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summary 

It is well known that most of the energy of sea waves.which 

causes a lot of damage to ships, off-shore structures and facilities on 

coasts, is supplied by winds blowing over the oce~n. 
However, if a wind strong enough to generate gravllty waves stops, the 

gravity waves, far from dying out rapidly, will continue to run straight 

on until they fetch up against something.・ Once waves have escaped from 

the wind that made them, they can run for days with very little loss of 

energy. Therefore, they travel long distance without the influence of 

winds. Moreover, these wave elements change their properties owing to 

the mutual interaction during this stage. Accordingly; to understand the 

nature of sea waves, besides studying the mechanism of wind-wave inter-

action, it is also imperative to clarify the characteristics of propa-

gation of an individual wave train. In this paper, we deal with the non-

linear dynamics of the deep-water gravity waves and apply it to the 

experiment to interpret the results concerning the mutual interaction 

among waves. 

The contents of each Chapter are as follows. In Chapter 1, we 

review the basic theory of water waves and formulate the problems from 
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the point of view of a singular perturbation method. In the following 
two Chapters, experimental and numerical..studies concerning the. particu-
I ar condition of the resonant wave interact ions are des er i bed. In 
Chapter2, long term evolution of tertiary resonant waves are detected 
experimentally and the direction of propagation of the resonant wave is 
also obtained for the first time by aid of the cross-spectral analysis. 
The purpose of the observations is twofold:to examine quantitatively the 
evolution of the amplitude modulation and to test the validity of weakly 
non-linear wave theory (Zakharov equation) for the asymptotic behavior 
of resonant waves by comparing the predicted and the observed properties 
of the waves. 

In Chapter3, the Zakharov・ s integro-differential equation is 
solved numerically and it is shown that the experimental data agree with 
the solutions in the case of comparatively small wave steepness. Calcu-
lations are also performed to determilne the dependence of the maximum 
amplitude of the resonant wave upon the amplitude of primary waves. In 
Chapter4, comparisons of the experimental results with theories are 
made both for classica]l and that by Zakharov. It is concluded that the 
former is insufficient to explain quantitatively the long term evolution 
of the tertiary resonant wave and that the latter model of non-linear 
water waves is applicable for describing the propagation of sea waves 
because of fairly good agreement of the theory with data. 

Several theoretical remarks, including the analytical investi-
gation into a particular solution of the discretized Zakharov equation, 
are offered in Appendices. 
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CHAPTER 1 NON-LINEAR DYNAMllCS OF WATER WAVES 

1. 1 Foreword 

It is well known that the work of Stokes titled "On the theory 
of oscillatory waves" in 1847 is substantially the first study of the 

non-linear property o:f water waves. In this pioneering paper, he gave a 

stationary solution o:f a train of deep-water gravity waves by aid of the 

power series expansion with respect to wave steepness. Many important 

properties of non-1 in ear waves, such as the dispersion relation depend-

ent on amplitude, the existence of highest limit of wave and the drift 

motion of particles ill a wave were shown in his work. Besides the above 

mentioned theory, the Trochoidal wave, an exact particular solution of 
water wave, found by Gerstner(1809), had been applied in the field of 

naval architecture for a long time. These basic solutions are the most 
important ones in the non-linear wa1ter wave theory. 

On the other hand, the researches concerning the description of 
ocean waves have been developed in a sornewha t different manner. In this 

field, the subject is divided into two main parts. One is to investigate 
the mechanisms of wave generation by wind. The other is to describe the 

actual configuration of ocean surfac:e properly. 

In this paper, we deal mainly with the latter problem. The study 

of the scientific desc!ription of sea waves was started at the beginning 

of 1950s with the work of Pierson(Ul52) who introduced the concepts of 

stochastic processes and of spectrum to oceanography. His investigation 
for wave forecasting has been developed considerably by aid of 

electronic computers. However, from the theoretical point of view, there 

is enough ground for controversy in his method. Pierson, Neumann & James 

(1955) ・・ assumed that the fluctuation of the ocean surface is composed of 
many infinitesimal wave trains which travel independently to each other 

in their own directions. According to this assumption, the spectrum of 

sea wave is recognized as a distrilbuttion function of the energy of 

component waves. On the contrary, the stochastic variation of surface 

displacement, its velocity or acceleration satisfies the Gaussian 

distribution and the moments can be determined by the spectrum. So far 
as we admit the 1 inea1; wave theory,,・ there would・ be no pro bl em 

conceptually. 

Once we draw attention to the non-linear properties of water 

waves and consider them in the framework of the PNJ method, most of the 
concepts would become ambiguous. However, no one could have extended the 

theory to contain the non-linear characteristics of waves in the ages of 
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1950s, because the theory of non-linear waves had been no more improved 

than that established in 19th century. To overcome this difficulty, 

there appeared many papers concerning the non-1 inea.r theory with regard 

to multiple component wave system since 1960s. We mention some of them, 

in relation to this paper such as Tick(l959) and Hamada(l966), which are 

the second order theory for random. wave field. Huang & Tung(l976), Weber 

& Barrick(l977). Barrick & Weber(l!377). Masuda, Mitsuyasu & Kuo(1979) 

and Mitsuyasu. Kuo & Masuda(1979) dealt with the third order random wave 

field although they did not take the energy transfer among component 

waves into account except for the.change of wave velocity. The last one 

involves the experimental verification in a wind-wave flume. In earlier, 

Phi llips(1960) proposed the theory for accounting the energy transfer 

between wave components however his mathematical formulation contained a 

singular property and did not offer the solution describing the long-

time evolution of resonant waves. Benney{1962) gave the equations which 

describe the.long-time behavior of four waves for the first time. 

Zakharov(l968) derived the equation governing the mutual inter-

action among deep-water gravity waves of arbitrary number of components 

in the most purely theoretical point of view. Stiassnie & Shemer(1984) 

rederived it by somewhat elementary method with using Fourier transform 

technique. They are most closely related ones to the present paper. In 

this Chapter, we reexamine those works and discus:s the non-linear 

dynamics of water waves in the unified point of view. Some precise study 

concerning the characteristics of Zakharov equation containing the 

numerical and analytical solution wiq be discussed in Chapter3 and in 

Appendices. 

In addition,. we ~lso mention the book "The Dynamics of the Upper 

Ocean" written by Phillips(l977) as 1the most excellent description and 

the basic results of sea waves. The simple and fine explanations are 

referred in the articles written by Nagata(1970) and Taira(l975). 

1. 2 Basic Equations 

In this Chapter, we assume in regard to hydrodynamic natures of 

water waves that the viscosity is neglected.(perfect fluid),.and that 

the motion is irrotational and the compressibility of the fluid is 

neglected. Capillarity and air motion above the surface of fluid are not 

taken into account. The density of water is assumed not to change 

temporally and spatially. 

We deal the present problem as, in three. dimensional space, that 

is, two dimensional sufficiently large horizontal surface which is uni-
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form and isotropic. The depth of seat is infinlte. We also assume that 

the arnpl i tude of the wave is srnal 1 but finite. 

From the assumption of irrotational motion, there exists the 

velocity potential¢ irt the fluid. By the assumption of incom-

pressibility, the equation of continuity is satisfied 

▽2 ¢ = 0 (1 - 1) 

in the interior of the fluid. Here, we take the coordinate system as x -
and y-axes in horizontal and z -axis in the vertical upwards direction 
respectively. At the fluid surf ace (z = 77) the kinernat ic boundary 

condition 

ド＋▽心▽ h7)＝ド

and the dynamic boundary condition 

a¢ 

a t 
ー＋す▽¢▽¢ =-g n 

(1 - 2) 

(1 -3) 

are satisfied. Where, TJ denotes the displacement of the surface and g 

represents the acceleration due to the gravity. The operator▽h means 

the horizontal components of gradient operator▽.From the assurnpt ion, 

the density of water is constant so that it does not appear in these 

equations. The di ff i cul ty of the prob 1 ems on water waves 1 i es on the 

fact that the above equations (1 -.2) and (1 - 3) are both non-linear 

and the form of the boundar・y TJ is not determined ab initio but is an 

unknown variable. Finally, from the assumption in the limit z→-(X). 

▽¢→ O (1 -4) 

is required. 

1. 3 Some Aspects on Classical Theory 

On the basis of the general theory in hydrodynamics, we restrict 

ourselves to the problem of non-linear resonant wave interaction. 

Phillips(l960) discovered that in the third-approximation, it is 

possible for a transfer of energy to take place from three primary waves 

(of wave-numbers k 1. ・ k 2 and k 4) to a fourth wave(of wave-number k 3) in 

such a way that the amp 1 i tude of the four th wave increases. linearly with 
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time. Thus, although the fourth wave amplitude at first is very small( 

being of.the third order)it may.grow in time s,o.as to be comparable 

with the three primary waves. The condition for this is that the wave-

numbers kt, k2, k3, k4 and freqlllencies Wt, W!2, w3, w4 each 

satisfy the dispersion relation: 

Wj2=glki (i=l,2,3,4), 

and that 

k1士k2士k3士k4=0, (d1士W2士W3士1W4= 0, 

(1 -5) 

(1 -6) 

with the same combination of signs in each case. 

At first, we explain briefly the theoretical results obtained by 

the direct use of a perturbation technique (REGULAR PERTURBATION) to 

the basic equations. Longuet-Higgins(l962) has analysed this problem in 

the case that k 1 = k 4, w 1 = w 4, the c ond i t i on (1 -6) turns out to be 

2k1-k2=k釦 2 0 1 - 0 2 = 0 3.  (1 -7) 

Phillips(l960) showed that in the case that resonance condition (1 -7) 

is satisfied, wave-number k1, k2 and k3 should be correlated each 

other as shown in Fig-1 -1. In the special condition that k 11. k乞

r=w1/w2 would be r=r0=1.736,》・・・．

The velocity potential ¢ and surface displacement 7J are 

assumed to be expressed in expanded series such that 

¢ = (a </J 10 + /3 ¢ 1211) + (a 2 ¢ 2121+ a /3 ¢ 11 + /3 2 ¢ 02) + 

+(a3¢30+a2/3 ¢21+a/32 </J 12+ f3 3 </J 03)＋・・・・・ (1 -8-1) 

and 

TJ = (a TJ 10+/3 7J 0d+(a 2 7J 20+a /3 7J 11+/3 2 7J 02)＋・・・・・

+(a3TJ30+a2/3 TJ 21+a t3 :2 TJ 12+/3 3 7J 03)＋・・・・・ (1 -8-2) 

with a and /3 being independent small quantities representing the wave 

steepness of each wave. Substituting (1 -8 -1) and (1 - 8 -2) to 

the bas i c e qua t ions (1 -2) and (JL -3), the ca 1 cu 1 a t i on s were 

carried out up to the third order terms. We only pay attention to the 

term ¢21, because it represents th:e tertiary resonant wave to be 

considered here. Longuet-Higgins & Smith(l966) gave solution ¢ 21 at 

z = 0 as 
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¢ 21 =-上-si n (0 k X) s i n { (k 0+ 0 k) X -w 3 t gok 
) sin { (k0+ok) x-w3t}, 

(1 -9) 

under a slightly extended conditions that 

2k1-k2=k釦 2 (J) 1―(J) 2~0  3.  (1 -1 0) 

In (1 - 1 0), equality might not be satisfied strictly for frequencies. 
In the equation (1 -91), K is the growth rate and expressed as 

K=  (a1k1) 2a2k2g2w3-1G, 

with non-dimensional coefficient G. k。equalsto(J)。2/ g where(J)0 is 
defined as(J)。＝ 2 U) 1 - a) 2 and 2 8 k = K 3-K o. 8 k and 8 7 = 7 - 7 8 

are correlated as 

2 o k 

k3 
- ( 

4 

2 7 o -1 

8 r 03 
4 r 04 + 1 

) 8 7 (1 - 1 1) 

From the form of (1 -9), we can recognize that amplitude of tertiary 
wave varies slowly with x when or :c/:-Q~ If or =O, the solution </> 21 
in (1 -9) appears to be infinite, however in such a limiting case, it 
reduces to 

<p 21→一
Kx  

g 

s i n o k X 

okx 

Kx  

g 
(1 - 1 2) 

Thus, tertiary wave grows 1 inearly with x. Transforming it to the wave 
amplitude a, the maximum amplitude :a 3M to be realized by tertiary wave 
is obtained as 

a 3M= 
(a 1 k 1) 2 a 2 k 2 

l o k I 
G.  (1 -1 3) 

The constant G is given by Longuet-Higgins(l962) as 0. 442. In order to 
express a 3M by the explicit function of o r, we eliminate o k in (1 -
9) by using (1 - 1 1), we have a classical appro.xirnation 
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 a 3M - = 0.4 9 1 

(a1k1) 2 

a 2 | 8 7 | 
(1-14) 

1. 4 Expansion Procedure of the So 1 u ti on 

In this section, we derive the equation which governs the inter-

action among components of gravity wave system. The method of derivation 

is essentially different from the classical one as explained in § 1. 3 

and is applicable to developing stage of non-linear interactions. In 

order to consider generally the two・-dimensional multiple component wave 

system, the velocity potential ¢ and sea surface displacement TJ in the 

basic equations (1 -1)...._, (1 -4) are expressed as spatial Fourier 

serieses of the forms, 

and 

¢ (r, z, t) = I: k A (k, z, t) exp (i k r) 

TJ (r, ・ t) = I: k B (k, t) exp (i k r). 

(1-15) 

(1-16) 

From the pure mathematical point of view, Fourier integral or Fourier-

Stiel tjes integral representation must be used, blllt according to Weber & 

Barrick(l977), in the case of the assumption that the horizontal area 

considered here is finite though sufficiently larger than typical wave-

length, equations (1 - 1 5), (1 --1 6) are hold good. As ¢ satisfies 

the conditions (1 - 1) and (1 -4). velocity potential ¢ has the 

form 

¢ (r, z, t) = r:: k A (k, t) exp (k z + i k r). (1 -1 7) 

In the process from now on, 1the several points explained in 

the following subsections should be considered carefully; 

1.. 4. 1 ・ Treatment of the boundary conditions on unfixed surf ace z = 77 

When we treat the basic equations (1 -2) and (1 -3) on the 

surface z = 77, all the terms containing derivatives of ¢ are pro-

portional to exp(k刀）． Weassume the wave steepness k77 ~1 and use the 

Taylor expansion 

(259) 



10 

(260) 

exp(k7J)==l+k7J +(1/2)k2 irJ 2+(1/6)k37J 3十・・・・・．

For example, ¢ t is calculated in the following way. 
First, we differentiate (1、-17) with respect to t and insert 

刀 inplace of z. Next, we use the Taylor. expansion of the exponential 
function above and substitute the e)(tpression (1 -1 (>) into the powers 
of TJ. We finally obtain in the form of spatial Fourier series as 

8 ¢ 
＝ a t F1+F2+Fs+ • • • • 

Where, F n (n=l, 2, 3,・・・・） represents: the n-th order quantities as 

F 1 = r:: k At (Jk) exp (i k r), 

F2=I:kexp (;i kr) 〔I:ki:k1At(k1) B (k-k1)〕

F3＝古I:kexp (i k r) 〔EぃB (K -K 1) ｛E K2k託At(k 2) 

B (k1-k2)} 〕,

and 

Calculating▽¢ in the similar manner, the results are substi-
tuted into (1 -2) and (1 -3). Utilizing the orthogonality property 
of Fourier series, we can transform the basic equations to the simul-
taneous differential equation with respect to A and B. We can finally 
obtain the results up to the third o:rder of A and B as follows 

and 

Bt (k) -kA (k) =>=:ぃ {kt・ (k -k 1) + k t 2} A (k 1) 

B (k-k1) +r:ぃB (k-k1) I:k2 {k2k2・(k1-k2) + 

すk23}A (K2) B (K1 -K?） (1 -1 8) 



At (k) + g B (k) = tI::ぃ {k1・ (k-k1) -k1 I k-k1 I} 

A (k 1) A (k -k 1) -I::ぃk1At(k1) B (k-k1) -

古EぃB (k-k1) I::k2k22At (k2) B (k1-k2) + 

Eぃ B (k・-k1) Lk2 {k2k2・ (k1-k2) -k22 I k1-k2 I} 

A (k砂 A (k1-k2). (1-19-1) 

Here, suffix t means the time derivaitives and from now on, we use the 

expression A (k) instead of A (k, t) omitting independent variable t. 

