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summary 

It is well known that most of the energy of sea waves.which 

causes a lot of damage to ships, off-shore structures and facilities on 

coasts, is supplied by winds blowing over the oce~n. 
However, if a wind strong enough to generate gravllty waves stops, the 

gravity waves, far from dying out rapidly, will continue to run straight 

on until they fetch up against something.・ Once waves have escaped from 

the wind that made them, they can run for days with very little loss of 

energy. Therefore, they travel long distance without the influence of 

winds. Moreover, these wave elements change their properties owing to 

the mutual interaction during this stage. Accordingly; to understand the 

nature of sea waves, besides studying the mechanism of wind-wave inter-

action, it is also imperative to clarify the characteristics of propa-

gation of an individual wave train. In this paper, we deal with the non-

linear dynamics of the deep-water gravity waves and apply it to the 

experiment to interpret the results concerning the mutual interaction 

among waves. 

The contents of each Chapter are as follows. In Chapter 1, we 

review the basic theory of water waves and formulate the problems from 

※ Received on May 8, 1989 

米* Ship Dynamics Division 



2
 

the point of view of a singular perturbation method. In the following 
two Chapters, experimental and numerical..studies concerning the. particu-
I ar condition of the resonant wave interact ions are des er i bed. In 
Chapter2, long term evolution of tertiary resonant waves are detected 
experimentally and the direction of propagation of the resonant wave is 
also obtained for the first time by aid of the cross-spectral analysis. 
The purpose of the observations is twofold:to examine quantitatively the 
evolution of the amplitude modulation and to test the validity of weakly 
non-linear wave theory (Zakharov equation) for the asymptotic behavior 
of resonant waves by comparing the predicted and the observed properties 
of the waves. 

In Chapter3, the Zakharov・ s integro-differential equation is 
solved numerically and it is shown that the experimental data agree with 
the solutions in the case of comparatively small wave steepness. Calcu-
lations are also performed to determilne the dependence of the maximum 
amplitude of the resonant wave upon the amplitude of primary waves. In 
Chapter4, comparisons of the experimental results with theories are 
made both for classica]l and that by Zakharov. It is concluded that the 
former is insufficient to explain quantitatively the long term evolution 
of the tertiary resonant wave and that the latter model of non-linear 
water waves is applicable for describing the propagation of sea waves 
because of fairly good agreement of the theory with data. 

Several theoretical remarks, including the analytical investi-
gation into a particular solution of the discretized Zakharov equation, 
are offered in Appendices. 
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CHAPTER 1 NON-LINEAR DYNAMllCS OF WATER WAVES 

1. 1 Foreword 

It is well known that the work of Stokes titled "On the theory 
of oscillatory waves" in 1847 is substantially the first study of the 

non-linear property o:f water waves. In this pioneering paper, he gave a 

stationary solution o:f a train of deep-water gravity waves by aid of the 

power series expansion with respect to wave steepness. Many important 

properties of non-1 in ear waves, such as the dispersion relation depend-

ent on amplitude, the existence of highest limit of wave and the drift 

motion of particles ill a wave were shown in his work. Besides the above 

mentioned theory, the Trochoidal wave, an exact particular solution of 
water wave, found by Gerstner(1809), had been applied in the field of 

naval architecture for a long time. These basic solutions are the most 
important ones in the non-linear wa1ter wave theory. 

On the other hand, the researches concerning the description of 
ocean waves have been developed in a sornewha t different manner. In this 

field, the subject is divided into two main parts. One is to investigate 
the mechanisms of wave generation by wind. The other is to describe the 

actual configuration of ocean surfac:e properly. 

In this paper, we deal mainly with the latter problem. The study 

of the scientific desc!ription of sea waves was started at the beginning 

of 1950s with the work of Pierson(Ul52) who introduced the concepts of 

stochastic processes and of spectrum to oceanography. His investigation 
for wave forecasting has been developed considerably by aid of 

electronic computers. However, from the theoretical point of view, there 

is enough ground for controversy in his method. Pierson, Neumann & James 

(1955) ・・ assumed that the fluctuation of the ocean surface is composed of 
many infinitesimal wave trains which travel independently to each other 

in their own directions. According to this assumption, the spectrum of 

sea wave is recognized as a distrilbuttion function of the energy of 

component waves. On the contrary, the stochastic variation of surface 

displacement, its velocity or acceleration satisfies the Gaussian 

distribution and the moments can be determined by the spectrum. So far 
as we admit the 1 inea1; wave theory,,・ there would・ be no pro bl em 

conceptually. 

