to the classical
one in the initial stage t <€1 as mentioned at the previous section.

On the contrary, when 7 =1.800(off resonant) Az grows to some
extent according to the increase of A; (see Fig—3—3 (a) ~ (e) ) .
Initial values of A are prescribed (a) 2cm (b) 3cm (c) 4cm (d)
4.6cm and (e) 5c¢cm,whileAs is fixed as 5cm. In Fig—3—-3 (d),
the amplitude A3 temporarily exceeds the first order quantity A,. If
we set that A;=5cm initially, the growth of Aj; rather reduces.

v In the second place, drawing our attention to the nature that
A ; reaches their maximum values in finite durations in any cases, we
investigate the values of the maximum Asnpax against A with 7as‘ a
parameter. A result when A, is fixed as 5cm, is shown in Fig—3 — 4.
In Fig— 83 — 4, the parameter R which is square of ¥ (the exact
resonance ratio 7 =1.736 discussed in Chapter2 corresponds to R=3.01
4) is used. The value of 7 is also shown in Fig— 3 — 4. When R >3.0,
each solution Azpax corresponding to different values of R has sharp
peak AMsnax in the vicinity of each value A g without regard to R.
The fact is also noticed that in the case R>4.0, each solution Aapax
as a function of A4, is nearly identical without respect‘ to R. It is
obvious from the mathematical point of view. The reason is understood
that the Zakharov coefficients Tapeq (a, b, c,d=1,2,3) does not vary so
much with R. Whereas, physically speaking, it is not so obvious. We
merely point out that AMs,.. exceeds the highest limit of gravity wave,
hence the formulation of the theory up to the third order of wave steep-
ness would be insufficient under this condition.

AMznay is a quantity which is characteristic to express the
intensity of resonant wave interactions. Using the results discussed in
AppendixVI, we have a criterion about the limit of maximum amplitude of
tertiary wave A"z,., that it depends only on Ay (not on A,) linearly
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such that

Amgmax=0. 844A1 . (3—14)

The maximum value Agsznax Of tertiary resonant waves could grow to the
extent of 84% of the first primary wave which generates it. In the case
R<2.9, the curves run close to the abscissa, that is, the small part
of energy can be transfered. For the case of amplitude of the second
wave A, is 10 c¢cm, the maximum of tertiary wave Agzn,x is shown in Fig
— 3 — 5. The broken line in Fig—3 —5 is (3 — 1 4) which passes
through the each maximum of Agznax, in this paper, we express it as
A"snax. We could not examine this formula (83 — 1 4 ) directly, because
it is difficult to generate sufficiently large amplitude wave which has
non-deformed, non-breaking crest lines of constant height with the wave-
makers used in this experiment.

Finally, we execute several numerical integration by arranging
the initial values of the amplitudes of two primary waves as real value
recorded in the experiment. Examples are displayed in Fig— 3 — 6 ~Fig—
3 — 7.As is explained in Chapter 2, two primary waves could not directly
be compared with the theoretical ones because their amplitude are
affected more intensely by inevitable effect of wave diffraction than
that of interactions. The plotting is done only for tertiary waves. In
the theories, phenomena are assumed to be uniform in space and vary with
time. On the contrary, for the experiment, we make up the stationary
state in a basin and detect the spatial variation of wave amplitudes
with several wave gauges. By this reason, the wave amplitude of tertiary
vaves are drawn against spatial fetch d. Fig— 3 —6 for R=2.97 (7 =
1.72) ,Fig— 38— 7 for R=3.21 (7 =1.79) show the data with the
Zakharov's theoretical values. Between the both examples, the manner of
variation of A3 are somewhat different, nevertheless the agreement of
the data with the theory are fairy well. However, as is seen at the last
example,Fig— 3 — 7 (c¢) ,experimental data do not amount so large as
half as that of the Zakharov theory when the wave height is extremely
large. ) .
In order to show the applicability of the theoretical results to
the scale of actual sea, we present a summary concerning the similarity
problem in AppendixVll. Analytical properties of interaction equations (3
—3—-1) ~ (3—-3—3) are briefly investigated in AppendixIX with
the proof for existing of the steady state asymptotic solution cor-
responding to the specific amplitudes of first and second primary waves.
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3. 4 Instability Properties of a Wave Train

We must mention first of all, the famous study by Benjamin & Feir
(1967) with regard to this problem. By their theory, a finite ampli-
tude deep-water wave train is unstable to the small subharmonic dis-
turbances whose components have a pair of side-bands of w, say w+Aw
and w — A w. They restricted themselves to one-dimensional problem that
disturbing waves advance in the same direction as the primary wave.
Recently, Crawford, Lake, Saffman & Yuen(1981) by means of the Zakharov
equation, MacLean(1982)by use of the exact Eulerian equations calculated
the domain of stability to two-dimemsional perturbations in the frame-
work of linear instability theory. Su, Bergin, Marler & Myrick(1982), Su
(1982) also carried out the experimental studies in a very long wave
flume in open air and indicated the importance of the two-dimensional
perturbations to the stability of steep gravity waves. Observations on a
modulational characteristics of wind waves were conducted by Mase et.al.
(1985) and Donelan(1987)in actual sea. The former authors successfully
compared their observational data with the computational results from
the Zakharov equation. We should also refer the studies on a instability
of non-linear standing water waves elaborated by Okamura(1984, 1985)
using the Zakharov equation. In this section, we utilize (3 —3—1) ~
(3 —3—3) as they are, to investigate a monochromatic wave which is
exerted by two-dimensional small perturbations.

To this type of problems, By is recognized as a primary wave and
B,, B3 as a pair of side-band perturbations advancing in the different
directions. In Fig— 3 — 8 one can see an example of the long time
behavior of each components A,;, Ao and As. The perturbation components
rise up spike-wise intermittently in all the cases to be examined. In
these calculations, the magnitudes of small perturbations A andAj are
initially set 10°°® times as large as that of primary wave A. The
height and the recurring period of spikes are intrinsically dependent on
the wavelengths and directions of two perturbational component waves.
Thus we examine the waves of wave-numbers k;=K; (1, 0), k=K, (
1+p, q) and K=K, (1 —p, —q) in the regions 0<p <1.2, 0<q
<0.5. The vector Ky (p, q) is taken as a modulational wave-number.
The instability criterion is defined that the side-~band amplitudes
exceeds 10”* times as large as that of the primary wave. The domain of
instability calculated by the Zakharov equation are shown in Fig— 3
— 9. Small circles mean the unstable couples (p, a) . The stable
results are not illustrated in the Figure, e.g., the wave is stable in
the region except where is filled by the grid of the small circles.
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Solid curves drawn in the same Figures represent the boundary of the
domains of instability by means of linear stability theory after MacLean
(1982). From the numerical experiment executed in this time, side-band
components rise up abruptly at the outer side boundary of the wave-
number space. : Lo v :

The stability property of a wave train can be ‘investigated in
the same manner as resonant problem, conversely, the stability property
has not been sufficiently taken into accounts in studying the resonant
interactions. In this study, Zakharov equation was discretized into the
most important three wave components. However, from the stand point
mentioned in this section, the affection on the resonant interaction
properties by other components must be investigated. There would be
certain contributions through the instability and phase speed effect
exerted on primary waves by other components neglected in this paper.
To a further step, the computation with a great many components are
desirable for directly simulating the dctual ocean wave spectra,
possibly by use of super computer. It will be an issue to be treated
more comprehensively in the future studies.: :
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CHAPTER 4 CHARACTERISTICS OF THE RESONANT WAVE INTERACTION