Except for Phillips{l960), Zakharov('.1968) and Stiassnie & Shemer(1984). 

theories by the other authors were restricted that A, B are periodic 

functions so that the equations were reduced merely to algebraic re-

lations (in fact, setting A, B ccexp (-i wt), we could show that 

equations (1 - 1 8) and (1 -1 9 - 1) reduce to those in Weber & 

Barrick(l977) after some simple algebraic.manipulation). 

1. 4. 2 Transforming the equations to apply the1 singular perturbation 

method 

In order to arrange the equal t ions to apply the SINGULAR 

PERTURBATION METHOD, time derivative At in the right-hand side of (1 -

1 9 -1) has to be eliminated. At first, we neglect terms higher than 

second orde・r and we have 

At (k) 与 -gB (k) 

in the first order. Substituting thils into (1 - 1 9) iteratively, we 

obtain the second order approximation as, 

At (k)=;-gB (k) ＋がEぃk1・ (k-Ik1) A (k1) 

A (k-k1) +r:ぃgk1 B (k1) B (k-k1). 

Using them in (1 -1 9) again, up to the third order it is transformed 

into 

11 
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At (k) +gB (k) =+r::ぃ {k1・ (k-k1) -k1 I k-k1 I} 

A (k1) A (k-k1) +r::ぃgk1B (k1) B (k-k1) -

EぃB (k -k 1) I: k2 g k 2 (k 1一古 k2) B (k2) B (k1-k2) 

-EぃB.(k -k 1) L k2 (す k1-k2) {k2・ (k1-k2) -

k 2 I k 1 -k 2 I } A (k 2) A (kt -k2). (1-1 9 - 2) 

The combination (1 -1 8) and (1 ~-1 9 -2) reduces to the equations 

of harmonic oscillation in the limit A, B→0. 

1. 4. 3 Technique for eliminating; the variable A or B with the con-

sideration that ¢ and・ rJ are real quantities 

A and Bare the Fourier coefficients of the velocity potential 

¢ and the・ surface displacement rJ. As・¢ and rJ are real numbers, A 

and B must be comp le}![ numbers whose: dependence on k have the anti -

symmetric nature 

and 

A (k) = A※(-k) 

B (k) = B※(-k).  

、
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Where, A※ is a complex conjugate of A. Thus, we can introduce such a 

com pl ex variable Z that 

i akA (k) = Z (k) -JZ* (-k) 

/3kB (k) =Z  (k) +JZ※(-K) 
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for the reason that the relations (1 -2 0 :_ 1) and (1 -2 0 -2) are 

satisfied automaticallly. In these relations, a k and/3k are the real 

constants dependent only upon the magnitude of the wave-number k. 

If we execute the transformation (1 -2 1). we can deal two 

unknowns A and B as in one unknown Z formally. The resultant equation 

of Zagain reduces to that of harmonic oscillation only if the constants 

a k and /3 k satisfy the relation 
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k a k -2 = g/3k -2. (1-22) 

In this paper, according to Stiassnie & Shemer(l984), 

aげ＝ 2 (k / g) 1 /2'/3k:2=2 (g/k) 1,,2 (1-23) 

is adopted. 

-The equations (1 - 1 8} and (1 -1 9 -2) are transformed by 

means of (1 -2 1). If Z※t is eliminated in these equations, the 

linear part of Z※ also vanishes owing to (1 -2 2). Thus, the 

equation with respect to Z is obtained in the following such that 

i Z t - (g k) 1 /2 Z = J (k, Z) 

where, J (k, Z) is yielded by i a -1 times of the right-hand side of 

(1 -1 8) min.us /3―1 times of the right-hand side of (1 -1 9 -2) 

Explicit form of the equation is 
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(1-2 4) 

Where, wk is angular frequency given by wk= (g k) 1-"2 which is the 

dispersion relation of deep-water gravity waves. Equa.tion (1・-2. 4) is 

the MODE COUPLING EQUATION to describe the propagation of finite ampli-

tude water waves discussed in this paper. The concrete expression of the 

coefficients H <n> (k, k1, k2) and F <n> (k, k1, k2, k3) are 

presented in Appendix I. By use of the complex amplitude Z, surface 

elevation 刀 isrepresented as 
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(264) 

刀 (r, t) ＝す Ek /3~1-1(Z (k, t) +z※ (-k, t)〕exp(i k r). 

(1 -2 5) 

1. 5 Perturbation Method and Zakh:arov Theory 

In this section we apply the singular perturbation method to 

analyse non-linear eqrnation like (1 -2 4) in contrast to the regular 

perturbation method used in § 1. 3. As discussed briefly in § 1. 3, 

the app 1 i cation of the regu 1 ar. perturbation met hod to non-1 in ear eq ua-

tion results in the solution infinitely increasing with time t. This 

fact means that the method is not suitable to express the long-time 

variation of the solutions. Therefore, to avoid such a difficulty and to 

obtain the long-time evolution of solution, we adopt here the MULTIPLE 

SCALE METHOD, a sort of the singular perturbation method. The essence 

of the method lies on the technique introducing the slowly varying in-

dependent variables. We execute this procedure somewhat more systema-

tically than Zakharov0968)or Stiassnie & Shemer(1984). This method is 

applicable only to the non-linear equations of the form discussed in § 1. 

4. 2 of the preceding section (Bogoliubov & Mitropolskii(1965) called 

them quasi-linear equattion). 

Now, we introduce a small parameter e and expand Z as 

Z = ez(1)+ e 2 z (2}+ e 3 z (3) ＋・・・・． （1 -2 6) 

Furthermore, we introduce a group of independent var i ab 1 es T n = c n t 

instead of t. Then, Z is regarded as the function not only of t but also 

of T n (n=l. 2, 3, • • • •. T 0=  t). So, the equation (1 -2 4) becomes a 

partial differential equation. Differential operator is also expanded as 

a a.  ;a.,, a 
戸＝戸。十 e 可 1+ e 2 了ら十 e3 丘＋・・・・・ (1-27)

We substitute (1 -2 6) and (1 -2 7) into (1 -2 4) and rearrange 

it with respect to the power series of e. Then, for the first order, 

i z k (1)TOI-0 K Z k (1) ＝ 0 (1 -2 8) 

is obtained. If we tak:e up to the second order of e, we have 



i z k (2) To-0 K Z k(2) = -i zk (1)m+ 

h,Kり(1) （K, K 1,K.2) Zk1(1)Z K2(1) ＋ 

五， Kり(:2) （K, Kぃい） Zk1(1)Z K2(1)※+ 

t1, kりCS) (k, k1, k2) Zk1(1)※zK2(1)※ 

(1-29) 

Assuming the periodic solution of T 0, the first order equation is im-
mediately solved as 

z k (1)＝xk (1)exp(-i0 KTo)． (1-30) 

xk<1> is an arbitrary function whieh is independent of T0. Substi-
tuting (1 -3 0) to the second order of (1 -2 9), we have 

i zkC2)T0-(J) K Z k (2) =-i xk (l)n exp(-i(J) K T o) ＋ 

rt, kり(l)(k, k1, k2) Xk1（い Xk2 < 1 > exp { -i (wぃ＋ Wk2)T0} + 

B, kり(2) （K, K 1, K2) Xk1(1 lx K2(1)※exp {-i (wkl-wk2) T0} + 

fl,KりCS) (k, k1, k2) Xk1 (l)※X k2 (1)※exp { i (wぃ＋ Wk2) T121}. 

(1-31) 

In this equation, we should notice to combinations for the first term of 
the right-hand side with another term, say the second term, in the 
right-hand side. These terms are summed up to the following way as 

- ［ i x k (1)m -t1, Kり(1) （K, K1, K2) Xk1 (1) xK2(1) 

exp{-,-i (Wk1+Wk2-wk) T0}] exp (-i WkT0). 

(1-3 2) 

If under the summation r:k, two conditions 
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k1+k2=k and wk1+wk2-wk (1-33) 

are simultaneously satisfied, then the time dependence of (1 -3 2) are 
proportional to exp (-i wkT0). llf there exists such a term in the 

(2) equation, the soultion Z kt2) of (1 -3 1) is known to diverge with 
respect to time T0. To avoid the dJlvergence of the solution, we should 

recognize the whole sum of the terms in [] of (1 -3 2) to be zero. 
In other words, under the condition (1-3 3), 

i x k (1)T1-EH(1) (K, K 1,K2)Xk1(1)X K2(1) =0  
kl, k2 

(1-3 4) 

should be satisfied. By virtue of (1-3 4),Xk'1> is determined with 

respect to T 1. The case of another combination is discussed in a 
similar manner. If the conditions (l -3 3) are not satisfied simul-
taneously at all, only the equation 

i XkCt)Tl = 0 

is required. It means that xk<t> is independent of T1. In reality, as 
for the deep-water gravity waves, the relations (1 -3 3) are not 

satisfied (see, for example Kinsman(1965)) so that xkc,t> is constant up 
to this order. By use of this result, the equation (1 -3 1) is easily 
solved for Z kc 2 >. 

As the next step, the solution Z kc2> is substituted in the third 

order equation and the caluculation is executed in the similar manner, 
then the conditions corresponding to (1 -3 3) are described as 

k 1 + k 2 = k + k 3 and wk 1 +(J) K2~(J)k+(J)k3 ・ (1-35) 

These are called the EtESONANCE CONDITION of deep-water gravity waves. 

The condition that the solution is valid for the long time is determined 
by a similar equation to (1 -3 4) and it represents the T2 dependence 

of the first order solution xk<1>. This is known as ZAKHAROV TYPE 
EQUATION and is discussed in Chapter3 of this paper. The properties of 

the equation are precisely interpreted in Appendixill-IX. 



There could be many other derivations to obtain the mutual 

interaction equation for water waves. The most formal treatment of the 

theory by use of CANONICAL THEORY is briefly interpreted in Appendixll. 

These treatment was applied to the stochastic problems in wind wave 

field by West(l981) slightly different manner from that discussed in 

this paper. 
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CHAPTER 2 EXPERIMENT IN A WAVE BASIN 

2. 1 Foreword 

In this Chapter, the experiment of non-linear resonant wave 
interactions perfor_med in the SHIP EXPERIMENT BASIN of the Ship Research 
Institute (see, Tomita & Sawada(1987)) is described. 

Long-time evolution of tertiary resonant waves has not yet been 
observed in a wave flume. Hence, the experiment is carried out to detect 
the evolution at the locations spreading widely in a flume. The investi-
gation is performed t<::> find what amount of interaction occurs under 
several conditions being prescribed. 

In this experiment, we choose the simplest feature for examining 
the resonant interaction phenomena of growing up of the tertiary wave by 
the perpendicularly intersecting two trains of waves generated with the 
wave-makers. According to the theory of resonant wave interaction 
discussed in Chapter 1, the resonance takes place under the condition 

k1-k2-k3+k4=0, w1-w2-w3+w4-0 (2 - 1) 

In particular, in this experiment, lk1=k4, w1=w4 and k1 is 
orthogonal to k 2. In this case, (2 -1) are solved with respect to r = 
w 1/  w 2 so that the exact resonance condition is given by r = 1. 736・・．
Under this condition, the short time behavior of tertiary wave was 
discussed by Phillips0960) and Longuet-Higgins(1962) theoretically, 
to which we refered briefly in Chapter 1. The experimental studies were 
also made by Longuet-Eliggins & Srnith(1966) and McGoldrick, Phillips, 
Huang & Hodgson(1966) in the smaller wave tanks with the sizes of not 
exceeding 3 meters sqrnare. All these: investigations mentioned above were 
confined to discuss the initial growth of tertiary wave and to verify 
its growth rate. On the contrary, in our experiment, the observations of 
long term development of tertiary waves are carried out by use of a 
comparatively. large basin. 

Several remar~iable results are obtained in this experiment. 
Above a 11, it is confirmed that the 1 ar ge amp 1 i tude resonant waves which 
are comparable to that of primary waves appear at the longer fetches 
than those in previous: ex per i men ts. These resonant waves travel in the 
direction which the theory predicts. Moreover, resonant waves are 
directly observed by photo as an evidence of their existings, for the 
first time in the field of pure gravity-waves. We examine in the next 
place the short fetch behavior of re,sonant wave growth to compare it 



with those of the papers above. Finally, we advance further to the long 

fetch behavior of resonant waves an1d find the recurrence properties (see 

for example Waters & Ford(1966)) of interaction among gravity waves. 

The results are compared with the theory given by Zakharov(l968).which 

could be applied to the case of this experiment. 

In addition to these studies, the observation of the resonant 

interacting wave system. by photographic technique was recently carried 

out by Strizhkin & Ralentnev(l986)in real open ocean. 

2. 2 Description of the Apparatus 

As is seen in Fig-2 :--1, the basin has the'size of. 80 m in 

length, 80 m in width and 4. 5m in depth. Two wave-makers are installed 

in the adjacent sides of the basin. The first one is plunger type of 54 

m in width drived with 24 sets of 6k w minertia motor, the second one 

is flap type of 80 m in width drived with two sets of 90 kw  DC motor. 

Many trains of waves advancing in different directions can be generated 

with them. There exists absorbing artificial ・beaches at the opposite 

side of each wave-maker. The precise specification of the facility is 

explained in Shiba(1961) and Takaishi et. al. (1973a, b). 

All wave gauges are capacitance type with nominal precision of 

士1%and are arranged on the wire rope suspended above the surface of 

the basin.. Each probe is fixed vertic,ally by anchor settled on the 

bottom. Three examples of the measurement are shown in Fig-2 -2. In 

this figure, the cases that (a) first wave only, (b) second wave only 

and. (c) both waves are simultaneously generated are shown. Upper six 

rows represent the water surface variations detected by each probe, lower 

two rows are for the strokes of both wave-makers. 

Data collection system is schematically drawn in. Fig-2 -3. 

Output signals are sent into the recorder and they. are also transferred 

into disquet of a desktop computer through AD converter. Length of 

each run is 1 imited to 200 seconds for・ suppressing the effect of wave 

reflection. Data are digitized every 0. 1 second so that-we keep the 

Nyquist frequency as 5H z. This.is sufficiently large value for the 

present pro bl em. 

The effect that the strokes of the wave-makers are finite is 

considered to be negligible in this experiment. We set the strokes as 

small as possible to avoid. the unfavourable effects of wave breaking, 

second order wave generation and/or third order wave instabi 1 i ty. 