Once we draw attention to the non-linear properties of water 

waves and consider them in the framework of the PNJ method, most of the 
concepts would become ambiguous. However, no one could have extended the 

theory to contain the non-linear characteristics of waves in the ages of 
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1950s, because the theory of non-linear waves had been no more improved 

than that established in 19th century. To overcome this difficulty, 

there appeared many papers concerning the non-1 inea.r theory with regard 

to multiple component wave system since 1960s. We mention some of them, 

in relation to this paper such as Tick(l959) and Hamada(l966), which are 

the second order theory for random. wave field. Huang & Tung(l976), Weber 

& Barrick(l977). Barrick & Weber(l!377). Masuda, Mitsuyasu & Kuo(1979) 

and Mitsuyasu. Kuo & Masuda(1979) dealt with the third order random wave 

field although they did not take the energy transfer among component 

waves into account except for the.change of wave velocity. The last one 

involves the experimental verification in a wind-wave flume. In earlier, 

Phi llips(1960) proposed the theory for accounting the energy transfer 

between wave components however his mathematical formulation contained a 

singular property and did not offer the solution describing the long-

time evolution of resonant waves. Benney{1962) gave the equations which 

describe the.long-time behavior of four waves for the first time. 

Zakharov(l968) derived the equation governing the mutual inter-

action among deep-water gravity waves of arbitrary number of components 

in the most purely theoretical point of view. Stiassnie & Shemer(1984) 

rederived it by somewhat elementary method with using Fourier transform 

technique. They are most closely related ones to the present paper. In 

this Chapter, we reexamine those works and discus:s the non-linear 

dynamics of water waves in the unified point of view. Some precise study 

concerning the characteristics of Zakharov equation containing the 

numerical and analytical solution wiq be discussed in Chapter3 and in 

Appendices. 

In addition,. we ~lso mention the book "The Dynamics of the Upper 

Ocean" written by Phillips(l977) as 1the most excellent description and 

the basic results of sea waves. The simple and fine explanations are 

referred in the articles written by Nagata(1970) and Taira(l975). 

1. 2 Basic Equations 

In this Chapter, we assume in regard to hydrodynamic natures of 

water waves that the viscosity is neglected.(perfect fluid),.and that 

the motion is irrotational and the compressibility of the fluid is 

neglected. Capillarity and air motion above the surface of fluid are not 

taken into account. The density of water is assumed not to change 

temporally and spatially. 

We deal the present problem as, in three. dimensional space, that 

is, two dimensional sufficiently large horizontal surface which is uni-
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form and isotropic. The depth of seat is infinlte. We also assume that 

the arnpl i tude of the wave is srnal 1 but finite. 

From the assumption of irrotational motion, there exists the 

velocity potential¢ irt the fluid. By the assumption of incom-

pressibility, the equation of continuity is satisfied 

▽2 ¢ = 0 (1 - 1) 

in the interior of the fluid. Here, we take the coordinate system as x -
and y-axes in horizontal and z -axis in the vertical upwards direction 
respectively. At the fluid surf ace (z = 77) the kinernat ic boundary 

condition 

ド＋▽心▽ h7)＝ド

and the dynamic boundary condition 

a¢ 

a t 
ー＋す▽¢▽¢ =-g n 

(1 - 2) 

(1 -3) 

are satisfied. Where, TJ denotes the displacement of the surface and g 

represents the acceleration due to the gravity. The operator▽h means 

the horizontal components of gradient operator▽.From the assurnpt ion, 

the density of water is constant so that it does not appear in these 

equations. The di ff i cul ty of the prob 1 ems on water waves 1 i es on the 

fact that the above equations (1 -.2) and (1 - 3) are both non-linear 

and the form of the boundar・y TJ is not determined ab initio but is an 

unknown variable. Finally, from the assumption in the limit z→-(X). 