4.1 Outline of the Preceding Chapters

In the previous chapter, we explained the classical theory due
to Longuet-Higgins(1962)in§ 1. 3 and the more comprehensive theoretical
approach to long term evolution of resonant interactions in § § 1. 4
and1l. 5. The experimental results shown in Chapter2 revealed that the
classical theory is insufficient to describe the observational results.
In Chapter3, the Zakharov equation which is applicable to long term
variation of non-linear waves was numerically integrated and the experi-
mental data were partly confirmed to agree with the theory in several
examples. In this Chapter, the experimental data are compared with these
theories in more entire point of view. For this purpose, we summarize
the facts obtained in the preceding Chapters as follows:

1) The existence of tertiary wave generated by resonant interaction is
verified experimentally. The tertiary wave which grows up to 62% as
large as the first primary wave is detected wheny =1.79 andd =45. 36m.

2) In short fetches, the growth rate of resonant waves is somewhat
smaller than that measured by McGoldrick et.al. (1966) and greater than
theoretical value given by Longuet-Higgins(1962) by 189%. Tertiary wave
growth takes place most strongly at the value of ¥ =1.78 which is
slightly different from the exact resonance condition 7 g=1.736. This
is partially interpreted by the non-linear correction of the resonance
condition.

3) The measurements done by McGoldrick et.al. in the short fetch are
completely accounted by the Zakharov theory.

4) The direction of propagation of generated tertiary resonant waves are
determined about 9 degrees which is identical with the theory.

5) In longer fetches, tertiary wave grows up to their maximums and dimi-
nishes its amplitude. The fetch lengths for the recurrences depend upon
the amplitudes of primary waves A; and A,. This fact can not be ex-
plained by classical theory (expressed in (1 —9) ) .

6) In general, the behavior of tertiary waves is affected not only by the
frequency ratio 7 which is related to resonant condition, but also by
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the amplitudes of primary waves A and As,.

7) By comparison of the Zakharov equation with the observational data,we
can see that the theory explains the evolution of tertiary waves at the
case of small steepness of each waves. -However, the discrepancies become
large with -increase of the wave steepness.

8) An approximate analytical solution of Zakharov equation (3 - 8) is
proposed. The observational results are explained by this solution when
energy transfer among waves.is comparatively weak.

9) By solving the Zakharov equation repeatedly, the maximum values Agzpax
realized by tertiary waves are determined against A with 7 as a para-
meter. _ o v , o _
As the quantitiy Agspax is suitable to discuss about the entire
characteristics of resonant wave interactions, we rearrangé‘ the data to
be compared with theories through this concept.

4. 2 Comparison. thh Class1ca1 Theory : ,

The recurrence properties of tertiary waves are explalned even
by the theory of Longuet -Higgins(1962) if we recognize them as.an effect
of detuning of the frequency ratio .7 to its prescribed value 7 g.
According to this theory, the maximum value Agpax to be reallzed is
yielded' by (1 —14) ..In Fig— 4 — 1,ve take the theoretical values to
the abscissa and those.of experimental values as the ordinate and p_lot.
the points in the graph of dispersion. If theory and experiment agree
with each .other,. the points should be distributed on a line drawn in"
Fig— 4 — 1. The result scatters to. a large extent. This.means that the
~theory can not explain the experimental results. Taking into consider-
ation that there are results. for many cases of 7 in Fig—4 — 1, ve
classify them into three main cvategori’esv., The symbol A corresponds to
the case 7 ~1.72(nearly resonant case). In this case, all the data run
close to the X -axis. It means that resonant waves do not so evolved as
the classical theory predicts. Symbols [ correspond the casey ~1.79
(not so close to the resonant case).The data are seen to wind themselves
around. the line and comparatively near to it. The dispersion seems not
to be random. The points are distributed higher for small Asmax and
lower for large Agznax than the solid line. The case 7 >1.82 is plotted
by the symbol O. In this case, all the points are plotted above the
line, in other words, the measured values are always larger than that of
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the theory. The reasons why the theory and experiment are not identical
in general is suggested as follows:

Firstly, the velocity of tertiary wave changes by the influence
of non-linear amplitude dispersion. Velocity becomes slightly larger
with increase of the wave amplitude. As a result, resonance system of.
wave-vwave interactions turns out of tune. On the contrary, for the case
that resonance condition is not so closely satisfied, exact resonance
can be preserved by a slight-detuning to compensate for amplitude
dispersion inferred by Phillips(1977). Moreover, primary waves shed
their energy to the other waves to intensify the growth of resonant
waves. These effects were not considered in this classical theory.

4. 3 Comparison with Zakharov's Theory

In order to clarify the effect of the primary wave amplitude A,
to the growth of tertiary resonant wave quantitatively, we examine the
dependence of the maximum amplitude of tertiary wave Agsnax on A in
the sequel. The experimental values of Aznax are plotted this time
against A; in Fig— 4 — 2. There seems no clear tendency in Fig—4 — 2.
We arrange these data in the following manner. As same as the prvious
section, the set of data is classified by the magnitudes of 7.

“The case 7 ~1.72 is shown in Fig— 4 — 3. Theoretical curve
calculated by means of Zakharov equation is also shown in Fig—4 — 3.
Taking various noise described in Chapter 2 into considerations, the
agreement of the theoretical prediction with the acquired data is fairy
vell in this case. Fig— 4 — 4 shows for the value 7 ~1.79. It is very
characteristic in this figure that the theoretical curve expresses the
existence of strong resonance in the vicinity of Ay~4.0 ¢ m: The
measured data agree well with this characteristics. Although the sharp
peak for Agzpax is not observed experimentally, the discrepancy might be
caused by that the waves made with wave-makers are not perfectly mono-
chromatic, so the critical condition demanded by the theory for the
peaks would not be realized. On the other hand, higher order effects
which .are not considered in the theory might have an influence under
such a subtle condition. In Fig—4 — 5, the case 7 >1.82 is totally
plotted. The data are somewhat widely scattered in this Figure, however
considering ‘the instability property of waves at the large amplitude,
it is concluded that the entire behaviors obtained in the experiment

could be explained b& the theory of Zakharov.equation.
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4. 4 Discussion »

It is confirmed that the long term evolution of tertiary reso-
nant waves are not explained by the classical theory. On the other hand,
by the comparisons of the experiment with the theory of Zakharov we can
conclude that this theory is applicable to this sort of phenomena.

[t could predict the evolution of tertiary resonant waves under the
conditions that the wave steepness H /L <0.05 (the reproducible
experiment was conducted to the wave whose steepness is less than 0.05)
and the frequency ratio 1.58< ¢ <1.90. It is the point left as an open
question when one applies this sort of equations derived by the singular
perturbation method. Although these criteria are not determined directly
by the experiment, they are discussed briefly in AppendixVI.