Nevertheless, diffraction is not completely neglected because the total 

widths of the partitions arenot infinite (diffraction effect was 
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examined by Ishida et. al. (1980) for this basin applying the wave making 
theory). In order to avoid the ambiguity that the height of mechani-
cally generated waves is not constant along its crest, average values 
for the waves are used. 

2. 3 Method of Experiment 

Having described the experimental apparatus, let us now turn to 
the method of measurement. The measurements are executed on two sorts of 
arrangement of wave gauges shown in Fig-2 -4 (Case I) and Fig-2 -5 
(Case Il). The former is used to reexamine the short term behavior of 
tertiary wave which was carried out by McGoldrick's experiment and for 
the first time to detect the direction of propagation of tertiary 
resonant wave. The latter is used for the measurement of long term 
developement of tertiary resonant waves. At each measurement, the 
amplitudes of three component waves which would simultaneously exist in 
the basin are estimated by the power spectral analysis by means of FF  T 
as follows 

Aげ／ 2= (pぃ＋ Pげ Pい） △ f. (2 -2) 

In this equation, A k and Pk  denote the amplitude and component energy 
density corresponding to・the frequency f = k△ f (△ f = 0. 0098 sec―1). 
As is well known in spectral analysis, the energy at single frequency is 
apt to disperse to its neighbourhoods caused by that the length of data 
is finite. The precision of this method is tested by aid of dummy data 
made with electric oscillator. By this test a single component of energy 
is apparntly broadened in width of士10△ f band at the attenuation of 
-30 ct B. Considering the noise property of real data, the band width of 
3 △ f =O. 029 sec-1 is adopted as shown in (2 -2). By using (2 -2), 
restoration ratio of the test data is about 97%. 

Our experimental situation and the size of facility lie between 
most of smaller-scale indoor laboratories and large natural sea field. 
So the unfavourable affections caused by viscosity and capillarity of 
water are negligible. All the works are conducted during calm weather, 
because the basin・ is in open air. Several runs are tested and checked 
for inspection over the total inevi-table effects due to deformation of 
waves by wind, reflection, diffraction, breaking, instability of waves 
and interference with sensors. The primary waves detected repeatedly at 
the positions closely located as Fig-2・ -4 show a good agreement in 
each other. However, the records of the tertiary wave fluctuates with 



about 8% of standard deviation. For the frequency, although the motor 

speeds could be kept constant to within 0.16%, the spectral estimate (2 

-2) has a width of △ f so that the precision of 7 is evaluated to△ 7 

＝ △ f / f 2----0. 017. 

The elements of the mechanically generated waves used in the 

experiment are shown in Table-2 - 1,、

2. 4 Initial Growth of Tertiary Resonant Wave 

First of ・all, we examine whether the tertiary resonant wave 

k3 predicted by the theory grows in a basin or not, when we generate a 

pair of waves k1 and k2 mechanically by the wave-makers. An・exarnple is 

shown in Fig-2 -6. In this case, r = 1. 793 and the sensor is located 

at 45 m from the first wave-maker (nearly mid-point of the basin). In 

this figure, there appear clearly three line spectra, the lower two 

lines corresponding to f 1=w1/2 1r =1.016 and 『2=W 2/ 2冗＝ 0.56 6 

are due to the waves generated by the wave-makers. Remaining one found 

in higher range is the wave generated by the waves of frequencies f 1 

and f 2. The frequency of this component is f 3=1. 475 and it just 

agrees with the theoretically predicted 2 f 1-f 2=1.466 within the 

resolution △ f =O. 0098. This relation holds good in every case of 

different values of f 1 and f 2. From this Figure, one can see that the 

resonant wave which is to be a third! order quantity in theory exceeds 

the other second order harmonic components and the amount reaches as 50----

60 % of the first order primary wave. This ratio is more than twice as 

large as those reported in the previous experiments. 

In order for reexamining the previous experimental results, we 

evaluate the initial growth rate of resonant waves and its dependence 

upon the frequency ratio r of the primary waves. As explained in § 1. 

3, ・ the initial growth rate G is connected to observable quantities 

such that 

A 3/ d (A 1 k 1) 2 (A 2 k 2) = G (r, 0) I sin o k d / o k d I. 

2 o k 

k3 
（ 4 

2 7 o -l. 

8 7 83 

4 7討＋ 1

(2-3-1) 

) (r-10). 

(2-3-2) 
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Where, d is the fetch of interaction, o k is the detuning wave-number 
of primary waves and 0 is the angle of intersection. 

The initial growth rate G was evaluated 0.442 when 0＝冗／ 2 

and r 0=1. 736 (the value of G is nearly constant with r around r 0) 
In Fig-2 -7, the values of the left-hand side of (2 -3 - 1) calcu-
lated from the measurement data at the location in Fig-2 -4 (Case I) 
are shown against 1. In this case, the wave gauges are located near to 
the wave-makerl to obtai-n the initial growth data. The solid curve is 
drawn by the right-hand side of (2 -3) fitted by inspection with G 

and r as parameters. From Fig-2 --7, it is estimated that G =O. 50 
and r 0=1. 79. A comparison with McGold~ick's result is shown in Table-
2 -2. In this initial stage, the results of r 0 agree fairy well and 
are somewhat greater than that of the theory. This fa~t will be partly 
explained by the concept of NON-LINEAR RESONANCE CONDITION introduced in 
Chapter 3. The value G in this experiment lies between the value of 
their experiment and the classical theory. 

Also by means of this location of wave gauges (these six gauges 
are tightly attached to a stainless steel bar with the mutual distances 
of 0. 45m, 1. 05m, 1. 20m, 0. 60m, 0. 30m as consisting a linear array), 
the determination of the direction of tertiary wave which has not 
executed in the previous papers is examined. By the theory due to 
Longuet-Higgins(1962), the angle of tertiary wave to the primary first 
wave is predicted 9. 2 4 degrees for the case of exact resonance. 

Defining the mutual distance between wave gauges D12 and the 
relative angle to the wave a shown as in Fig-2 - 8, the phase 

difference </> 12 of the wave for D12 is written as 

¢12=kD12sina, (2 -4) 

where, k is the wave..,.nurnber concerned. Otherwise, phase difference can 
be calculated from the data obtained at two wave gauges by their CROSS 

SPECTRUM. If co-spectrum and quadra ture-spectrurn are expressed as C 12 
and Q 12, </J 12 is correlated. by them as 

¢12=tan―1 (Q 12/ C 12) (2 -5) 

In Fig-2 -9, we show the co~erence among the data measured with the 
wave gauges 1 and 3.. Al though there appears some broadening around 
the second primary wave, the coherence is almost nearly unity at around 

the three wave frequencies considered here. Fig-2 -1 0 shows the 



phase spectrum of this data. Choosing every pair of gauges from six, the 

phase o = ¢ /冗 of three waves f 1, f 2, f 3 is clescri bed against D 1 m 

(D 1m (l,m=l, 2, ・・・, 6) is distributed not to be equal for every pair of 

the gauges) in Fig-2 - 1 1 (a), (b),. (c) respectively. Using the data 

k1=3.993, k2=1.291, k3=8.l88 in the formulae 

O n = (k n D 1. m/冗） sinan, (2 -6) 

where n = 1. 2, 3 and 1. m = 1. 2,・・・・・， 6，

we can determine a 1, a 2, a 3 ・ from the tangent of each plot. The 

straight lines in Fig-2 - 1 1 are t)btained by means of the least square 

method. By these Figures, we can estimate that a11=1.09, a2=73.40 and 

a 3 = -7. 85degrees so that the direction of tertiary wave from the first 

primary wave is a3-a1=-8.94degrees, while the theoretical prediction 

in this case is -9.19 degrees. We can recognize that the agreement of 

both values is satisfactory. 

2. 5 Long Term Evo 1 u ti on of Tert 1i ary Resonant Wave 

In this section, we investigate the long term behavior of the 

tertiary resonant wave. In order to perform this task, wave gauges are 

arranged as shown in Fig-2 - 5 (Case II). Six wave gauges are set at 

the distance from the first wave-maker of 26. 56 m, 35. 96 m, 41. 15 m, 

45. 36 m, 50. 95 m and 61.15 m alo111g the direction of tertiary waves. 

They are the very 1 onger fetches than those. of the Case I and those of 

the previous works (their maximum S)Pan of observation is about ・15 m 

after transforming the size to the)Present experiments). 

The results are explained ilfl the following. In Fig-2 -1 2 

through Fig-2 - 1 8, the amplitudes of tertiary waves are plotted 

against the distances along・the diriection of propagation. 

For describing the observational results clearly, we explain 

them corresponding to the experimental conditions in order: 

1) r-1. 72 (nearly resonant), A1 and A2 (-2. l5cm) are both small. 

{Fig-2 - 1 2 } 

In this case, ・t.he growth of resonant waves are nearly straight. The 

broken line shows the theory of Longuet:-Higgins(l!962) (equation (2 

-3)). The long fetch behavior can be explained in this case 

qualitatively by the classical theory. 
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2) r""l.72 (nearly resonant), A1 (----4cm) is larger than the case①. 
{Fig-2-13} 

While A2 (,..,_,2. 5cm) is as same as tltie case①,resonance does not 
strongly occur and the amplitude of tertiary wave is in every point 
small. The curve represents the qua1si-stationary solution given by (3 -

8) by means of the Zakharov theory .. 

3) r-1.79 (off resonant), A1 is small and A2 (-5cm) is moderate. 
{Fig-2 _:.. 1 4} 

In this case, A3 is nearly constant (slowly varying) thorughout the 
fetch where the measurements are made. The manner of variations looks 

almost para 11 el and・ the values are found 1 arger as A 1 increases from 
1. 80 to 2. 84. In the last case (A 1 is the largest), the values of Ag 

amounts to about 1. 5 icm. The apprec;iabre values of resonant waves are 
observed in the first time in such :1 off resonant cases. 

4) r-1.79 (off reso1t1ant). A1 is larger than the case 3) while A2 is 
small. {Fig-2 - 1 5} 

This is rather curious result. Although the condition is so far from 

the case 1), the growth of A3 is c<learly straight. The broken line in 
this figure is the ・theoretical oneli・ke the item 1) (omitting the de-

tuning factor)•· The dashed-and.,..dotted line is determined by the least 
square fitting,. Looking at the discJrepancy between both lines. it 

suggests that in this case, a sort of non-linear resonance condition 
including the amplitude dependence 1to. the wave velocity would hold and 

it suppresses the free evolution of tertiary wave. 

5) r -1. 79 (off resonant), A 1. is larger than case 3). {Fig-:-2 - 1 6} 
A3 clearly decreases as the fetch Jlncreases and diminish to zero (re-

currence phenomena) instead that the asymptotic steady states take place 
in a longer fetch. 

6) r -1. 82 is larger, A 1 and A2 are both large. {Fig-2 - 1 7} 

In this case, it is characteristic under this condition that. the 
magnitudes of A 3 decrease initially as the fetch increases and then grow 

up once again. Subsequently resonant waves. repeat the same process. 
However this is not. sure in the present experiment.because the length of 

the basin is not enough long to pursuit this character. This. tendency 
appears the faster (at the short er fetch) with the 1 arger A 1. 



7) The largest wave obtained.・ in this、experiment is shown in Fig-2 -1 
8. In this experiment, tertiary resonant waves has never exceeded 2. 5 
cm  in amplitude (5 cm  in wave height). This limitation may depend 
upon the wave-steepness of the primary waves used in this experiment. 
Local breaking of waves is apt to arise particularly in such a composed 
wave system that mechanically and spontaneously generated waves consist 
of a comparatively wide spread frequency components. These lo'cal 
breakers possibly prevent the resonance mechanisms from being suf-
ficiently enhanced. 

8) In the case ofrfar from re, say r <1.6 or r >2.0, it is verified 
that no wave is•generated at all. 

In general. the straight resonant growth is seriously dependent 
on the conditions among the frequencies and amplitudes of primary waves. 
On the contrary, the recursive resonant growth occurs in somewhat soft 
conditions whereas the maximum values of them are comparative to the 
former. The decreasing of amplitudes of tertiary waves at the longer 
fetch rather revea・ls that the strong interaction takes place even in 
this region, otherwise the resonant waves which are once g.enerated at 
shorter fetch would travel to the Olllter region without decaying their 
amplitude at all. 

The tertiary resonant waves generated by mutual interaction of 
primary waves can be• observed by the naked eye in this experiment. 
Since the wave velocity of tertiary wave is much less than the primary 
waves, it can be left in the basin after stopping the wave-makers and 
passing the primary waves away to the absorbing beaches. This fact is 
another confirmation that these tertiary waves are free waves in ac-
cordance with the theory. Three photographs on the experiment of the 
generated resonant wave・ are shown illl ・Fig-2 -1 9. The direct photo-
graphic observation of deep-water gravity wave interaction had not been 
known in the :past. From the picture of Fig-2 -1 9 (c), wavelength 
of the tertiary wave taken in the photo is measured as 72. 5 ・ cm. While 
the theoretical length is 71. 7 cm.. 
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CHAPTER 3 NUMERICAL SOLUTION OF ZAKHAROV EQUATION 

3. 1 Foreword 

The non-linear theory described in § 1. 5 gives an integro-
differential equation which governs the slow variations of first order 
amplitude and phase components among multiple directional waves. This 
type of equation was first derived by Zakharov(1968). and is called 
the ZAKHAROV EQUATION. In general. it is difficult even to obtain the 
solution of this equation by numerical method, not to mention to solve 

it analytically. So, the Zakharov equation has never been applied except 
for the stability problems of monochromatic wave train. 

In this Chapter.we deal with this equation in the most important 
case of three waves mutual interaction by regarding it as a system of 

ordinary differential equations. At first, a simple approximate solution 
to this system of equations is derived analytically assuming that the 
en・ergy transfer among waves is not so large. This solution lends itself 
to consider the resonance condition with the amplitude effect taking 
into account. In the next place, the measurements at shorter fetches 
given by McGoldrick et. al. (1966) is successfully compared with this 
theory. A simple and clear evaluation of the limiting wave height of 
resonant waves is also put forward in terms of the first primary wave 
amplitude. The result is confirmed numerically by the repeated execution 
of long-time numerical integration of this system of equations. Through 
this calculation, recurrence properties which are found and desc.ribed to 
some extent in Chapter2 are reproduced. 

The comparison of the results are made with experiments de-
scribed in Chapter2, and the comprehensive discussion on the resonant 

interaction phenomena are yielded in Chapter4. At the last section of 
this Chapter, a related problem on. instability prorerties of a quasi-

monochromatic wave train are treated by the same method. The relation of 
this equation with Hasselmann's energy flux, equation among continuous 
spectral component is interpreted in AppendixIII. The relation with Non-
linear Schroedinger equation is also explained in AppendixN. 