▽¢→ O (1 -4) 

is required. 

1. 3 Some Aspects on Classical Theory 

On the basis of the general theory in hydrodynamics, we restrict 

ourselves to the problem of non-linear resonant wave interaction. 

Phillips(l960) discovered that in the third-approximation, it is 

possible for a transfer of energy to take place from three primary waves 

(of wave-numbers k 1. ・ k 2 and k 4) to a fourth wave(of wave-number k 3) in 

such a way that the amp 1 i tude of the four th wave increases. linearly with 
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time. Thus, although the fourth wave amplitude at first is very small( 

being of.the third order)it may.grow in time s,o.as to be comparable 

with the three primary waves. The condition for this is that the wave-

numbers kt, k2, k3, k4 and freqlllencies Wt, W!2, w3, w4 each 

satisfy the dispersion relation: 

Wj2=glki (i=l,2,3,4), 

and that 

k1士k2士k3士k4=0, (d1士W2士W3士1W4= 0, 

(1 -5) 

(1 -6) 

with the same combination of signs in each case. 

At first, we explain briefly the theoretical results obtained by 

the direct use of a perturbation technique (REGULAR PERTURBATION) to 

the basic equations. Longuet-Higgins(l962) has analysed this problem in 

the case that k 1 = k 4, w 1 = w 4, the c ond i t i on (1 -6) turns out to be 

2k1-k2=k釦 2 0 1 - 0 2 = 0 3.  (1 -7) 

Phillips(l960) showed that in the case that resonance condition (1 -7) 

is satisfied, wave-number k1, k2 and k3 should be correlated each 

other as shown in Fig-1 -1. In the special condition that k 11. k乞

r=w1/w2 would be r=r0=1.736,》・・・．

The velocity potential ¢ and surface displacement 7J are 

assumed to be expressed in expanded series such that 

¢ = (a </J 10 + /3 ¢ 1211) + (a 2 ¢ 2121+ a /3 ¢ 11 + /3 2 ¢ 02) + 

+(a3¢30+a2/3 ¢21+a/32 </J 12+ f3 3 </J 03)＋・・・・・ (1 -8-1) 

and 

TJ = (a TJ 10+/3 7J 0d+(a 2 7J 20+a /3 7J 11+/3 2 7J 02)＋・・・・・

+(a3TJ30+a2/3 TJ 21+a t3 :2 TJ 12+/3 3 7J 03)＋・・・・・ (1 -8-2) 

with a and /3 being independent small quantities representing the wave 

steepness of each wave. Substituting (1 -8 -1) and (1 - 8 -2) to 

the bas i c e qua t ions (1 -2) and (JL -3), the ca 1 cu 1 a t i on s were 

carried out up to the third order terms. We only pay attention to the 

term ¢21, because it represents th:e tertiary resonant wave to be 

considered here. Longuet-Higgins & Smith(l966) gave solution ¢ 21 at 

z = 0 as 
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¢ 21 =-上-si n (0 k X) s i n { (k 0+ 0 k) X -w 3 t gok 
) sin { (k0+ok) x-w3t}, 

(1 -9) 

under a slightly extended conditions that 

2k1-k2=k釦 2 (J) 1―(J) 2~0  3.  (1 -1 0) 

In (1 - 1 0), equality might not be satisfied strictly for frequencies. 
In the equation (1 -91), K is the growth rate and expressed as 

K=  (a1k1) 2a2k2g2w3-1G, 

with non-dimensional coefficient G. k。equalsto(J)。2/ g where(J)0 is 
defined as(J)。＝ 2 U) 1 - a) 2 and 2 8 k = K 3-K o. 8 k and 8 7 = 7 - 7 8 

are correlated as 

2 o k 

k3 
- ( 

4 

2 7 o -1 

8 r 03 
4 r 04 + 1 

) 8 7 (1 - 1 1) 

From the form of (1 -9), we can recognize that amplitude of tertiary 
wave varies slowly with x when or :c/:-Q~ If or =O, the solution </> 21 
in (1 -9) appears to be infinite, however in such a limiting case, it 
reduces to 

<p 21→一
Kx  

g 

s i n o k X 

okx 

Kx  

g 
(1 - 1 2) 