After ‘all ve summarize the over all properties of the generation

of tertiary resonant wave by perpendicularly intersecting two primary
waves as follows:

1) In general, resonant waves show a spatial (temporal) recurrence
(periodicity). The non-linear resonant wave interaction phenomena are
interpreted by a third order slowly varying theory using the Zakharoyv
equation.

2) Growth rate G for short term development is proportional to the
square of the first primary wave amplitude A,. Classical.theory is
valid only for this region.

3) The resonance takes place most strongly at the "off-resonance”
condition 7 ~1.79 in terms of the linear dispersion relation. Intro-
duction of the concept "non-linear resonance” is necessary.

4) To the values of 7 less than 7y, there exists no strong resonance
and Asnax approaches to a small constant value without respect to A;.

5) For the cases 7 <1.6 and 7 >2.2, tertiary wave does not appear at
all in the experiment.

There were several reports including Snodgrass et.al. (1966)
who pointed out the importance of wave-wave interactions in a seaway.
Mollo-Christensen & Ramamonjiarisoa(1978, 1982) proposed a new model for
ocean waves described by the presence of wave groups in a random wave
field. Chereskin & Mollo-Christensen(1985) conducted an experimental
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study about the amplitude and phase modulation of a one-dimensional wave
flume. The coherency of narrow-band ‘weakly non-linear one-dimensional
wave system-is pointed out by their papers. If such a coherent property
is predominant in the ocean waves, resonant interaction would take place
more intensely than considered in a model of random wave field.
Recently, "Sand(1988)reported the topics in the problems of wave forces
as a environmental conditions to ocean structures. In the field of
research concerning the mooring of off-shore floating structures, - for
example, investigations into non-linear properties of sea waves will:
play an essential ‘role in the near future. - :

The present author(1988b, ¢) also investigated the wave group’
characteristics by use of the data obtained with wave buoy at the North
Pacific Ocean during 1983~1984. ‘It might be a manifestation of non-
linear modulation property of wind waves indicated by Mase et.al. (1985)
or Li et.al.(1987). In the present time, observational wave data are not
enough to make clear the mechanisms of this sort of unsteady non-linear
processes in sea waves. Application of more exhaustive analysis tech-
niques such as INSTANTANEOUS SPECTRUM proposed by Bendat & Piersol(1967)
and/or INVERSE SCATTERING METHOD founded by Zakharov & Shabat(1972) and
interpreted by Sobey & Colman(1982, 1983) in the context of sea waves
seem to be necessary.

"Although it is a future problem that the investigations are exe-
cuted for the more general cases, four wave mutual interactions etc.,
the co-operative method of study within theory, calculation, experiment
and obserbation is indispensable for such a non-linear problen:
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Appendix I Coefficients HN), F N

Coefficients in (1 —2 4) are yielded as follows:
H' (k, ki, ka2) =1/(2V'2) [(gke/kk1) 174D 0 (ky, ko) +
(gkkike)'74D (‘lkl, k2) — (gkkik2)'"*D ® (ky, ko) ] Sa-1-2.
(I—-1)
H® (k, ki, k2) =1/(2V2) [(gke/kk) V4D 0 (ky, —kp) —
(8k1/k‘k2)1"D(“ (—k? k') —(gk/kike)'"* {D® (—Kk?2, k') +
D@ (ky, —Kk2)} —(gkkik2)'"* {D 3 (k,, —Kk,) +
D' (—Kk2, k') } ] Gasi-2
(r—2)
H® (k, ki, k) =1/(2v'2) [{(gka/kk1)'"4D ‘D (k,, ko) +
(5 Kike) 174D 2 (ki, k2) — (gkkike)'*D 3 (K1, k2) ] Sasrse.
(1-3)
F (K, ki, ka2, ks) =1/4 [(koks/kk;)'"2E ‘D (K, ko, ki) —
(kka/kik2) V"4 E ¥ (ky, ko, ki) +(kkikaks)!79E 3 (ky, ka ki) ]
Og-1-2-3,
(I—4)
F® (k, ki, kg, k3) =1/4 [(kiko/kka)'"2E ‘Y (K3, ko —Kky) —
(k2ks/kki)'7*E ‘" (= k4, ko, k3) +

(kiks/kk2)'7*E ‘1) (ky, — ki, ki) +

(292)



43
(kks/k1k2)'7* {E® (kp, — ki, K3) +E @ (—k,;, ks, ksz)} —

(kk1/keks)'"*E ¥ (ks, ka2, —ky) +
(kk1keka) 7% {E® (ks, ka, —ky) +E‘® (koo —ki, kg) +
E® (-ki, ko, kg) } ] Sovi-2-3,

(I-5)
F ¢ (k, ki, ks, kiz) =1/4 [(kika/kka)"4E ‘D (ks — ks, —ki)
— (keks/kki) V74 {EY (=k1, —ko, k3) +EY (=ky, ks, —kj) }
+ (kko/kiks) V74 E 8 (—ky, ks, Kp2)
+ (kk1/kekg) 174 E ‘22 (ky, ko, kg) } —
(kk3/kike)'7*E @ (—ky, —ka, ks) +
(kk1koks) 74 {E ® (ks ko, —ky) +E (ky, ks —kp) +
E® (—ki, —Kz Kk3)} ] Gos1s2-3
and (I1-6)
F (k, ki, kp, kj3) =
1/4 [-(kaka/kk)'"4E D (—ky, —kao, —k3) +
(kks/kik2)'"*E ®? (= k1, —ka, —ks) +
(kk1kok3) 171 E ® (—ky, —Ka —Ks) ] Sps1e2+s,

(1-7)
where, dpg+1-2-3=6 (k+ki—kz—ks) and

D“) (kl, kg) =k1k2+}(12,
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D (ky,

D(S) (k1,
E (V) (’kl,

E(2) (kI,

EC® (ki

ky) =% (k1‘l<:L2—K1ke) .
kp) =+ (ki+k3),

]:‘{2, ka) =‘£‘K1 {k12+k1'(k2+1{3) } ,

ko, k3) =— % (kike—K1kz) {|ki+tksl|
- (kq12+ k%) },
kz, ka) ='(l/(5) { (k1+K2) |k1+k2]

+ (kao+ks) | ket+ks|
+ (k s+ k) | ks+ ky

— (K13+ K2+ k32 } .
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AppendixII On Canonical Form

As is well known, the energy of deep-water gravity waves is
represented by

E=4 [ ar ([ Bge)cazrgael, (1-1)

vhere, S means the total surface considered here, B is the depth where
the wave effect diminishes. This expression contains the volume integral
over all region occupied with the fluid, it can be replaced by the
surface integrals by means of certain transformation of variables as
follows. '
From the Gauss’ theorem, the first term of the right hand side of
(O —1) (KINEMATIC ENERGY) is expressed by the next equation

Ei=% ] # (3¢/8n) a5, (I-2)

when S means the fluid surface z=2 (r, t) .
By use of the theorem of differential geometry, the relations

(3¢9 n) ” = (¢, VsdVnn) / {1+ (Vhn) 2y 1v2 lﬂ
and dS= {14+ (V7)) 3 172 dr
are derived. Where, the operatorVy, means the horizontal two-dimensional

gradients.
Furthermore, if we consider the kinematic condition

P:—VhdVhn =14

at z=7, (I - 2) is proved to be replaced by

E;=+ J' 2@ s(dn/ 9t)dr. . (I—3)