3. 2 Numerical Experiment 

The fundamental integro-differential equation has the form 



i 8 B ; ［'t)＝ ll『OOdK 1 d K2 dい T (k, k1, k2, ks) 

B※ (k1, t) B (k2, t) B (k3, t) o (k+k1-い-k3)

exp { i (w + w 1 ~ w 2―W3) t}. (3 - 1) 

This is conceptually equivalent to (1 -3 4). In this expression, the 

simbol o is Dirac delta-function. The explicit form of the kernel T is 

presented in AppendixV. Using the quantity B, surface elevation 77 is 

expressed as 

7J (x, t) =(2冗）ー1J_:°lk / 2 w) -1 d k B (k, t) exp i (k • x -w t) 

(3 -2) 

Pulling out from (3 - 1) the three components discussed in Chapter 2, 

it is transformed into ordinary differential equations as 

. d B 1 
1 -

d t 
[T1111B1B1※＋T12218282*+T133t 8383町 81+

i △ 0 1123t 
T 11 23 e B占B2 B 3, (3 -3 -1) 

. d B 2 ~～  
1 - = ※ 

d t 
[T2112B1B1※+T  2222 B 2 B 2*+ T 2332 B 3 B 3町 B2+ 

and 

i △ 0 2311 t 
T 23 1 1 e B 3町31 B t (3-3-2) 

. d B 3 
1 -

d t 
[T31gB1 B 1*＋ 73223 B 2 B 2m.t T3333 B3 B 9] B3 + 

i △W3211t 
T 32 1 1 e B 2※B 1 B 1. (3-3-3) 

These are actually the six degree n(')n-linear equations with respect to 

the real and imaginary parts of B. 
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Where, T1234 denotes T (k1, k2, k3, k4) and conventional notations 

T1234= T1234+ T124:s, △W 123 4 = W 1 + W 2―W3―w4 are used. It is 
confirmed that this discretized approximation is self-consistent and the 
other components play no role at least in the first order.. if they does 
not exist a priori. The first terms in the right-hand sides of (3 -3 -
1),..._,, (3 -3 -3) represent the phase velocity effect in tertiary wave 
interaction which is briefly interpreted in AppendixVI. 

Before solving (3 -3 -l).,...,;, (3 -3 -3), we discuss about 
the conservation laws of this system. 

Taking notice on the magnitude of B. the symmetrical property 
of the equations leads that 

2T112s-1 I B1 I 2+T2s11-1 I B2 I丘 Ts211-11B312= canst 

and 

T 2 3 1 1 -1 I B ~~ I 2 - T 3 2 1 1 -t I B 3 I 2 = cons t.  
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From the expressions (3 -3 -1)..._ (3 -4 -2), one can immediately 
notice for the energy transfer among these three waves that the first 
primary wave B 1 shears its energy to B 2 and B 3 for grOwi ng them, that 
is, the energy flows from B 1 toward B 2 and B釦 orvice versa. The first 
primary wave B 1 plays the most fundamental role in this・ interact ion and 
unlike it, the role of the second primary wave B2 is subsidary. 

Considering that the complex amplitude B has a relation with 
the actual wave amplitude A as 

I 

I B (k) 
2 0 で. I=冗(-一
k 

) ~ A (k), 

it leads to 

I B (k) I 2＝冗 2(号） A (k) 2 

(3 -5) 

(3 -6) 

Because A 2 is proportional to the energy of waves, I B (k) I 2 means 
the wave action (see Leibovich et.al. (1974) or Phillips(1977)) in th_is 
system. Conservation laws are interpreted in more details in AppendixW. 

In the next・ step, we examine an approximate analYtical solution 
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of equation (3 -3 -1),.,._, (3 -3 --3). In this approximation, we 

assume that the amplitude of resonant wave is much less than those of 

the primary waves. By use of this assumption, we neglect the terms con-

taining 83 in (3 -3 - 1),.,._, (3 -3 -3).. In this manner, the ampli-

tudes of the primary waves are regarded as constants so that the quanti-

ties in [] of (3 -3 - 1) - (3 -a -3) should be also constants. 

They are denoted by e 1, e 2 and e 3 (△ w = 0 is set without loss of 

generality), that is, 

～ 
81 = [T1111B1B1※+T  12 2: t B 2 B 2 *], 

and 
応＝［T,2112B 11 B: 1*+ T 2222 B 2応町

～會～
O) 3, = ［ T'3 1 1 3B、 1B 1※+T  32.23 B 2 B 2町．

Re:];r)Jre,s:entin:g; B m, (t:} = b rn (t). exp:ir i x n (t), (n= 1, 2, 3) under the 

c; 01:n s; trn・社豆rutof b n, x・ n beiHg real funict ions,・ we get from (3 -3 - 1) 

and (3 -3 -2) that b 1 (t) = b 10,, b 2 (t) = b 20, X 1 (t) = -0 1 t 

and x 2 (t) = -0 2 t十冗／2.・ Us in g; th em to the 1 as t e qua t ion (3 -3 -

3), it reduces to 

― =T3211b102h20;cos { (201-82) t+x叶
d b 3 

d t 

and (3 -7 -1) 

賛主 =-83-T3211b102b20b3-1sin { (201-82) t +x3} 

(3-7-2) 

which are non-1 inear equations with respect to b a and x 3. Considering 

the initial condotionb3=0, X3=0,at t=O, we introduce an undetermined 

constant /3 as x 3= -/3 t and integrate (3 -7 -1). The result is 

b3= {K/ (201-82-/3)} sin (201―-02-/3) t 

where K=T3211b102b20. Substituting X3 and b3 into (3-7-2), 

we can determine/3as follows 

-B =-03 -（201 -0r  B), thatis, B = 0 1ーナ02十古 03 . 

29 

(279) 



30 

(280) 

Thus, 

X3=-(01―t02+t03) t. 

Accordingly, time variation of b s can be decided as 

b3= {K/ (01ー+02ー+0 s) } sin (0 1―古 02―古 03) t 

(3 -8) 

It is easy to verify that this pair of solutions x 3 and b 3 satisfies 
the equation (3 -7 -1) and (3 -7 -2) exactly. In the initial stage 
of evolution, the solution (3 - 8) reduces to b 3= Kt, which would be 
equivqlent to the classical result (Longuet-Higgins(1962)). In order to 
verify whether the theory of Zakharov equation to be applicable to the 
phenomena or not, we 1110w compare (3 -8) with the experimental results 
given by McGoldrick et. al. (1966)as the initial growth of tertiary waves. 
In accordance with their experimental parameters, we rewrite (3 -8) as 

a 3= (4冗 2Ts211) （竺3) （竺3)t/2a12a2d' 
W1  W2  

(3 -9) 

where d is the fetch of interaction. We adopt concrete values on the 
basis of their experiment as a1=0.32 cm, a2=0.895 cm,w1=16.87 
sec―1, w 2 = 9. 6 5 sec―1 and w 3 = 24. 0 sec―1. Thus, we can calculate the 
amplitude of tertiary waves against fetch d by evaluating the coupling 
coefficient T 3211 = 40. 964 from the Zakharov theory. The results under 
the condition mentioned above, together with the case that a2=0.45c m 
(one-half of the former) with the symbols O and△ respectively are 

drawn in Fig-3 -1. Their data on two series of experiment show good 
agreement with the Zakharov theory. In this paper, we cal 1 (3 -8) the 
QUASI-STATIONARY solution of the equations (3 -3 -1),.._,,, (3 -3 
-3)． 

Using the quasi-stationary solution verified to be valid 
immediately before, we consider the NON-LINEAR RESONANCE CONDITION, that 
is, the dependence of r 0 upon the amplitudes of primary waves. S 1 i gh t 
extension to the solution (3 -8) when△w c:/=O yields the modification 
of its argument as 0 1―古02ーナ03十古△ w. Therefore, by this approx i -
mation the non-linear resonance condition is expressed as 
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tiw+2o=O, (3-1 0) 

where o ・ is given such that 
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(3-11) 

It is obvious that for the linear resonance condition, (3 - 1 0) merely 

reduces to △w =O and 7 0= 1. 7357・・・・・． For evaluating the small 

correcti-on 7 /. we assume that the non-linear resonance condition 7 m is 

expressed by 7 m = 7 0 + 7/ and approximate (3-10) up to the first 

order of 7 /. The result is 

r/ = 
- (8r03-12r02...Jト67 o -1) 

2 (6 7 03 -12 7 02 + 6 7 o -1) 
(2 G)). (3 -1 2) 

(3 - 1 2) together with (3 - 1 1) represents a correction of the 

resonance condition by finite amplitudes of primary waves. 

If we apply the Zakharov・ s coefficients, the non-dimensional 

formula is derived that 

r/ =1.66055 (a1ki) 2-~2.74992 (a2k2) 2. (3-13) 

An example for the case calculated in § 3. 3, that a 1 =4. 7 cm, a 2= 

5 C ffi, 入1=1.66m and入2=4.99m leads to r，，，＝゚． 051838・・・・・．

Thus we obtain the value rm= r 0+ r'= 1. 788 which agrees fairly well 

with the value r=l.800 adopted in the caluculation. 

In the following section, we mention how tertiary wave ampli-

t_ude A3 is correlated with the changes of the amplitudes A1, A2 and 

the frequencies(i)1,(i)2 of the primary waves. The details of the numeri-

cal procedur are referred to Tomita(1987). 

3. 3 Behavior of、theTertiary Resonant Waves 

We can integrate the equation (3 -3 - 1)....., (3 -3 -3) nu-

merically under the condition that amplitudes A1 and A2 are given as 

concrete values in the experiment. The amplitude A3 is assumed to be 

zero initially. The phase difference: !between the primary waves has no 
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influence upon the results. Corresponding to various values of A 1 and 

A2, long time variations of three waves are shown in Fig-3 -2, and 

Fig-3 -3. It is shown that the energy exchange occurs among the three 

waves and the amplitudes of waves vary periodically (not always sinu-

soidal) and never reach any equillibrium (this problem is discussed in 

more detail by the analytical inves1tigation of these equations at the 

latter part of this paper). Fig-3 -2 corresponds to the case r = 1. 7 

35(near resonant). Initial values of A 1 ar~ prescribed (a) 1 cm  (b) 

2cm (c) 3cm and (d) 4cm in order, while A2 is fixed as 5cm. 

The growth of A3 is apparently lim:ited.'The straight line Aぷ inFig-

3 -2 (b) is the solution given by Loriguet-Higgins(1962). It means 

that the solution of :zakharov equation reduces close to the classical 

one i n the i n i t i a 1 s t age t ~ 1 as men t i one d at t he pre vi o u s sect i on. 

On the contrary, when r = 1. 8 00 (off res on ant) A 3 grows to some 

extent according to the increase of A 1 (see Fig-3 -3 (a),.._,, (e)). 

Initial values of A1 are prescribed (a) 2cm (b) 3cm (c) 4cm (d) 

4.6cm and (e) 5cm,whileA2 is fixed as 5cm. In Fig-3-3 (d), 

the amplitude A3 tem]Porarily exceeds the first orde_r quantity A1. If 

we set that A 1 = 5 cm  initially, the growth of A 3 rather reduces. 

In the second place, drawing our attention to the nature that 

A3 reaches their maximum values in finite durations in any cases, we 

investigate the values of the maximum A3max against A1 with r as a 

parameter. A result when A2 is fixed as 5 cm, is shown in Fig-3 -4. 

In Fig-3 -4, the parameter R wh:ich is square of r (the exact 

resonance ratio r =1..736 discussed in Chapter2 corresponds to R=3.01 

4) is used. The value of r is also :shown in Fig-3-4. When R>3.0, 

each solution A3max corresponding to different values of R has sharp 

peak A凡3max in the vicinity of each value A1R without regard to R. 

The fact is also noticed that in the case R >4. 0, each solution A3max 

as a function of A1, is nearly identical without respect to R. It is 

obvious from the mathematical point of view. The reason is understood 

that the Zakharov coefficients Tab,:-:d (a, b, c, d= 1, 2, 3) does not vary so 

much with R. Whereas, physically speaking, it is not so obvious. We 

merely point out that AM3max exceeds the highest limit of gravity wave, 

hence the formulation of the theory.up to the third order of wave steep-

ness would be insufficient under this condition. 

AM3max is a quantity which is characteristic to express the 

intensity of resonant wave interactions. Using the results discussed in 

AppendixW, we have a criterion abolllt the limit of maximum amplitude of 

tertiary wave AM3max that it depends only on A1 (not on A2) linearly 



such that 

AM3max=O. 844A1.  (3-14) 

The maximum value A3max of tertiary resonant waves could grow to the 

extent of 84% of the first primary wave which generates it. In the case 

Rく2.9, the curves run close to the abscissa, that is, the small part 

of energy can be transfered. For the case of amplitude of the second 

wave A2  is 10 cm, the maximum of tertiary wave A3max is shown in Fig 

-3 -5. The broken line in Fig-3 -5 is (3 -1 4) which passes 

through the each maximum of A3max, in this paper, we express it as 

A M3max• We could not examine this formula (3 - 1 4) directly, because 

it is difficult to generate sufficiently large amplitude wave which has 

non-deformed, non-breaking crest lines of constant height with the wave-

makers used in this experiment. 

Finally., we execute several numerical integration by arranging 

the initial values of the amplitudes of two primary waves as real value 

recorded in the experiment. Examples are displayed in Fig-3 - 6,..._,Fig-

3 -7. As is explained in Chapter 2, two primary waves could not directly 

be compared with the theoretical ones because their amplitude are 

affected more intensely by inevitable effect of wave diffraction than 

that of interactions. The plotting is done only for tertiary waves. In 

the theories, phenomena are assumed to be uniform in space and vary with 

time. On the contrary, for the experiment, we make up the stationary 

state in a _basin and detect the spatial variation of wave amplitudes 

with several wave gauges. By this reason, the wave amplitude of tertiary 

waves are drawn against spatial fetch d. Fig-3 -6 for R = 2. 97 (r = 

1. 72), Fig-3 -7 for R = 3. 21 (r == 1. 79) show the data with the 

Zakharov・ s theoret i ca 1 va 1 u es. Between the both examp 1 es, the manner of 

variation of A 3 are somewhat different, nevertheless the agreement of 

the data with the theory are fairy well. However, as is seen at the last 

example, Fig-3 - 7 (c), experimental data do not amount so large as 

half as that of the Zakharov theory when the wave height is extremely 

1 ar ge. 

In order to show the applicability of the theoretical results to 

the scale of actual sea, we present a summary concerning the similarity 

problem in AppendixV111. Analytical properties of interaction equations (3 

-3 -1),..._, (3 -3 -3) are briefly investigated in Appendix IX with 

the proof for existing of the steady state asymptotic solution cor-

responding to the specific amplitudes of first and second primary waves. 
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3. 4 Instability Properties of a Wave Train 

We must mention first of al 1, the famous study by Benjamin & Feir 

(1967) with regard to this problem.. By their theory, a finite arnpli-

tude deep-water wave train is unstable to the small subharmonic dis-

turbances whose components have a pair of side-bands of w, say w十△ (J) 

and w一△ w. They restricted themselves to one-dimensional problem that 

disturbing waves advance in the same direction as the primary wave. 

Recently, Crawford, Lake, Saffrnan & Yuen(1981) by means of the Zakharov 

equation, MacLean(l982)by use of the exact Eulerian equations calculated 

the domain of stability to two-dimensional perturbations in the frame-

work of linear instability theory. Su, Bergin, Marler & Myrick(1982), Su 

(1982) also carried out the experimental studies in a very long wave 

flume in open air and indicated the importance of the two-dimensional 

perturbations to the stability of steep gravity waves. Observations on a 

modulational characteristics of wind. waves were conducted by Mase et. al. 

(1985) and Donelan(l987)in actual sea. The former authors successfully 

compared their observational data with the computational results from 

the Zakharov equation. We should also refer the studies on a instability 

of non-linear standing water waves elaborated by Okamura(1984, 1985) 

using the Zakharov equation. In this section, we utilize (3 -3 -1),.._, 

(3 -3 -3) as they are, to investigate a monochromatic wave which is 

exerted by two-dimensional small perturbations. 