Thus, tertiary wave grows 1 inearly with x. Transforming it to the wave 
amplitude a, the maximum amplitude :a 3M to be realized by tertiary wave 
is obtained as 

a 3M= 
(a 1 k 1) 2 a 2 k 2 

l o k I 
G.  (1 -1 3) 

The constant G is given by Longuet-Higgins(l962) as 0. 442. In order to 
express a 3M by the explicit function of o r, we eliminate o k in (1 -
9) by using (1 - 1 1), we have a classical appro.xirnation 
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 a 3M - = 0.4 9 1 

(a1k1) 2 

a 2 | 8 7 | 
(1-14) 

1. 4 Expansion Procedure of the So 1 u ti on 

In this section, we derive the equation which governs the inter-

action among components of gravity wave system. The method of derivation 

is essentially different from the classical one as explained in § 1. 3 

and is applicable to developing stage of non-linear interactions. In 

order to consider generally the two・-dimensional multiple component wave 

system, the velocity potential ¢ and sea surface displacement TJ in the 

basic equations (1 -1)...._, (1 -4) are expressed as spatial Fourier 

serieses of the forms, 

and 

¢ (r, z, t) = I: k A (k, z, t) exp (i k r) 

TJ (r, ・ t) = I: k B (k, t) exp (i k r). 

(1-15) 

(1-16) 

From the pure mathematical point of view, Fourier integral or Fourier-

Stiel tjes integral representation must be used, blllt according to Weber & 

Barrick(l977), in the case of the assumption that the horizontal area 

considered here is finite though sufficiently larger than typical wave-

length, equations (1 - 1 5), (1 --1 6) are hold good. As ¢ satisfies 

the conditions (1 - 1) and (1 -4). velocity potential ¢ has the 

form 

¢ (r, z, t) = r:: k A (k, t) exp (k z + i k r). (1 -1 7) 

In the process from now on, 1the several points explained in 

the following subsections should be considered carefully; 

1.. 4. 1 ・ Treatment of the boundary conditions on unfixed surf ace z = 77 

When we treat the basic equations (1 -2) and (1 -3) on the 

surface z = 77, all the terms containing derivatives of ¢ are pro-

portional to exp(k刀）． Weassume the wave steepness k77 ~1 and use the 

Taylor expansion 
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exp(k7J)==l+k7J +(1/2)k2 irJ 2+(1/6)k37J 3十・・・・・．

For example, ¢ t is calculated in the following way. 
First, we differentiate (1、-17) with respect to t and insert 

刀 inplace of z. Next, we use the Taylor. expansion of the exponential 
function above and substitute the e)(tpression (1 -1 (>) into the powers 
of TJ. We finally obtain in the form of spatial Fourier series as 

8 ¢ 
＝ a t F1+F2+Fs+ • • • • 

Where, F n (n=l, 2, 3,・・・・） represents: the n-th order quantities as 

F 1 = r:: k At (Jk) exp (i k r), 

F2=I:kexp (;i kr) 〔I:ki:k1At(k1) B (k-k1)〕

F3＝古I:kexp (i k r) 〔EぃB (K -K 1) ｛E K2k託At(k 2) 

B (k1-k2)} 〕,

and 

Calculating▽¢ in the similar manner, the results are substi-
tuted into (1 -2) and (1 -3). Utilizing the orthogonality property 
of Fourier series, we can transform the basic equations to the simul-
taneous differential equation with respect to A and B. We can finally 
obtain the results up to the third o:rder of A and B as follows 

and 

Bt (k) -kA (k) =>=:ぃ {kt・ (k -k 1) + k t 2} A (k 1) 

B (k-k1) +r:ぃB (k-k1) I:k2 {k2k2・(k1-k2) + 

すk23}A (K2) B (K1 -K?） (1 -1 8) 



At (k) + g B (k) = tI::ぃ {k1・ (k-k1) -k1 I k-k1 I} 

A (k 1) A (k -k 1) -I::ぃk1At(k1) B (k-k1) -

古EぃB (k-k1) I::k2k22At (k2) B (k1-k2) + 

Eぃ B (k・-k1) Lk2 {k2k2・ (k1-k2) -k22 I k1-k2 I} 

A (k砂 A (k1-k2). (1-19-1) 

Here, suffix t means the time derivaitives and from now on, we use the 

expression A (k) instead of A (k, t) omitting independent variable t. 