If we add the potential energy term to this, total energy Hcomes out to

H=%Isdr’[¢sm+gn2]. (I —-4)

wvhere, ¢° is the value of the potential at the fluid surface.
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An alternative proof of this theorem is proposed by West(1981). The
interpretation of H to be explained as the Hamiltonian of water waves
accompanied with the canonical variables ¢ ° and n was presented by
Miles(1977), Milder (1977).
To the Hamiltonian (X — 4 ) , the new variables p, q are
defined by use of the Fourier transform as
' -3 < ikr
65 (r, t) =) [[Tdkp (k, t) e (I-5)
-— oo
and
7 (e, )=o)t [[Taka (k, ) & KT (n-6)
-— oo

By use of them, H 1is represented by p, q as follows

[o o]
H=+% [ "dk (p* (k) a¢ (k) +ga*¥ (k) a (k) }.  (I-7)
In order to eliminate the function q¢ (k) from (I —7) , we use the
equations presented in Stiassnie & Shemer(1984) (they did not discuss

the canonical form) , that

gy (k) =ws +

Zl_— I.[ f(kl.kg) dkidk:p (ki) q@ (k2) 6§ (k—ki—k2)
n o

and
we=k p (k) —

1 ©
o Kylk=k1) dkidkep (k) a (ko) & (k-ki-ke) .
/4 [oe)

where, we adopt the notations used here and truncated the perturbation
series up to the term necessary in this discussion. The function wS*
means the value of ¢, at the fluid surface. '

We make q the function of p, q and substitute it into (O —7)
and the representation

H=4 [ Tk (kp*(K) p (K) +ga* (k) a (K) ] +
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41; ” o_jéf(?kdk1dkgp*(k) p (ki) @ (Kkz) 6§ (k—k;—koz)

- ke ki d ke a ke O b (kD @ (K2 @ (k)

X6 (k-‘k1—k2"k3) (H_8)

is derived. The first term is the v)ell—known Hamiltonian of linear wave
field. The kernels K ‘@’ and K ‘¥’ are

K@ (k, ki, ko) = (kik2) —k1 (k—ky) , (o—-9)

K (ki, ka, ks) =ki (Kkzks) . (I—10)
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AppendixIl Randomization of the Zakharov equation

The arguments applied to the randomization of narrow- band wave
system by Longuet-Higgins(1976) is extended to this problem of arbitrary
band width wave system in the following.

The exact form of the Zakharov equation is presented by (3—1)
in Chapter3. Here, we abbrebiate it to the following form

i dBg_
dt

iAt
[axTB*B.Bs5e o (m-1)
Multiplying Bga* to the both sides of the equation and subtracting it
from its complex conjugate, we have

iAt

2
idl-B—”l =2ilm JdKTB,*Bngea*ae . (m—2)

dt
If we write the ensemble average of |Bp|2 by <|Bg|2 >=Cyq , we get
from (Il— 2 ) the statistical equation

,ng_ . ~ .
i = 2iln [axTcac, . (m-3)

In this equation, the right-hand side is 0, because all the quantities
in the integrant are real numbers. Therefore, the energy spectrum of the
stochastic wave field does not vary to the 4-th order.

Finally, time derivative of the 4-th order mutual products are
calculated as

i (Bp*B1*B2B3) 1= i Be*tB1*B,Bs+ i Bo*B ¥, B,B,

+ i Bg*B1®*B21Bs+ i Bg*B*B,B sy (M—4)
Substituting (Il — 1) to the time derivatives in the right hand side of (
Il—4) , averaging the whole equation, and remaining up to the 6-th
order of magunitude B, it is yielded as

i< (Bp*B1*B2B3) >1=2T {C2C1Cs+C3C,Cq

_C3C2C3—C1C2C3} 6exp(—iAt). (III-S)
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Rewriting (Il— 2 ) , we get the equation

d Cgq
dt

=-2iRe IdKTi<B,*328338*>5 e 1A

i
(- 6)

To evaluate the right hand side of this equation, (Il— 5) is integrated
to be '
. t ) -iA
i< (Bg*B1*B2B3) >=2 [ deT () 6e . °F
(m—-7)

In this equation, {} denotes the quantity in the bracket in (Il —5) .
Therefore,

t
i 9Ce __ipe IdKTE‘ 0 5] dt
— ™

iA (t—z7)
e
dt

(- 8)
is obtained.
The last definite integral is turn out to be # & (A) , so that the
final result has the form

dCe

— 2 )
1t im JdKTems {CaCs3 (Cot+Cy)

(m-9)
—CoCy (C2t+C3)} Sp1230 (Api23) .

which is just the same form with the energy transport equation among
the spectral components first given by Hasselmann(1962, 1963a, 1963b).
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AppendixIV_  Narrow band approximation of the Zakharov equation

So called non-linear Schroedinger equation was first derived in
the paper of Zakharov(1968) himself. In this Appendix, we interprete the
procedure in terms of the symbols used in this paper.

We restrict ourselves that B has large value only in the
vicinity of certain central wave-number kg. That is, k= kg+llf s0

B (k) exp {i (kr—wt } =B (k) exp {i (kar+Ur
‘ —wt+twpgt+wat) }

=A(¥) exp (i¥r) exp {i (RKgr —wpt)}
(V—-1)

is introduced to the fractional wave-number ¥. Using this formula, the
elevation 7 is expressed as

1=05— (ko /20" [TdUA () ¢ 17 & (Kol —@et)
2 — o - (V—2)

By definition, the quantity in [J is one half of the wave envelope a (r,
t) therefore the relation of A to a is

a (r, t) = _é_!”_ (ko2 0ol [Tava (v) e

i¥r
(IV—13)

On the other hand, (IV— 1) is substituted to the Zakharov equation (II
— 1) to be

d .
i _ﬁﬂ_ ((O—Q)B) A= IdKTAI*A2A36 e

iAt
dt )

(V—4)
Assuming that the band width W= (¢, A) is sufficiently small, we

expand the dispersion relation w= f (k) around wg up to the 2-nd
order of ¢, A to have
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w—we= (wa/2kp) ¢— (0o, 8ko?) ¢2+ (wa/ 4 Kg?) 12 .
(V-5)
Substituting this into (IV— 4 ) and Fourier transforming with respéct,to

k, we get the final equation by use of the approximate kernel Tgi23=
Tooea= ka®/ 4 w2

3 a ?a wp ©02%a wg 9°%a wpkg?

i (2 Ly ¢ 92 0 e 0= 2

PG5 T g% ) Takpe 9x2 7 fke® 9v2 ;. 1alfe
(V—-6)

This equation agreés with the 2-dimensional Nonlinear Schroedinger
equation for deep-water gravity waves (see, Yuen & Lake(1982)) .
Modifications of (IV—6) for including the mean flow effects

were proposed by Dysthe(1979) to deep-water waves and by Tomita(1985b,
1986) to waves on a finite water depth.
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AppendixV  Kernel T of the Zakharov equation

The third order interaction coefficient T (kg, ki, ko, kg)
appearing in (3 — 1) was first found by Zakharov(1968) and rederived by
Crawford et.al. (1981) is exhibited below with some minor misprints

removed:

T (Ko, ki, Kz, ks) =Tagyas=

2 \’(5?3—1.1‘/‘532.3-2

2\’(5{0.2-9\’(;31—3.3

Wi1-3— W3t wi W1-3— W1t ws

- -3
2 V(2.2-1.1 @.3.8-3

—) -
2 VI3.B.3-B¢131-2.2

Wi-2—wWetw, Wi-2— W1 T ws

2 Viorio.1 Vata.ous

Wo+3— Wot w3 Wo+3— Wot w3

) ) -
2 V‘te—s.e.a V‘E.t.-a—l

+Wa.1.2.3 ,
where,
() 1 WaW 4 Ko 1/2
\' = ko-kiZt kgk
8.1.2 87 V2 { (ke ki eky) [ 0, Kok, ]
Waw Kk 1/2
+ (kekat kgkp) [ —2—2 —1Y
w1 kgkz
W Kk 1/2
+(ki-kat ko kg [ 2192 o 4l
W p k1k2 »
wi2=w (ki1+Kkp)
and
WB.1.2.3=W—B.—1.2.3+W2.3.~B.—1_ﬁ’2.-l.-8.3_\z’—8.2.—1.3+
W—B.382.-1“ﬁ’3.—1.2.—8
with
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— 1 Waw 4 1/2
W . = Kgkiksok X
8.1.2.3 6472 " wows eki1kakgs]
{2 (Kpg+Ky) —Kysz3—Kiso—Kges— Kpea}
and Kiwo=| ki+ k|

(303)
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AppendixVI Dispersion Relation in Tertiary Resonant Interaction

In general, the kernel T (ky, ko, ki, Kk4) of the Zakharov
equation is so complicated that the simple analytical expression was
obtained only in the cases that k1=kg=k‘3=k4 (single wave) and k4
=-—ke=—ks=k, (standing wave) in the paper by Okamura(1984). We
deal with here the next simplest case that ki=ksz=k (cos8, sin6)
and ko=k, ;=K (cosf, —sinf) . ‘

If there exists only two trains of wave of exactly same ampli-
tude a and wavelength A =2 7z Kk intersecting by the angle 26, the
equations corresponding to (8 — 3 ) beconme

.dB “~

ldtl = {T1111B1*B 1+ T1221 B2*B,} B, (VI-1-1)
and

. dBo> _ = * T * T

L3 = {T2112B1*B1+ T2222B2*B,} B, . (Vi-1-2)

These are easily solved by setting Bi= bexp(-ix1), Bz= bexp(-ixs)
with real constant b. From (VI—1) and (83 —5), x ., are given by

and 1= {T1111+ Ti22q} (2720 k) a? (VI-2-1)
X2= {¥2112+T2222} (27z2%w0,/7kK) a2 . (VI-2-2)

The resultant of the two waves are called the SHORT CRESTED WAVE of
amplitude A= 2 a and its dispersion relation was derived by Mollo-
Christensen(1981) that

w=wp {1 +7A%k2F (6)} (VI- 3)
where

F (8) =(8cos®0-3-2c0s?6)/2 + sin?8 (cos 6 +2~4c0s28 )/(2-cos O ).
(VI—4)
These formula are also verified from the equation (2 — 8) of Longuet-

Higgins & Phillips(1962), after some minor correction.
We can rederive this result by means of Zakharov theory that
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T1111+ T1221= Tet12+ Tozee = (k3/222) F (8) (VI-5)

after some algebraic manipulation. At least in these simple cases, it is
revealed that the Zakharov theory yields an identical result with the
classical one (see Tomita(1985a)) .
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AppendixVI Conservation laws of the Zakharov equation
He‘rvey, we define two quantities E and C such that
| Ei=g’Ai2/2=wi‘BiBi*/(27Zv)2 : (Vi— 1)
Ci=Ei/wi=BiBi%,/(éﬂ)2 .. (V- 2)

They are called the energy and the wave action of waves. Considering the
total energy of three waves that

E=E;+E2+Es= {w1B1B *+w:B2B*+w,B,B.%¥ /(27)2 .,

we obtain the following expression to its derivative d E/dt by use
of (3—-83~-1) ~(3-3-3),

d E

~ iAt
dt = {w; (Ti123¢€ 31*2B283-c.c.)+

i
_'A
w2 (T23“e1 1i312825'5833"—-c.c.) +
-iA
w3 (Tazyre 3312Be*83*—c.c.)}/(2n)2

~ iA
=[ {01T1123~w2Toes11—w3T3z211} € %1*23253‘0.0-] S (2r )2,

where c. c. signifies the complex conjugate of preceding term.

Because the equalities Ti123=2 Tag1q1=2 T3211=2 T holds with the
resonance condition 2 wi—wa2—w3=0, the change of energy is

d iA
dE =Im [ {20;—ws— w3} T e 531*282B3] /S Q2r)2=0

dt (V- 3)

Thus, the total energy conservation is proved in the present
situation. The conservation of total wave action C 1is also derived by
the method akin to the above procedure. It is in contrast to the case of
capillary-gravity waves (for reference Leibovich & Seebas(1974) or
¥hitham(1974)) .The conservation of wave action leads to next simul-
taneous equations with respect to the amplitudes A;,
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gA,z/(_o1+gA22/a)2+gA32/w3= const

and
gA2  ws— gA3%2/ wz= const

Initial values of A1=Ap, Az=Azg, Az=10 are substituted to the
right-hand constant terms and the elimination of A, leads to

A2/ w1+ 2A38 ws=A 02 0,
It means that the capable maximum amplitude of tertiary wave has a limit
Ass (ws/2w1) "2A 1= (27-1/27) ""2A13=0. 844 Ay
(V- 4)

In order to make the condition of validity of the Zakharov equation
clear, we estimate (1 —1 0) with respect to y. The condition

A=2w1—w,—w3~0 (M[-5)
is to be evaluated. This is rewritten as
A=wpg—ws~¢e’ws (i—6)
using wp=2w1— wyo. Small quantity A 1is estimated that
A= (gkog) "2~ (gky) 172
=—4(g/k3) "2 (kag—K3) =+w32 6 K.

By virtue of (1 —1 1), we see that 26 K=— 8Kk 38 7 vwhere § v =7 —
7 @. Substituting it to the relation,

A=—F%wsBd7 (M—7)
is yielded. Thus, from (VI—6) , =8 ] 6 v | ~¢&2 results. Using the

constant value B8 =0.497~0.5 from the theory and adopting the small
quantity e ~A Kk to be 0.2 from the experiment, we obtain an estimation
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of ¢ such that
| 8§ v | ~0.16, i.e., 1.58< 7 <1.90 ' (VI—8)

Although the estimation examined above is not always accurate, the range
of 7 is verified almost to cover that of experiment in this paper.
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AppendixVll On the similarity of the theories

The Zakharov equation in Chapter3 has the dimensional form and
the calculations are conducted to the wavelengths comparable thh the
magnitude used in the experiment. However, all the results obtained in
this paper must be applicable to the scale of actual ocean. In order to
show this, we derive the non-dimensional form of the Zakharov equation
and the classical solution.