To this type of problems, B 1 is recognized as a primary wave and 

B 2, B 3 as a pair of side-band perturbations advancing in the different 

directions. In Fig-3 -8 one can see an example of the long time 

behavior of each components A1, A2 and A3. The perturbation components 

rise up spike-wise intermittently in all the cases to be examined. In 

these calculations, the magnitudes of small perturbations A2 andA3 are 

initially set 10-6 times as large as that of primary wave A1. The 

height and the recurring period of spikes are intrinsically dependent on 

the wavelengths and directions of two perturbational component waves. 

Thus we examine the waves of wave-numbers k 1 = K 1 (1, 0), k 2 = K 1 ( 

1 + p, q) and k 3 = K 1 (1 -p, -q) in the regions O< p < 1. 2, O< q 

く0.5. The vector K1 (p, q) is taken as a modulational wave-number. 

The instability criterion is defined that the side-band amplitudes 

exceeds 10-4 times as large as that of the primary wave. The domain of 

instability calculated by the Zakharov equation are shown in Fig-3 

-9. Small circles mean the unstable couples (p, q). The stable 

results are not i 11 ustrated in the Figure, e.g., the wave is stable in 

the region except where is filled by the grid of the small circles. 



Solid curves drawn in the same Figures represent the boundary of the 

domains of instability by means of linear stability theory after MacLean 

(1982). From the numerical experiment executed in this time, side-band 

components rise up abruptly at the outer side bouhdary of the wave-

number space. 

The stability property of a wave train can be ・investigated in 

the same manner as resonant problem, conversely, -the stability property 

has not been sufficiently taken into accounts in s;tudying the resonant 

interactions. In this study, Zakharov equation was; discretized into the 

most important three wave components. However, from the stand point 

mentioned in this section, the affection on the resonant interaction 

properties by other components must be investigated. There would be 

certain contributions through the instability and phase speed effect 

exerted on primary waves by other components neglected in this paper. 

To a further step, the computation with a great many components are 

des i r ab 1 e f or d i r e c tl y s i mu 1 a t i n g t he a ct u a 1 o c earn wave s p e'Ct r a, 

possibly by use of super computer. lit will be an issue to be treated 

more comprehensively in the future studies. 
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CHAPTER 4 CHARACTER I ST I CS OF THE RESONANT WAVE INTERACT I ON 

4. ・ 1 Out 1 ine of the Preceding Chapters 
In the previous chapter, we explained the classical theory due 

to Longuet-Higgins(l962)in§ 1. 3 and the more comprehensive theoretical 
approach to long term evolution of resonant interactions in § § 1. 4 

and 1. 5. The experimental results shown in Chapter2 revealed that the 
c 1 a s s i c al t he or y i s i n s u f f i c i en t to des c r i be th e ob s er vat i on a 1 re s u I t s. 
In Chapter3, the Zakharov equation which is applicable to long term 
variation of non-linear waves was numerically integrated and the experi-
mental data were partly confirmed to agree with the theory in several 
examples. In this Chapter, the experimental data are compared with these 
theories in more entire point of view. For this purpose, we summarize 
the facts obtained in the preceding Chapters as follows: 

1) The existence of tertiary wave generated by resonant interaction is 
verified experimentally. The tertiary wave which grows up to 62% as 
large as the first primary wave is detected whenr=l.79 andd=45.36m. 

2) In short fetches, the growth rate of resonant waves is somewhat 
smaller than that measured by McGold.rick et. al. (1966) and greater than 
theoretical value given by Longuet-Higgins(1962) by 18%. Tertiary wave 
growth takes place most strongly at the value of r = 1. 78 which is 

slightly different from the exact resonance condition r 0= 1. 736. This 
is partially interpreted by the non-・linear correction of the resonance 

condition. 

3) The measurements done by McGoldrick et. al. in the short fetch are 
completely accounted by the Zakharov theory. 

4) The direction of propagation of generated tertiary resonant waves are 

determined about 9 degrees which is identical with the theory. 

5) In longer fetches, tertiary wave grows up to their maximums and dirni-
nishes its amplitude. The fetch lengths for the recurrences depend upon 
the amplitudes of primary waves A1: and A2. This fact can not be ex-
plained by classical theory (expressed in (1 -9)). 

6) In general, the behavior of tertiary waves is affected not only by the 

frequency ratio r which is related to resonant condition, but also by 



the arnp.l i tudes of primary waves A 1 a.nd A 2. 

7) By comparison of the Zakharov equation with the: observational data.we 

can see that t~e,theory explains the evolution of tertiary waves at. the 

case of sma 11 steepness of each waves.. However, the discrepancies b~come 

large with increase of the wave steepness. 

8) An approximate analytical solution of Zakharov equation (3 -:-. 8) is 

proposed. The observational results are explained by this solution when 

energy transfer among waves is cornpilratively weak. 

9) By solving the Zakharov equation repeatedly, the maximum values A3max 

realized by tertiary waves are determined against. A 1 with r as a para-

met er. 

As thequantitiy.A3max is suitable to dis:cuss about the entire 

characteristics of resonant wave interactions. we rearrange、thedata to 

be compared with theories through this concept. 

4. 2 Comparison with Classical Theory 

The recurrence properties of tertiary waves are explained even 

by the theory of Longuet-Higgins(19!52) if we recognize them a,s an effect 

of detuning of the frequency ratio r to its prescribed value r 0. 

According to this theory, the I)laxim1llm value A3max to be realized is 

yielded・ by (1 - 1 4).. In Fig-A-, 1., we take the theoretical values to 

the abscissa and those of experiment.al values as the ordinate and plot 

t.he points in the graph of dispersion. If theory an_d experiment agree 

with each.other,: the points should be distributed on.a line drawn in 

F-ig-4 ~ 1.. The result scatters to a large extent. This means that the 

theory can not explain th.e experimental results. Taking into consider-

ation that there are results for many cases of r in Fi.g-4 - 1, we 

classify them into three main catt3gories. The symbol△ corresponds to 

the case r "",l. 7 2 (near 1 y resonant case). In th Ls 1ca se, al 1 t_he data run 

close to the x -axis. It me.ans that resonant wa ve:s,do not so evolved as 

the classical. theory predicts. Symbols□correspond,the case_r -1. 79 

(not so cl_ose to the _resonant case).Jhe data are seen t~ wind themselves 
around the_ 1 ine and comparat i ye ly near to it. The dispersion seellls not 

to be random. The P.oints are distributed higher for smal_l A3max and 

lower for large A3max than the_ sol id line. The case r > l. 82 is plotted 

by the symbol O. In this case, all the points are plotted above the 

line, in other words, the measured values are always larger than that of 
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the theory. The reasons why the theory and experiment are not identical 

in general is suggested as follows: 

Firstly, the velocity of tertiary wave changes by the influence 

of non-linear amplitude dispersion. Velocity becomes slightly larger 

with increase of the wave amplitude、 Asa result, resonance system of 

wave-wave interaction:s turns out of. tune. On the contrary, for the case 

that resonance condition is not so cl os el y satisfied, exact resonance 

can be preserved by a slight-detuning to compensate for amplitude 

dispersion inferred b;y Phillips(197'7). Moreover, primary waves shed 

their energy to the other waves to :intensify the growth of resonant 

waves. These effects were not considered in this classical theory. 

4. 3 Cornpari son with Zakharov's Theory 

In order to clarify the effect of the primary wave amplitude A1 

to the grow th of tert,i ary resonant wave quan tit a ti vel Y, we examine the 

dependence of the maxim um amp 1 i tude of tertiary wave Asma x on A 1 in 

the sequel. The experimental values of Asmax are plotted this time 

against A 1 in Fig-4 -2. There seems no clear tendency in Fig-4 -2. 

We arrange these data in the followJtngmanner. As same as the prvious 

section, the set of data is classified by the magnitudes of r. 
The case r -L  72 is shown ln Fig-4 -3. Theoretical curve 

calculated by means of Zakharov equation is also shown in Fig-4 ~ 3. 

Taking various noise described in Chapter2 into considerations, the 

agreement of the theoretical predic1tion with the acquired data is fairy 

well in this case. Fig-4 -4 shows for the value r'-'L 79. It -is very 

characteristic in this figure that・ithe theoretical curve expresses the 

existence of strong resonance in the vicinity of A1-4.0 cm; The 

measured data agree wel 1 with this char acteri st i cs. A It hough the sharp 
peak for Asmax is not observed experimentally, the discrepancy might be 

caused by that the waves made with wave-makers are not perfectly mono-

chromatic, so the critical condition demanded by the theory for the 

peaks would not be realized. On the other hand, hi.gher. order effects 

which are not consi:dei「edin the theory might have an influence under 

such a subtle condition.・ In Fig.-4 ・-5, the case r > 1. 82 is totally 

plotted. The data are somewhat widelly scattered in this Figure, however 

considering the i nstabi 1i ty property of waves at the 1 arge amplitude, 

it is concluded that 1the entire behaviors obtained in the experiment 

could be explained by the theory of Zakharov equati.on. 



4. 4 Di 1scuss1on 

It is confirmed that the long term evolutilon of tertiary reso-

nant waves are not explained by the classical theory. On the other hand, 

by the comparisons of the experiment with the theory of Zakharov we can 

conclude that this theory is applicable to this sort of phenomena. 

It could predict the evolution of tertiary resonant waves under. the 

conditions that the wave steepness H/L  <O. 05 (the reproducible 

experiment was conducted to the wave whose steepness is less than 0.05) 

and the frequency ratio 1.58<r<L90. It is the point left as an open 

question when one applies this sort of equations derived by the singular 

perturbation method. Although these criteria are not determined directly 

by the experiment, they are discussed briefly in AppendixVIl. 

After all we summarize the over all properties of the generation 

of tertiary resonant wave by perpendicularly intersecting two primary 

waves as follows: 

1) In general, resonant waves. show a spatial (temporal) recurrence 

(periodicity). The non-linear resonant wave interaction phenomena are 

interpreted by.a third 9rder slowly varying.theory using the Zakharov 

equation. 

2) Growth rate G for short term development is proportional to the 

square of the first primary wave am]Plitude A1. Classical.theory is 

valid only for this region. 

3) The resonance takes place most strongly at the "off-resonance" 

condition r......,1. 79 in terms of the linear dispersion relation. Intro-

duction of the concept "non-linear resonance" is necessary. 

4) To the values of r less than r 0, there exists no strong resonance 

and A 3ma x approaches to a smal 1 constant value without respect to A 1・

5) For the cases r < 1. 6 and r > 2.. 2, tertiary wa11/e does not appear at 

all in the experiment. 

There were several reports including Snodgrass et. al. (1966) 

who pointed out the importance of wave-wave interiactions in a seaway. 

Mollo-Christensen & Ramamonjiarisoa(1978, 1982) proposed a new model for 

ocean waves described by the presence of wave grolllps in a random wave 

field. Chereskin & Mollo-Christensen(1985) conducted an experimental 
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study about the amplitude and phase modulation of a one-dimensional wave 
flume. The.coherency of narrow-band weakly non-linear one-dimensional 
wave system・ is pointed out by their papers. lf such a coherent property 
is predominant in the ocean waves, resonant interaction would take place 
more intensely than considered・in a model of・random wave field. 

Recently, Sand(l988)reported the topics in the problems of wave forces 
as a environmental conditions to ocean structures. In the field of 

research concerning the mooring of off-shore floating structures,・ for 
example, ・ investigations into non-1 i near properties of sea waves wi 11 

play・ an essential role in the near future. 
The present author(1988b, c)i also investigated the wave group 

characteristics by use of the data obtained with wave buoy at the North 
Pacific Ocean during1983-1984. It might be a manifestation of non-

linear modulation pro1perty of wind waves indicated by Mase et.al. (1985) 
or Li et. al. (1987). In the present time, observational wave data are not 

enough to make clear the mechanisms of this sort of unsteady non-linear 
processes-in sea waves. Application of more・exhaustive・analysis tech-
niques such as INSTANTANEOUS SPECTRUM.proposed by Bendat & Pierso1(1967) 
and/o:r INVERSE SCATTElH NG METHOD founded by Zakharov & Shabat (197 2) and 
interpreted by Sobey & Colman(l982, 1983) in the context of sea" waves 
seem to be necessary. 

Although it i:s a future problem that the investigat.ions are exe-
cuted for the more general cases, four wave mutual interactions etc., 
the co-operative method of study within theory, calculation, experiment 
and obserbation is indispensable for such a non-linear problem. 
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Appendix I Coefficients H<N>, F1N> 

5

)

＋
 

一

‘‘‘/ 

ー

＿

ー

ー

―

―

 

+

o

)

K

 

2
 

8

1

 

)

（

K

,

 

2

]

2

 

k

)

-

K

 

;

2

-

s

,

'

+

 

W

1

ー

一

ー

（

l

o

k

,

K

)

）
 

ー

(

t

(

2

2

k
 

0

(

 

ー

D

f

l

k

 

1

(

1

-

s

(

（

｛

 

a

D

5

D

4

,

 

d

4

(

4

/

1

 

de

レ

D

1

)

k

l

)

4

)

2

(

 

e

1

/

1

k

 

i

k

t

k

1

)

 

y

k

)

k

k

3

 
2

/

／

(

 
D
 

e

/

k

 

r

2

1

2

k

 

a

k

k

k

g

{

 

g

k

g

(

 

ヽ
ノ

(
g
(
•
4

[

（

［

＿

／

 

ー

4
 

‘
l
-

、l
)

）

．

2

2

1

2

2

 

2
 

-

r

o

r

k

t

k

1

 

2

2

k

+

 

ー

(

K

(

'

k

o

(

／

／

2

g

 

1

,

1

k

(

6

 

-

］

 

n

ー

＝

l

k

-

i

-

―
 

s

)

（

）

（

｝

｝

 

t

2

2

 

n

k

l

k

l

)

）
 

e

2

1

2

1

 

.

c

l

,

（

9

(

k

k

 

・1

1

D

ー

D

f

4

4

-

'

 

f

K

/

k

/

2

 

e

1

1

,

K

 

O

'

）

'

）

1
 

c

k

知

K

知

k

＿

(

l

(

k

(

（

 

k

/

 

`

9

)

、

,

）

ー

／

2

1

2

3

(

k

(

k

(

（
 

H

は

H

は

D

D

(I -2) 

H<3> (k, k1, k2) =l/(2.r2) [{g知／k柘） 1-'4D(l) (k1, k2) + 

(gk/k1知） 1 ／ 4D (2) （K 1, K2) -（gkk1知）1／4D (3) （K 1, K2) ］8。+1+2, 

(1 -3) 

F (1) （K, K t, K2, K3) ＝ 1/4 [ （K2k3/kk1) t/4 E (1) （K t, K2, K3) -

(k知／k1知） 1"'4E<2> (k1, k2, k3) +(kk1k2知） 1"'4E<3> (k1, k2, k3)] 

00-1-2-3, 

(I -4) 

F <2> (k, k1, k2, k3) =1/4 [(k山／K知） 1／ 4E (1) （K3, K2, -K 1) -

(k2k3/kki)1"'4Ecti (-kt, k2, k3) + 

(k1k3/kk2)1"'4E(tl (k2, -k1, k3) + 

(292) 



43 

(kk3/k1k2)1/4 {E'2> (k2, -kt, k3) +E'2'(-kt, k2, k3)} -

(kk1/k2知） 1 ／4E (2) （K3, K 2, -K1) ＋ 

(kk1k2知） 1／ 4 {E(3) (K 3,K 2, -K1) ＋ E(3) （K2, -K1, K3) ＋ 

E'3> (-kt, k2, k3)} ] 00+1-2-3" 

'
,
.
 