Except for Phillips{l960), Zakharov('.1968) and Stiassnie & Shemer(1984). 

theories by the other authors were restricted that A, B are periodic 

functions so that the equations were reduced merely to algebraic re-

lations (in fact, setting A, B ccexp (-i wt), we could show that 

equations (1 - 1 8) and (1 -1 9 - 1) reduce to those in Weber & 

Barrick(l977) after some simple algebraic.manipulation). 

1. 4. 2 Transforming the equations to apply the1 singular perturbation 

method 

In order to arrange the equal t ions to apply the SINGULAR 

PERTURBATION METHOD, time derivative At in the right-hand side of (1 -

1 9 -1) has to be eliminated. At first, we neglect terms higher than 

second orde・r and we have 

At (k) 与 -gB (k) 

in the first order. Substituting thils into (1 - 1 9) iteratively, we 

obtain the second order approximation as, 

At (k)=;-gB (k) ＋がEぃk1・ (k-Ik1) A (k1) 

A (k-k1) +r:ぃgk1 B (k1) B (k-k1). 

Using them in (1 -1 9) again, up to the third order it is transformed 

into 

11 
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At (k) +gB (k) =+r::ぃ {k1・ (k-k1) -k1 I k-k1 I} 

A (k1) A (k-k1) +r::ぃgk1B (k1) B (k-k1) -

EぃB (k -k 1) I: k2 g k 2 (k 1一古 k2) B (k2) B (k1-k2) 

-EぃB.(k -k 1) L k2 (す k1-k2) {k2・ (k1-k2) -

k 2 I k 1 -k 2 I } A (k 2) A (kt -k2). (1-1 9 - 2) 

The combination (1 -1 8) and (1 ~-1 9 -2) reduces to the equations 

of harmonic oscillation in the limit A, B→0. 

1. 4. 3 Technique for eliminating; the variable A or B with the con-

sideration that ¢ and・ rJ are real quantities 

A and Bare the Fourier coefficients of the velocity potential 

¢ and the・ surface displacement rJ. As・¢ and rJ are real numbers, A 

and B must be comp le}![ numbers whose: dependence on k have the anti -

symmetric nature 

and 

A (k) = A※(-k) 

B (k) = B※(-k).  

、
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Where, A※ is a complex conjugate of A. Thus, we can introduce such a 

com pl ex variable Z that 

i akA (k) = Z (k) -JZ* (-k) 

/3kB (k) =Z  (k) +JZ※(-K) 
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for the reason that the relations (1 -2 0 :_ 1) and (1 -2 0 -2) are 

satisfied automaticallly. In these relations, a k and/3k are the real 

constants dependent only upon the magnitude of the wave-number k. 

If we execute the transformation (1 -2 1). we can deal two 

unknowns A and B as in one unknown Z formally. The resultant equation 

of Zagain reduces to that of harmonic oscillation only if the constants 

a k and /3 k satisfy the relation 
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k a k -2 = g/3k -2. (1-22) 

In this paper, according to Stiassnie & Shemer(l984), 

aげ＝ 2 (k / g) 1 /2'/3k:2=2 (g/k) 1,,2 (1-23) 

is adopted. 

-The equations (1 - 1 8} and (1 -1 9 -2) are transformed by 

means of (1 -2 1). If Z※t is eliminated in these equations, the 

linear part of Z※ also vanishes owing to (1 -2 2). Thus, the 

equation with respect to Z is obtained in the following such that 

i Z t - (g k) 1 /2 Z = J (k, Z) 

where, J (k, Z) is yielded by i a -1 times of the right-hand side of 

(1 -1 8) min.us /3―1 times of the right-hand side of (1 -1 9 -2) 

Explicit form of the equation is 
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(1-2 4) 

Where, wk is angular frequency given by wk= (g k) 1-"2 which is the 

dispersion relation of deep-water gravity waves. Equa.tion (1・-2. 4) is 

the MODE COUPLING EQUATION to describe the propagation of finite ampli-

tude water waves discussed in this paper. The concrete expression of the 

coefficients H <n> (k, k1, k2) and F <n> (k, k1, k2, k3) are 

presented in Appendix I. By use of the complex amplitude Z, surface 

elevation 刀 isrepresented as 
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(264) 

刀 (r, t) ＝す Ek /3~1-1(Z (k, t) +z※ (-k, t)〕exp(i k r). 