First, we see from (3 —2) and (3 — 3 ) the dimensions of B and
T to be B= [m3%2s-172] , T= [m~3] . Thus, we introduce the non-
dimensional variables such as:

Wpn=WRWp , (i—1-1)
wrt=1 , (kr=wr%2/g) . (m—1-2)
Ti234=TrU1234 . (m—1—3)

(Tr=T (kg kr kr kg) =kg®/ 472,
B,=BrFn.,. (li—1-4)
(Br= (2wgr/ kgr) ""2Ap) .

Substituting them in (8 —3 — 1) for example, we have a non-dimensional
"form of the equation

.dF
i (i‘“t1=u [ {U1111 F1*¥F1+ U221 Fo*¥F o+ U133 F3*Fa} Fyt

~ idt
Uirase F*F,F3;] (M- 2)

where, 6§ =wW;+Wo+ws+wy and £ =wr™! Br2T is a non-dimensional
constant. Connecting the relations (VMli— 1) together, coefficient u is
estimated as

r=1% (Agrkg) 2. (Vi — 3)

This is nothing but a wave steepness.
By the similar manner, the classical solution (2 — 38) is

(309)
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written to the non-dimensional form
AsKs=+% (A 1K) 2 (AzKp) (wit) F (7)) (2-72)2.
(- 4)

In case of perpendicula’r waves, non*—d':imensional coefficient is
calculated tobe F (7) (2—9¢) 2 =0.833. "

(310)



AppendixIX Analysis of Interaction Equations

1 Construction of Single Equation
We wright down again the interaction equations (3 —3 —1) ~ (
3 — 3 —38) such that

d B o iAt
id—tl—= [Ty1b12+ T12b22+ T13b3%] B, +T{B;*BoBse
(X—1—-1)
dB -1 At
idt2 = [T21b12+ Tasbp?+ T23b3?] Bz‘*‘TeBstleel
(X—1-2)
and
dB -iAt
idt3 = [T31b12+ T3ob 2%+ T3sbs?] Bs+TsBz*BlB1el
(XK—1-3)

in which b,2=B,B.,*¥and A=w,+w;—ws—ws. Interaction
coefficients T, and symmetric matrix elements [ Tl = [T «] are real
constants to be calculated from wave-numbers. The method of solution
adopted here is that used by McGoldrick(1972) for second order non-
linear equations in the context of capirally-gravity waves.

Multiplying B1* to (IX— 1 — 1) we obtain

_ d B X iAt
1 Bi*d_tl: [T11b12+T12b22+T13b32] b12+T1B1*B1*Bnge

Taking the complex conjugate of this equation such as

: dle - 2 2 2 2 * %iAt
-1 Bld_t=[T11b1+T12b2 +Ty3b3?] b1+ T;B;B;By*"Bsre |
and subtracting this from the former equation, it reduces to

. db12 ' ¥
ldt = T, (R—R™ . (XK—2-1)

In this expression, a complex quantity R is introduced such as

61

(311)



62

R=B*B*¥B.Bs exp (i At)

Similar relations are obtained by using (K—1—-2) , (X=1 —3) that

2
i 422" _ 1, (R-r® (K-2-2)
dat
. dbg? %
i 7Y = —Ts (R-R¥ (XK-2-3)

From the relations (X— 2 —1) ~ (X— 2 ~ 3) we have three integrals

012/ T1+b22/ To=const1i=512/"T+5:2/ T (XK-3-1)
b12/T1+b32/T3=COHSt2=‘b12/T1+632/T3 (IX—3—2)
b22/T2-—b32/T3=const3=’622/T2——‘632/T3 (X—3-3)

wvhere Bhn=Db, (0) ,(n=1,2,8), the initial value of b, (t) .

By use of these integral properties, a complex function Z (t) is

introduced such as

Z (t) =(D12-b413) /Ti= (b2—b32) /Typ= (b3&"632)//T&
(X—4)

We can easily calculate that

dZ/dt=i (R—R*¥) =—21Im (R) (XK-5)

In order to calculate the real part of R, we differentiate R with
respect to t, that is,

dR/dt=2B*B*ByBgzexp (i At) +B* B, Bgexp (i At)
+B1®ByBstexp (i At) +i AB;*B,Bgexp (iAt).

Substituting (IX—1—~1) ~ (IX—1 —3) to this expression, it is
vielded that
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dR/dt =iAR+2i [T11b12+ T12b22+Ty3b3%2] R+2iT1b12bp%b3?
—~1 [Ta1b12+ Toaba2+ Tosbs?] R—iTzb %b3?
~i [Ts1b124+ Taebo2+ Tzsbs?] R—iTsb *bp?

Taking the complex conjugate of this equation and adding them together,
the result. is expressed by ' '

d (R+R* /dt=iA (R—-R*’)
421 [T11b12+ T12b22+ T1sb3s?] (R—R*
~i[Ta1b12+ Tapbp?+ Tasbs?] (R—R¥
—i [T31b12+T32022+'f33b32] (R-R¥* .
C’onsiderixllg the relation (X—5) , it is transformed to |
d (R+R® /dt= {A+Tib:#2+Tebo?+ Tsbs? di/dt

where Tn=2 T1n— Ton— Tan . Next, b, (n=1,2,8)is eliminated by use
of (IX—47) , and we have :

d (R+R® Jdt= {A+T; (b12-T,Z) +T2 ('622+T2kZ)
+Ts (b32+TsZ2) )} dZ dt
In this formula, direct integrati-on is possible such that
JRe (R) =R+R*¥=H+ (A+T5:2+Tob,2+ Tsba?} Z
—+ {(T1T1—T2T2—TsTs} 2% (X—-7)

where H is a real constant determined by initial conditions.
In order to fulfil the apparent equality that

IR |2= {Re (R)} 2+ {Im (R)} 2,
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The relations (IX— 5) and (IX— 7 ) are connected to

4 (B12—T1Z) 2 (D24 TpZ) (H32+T32Z)

= (H+E8Z+9Z% 24+ (dzZ/dt)? (X—-8)
where £ andyp aré the coefficients determined in (IX—7) .
2 Analy#is of Resonant Growth . _

In the case that tertiary wave component does not exist
initially, we can set the constant H=0 and b32=0 in (IX— 8) so that
we investigate the equation of the form

(dZ/dt) %=1 (z) (X—-9)
wvhere f is‘a quaritic fun?tion of Z such as
£ (Z) =4 (H542-T,2) 2 (622%1‘22) TsZ
— [ {A+T1D:2+T25,% —%'{T1T1—T}T2_T¥1?} 23222-
(X—-10)
In general, real solution Z exists and can be solved by means of a

integration

t A d x
R e o3 -1

if £ (Xx) is positive at 0<x<2Z .
In order to obtain a formal solution, we must rearrange the

polynomial f (x) in its standard form such as (see Jeffreys & Jeffreys
(1972)) ,

f (x) =apx?*+aix®+asx2+azx=¢ (x)
and it is resolved to the factors such that

¢ (x) =¢, (x) ¢, (x)

vhere



$, (x) =ax?+bx+c and ¢» (x) =>;2+Bx .
A bilinear transformation of the variable is performed by
x=(Ay+B) /y+1, (]X—12)‘
in whi‘ch A and B are réal roots of the following equation,
(b—_a’,9>(2+2c;r‘+¢‘,9%-0 . | ‘,(IX—13)
In this procedure, integrant of (IX— 1 1) is transformed as

dx _ (A—B) dy
Ve (x) VP {y®+M} {y%+N}

(KX—-14)

There are several cases according to the signs of P=¢ (A) ,M=

¢1 (B) /¢1 (A) and N=¢o (B) /¢ (A) .