ヽ
~

1

ノヽ

ノヽ

k

2

5

k

 

＿

＋

 

ー

'

2

'

ノヽ

(

K

3

2

 
k

k

 

，
 

,

1

 

’
 

3
 

k

3

 

-

K

 

k
 

（
 

（
 

‘

、

'

1

)

1

 

(

（

K
 

E
 

E

(

 

4
 

／

＋

）

 

1

3

 

、̀
l

(

E
 

3

、’/

K

3

-

+

 

k
 

/

k

+

3

 

2

、l,

｝

、

ノ

ー

k

,

2

3

)

2

 

k

t

2

k

o

k

k

t

1

 

＋
 

k

'

-

o

 

(

K

 

[

'

 

8
 

-

3

2

 

1

4

,

K

5

k

,

 

1

1

2

]

 

k

}

 

•K

_ 

―-
K

1

 

)

-

K

1

1

'

）
 

3

(

-

K

K

3

3

 

k

k

 

l

(

（

一

k
 

1

(

 

9

(

）

）

(

'

 

2

2

2

)

2

 

(

（

）

3

k

 

E
 

K

{

2

(

 

E

-

E

E

(

 

,

4

4

4

E

 

1

/

/

/

｛
 

1

1

1

4

,

 

L

)

）

）

/

4

1

 

1

3

3

1

/

k

 

,

k

k

k

)

1

 

k

1

2

2

)

-

k

/

k

k

k

3

 

(

3

/

/

1

k

(

 

K

2

1

k

2

 

)

2

k

k

/

k

)

 

3

k

k

k

3

1

3

 

(

(

（

（

k

k

(

 

E
 

k

k

 

F

-

＋

＋

（

（

 

and 

F'4> (k, k1, k2, k3) = 

1/4 [ -(k2知／kk1)1/4E (1) (-K 1, -Ik2, -K 3) ＋ 

(kk3/k1k2)1/4E'2) (-kt, -k2, -k3) + 

(kk1k2知） 1 ✓ 4Ec3> (-kt, -k2, -ks)] 00+1+2+3, 

(I -6) 

(I -7) 

where, 00+1-2-3=0 (k+k1-k2-k3) and 

oct> (k1, k2) =k1k2+k12, 

(293) 



44 

2
 

k
 

'

十

2

.｝

1

K

 

ぐ

，

）

ー

＋

3
 

<』

1

.

3

1

 

k

k

}

 

l

{

k

 

＋
 

2

ふ

し

＋

＋

5

,

2

3

3

 

k

)

 

2

k

k

k

 

k
 

（
 

會

1

}

k

，

ー

k

ー

ー

＋

)

K

ー

り

＋

2

2

2

1

)

、ノ

2k
 

+

2

3

1

 

k

k

 

K

2

k

k

 

1

,

1

k

+

（

＋

 

k

)

k

ー

2

{

＋

+

2

2

{

1

1

”

2

3

1

 

k

k

k

 

‘̀,、

K

6

 

一
~
（

ー

k
 

2
 

(

（

（

 

’

‘

/

 

ー

、

’

し

／

K

+

K

'

l

2

ー

1

1

+

＿

-

T

‘

+

＋

＿

 

=

＝

＝

 

k

k

 

（

（

 

_＿
2
+
△

△

↓

 

―
―
―
-

k

k

k

 

ヽ

ノ

、

’

/

,

'

,

2

2

2

2

2

 

k

k

k

k

k

 

'

,

'

，

'

 

1

1

1

1

1

 

k

k

k

k

k

 

（

（

（

（

（

 

)

）

｀

｀

ヽ

）

）

2

3

1

2

3

 

（

（

‘

,

ヽ

(

‘

,

`

D

D

E

E

E

 

(294) 



Appendix II On Canonical Form 

As is well known, the energy of deep-water gravity waves is 
represented by 

E=古 ldr  [l＿信¢)2ct・z + g TJ勺，s (Il-1) 

where, S means the total surface considered here, B is the depth where 
the wave effect diminishes. This expression contains the volume integral 
over all region occupied with the fluid, it can be replaced by the 
surface integrals by means of certain transformation of variables as 

fol lows. 

From the Gauss'theorem, the first term of the right hand side of 
(II - 1) (KINEMATIC ENERGY) is expressed by the next equation 

E 1 = + J S¢ (3 ¢/  3n) d S, (II - 2) 

when S means the fluid surface z ='TJ （r, t) 

By use of the theorem of differential geometry, the relations 

(@¢/an) (<I> z―▽h¢ ▽hTJ)/{1+ （▽hTJ) 2} }/2 I 
TJ 刀

and d S = { 1 +（▽hTJ) 2} l/2 dr  

are derived. Where, the opera tor▽h means the horizontal two-dimensional 
gradients. 

Furthermore, if we consider the kinematic condition 

¢z―▽心▽h7J=7Jt

at z = TJ, (II - 2) is proved to be replaced by 

E 1 = + J }:¢ 5 (@ TJ / @ t) d r. (Il-3) 

If we add the potential energy term to this, total energy Hcomes out to 

H=古ldr  [¢ S 刀t+gn打．s 
where, ¢sis the value of the potential at the fluid surface. 

(II-4) 
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An alternative proof of this theorem is proposed by West(1981). The 

interpretation of H to be explained as the Hamiltonian of water waves 

accompanied with the canonical variables ¢ 5 and TJ was presented by 

Miles(1977). Milder(1977). 

To the Hami 1 tonian (II -4), the new variables p, q are 

defined by use of the Fourier transform as 

¢ s (r, t) = (2冗）ー1ll>dOOK p (K, t) e 
i k r 

and 

7/ (r' t) = (2冗）ー1II>dOOk q (K, t) e 
i k r 

By use of them, H is represented by p, q as follows 

(II-5) 

(II-6) 

H ＝ナ l 〗d(X)K ｛い（ k) qt (k) +gq* (k) q (k)}. (II-7) 

In order to eliminate the function Qt (k) from (11-7), we use the 

equations presented in Stiassnie & Shemer(1984) (they did not discuss 

the canonical form), that 

qt (k) =w5 + 

1
こ“2
 

ff =~kt· k2) d k1 d k2P (k1) q (k2) o (k-k1 —い）

and 
w5 = k p (k) -

2しII五[K-K』 dk 1 d k 2 p (k 1) q (k 2) o (k -k 1 -k 2), 

where, we adopt the notations used here and truncated the perturbation 

series up to the term necessary in this discussion. The function W5  

means the value of ¢ z at the fluid surface. 

We make qt the function of p, q and substitute it into (II -7) 

and the representation 

H= 古 l 〗dOOK { k戸 (k) p (k) +gq※ (k) q (k) } + 
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1
一
冗4

 

II 賢l~kdk1dk2 い (k) p (k1) q (k2) o (k-k1-k2) 

- 8いlll賢L3dk d k 1 d k 2 d k 3 p※ (k) p (k1) q （い） q (い）

Xo (k-k1-k2-k3) (Il-8) 

is derived. The first term is the well-known Hamiltonian of linear wave 

field. The kernels K <2> and K <3> are 

K<2> (k, kt, k2) = (k1k2) -kt (k-kt), 

K<3> (k1, k2, ks) =k1 (k2ks). 

(Il-9) 

(II-1 0) 
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Appendix ill Randomization of the Zakharov equation 

The arguments applied to the randomization of narrow-band wave 
system by Longuet-Higgins(1976) is extended ・to this problem of arbitrary 
band width wave system in the following. 

The exact form of the Zakharov equation is presented by (3 - 1) 
in Chapter3. Here, we abbrebiate it to the following form 

. dB。
i }{0= f dKTB1炎B2B3oe1~i △ t 

(ill.-1) 

Multiplying B0※ to the both sides of the equation and subtracting it 
from its complex,conjugate, we have 

id山 l2=2ilrnJctKTB1*B2838。※ oe i△ t 
d t 

(m-2) 

If we write the ensemble average of I B 012 by < I B 012 > = C 0, we get 
from (ill-2) the statistical equat.ion 

. d C。~
l dt =2iIm Id K T C 121 c t (m-3) 

In this equation, the right-hand side is 0, because all the quantities 
in the integrant are real numbers. Therefore, the energy spectrum of the 
stochastic wave field does not vary to the 4-th order. 

Finally, time derivative of the 4-th order mutual products are 
calculated as 

i (B。町31町B2 B 3) t = i B 0叫B1町32 B叶 iB。町31※tB2B3 

+ i BげB占B2tB3+i B。"B占B2 B 3t (III-4) 

Substituting (ill-1) to the time derivatives in the right hand side of ( 
m-4), averaging the whole equation, and remaining up to the 6-th 
order of maguni tude B. it is yielded as 

iく (B。町31町3283) >t= :2 T {C2C1 C0+ C3C1 C0 

-c。C2 C 3 -C 1 C 2 C 3} 5 e x p (-i△ t). (Il[-5) 



Rewriting (III-2), we get the equation 

i 旦—0 = -2 iRe J d K T i < B 1 * B 2 B 3 B。※>oe 
i △ t 

d t 
(III....:..6) 

To evaluate the right hand side of this equation, (ill-5) is integrated 

to be 

iく (B。*B1*B2B3) >= 2 J~j て T {} oe-. 
- i△て

- co 
(ill-7) 

In this equation, {} denotes the quantity in the bracket in (ID -5). 

Therefore, 

. d C 0 
1 - =-

d t 
4iRe fd K T 2 {｝ 8 l dて e

t i △ (tーて）

—• OO 

(m-8) 

is obtained. 

The last definite integral is turn out to be 冗 0 (△）． so that the 

final result has the form 

旦 o
d t = 4冗 JctKT01232 {C2C3 (C0+C1) 

(m-9) 

-C 0 C t (C 2 + C 3) } o 012 3 o (△ 0123), 

which is just the same form with the energy transport equation among 

the spectral components first given by Hasselmann(l962, 1963a, 1963b). 
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AppendixN Narrow band approximation of the Zakharov equation 

So called non-linear Schroedinger equation was first derived in 
the paper of Zakharov(1968) himself. In this Appendix, we interprete the 
procedure in terms of the symbols used in this paper. 

We restrict ourselves that B has large value only in the 
vicinity of certain central wave-number k0. That is, k=k0+W, so 

B (k) exp {i (kr-w t)} =B  (k) exp {i (k。r+w  r 

-o  t+(J)。t+w。t)} 

三 A （窟） eX p (i窟r) e x p { i (Ko r -O。t)} 

(W-1) 

is introduced to the fractional wave-number窟． Usingthis formula, the 
elevation 刀 isexpressed as 

1 
7J =【--

2冗

(k 0/ 2 w。笠 lcod窟A （窟） ei窟r】 ei
- CO 

(k0r-<,)0t) 
+ c c. 

(W-2) 

By definition, the quantity in【】 i.sone half of. the wave envelope a (r, 

t), therefore, the relation of A to a is 

a (r, t) 
1 

2冗

＇ で OO

(K o/ 20 o)l d窟A （窟）
- OO 

i窟 r
e 

(N-3) 

On the other hand, (N - 1) is substituted to the Zakharov equation (ill 
- 1) to be 

. d A121 
- - （0-O o) A 121 = JdK T A 1※A2A30 e 1. 

i △ t 
1 

d t 
(IV-4) 

Assuming that the band width窟＝ （¢,'入） iss uf f i ci en tly smal I. we 
expand the dispersion relation w = f (k) around w0 up to the 2-nd 

order of cf;, 入 tohave 
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0 —w 0 = (w 0/  2 k 0) ¢ - (w e1/ 8 k祈） ¢・2+ (w 0/  4 k祈）入 2.

(IV-5) 

Substituting this into (N-4) and Fourier transforming with respe~Lto 
k, we get the final equation by use~ of the approximate kernel T0123= 

T0000= k討／4冗 2

a
-
t
 

8

8

 

（
 

・1 + C,  a』)＋立
a x 8 k託

a

2

 

2

-

X

 

3

3

 

(J)。a2 a 

4k。2 a Y 2 

W0k。2 

2 
I a 12 a 

． 

(IV-6) 

This equation agrees with the 2-dimensional Nonlinear Schroedinger 

equation for deep-water gravity waves (see, Yuen & Lake(1982)). 

Modifications of (IV-:-6) for including the mean flow effects 

were proposed by Dys the (19 7 9) to deep-water waves and by Torn i ta (198 5b, 

1986) to waves on a finite water depth. 
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AppendixV Kernel T of the Zakharov equation 

The third order interaction coefficient T (k0, k1, k2, ks) 
appearing in (3 - 1) was first found by Zakharov(l968) and rederived by 
Crawford et. al. (1981) is exhibited below with some minor misprints 
removed: 

T (k0, k 1, k2, k3) = T01:~3= 

2 V; : 3-1. 1 Va: 2.o-2 

W 1-3 -W 3 + W 1 

2 v 2 ~。 .2-0¥1~1-3.3
w. t -3 - W 1 + W 3 

2 迄 ~2-1.1v~~3.0-3
W 1-2 -W 2 + W 1 

2 V ;: 0.3-0v'; ： 1-2. 2 

W 1-2―W 1 + W 2 

2 V0~1.0.1 v2~3.2.3 
W 2+3-W 2 + W 3 

+ Wo. 1. 2. 3,  

2 v :；-3. 2. 3V;）. 1. -0-1 

W2+3-W2+W3 

where, 

（士） 1 
V 0. 1. 2 = 

8冗 v2
{ (k0・lk1士k0 k 1) ［ W0W1 k2 ］ 1/2 

W2 k0k1 

+ (k0・k2土 k0 k 2) 
［ a) 8し） 2 k 1 ］ 1/2 

W1 k0k2 

+ (k1・k2+k1k砂
［ W1W2 k l2l ]1在

W0 k 1 k 2 

W1+2=w (k1+k2) 

and 

w 0. 1. 2. 3 = w _0. -1. 2. 3 +迅．3.-0.-1―w2.-1.-0.3-W-0.2.-1.3+

W -0, 3 02. -1 -W 3, -1. 2, -0 

with 

(302) 
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W。,1.2,3 = 
1 r W 0 W 1....,  1/Z 

6 4冗 2
[ k o k 1 k 2 k 3] X 

W2W3 

{2 (k0+k1) ・-k1+3-k1+2-k0+3-k0+2} 

and k t +2 = I k 1 + k 2 I. 

(303) 



54 

(304) 

AppendixVI Dispersion Relation in Tertiary Resonant Interaction 

In general, the kernel T (k 1, k 2, k 3, k 4) of the Zakharov 
equation is so complicated that the simple analytical expression was 
obtained only in the cases that k1==k2=k3=k4 (single wave) and k1 
= -k2= -k3= k4 (standing wave) in the paper by Okamura(l984). We 
deal with here the next simplest case that k1= k3= k (cos0, sin0) 
and k2=k4=k (cos0, -sin0). 