Casel; P>0, M=py2>0, N=-p2<90
In this case, (IX— 1 4) is rewritten by

(A—-B) dy
VP {y2+pu? {y®—v°}

F(y)dy= (X—15)
Transformation y?=»2/ (1 - u2)"i‘s adopted and

(A—'-B)'du ‘
VP {2+ v% (1 -u?) (1—-kKZ%u?

F (y) dy=
(X—-16)
results in the form of elliptic integral of first kind after some

manipulation. In this formula, ke2=py2/ {12+ v 2} is called the
generatrix of the integral.

Defining Q=vVP {u2+v2} / (A-B) ,integral (IX— 1 1) reduces to

u dv
Qt= X-1
and Iuﬂ vV (1—v?) (1-k?v?) ( R

ud=1-p2(A-2)2/(B—-2) 2, (X—1 8)
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From (IX— 1 7) , we obtain
vu=sn (Q.t+9 ;kz)
and from (X—18) ,
(A-2) /(B=2) =v-lcn (Qt+6;k?) (X-19)

in which s n and c n are the Jacobi's elliptic functions.
Thus, the formal solution of (IX— 9 ) is expressed by

A—sig(B) Br~lecn (Qt+6; k2
1—sig (B) v 'cn (Qt+6; K2

7 = , (K—-20)
vhere sig ( B) means the signum of B.

To satisfy the initial condition that Z =0 at t =0, constant & is
determined by

A—sig(B) By“lecn (6 ; k2 =0 . (XK—-21)

An example of this solution is shown in Fig— A — 1. In this Figure, the
variation of resonant wave amplitude A3 is described under the
conditions that Ay=4cm and A,=05cm initially with 7 =1.80. The solid
line is the solution obtained by the method discussed here. The symbol
QO is the numerical solution obtained in Chapter3 (Fig—3 —3 (c) ) .
Both results which are obtained independently, coincide appreciably.
Precision of the numerical procedure adopted in Chapter3 is confirmed
to be sufficient.

Casell; P>0, M=—142<0, N=—12<)
In this case, (IX— 1 4) is rewritten by

(A-B) dy
G ( dy = X—-2 2
R Y o v B S e ¢ )
Transformation y2=»2,/u? is adopted this time and
(B—A) du
G(y)dy_\/Pyz(l—Ua) (l_kZUE)
(XK—2 3)



results also in the form of elliptic integral and k2= p2/yp?2,
By the same procedure as in Casel, with Q=VP v2,/ (B—A) we have

A+Bylsn (Qt+6;k?)

Z:
1+yv~t'sn (Qt+0; k?)

(X-24)

To satisfy the initial condition that Z =0 at t =0, constant & is
determined by

A+By-t'sn (8 ;k? =0 . (X—25)

The transition from CaselI to Casell occures under the condition of
maximum growth of tertiary resonant wave which is clearly shown also by
the numerical solution discussed in Ch3 of this paper.

3 Non-Periodic Solution

If we change the initial condition 612 or b22, two types of
solution appear as interpreted in the previous section. Although both
types of solution are periodic, there exist an aperiodic solution just
at the critical region between Case I and Casell.

Returning to (IX—1 0) , if the relation

(A+T1DH12+T2b22 =+ {(T1T1—T2T2—TsTs} 12/ T1=0
(X—26)
is assumed to be realized, that is, the parameter b 2 say, is sought
so as to satisfy the following equation to the fixed b2, Ta Ta
(n=1,2,3) and A
A=—Tob22— % {(T1T1+TaT2+T:Ts} B:12/Ty .,

(XK-27)

the equation f (Z) =0 has a double root at Z=5,2/"T =58 and
f (Z) is represented by

f (2) =—aZ (Z—-B)2(Z—7) (X—2 8)
where :
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a=—4T®ToTs++ {T1T1+ToTo+TsTas} 2>0,

B=513/T1>0
and
7 =4T 2T 3b:%/ a >0

are the positive constants in this situation with B< 7.
In this special case, (IX— 9) is easily solved and the non-
periodic solution is obtained as follows,

/37t.anh2)tt _
(7 —=B8) +Btanh?)t
where A= {a B8 (y—8)} '8 /2.

(X - 2 9)

It is remarkable that Z approaches a constant B when t goes
to infinity and all the energy initially contained in the first primary
wave is transferred monotonically to the other components. Note that
maximum amplitude realized by tertiary resonant wave a3 is determined
only by the initial value of the first primary wave amplitude a, and is
independent of a, as discussed in Ch3. The condition (IX— 2 7) is
fulfiled even A =0 (exact resonance 7y =1.736) . In this condition, the
ratio of amplitudes of two primary waves is determined a, a;=3.16
55-+++-. To the values computed numerically in Ch3, it corresponds that
a1=1.5795+-+++cm and the asymptotic growth of tertiary wave would be
a3=1.332+++-+cm which are consistent with the numerical results.

For the case of wave instability problem, we can apply this
theory by the following manner. This time b2 is a primary wave and
b22=b3%2=bs? are two side band components recognized as small
perturbations. To the leading order, T1=T,p=T3=T=k,% /472 ,T,=
T2=T3=0 and A=0 so that (IX— 9) and (IX— 1 0 ) are reduced to

(dZ/dt) 2=4T4(Z-B8)2(Z+7y) 2. (X—30)

vhere 8=012/T, vy =0.2/T and B> 7. This equation is easily
solved as

Z=7 {exp (2B8T?2t) —1}
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and evolution of the amplitude of side band components is expressed in
terms of the steepness of primary wave such that

as (t) =asgexp {7z (21ky) 2ot} . (X—-31)

The growth rvate of side band components % (a;, kl) 201 ‘ob_tain‘ed in
this theory is in accordance with the Benjamin-Feir(1967) theory.
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Resonance curve;

Solutions to the resonance conditions.
K, : first-primary wave

K, : second-primary wave

K; : tertiary resonant wave
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Data collection system.
WG (wave gauge), AMP (amplifier), AD. C (AD

converter)
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Arrangement of the wave gauges (Case I)

For analysing the short term growth and

the direction of the resonant waves.
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Arrangement of the wave gauges(Case II) .

For analysing the long term growth of
the resonant waves.
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Table-2-1 Elements of Mechanically
Generated Waves

1-ST PRIMARY WAVE 2-ND PRIMARY WAVE
PERIOD |- WAVE HEIGHT PERIOD WAVE HEIGHT 14
0. 93 1. 8917
0. 96 3~13 1. 77 2.65~10 1.845
0. 99 . 1.783
1. 02 L LT24
1.190 1.898
1..156 3~13" 2, 09 ~5 L.816
1. 19 : 1. 75§

PERIOD(sec), WAVE HEIGHT(cw), 7 =w /@,

E
{em? x sec)
1000

100

AT
I'NM1 LTI/ IPY

L A o g

SR
—

0 ot 2 3 4 5
f2 fT 2fi-f2 ¢t £(Hz)
1 ,
2f2 2f1
Fig. -2-6

An example of power spectrum. y=1.793, d=45m
f, : 1-st primary wave, 2f; : 2-nd harmonics

f, : 2-nd primary wave, 2f, : 2-nd harmonics
2f,-f, : tertiary resonant wave
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Fig, -2-7

Growth rate of the tertiary resonant waves.
G : the growth rate
vs . y of the most strong resonance
The solid curves are due to detuning effect.