If there exists only two trains of wave of exactly same arnpli-
t ude a and wavelength 入＝ 2冗／ k intersecting by the angle 2 0, the 
equations corresponding to (3 -3) become 

. d B 1 
1 -=  

d t 
{T1111B1 ※ B1+~T1221B2※ B 叶 B 1 (VI-1-1) 

and 

. d B 2 ~ 
1 -=  
d t 

{T2112B1町31+T2222B2町32} B 2 (VI-1-2) 

These are easily solved by setting lB1= bexp(-ix i), 82= bexp(-ix2) 
with real constant b. From (VI-1) and (3 -5), x 1.2 are given by 

～ 
and 

x1= {T1111+T122d (2冗％／ k) a 2 (VI-2 - 1) 

x2= {T2112+T2222} (2冗％／ k) a2. (VI-2-2) 

The resultant of the two waves are called the SHORT CRESTED WAVE of 
amplitude A=  2 a and its disp.ers:ion relation was derived by Mollo-

Christensen(1981) that 

w=w0 {1十すA2k吋 (0)} (VI-3) 

where 

F (0) = (8cos2 0 -3-2cos4 0) /2 + si n2 0 (cos 0 +2-4cos2 0) / (2-cos 0). 

(VI-4) 

These formula are also verified from the equation (2 -8) of Longuet-
Higgins & Phillips(1962). after some minor correction. 

We can rederive this result by means of Zakharov theory that 



T1111+T1221= T2112+T2222 = (k3/2冗り F (0) (VI-5) 

after some algebraic manipulation. At least in these simple cases, it is 

revealed that the Zakharov theory yields an identical result with the 

classical one (see Tomita(1985a)). 
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AppendixVII Conservation laws of the Zakharov equation 

Here, we define two quantities E and C such that 

E i =g  Ai2/2 =° i B i B E/（2冗） 2

Ci=E;/wi=BiB占／（2冗）2

(V1[-1) 

(V1[-2) 

They are called the energy and the wave action of waves. Considering the 
total energy of three waves that 

E=E1+E叶 E3= {w1B1B1※.+W2B2B2※+W2B2B2※}／ （2冗）2,

we obtain the following expression to its derivative dE/d t by use 
of (3 -3 -1) - (3 -3 -3), 

d E ~ i △ t 
d t 

l ―={0 1 (T11 23 eB1※2B2B3-c.c.) + 

W2 (T2311 e-i△1312B2町33※-C. C.) + 

0 3 (T2311 e-i △i312B2*Bs*-c. c.)} /(2冗）2

～ 
= ［ ｛0 1 T 11 23-0 2 T 2311 -0  3T3211 } ei △13 1※2 B 2 B 3 - C. C. ] / (2冗）氏

where c. c. signifies the comp 1 ex conjugate of preceding term. 

～ 
Because the equalities T112s= 2 T2s11= 2 Ts211= 2 T holds with the 
resonance condition 2 w 1 -w 2 -w 3 = 0, the change of energy is 

d E i △ 

d t 
Im [ {2w1-w2-w3} Ti8h1※28283] /(2冗戸＝ 0 

(VJI-3) 

Thus, the total energy conservation is proved in the present 
situation. The conservation of total wave action C is also derived by 
the method akin to the above procedure. It is in contrast to the case of 
capillary-gravity waves (for reference Leibovich & Seebas(1974) or 
Whi tham(1974)). The conservation of wave action leads to next simul-
taneous equations with respect to the amplitudes Ai, 



gA召／w1+gA22/w2+gA荘／w3= const 

and 

g A22/(J)2-gA32/(J)3= const. 

I n i t i a 1 v a 1 u es of A 1 = A 1 0, A 2 = A 2 0, A 3 = 0 are subs t i t u t ed to the 

right-hand constant terms and the elimination of A2 leads to 

A12/(J)1+2As2/(J)s= A102/(J) 1 

It means that the capable maximum amplitude of tertiary wave has a limit 

A 3 ~ (w 3/ 2 w 1) 1 "2 A 10 = (2 r -・1/ 2 r) 1 /2 A 10 = 0. 8 4 4 A 10. 

(Vl[-4) 

In order to make the condition of validity of the Zakharov equation 

clear, we estimate (1-1 0) with respect tor. The condition 

△ =2  w1-w2―,0 3~ 0 (W-5) 

is to be evaluated. This is rewritten as 

△ = o o-0 3~ e %9 3 (V1I-6) 

using し） 0=2 w 1―w2. Small quantity△ is estimated that 

△ =（ g k0) 1/2_ (g k3) 1/2 

＝一古 (g/k:3) 1"'2 (k0-k3) ＝ナ(i)32 o k. 

By virtue of (1 - 1 1), we see that 2 o k = -/3 k 3 o r where o r = r -

r 0. Substituting it to the relation, 

△ =—古 03B8 7 (VII-7) 

is yielded. Thus. from (VI-6), +/3 |or I,._, a 2 results. Using the 

constant value /3 =O. 497-0. 5 from the theory and adopting the small 

quantity e -A  k to be 0. 2 from the experiment, we obtain an estimation 
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of r such that 

o 1 I -o. 16, i.e.. 1. 58 < 1 < 1. 90 （＼唄ー 8)

Alt hough the estimation examined above is not always accura_te, the range 

of r is verified almost to cover that of experiment in this paper. 



AppendixVfil On the similarity of the theories 

The Zakharov equation in Chapter 3 has the dimensional form and 

the calculations are conducted to the wavelengths comparable with the 

magnitude used in the experiment. However, all the results obtained in 

this paper must be applicable to the scale of actual ocean. In order to 

show this, we derive the non-dimensional form of the Zakharov equation 

and the classical solution. 

First, we see from (3 - 2) and (3 - 3) the dimensions of B and 

T to be B= [m3>2s ― 1 ✓ 2], T = [ m勺 . Thus, we introduce the non-

dimensional variables such as: 

(JJn=(JJRWn, 

WRt=r, (k R= W 託／ g).

T1234=TRU1234, 

(TR=T (kR,kR,kR,kR) =k討／ 4冗 2)'

Bn= BRFn, 

(B R = (2 W R/ k R) 1,,,2 AR). 

(VJll-1-1) 

(VJll-1-2) 

(VJll-1-3) 

(vm-1 -4) 

Substituting them in (3 -3 -1) for example, we have a non-dimensional 

form of the equation 

i月1=μ [ {U1111Fパげ U1221F2*F丘 U1s31F3※F3} F 1 + 

~ i 8て
U 11 23 eFl"F  2 F且 (VJll-2) 

where, o = w 1 + w 2 + w叶 w4 and μ = w R-1 B託TRis a non-dimensional 

constant. Connecting the relations (vm-1) together, coefficient μ is 

estimated as 

μ,=t (A紐 R) 2 " (vm-3) 

This is nothing but a wave steepness;. 

By the similar manner, the c;lassical solution (2 -3) is 
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written to the non-dimensional form 

A3k3＝-t (A1K1) 2_ (A2応）（w1t) F (7) (2-7) 2 

(V1Il-4) 

In case of perpendicular waves, non,-dimensional coefficient is 
cal cu lated to be・ F (1) (2 -1) 

i, ~ 

:c =0.633. 



AppendixIX Analysis of Interaction Equations 

1 Construction of Single Equation 

We wright down again the interaction equations (3 -3 - 1)...... ( 

3 -3 -3) such that 

. d B t i △ t 
i :~ = [ T t 1 b t 2 + T 1 2 b 2豆 T13b32] B1+T1B1*B2B3ei ~ 

d t 

(IX-1 - 1) 

. dB  2 
= [T21b12+T22b2豆 T23b32] B2+T283町31 B 1 e 

-i△ t 
1 

d t 

(IX-1-2) 

and 

. dB  3 
[T31b12+T32b2豆 T33b□B3+T3B2町31 B 1 e 

-i△ t 
1 -=  

d t 

(IX-1-3) 

in which b n 2 = B n B n※ and △=W  1 + W 1―W2―w 3. Interaction 

coefficients Tn and symmetric matrix elements [Tk1J = [Tlk] are real 

constants to be calculated from wave-numbers. The method of solution 

adopted here is that used by McGold:rick(1972) for second order non-

linear equations in the context of capirally-gravity waves. 

Multi plying B 1※ to (IX-1 -1) we obtain 

d B i △ t ＊ 1 
[T11b12+T12b2豆 T13b3打 b12+T1B1町31町32 B 3 e. i B 1 ＝ 

d t 

Taking the complex conjugate of this equation such as 

dB ※ ー 1△ t 
-i B 1―=［ T t 1 b t 2 + T 12b22 + T t 3 b 3 2] b 1 2 + T t B t B 1 B 2町33※ e,

d t 

and subtracting this froni the former equation, it reduces to 

. d b 12 
i~ =T1(R-R※)． 

d t 
(IX-2 -1) 

In this expression, a complex quantity R is introduced such as 
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R = B 1町31町32 B s exp (i△ t). 

Similar relations are obtained by using (IX-1 -2), (IX-1 - 3) that 

. d b 22 
1 

d t 
-T2 (R-R芍

. d b 32 
l ―=  -Ts (R-R吟

d t 

(IX-2-2) 

(IX-2 - 3) 

From the relations (IX-2 - 1)....., (IX-2 - 3) we have three integrals 

b 1 2 / T 1 + b 2 2 / T 2 = cons t 1 =もげ／ T1十もげ／T2

b 1 2 / T 1 + b 3 2 / T 3 = cons屁＝もげ／ Tげも 32/T3 

b 22/T2-b 32/Ts=consts=も22/T2ーもs2/T3

(IX-3-1) 

(IX-3-2) 

(IX-3-3) 

whereもn=b n (0), (n=l. 2, 3), the initial value of b n (t). 

By use of these integral properties, a complex function Z (t) is 

introduced such as 

z (t) =（も 12 -b 1 2) / T 1 = (b 2:2ーも22)/T2= (b32ーも診）／ T3•

(IX -4) 

We can easily calculate that 

d Z/  d t = i (R -R※) ＝ -2 I m (R) (IX -5) 

In order to calculate the real part of R, we differentiate R with 

respect to t, that is, 

d R/  d t = 2 B 1※t B 1町32Bsexp (i△ t) + B 1 *2 B 2 t B 3 ex P (i△ t) 

+ B 1※2 B 2 B 3 t exp (i△ t) + i△ B1※2 B 2. B 3exp (i△ t). 

Substituting (JX-1-1),.._, (lX-1-3) to this expression, it is 

yielded that 



dR/d t =i△R+Zi [T11 b12+T12b22+T13b32] R+ZiT1 b12b22bs2 

-i [T21b12+T22b22+T23b32] R-iT2bげb診

-i [ T 31 b 1 2 + T 32 b託十 T33b32] R-iT3b14b22 

Taking the complex conjugate of this equation and adding them together, 

the result is expressed by 

d (R + R吟／dt = i△ (R-R翠）

+2i [T11b12+T12b22+T13b32] (R-R芍

-i [T21b12+T22b衣十 T23b32] (R-R吟

-i [T31b12+Ts2b託十 T33b32] (R-R芍

Considering the relation (IX-5), it is transformed to 

d(R+R芍／dt =｛△十↑1b 1 2:＋↑2 b 22十↑sb 32} d Z /d t 

where↑n= 2 T1n-T2n-T3n. Next, bn2 (n=l,2,3)is eliminated by use 

of (lX-4), and we have 

d(R+R吟／dt =｛△十↑1（も： 12-T,Z) ＋↑2（も 22+T2Z)

十↑3（も 32+1心 Z)}dZ/dt. 

In this formula, direct integration is possible such that 

2Re (R) =R+R※=H+ ｛△十↑1も12十↑占 22十↑3も32} z 

—+ ｛↑1 T 1―↑2T2-↑s T 3} Z 2 (IX-7) 

where H is a real constant determined by initial conditions. 

In order to fulfil the apparent equality that 

IR 12= {Re (R)} 2+ {Im (R)} 2, 
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The relations (IX-5) and (IX-7) are connected to 

4 （も 12-T1Z)2（も 22+T2Z) (;O衣十 T3Z)

= (H十ど Z+TJZ2) 2+ (d Z/d t) 2 

where どand7J are the coefficients determined in (lX-7) 

2 Analysis of Resonant Grow th 

(IX-8) 

In the case that tertiary wave component does not exist 
initially, we can set the constant H=O andも32=0in (IX-8) so that 
we investigate the equation of the form 

(d Z/d t) 2= f (Z) (]X-9) 

where f is a quaritic function of Z such as 

f (Z) =4（も 12-T1Z)2（も 22+T2Z) T3Z 

- ［ ｛△十↑1も12十↑2も2勺一す｛↑1T 1―↑2T2―↑3T3} Z] 2Z2. 

(lX - 1 0) 

In general, real solution Z exists and can be solved by means of a 
integration 

作t=zdx 
。 f。汀戸 (IX-11) 

if f (x) is positive at O<x~Z. 
In order to obtain a formal solution, we must rearrange the 

polynomial f (x) in its standard form such as (see Jeffreys & Jeffreys 
(1972)), 

f (x) =a0x4+a1x3+a2x2+a3x=¢ (x) 

and it is resolved to the factors such that 

¢ (x) =¢1 (x) ¢2 (x) 

where 



c/J 1 (X) = a X 2 + b X + C and c/J 2 (X) = X 2 +/3 x 

A bilinear transformation of the variable is performed by 

x=  (Ay+B) /y+l, 

in which A and B are real roots of the following equation, 

(b - a'/3) t 2 + 2 C (+ C /3 = 0. 

In this procedure, integrant of (IX--:-1 1) is transformed as 

d X 

v¢ (x) 

(A-B) dy 

VP  {y2+M}―｛い＋ N}

(IX-1 2) 

(IX-1 3) 

(IX-:-1 4) 

There are several cases according to the signs of P = ¢ (A), M = 

¢ 1 (B) / ¢ 1 (A) and N = ¢ 2 (B) / ¢ 2 (A) 

Case I ; P > 0, M = μ. 2 > 0, N =一、リ 2<0 

In this case, (IX-1 4) is rewritten by 

F (y) dy= 
(A-B) dy 

VP  {y2―干¢勺 {y2_'J) 2}. 
(IX-1 5) 

Transformation y 2 ='J)2/ (1 -u吟 isadopted and 

(A...:..B) du 
F (y) dy= 

VP  { μ 2十レ門 (1 -uり (1 -K 2 uり

(lX-1 6) 

results in the form of elliptic integral of first kind after some 

manipulation. In this formula, k 2= μ 2 / { μ丘ッ 2} is called the 

generatrix of the integral. 

Defining Q=vP {μ2+v勺／ （A・-B), integral (IX-1 1) reduces to 

and 

Q t=|u d Y 
u。V (1 -Vり (1-K 2 vり

(1X-1 7) 

u2= 1-v2 (A-Z) 2/ (B-Z) 2. (IX-18) 
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From (IX-1 7), we obtain 

u = s n (Q t + e ; k 2) 

and f rorn (IX - 1 8), 

(A -Z) / (8 -Z) = ll -l C Il (Q t + 0 ; k 2) 

in which s n and c n are the Jacobi's elliptic functions. 
Thus, the formal solution of (IX-9) is expressed by 

Z=  
A -s i g (B) B v -1 c n (Q t + 0 ; k 2) 

1 -s i g (B) lJ -t c n (Q t + 0 ; k 2) 

where s ig (B) means the si gnum of B. 

(IX-1 9) 

, (IX-2 0) 

To satisfy the initial condition that Z =O at t =O, constant 0 is 

determined by 

A -s ig (B) B vー1c n (0 ; k 2) = 0. (lX-21) 

An example of this solution is shown in Fig-A - 1. In this Figure, the 

variation of resonant wave amplitude A3 is described under the 
conditions that A1=4cm and A2=5cm initially with r =1.80. The solid 

line is the solution obtained by the method discussed here. The symbol 
0 is the numerical solution obtained in Chapter3 (Fig-3 -3 (c)). 

Both results which are obtained independently, coincide appreciably. 
Precision of the nu mer i ca 1 proc ed ur e adopted in Cha pt er 3 is confirmed 

to be suff i ci en t. 

CaseII; P>O, M=-μ 反 0, N=-1-,2<0 

In this case, (JX-1 4) is rewritten by 

G (y) dy=  
(A-B) dy  

VP  {y2 _ μ引 { y2 ＿レ勺

Transformation y2= v 2/u2 is adopted this time and 

(B-A) du  
G (y) dy=  

V P J,Jビ (1-u‘(l  -K可

(lX-2 2) 

(IX -2 3) 



results also in the form of elliptic integral and k2=μ2/}.i2. 

By the same procedure as in Case I, with Q = ✓戸／ （B -A) we have 

Z=  
A+Bv―1 s n (Q t + 0 ; k 2) 

1 + J) ―1 s n (Q t + 0 ; k 2) 
(IX-24) 

To satisfy the initial condition that Z =O at t =O, constant 0 is 

determined by 

A+Bv―1 s n (8 ; k 2) = 0. (IX -2 5) 

The transition from Caselto Casell occures under the condition of 

maximum growth of tertiary resonant wave which is clearly shown also by 

the numerical solution discussed in Ch3 of this paper. 

3 Non-Periodic Solution 

If we change the initial conditionも12。rも2氏 twotypes of 

solution appear as interpreted in the previous section. Although both 

types of solution are periodic, there exist an aperiodic solution just 

at the critical region between Case I and Case II. 

Returning to (IX-1 0), if the relation 

｛△十↑ 1 も 12 十↑ 2 も 2勺— t ｛↑1 T 1―↑2T2―↑3T3} も12/T1=0

(lX-2 6) 

is assumed to be realized, that is, the parameterも12, say, is sought 

so as to satisfy the following equation to the fixedも召． Tn, ↑冒n

(n=l, 2, 3) and△ 

△ =—↑ 2 も 22 -古｛↑1T 1•十↑汀 2 十↑ 3 い｝も 12/T1,

(JX-2 7) 

the equation f (Z) = 0 has a double root at Z =も 12 / T 1 = /3 and 

f (Z) is represented by 

f (Z) =-a Z (Z-/3) 2 (Z-r) (IX -2 8) 

where 
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and 

a=-4T12T2T3十ナ｛↑1T 1十↑2T2十↑3T3} 2>0, 

/3 ＝も 12/T1>0

r =4T12T3もげ／ a>O 

are the positive constants in this situation with/3 ＜ r. 
In this special case, (1X-9) is easily solved and the non-

periodic solution is obtained as follows, 

/3rtanh2入 t
Z = -

(r -/3） ＋ /3t an h 2入 t
(1X-2 9) 

where 入＝ ｛ a /3 ( 7 —/3 ) ｝1 /2/ 2. 

It is remarkable that Z approaches a constant/3when t goes 
to infinity and all・ the energy initially contained in the first primary 
wave is transferred monotonically to the other components. Note that 
maximum amplitude realized by tertiary resonant wave a 3 is determined 
only by the initial value of the first primary wave amplitude a 1 and is 
independent of a2 as discussed in Ch3. The condition (]X -2  7) is 
fulfiled even△ =0 (exact resonance r = 1. 736). In this condition, the 
ratio of amplitudes of two primary waves is determined a2/a 1=3.16 
55・・・・・． To the values computed nurner ical ly in Ch 3, it corresponds that 
a 1 = 1. 5795 ・・・・・cm and the asymptotic growth of tertiary wave would be 
a3=1.332・・・・・ cmwhich are consistent with the numerical results. 

For the case of wave instability problem, we can apply this 
theory by the following manner. This time b 2.  1.:: is a primary wave and 
b 22= b 32= b 52 are two side band components recognized as small 
perturbations. To the leading order,T1=T2=T3=T=k13/4冗 2'↑1=
↑2=↑3 = 0 and △=0 so that (]X -9) and (]X-1 0) are reduced to 

(d Z/d t) 2=4T4 (Z-/3) 2 (Z+r) 2. (IX-3 0) 

where /3 =も t2/ T, r =も註／ T and /3 ~r. This equation is easily 
solved as 

Z=r {exp(2/3T2t) -1} 



and evolution of the amplitude of side band compone,nts is expressed in 

terms of the steepness of primary wave such that 

a. s (t) = a. s 0 exp. { t. (:a 1 k. 1) 2 w 1 t } (IX-31) 

The growth rate of side band components t (a 1 k 1) 2w  1 obtained in 

this theory is. in accordance with t_he Benjamin-Feir (1967) th_eory. 
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2k1 -k2=k3 
2W1-W2=W3 
wf=glkil 

ー及k1 ¾k1 

For go• intersection, 
k,/k2= 3.0133 
叫／Wz=1.7356 From McGoldrick et.at.(1966) 

Fig. -1-1 
Resonance curve; 
Solutions to the resonance conditions. 
K1 : first-primary wave 
K2 : second-primary wave 
K3 : tertiary resonant wave 
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Fig. -2-1 
Plan of the basin. 
80m (length) X 80m (width) X 4.5m (depth) 
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Fig. -2-3 
Data collection system. 

WG (wave gauge), AMP (amplifier), AD. C (AD 

converter) 

D. R. (data recorder), P.R. (printer), PLOT(plotter) 

FDK (disquet) 
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Arrangement of the wave gauges (Case I) 

For analysing the short term growth and 

the direction of the resonant waves. 
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Arrangement of the wave gauges (Case II). 

For analysing the long term growth of 

the resonant waves. 
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Table-2-1 Elements of Mechanically 

Generated Waves 

I-ST PRIMARY胃AVE 2-ND PRIMARY胃AVE

PERIOD IAVB HEIGHT PERIOD WAVE HEIGHT 

0. 9 3 I. 897 

0. 9 6 3 ~ 1 3 1. 7 7 2 5 ~ 1 0 1 845 

0. 9 9 I. 793 

1. 0 2 1. 724 

I. 1 0 1. 898 

1. 1 5 3 ~ 1 3 2. 0 9 ~6 

1. 1 9 

PBRIOD(sec)．冑AVEHBIGHT(c●)． r=w1/w2 

E 

(crn2 x sec) 

1000 

100 

10 
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f2 ↑ 2f1-f2 ↑ 

f1 
212 2f1 
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f(Hzl 

Fig.-2-6 

An example of power spectrum. y = l. 793, d = 45m 
f1 : 1-st primary wave,, 2f1 : 2-nd harmonics 

も： 2-ndprimary wave, 2f2 : 2-nd harmonics 

2f1 -f2 : tertiary resonant wave 
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1.0 1.5 Yo 

2.0 2.5 Y
 

Fig. -・2-7 
Growth rate of the tertiary resonant waves. 
G : the growth rate 
y8 : y of the most strong resonance 
The solid curves are due to detuning effect. 

Table-2-2 Observations of Initial Growth Rate 

G 7 d 

Lon guet-H i gg! ns (196 2) 0. uz I. 736 

theoretical value 

MacGoldrick et. al. 0. 57 1. 78 I 5 ■ 1 

experi■ent(1966) 

Tomita et. al. 0. 50 I. 79 20. 25 ■ 

experiaent(!986) 

#The distance is converted to the size or 

our exper !■en t. 
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Fig. -2-8 
The principle of wave direction 
measurement. 
Ch 1 ~ Ch 3 on the array in a 
obliquely incident wave 
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Coherence between wave data at the locations 1 and 3. 
f1 : 1-st primary wave 
f2 : 2-nd primary wave 
f 3 : tertiary resonant wave 
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Fig. -2-10 
Phase spectrum between wave data at the locations 1 and 3. 
fi : 1-st primary wave 
f2 : 2-nd primary wave 

f 3 : tertiary resonant wave 
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Phase differences along the linear array 
(a) 1-st primary wave 
(b) 2-nd prim虹ywave 
(c) tertiary resonant wave 
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Fig. -2-12 
Long term variation of A3 (y=l.72) 
----~ -~ : Theory (Longuet-Higgins) 

□ :Experiment (cm) A1 =2.29, A2=2.51 
◇ :Experiment (cm) A1 = 2.84, A2 = 2.50 

Examples of linear growth of resonant waves 

Fig. -2-13 
Long term variation of A3 (y= 1.72) 
-------: Theory (Zakharov) 

□ :Experiment (cm) A1 = 4.06, A2 = 2.51 _______ 0------すーーロー石―---0---＿ 口
---=1. Example of weak resonance at the exact (linear) 一，6~ resonance condition 
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20 

Fig. -2-14 
Long term variation of A3 (y=l.79) 
□ :Experiment (cm) A1 = 1.80, A戸 5.29
◇ :Experiment (cm) A1 =2.49, A戸 5.03
△ :Experiment (cm) A1 =2.84, A戸 5.12←ー今‘--←一 Large resona;t wave appears at the off 

l l 
60 d(iml 

resonance'condition. 
40 
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Fig.-2-15 
Long term variation of A3(y= 1.79) 
-------: Theory (Longuet-Higgins) 

---------: Least square fitting 

□ :Experiment (cm) A1 = 3.36, A2 = 2.61 

An example of non-linear resonance 
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Fig.-2-16 
Long term variation of A3 (y=l.79) 

□ :Experiment (cm) A1 = 2.91, A戸 5.07

◇ :Experiment (cm) A1 =3.24, A戸 5.28

△ :Experiment (cm) A1 = 3.44, A戸 5.14
I 

60 dim) 
Decreasing of resonant wave amplitudes with fetch 
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Fig. -2-17 
Long term variation of A3 (y = 1.82) 

□ :Experiment (cm) A1 = 3.63, A戸 5.38

◇ :Experiment (cm) A1 = 3.78, A戸 5.40

△ :Experiment (cm) A1 =4.15, A戸 5.41

Evidences of recurrence phenomena 
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Fig. -2-18 
Long term variation of A3 ('.Y=l.82) 
□ :Experiment (cm) A1 =4.76, A戸 5.29
◇ :Experiment (cm) A1 =5.47, A戸 5.35

The largest amplitudes of resonant waves observed in the 
experiment. 
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Intersecting primary waves 

Wave gauges are seen the left side of 

the Figure. 
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Fig. -3-1 

Comparison of the Zakharov theory with the 
experiments by McGoldrick et. al. (1966) at the 
short fetch. 
0,△ ：Experiments (a, is one half in the latter) 
- : Theory 
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Fig. -3-2 (a) 
Solution of the Zakharov equation、{y=l.735)
Initial values : A戸 1.0cm

ふ＝5.0cm
ふ＝0.0cm

Growth of resonant wave is nearly straight. 
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Fig. -3-2 (b) 
Solution of the Zakharov equation (y=l.735) 
Initial values : A1 = 2.0cm 

ふ＝5.0cm
ふ＝0.0cm

Growth of resonant wave ceases at around 100 
sec. 
Initial growth rate coinsides with classical one. 

(340) 

Fig. -3-2 (c) 
Solution of the Zakharov equation (y= 1.735) 
Initial values : A1 =3.0cm 

ふ＝5.0cm
ふ＝0.0cm

Recurrence phenomena appear. 
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Fig. -3-2 (d) 
Solution of the Zakharov equation (y=l.735) 
Initial values : A1 = 4.0cm 

A戸 5.0cm
ふ＝0.0cm

Resonant wave amplitude does not increase 
proportional to the primary waves. 
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Fig. -3-3 (a) 
Solution of the Zakharov equation (y = 1.800) 
Initial values : A1 = 2.0cm 

A戸 5.0cm
ふ＝0.0cm
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Fig. -3-3 (b) 
Solution of the Zakharov equation (y = 1.800) 
Initial values : A1 = 3.0cm 

ふ＝5.0cm
A3=0.0cm 
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゜ 40 80 120 160 sec 

Fig. -3-3 (c) 
Solution of the Zakharov equation (y= 1.800) 
Initial values.: A1 =4.0cm 

ふ＝5.0cm
ふ＝0.0cm

Resonant growth occurs.strongly in contrast to 
the corresponding case in Fig-3-2. 
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Fig. -3-3 (d) 
Solution of the Zakharov equation (y= 1.800) 
Initial values : A1 = 4.6cm 

ふ＝5.0cm
ふ＝0.0cm

The critical case of interaction. 
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Fig. -3-3 (e) 

Solution of the Zakharov equation (y = 1.800) 
Initial values : A戸 5.0cm

ふ＝5.0cm
A3=0.0cm 
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Fig.-3-4 

Maximum amplitude A3max v. s. A1 (A戸 5cm)
Dependence of resonant growth of tertiary 
waves on the primary wave ampritude is 
shown taking y as a parameter. There are 
sharp peaks at off-resonance cases. 

Fig. -3-5 

Maximum amplitude A3max v. s. A1 (A戸 10cm)
-------: Limiting line A M3max (3-10) 

Upper bounds of resonant wave growth is 

ID Al(cm) 
verified by the numerical experiment. 
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Fig...:.3-6 (a) 

Evolution of tertiary wave A3 
: Theory {Zakharov) 

0 : Experiment (cm) 
y = 1. 72 (near resonant case) 

Fig. -3-6 (b) 
Evolution of tertiary wave A3 

: Theory (Zakharov) 
0 : Experiment (cm) 

y = 1. 72 (near resonant case) 
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Fig. -3-6 (c) 
Evolution of tertiary wave A3 

: Theory (Zakharov) 
0 : Experiment (cm) 

y=l.72 (near resonant case) 
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Evolution of tertiary wave A3 
: Theory (Zakharov) 

0 : Experiment (cm) 
y= 1.79 (off resonant case) 

Fig. -3-7 (b) 
Evolution of tertiary wave A3 

: Theory (Zakharov) 
0 : Experiment (cm) 

y= 1.79 (off resonant case) 
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Fig. -3-7 (c) 
Evolution of tertiary wave A3 

: Theory (Zakharov) 
0 : Experiment (cm) 

y= 1.79 (off resonant case) 
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Fig.-3-8 
Long-time evolution of a wave train A1 with its 
side bandsふ andA3 
Side band components rise up intermittently. 
The. recurrence takes place in a very long time 
instead of disintegration of wave train. 
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Fig. -3-9 (a) 
Domains of instability (wave-number space) 
Wave steepness ak = 0. 2 
The solid curve is the instability boundary calculated by McLean (1892). 
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Fig. -3-9 (b) 
Domains of instability (wave-number space) 
Wave steepness ak=O. 3 
The solid curve is the instability boundary calculated by McLean (1892). 
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Plot of the observed maximum amplitude of tertiary waves with respect to the 
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A3max (th) : Theory (Longuet-Higgins) 
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Plot of the observed maximum amplitude Aamax with respect to 
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Comparison of observed A3max with Zakharov theory 
-------: Theory (Zakharov y = l. 72) 
□ :Experiment (cm), A戸 5cm
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Comparison of observed Asmax with Zakharov theory 
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Comparison of observed Aamax with Zakharov theory 
-------: Theory (Zakharov y == 1.82) 
□ :Experiment (cm), A戸 5cm
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Comparison of analytical solution with the numerical• results 
obtained in Ch3 -an example-

: Solution in Appendix IX 
0 : Solution in Chapter 3 

Initial condition : A1 = 4cm, A戸 5cm,A3=0cm 
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