Table;2—2 Observations of Initial Growth Rate

experiment(1936)

G 7 d
Longuet-Higgins (1962) 0.442 1.736
theoretical value
MacGoldrick et. al. 0.57 1.78 15m®
experiment (1966)
Tomita et.al. 0. 50 1.79 20.25 »

#The distance is converted to the size of

our experiment
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The principle of wave direction
measurement.

Ch 1 ~ Ch 3 on the array in a
obliquely incident wave
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Fig. -2-9

Coherence between wave data at the locations 1 and 3 .
f, : 1-st primary wave

f, : 2-nd primary wave

f; : tertiary resonant wave
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Fig. -2-10

Phase spectrum between wave data at the locations 1 and 3.
f, : 1-st primary wave

f, : 2-nd primary wave

f; : tertiary resonant wave
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Phase differences along the linear array
(a) 1-st primary wave

{b) 2-nd primary wave

(c) tertiary resonant wave

a : angle between the resonant wave and 1-st wave ' (333)
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Long term variation of A; (y=1.82)
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< : Experiment (cm) A, =5.47, A,=5.35
The largest amplitudes of resonant waves observed in the
experiment.
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Fig-2-19 (a) Photograph of the experiment.
Intersecting primary waves
Wave gauges are seen the left side of
the Figure.

Fig-2-19 (b) Photograph of the experiment.
Intersected waves (steep waves)

Short gravity waves or ripples are shown
on the surface. Local breaking takes place.

Fig-2-19 (c) Photograph of the experiment.
Resonant wave residued in the basin.
Wave travels slightly oblique to the
absorbing beach.
The roof of pier is shown in the foreground.
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Comparison of the Zakharov theory with the
experiments by McGoldrick et. al. (1966) at the
short fetch.
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Fig. -3-2 (a)
Solution of the Zakharov equation (y=1.735)
Initial values : A, =1.0cm
A,=5.0cm
A;=0.0cm
Growth of resonant wave is nearly straight.
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Fig. -3-2 (b)
Solution of the Zakharov equation (y=1.735)
Initial values : A, =2.0cm

A,=5.0cm

A;=0.0cm
Growth of resonant wave ceases at around 100
sec.
Initial growth rate coinsides with classical one.
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Solution of the Zakharov equation (y=1.735)
Initial values : A, =3.0cm

A,=5.0cm

A;=0.0cm
Recurrence phenomena appear.
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Fig. -3-2 (d)
Solution of the Zakharov equation (y=1.735)
Initial values : A;=4.0cm
»=5.0cm
A;=0.0cm
Resonant wave amplitude does not increase
proportional to the primary waves.
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Fig. -3-3 (a)
Solution of the Zakharov equation (y=1.800)
Initial values : A, =2.0cm

A,=5.0cm
A;=0.0cm
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Fig. -3-3 ()

Solution of the Zakharov equation (y=1.800)
Initial values : A, =3.0cm

A,=5.0cm

A,;=0.0cm
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Fig. -3-3 (¢)

Solution of the Zakharov equation (y=1.800)
Initial values.: A, =4.0cm '
" A,=5.0cm
A;=0.0cm
Resonant growth occurs.strongly in contrast to
the corresponding case in Fig-3-2.
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Solution of the Zakharov equation (y=1.800)
Initial values : A, =4.6cm

A,=5.0cm

A;=0.0cm
The critical case of interaction.
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Fig. -3-3 (e) .
Solution of the Zakharov equation (y=1.800)
Initial values : A,=5.0cm
A,=5.0cm
3= 0.0cm

Fig.-3-4

Maximum amplitude Azmax V. s. A, (A, =5cm)
Dependence of resonant growth of tertiary
waves on the primary wave ampritude is
shown taking y as a parameter. There are
sharp peaks at off-resonance cases.

Fig.-3-5

Maximum amplitude Azmax V. s. A; (A, =10cm)
------- : Limiting line AM;pax (3-10)

Upper bounds of resonant wave growth is

verified by the numerical experiment.



A3(cm)
2.0
1.0
o
o
[
1 1 1
0. 20 40 60
dim)
" Al=15cm
A252.5cm
A3(cm)
2.0 |+
0 r
o o
o
1 1 1
o] 20 40 60
d(m)
Al%52.0cm
A252.5cm
A3(cm)
20 P
10
R
! 0 ' I
o] 20 40 60
d(m)
Als2.5em
A252.5cm

Fig. -3-6 (a)

Evolution of tertiary wave A,
: Theory (Zakharov)
O : Experiment (cm)
y=1.72 (near resonant case)

Fig. -3-6 (b)

Evolution of tertiary wave A;
: Theory (Zakharov)
O : Experiment (cm)
y=1.72 (near resonant case)

Fig.-3-6 (c)

Evolution of tertiary wave A,
: Theory (Zakharov)
O : Experiment (cm)
y=1.72 (near resonant case)
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Fig. -3-7 (a)y

Evolution of tertiary wave A,

: Theory (Zakharov)
O : Experiment (cm)

v=1.79 (off resonant case)

Fig. -3-7 (b)

Evolution of tertiary wave A,
: Theory (Zakharov)
O : Experiment (cm)
y=1.79 (off resonant case)

Fig. -3-7 (¢)

Evolution of tertiary wave A,
: Theory (Zakharov)
O : Experiment (cm)
y=1.79 (off resonant case)
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Fig.-3-8

Long-time evolution of a wave train A, with its
side bands A, and A,

Side band components rise up intermittently.

The recurrence takes place in a very long time
instead of disintegration of wave train.
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Fig.-3-9 (a)

Domains of instability (wave-number space)
Wave steepness ak=0, 2
The solid curve is the instability boundary calculated by McLean (1892).
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Fig. -3-9 (b)

Domains of instability (wave-number space)
Wave steepness ak=0, 3
The solid curve is the instability boundary calculated by McLean (1892).
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Plot of the observed maximum amplitude of tertiary waves with respect to the
theoretical maximum of A,

Ajnex (0b) : Experiments

Agmax (th) : Theory (Longuet-Higgins)
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Plot of the observed maximum amplitude Asmax With respect to
A,
Various conditions are totally plotted.
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Comparison of observed Asmax with Zakharov theory
------- : Theory (Zakharov y=1.72)
[] : Experiment (cm), A,=5cm
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Comparison of observed Asmax with Zakharov theory
~~~~~~ : Theory (Zakharov y=1.79)
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Comparison of observed Asmax With Zakharov theory
------- : Theory (Zakharov-y=1.82)
[J : Experiment (cm) , A,=5cm
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Fig. -A-1
Comparison of analytical solution with the numerical: results
obtained in Ch3 -an example-
: Solution in Appendix IX
O : Solution in Chapter 3
Initial condition : A; =4cm , A;=5cm , A;=0cm
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