(1 -2 5) 

1. 5 Perturbation Method and Zakh:arov Theory 

In this section we apply the singular perturbation method to 

analyse non-linear eqrnation like (1 -2 4) in contrast to the regular 

perturbation method used in § 1. 3. As discussed briefly in § 1. 3, 

the app 1 i cation of the regu 1 ar. perturbation met hod to non-1 in ear eq ua-

tion results in the solution infinitely increasing with time t. This 

fact means that the method is not suitable to express the long-time 

variation of the solutions. Therefore, to avoid such a difficulty and to 

obtain the long-time evolution of solution, we adopt here the MULTIPLE 

SCALE METHOD, a sort of the singular perturbation method. The essence 

of the method lies on the technique introducing the slowly varying in-

dependent variables. We execute this procedure somewhat more systema-

tically than Zakharov0968)or Stiassnie & Shemer(1984). This method is 

applicable only to the non-linear equations of the form discussed in § 1. 

4. 2 of the preceding section (Bogoliubov & Mitropolskii(1965) called 

them quasi-linear equattion). 

Now, we introduce a small parameter e and expand Z as 

Z = ez(1)+ e 2 z (2}+ e 3 z (3) ＋・・・・． （1 -2 6) 

Furthermore, we introduce a group of independent var i ab 1 es T n = c n t 

instead of t. Then, Z is regarded as the function not only of t but also 

of T n (n=l. 2, 3, • • • •. T 0=  t). So, the equation (1 -2 4) becomes a 

partial differential equation. Differential operator is also expanded as 

a a.  ;a.,, a 
戸＝戸。十 e 可 1+ e 2 了ら十 e3 丘＋・・・・・ (1-27)

We substitute (1 -2 6) and (1 -2 7) into (1 -2 4) and rearrange 

it with respect to the power series of e. Then, for the first order, 

i z k (1)TOI-0 K Z k (1) ＝ 0 (1 -2 8) 

is obtained. If we tak:e up to the second order of e, we have 



i z k (2) To-0 K Z k(2) = -i zk (1)m+ 

h,Kり(1) （K, K 1,K.2) Zk1(1)Z K2(1) ＋ 

五， Kり(:2) （K, Kぃい） Zk1(1)Z K2(1)※+ 

t1, kりCS) (k, k1, k2) Zk1(1)※zK2(1)※ 

(1-29) 

Assuming the periodic solution of T 0, the first order equation is im-
mediately solved as 

z k (1)＝xk (1)exp(-i0 KTo)． (1-30) 

xk<1> is an arbitrary function whieh is independent of T0. Substi-
tuting (1 -3 0) to the second order of (1 -2 9), we have 

i zkC2)T0-(J) K Z k (2) =-i xk (l)n exp(-i(J) K T o) ＋ 

rt, kり(l)(k, k1, k2) Xk1（い Xk2 < 1 > exp { -i (wぃ＋ Wk2)T0} + 

B, kり(2) （K, K 1, K2) Xk1(1 lx K2(1)※exp {-i (wkl-wk2) T0} + 

fl,KりCS) (k, k1, k2) Xk1 (l)※X k2 (1)※exp { i (wぃ＋ Wk2) T121}. 

(1-31) 

In this equation, we should notice to combinations for the first term of 
the right-hand side with another term, say the second term, in the 
right-hand side. These terms are summed up to the following way as 

- ［ i x k (1)m -t1, Kり(1) （K, K1, K2) Xk1 (1) xK2(1) 

exp{-,-i (Wk1+Wk2-wk) T0}] exp (-i WkT0). 

(1-3 2) 

If under the summation r:k, two conditions 
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k1+k2=k and wk1+wk2-wk (1-33) 

are simultaneously satisfied, then the time dependence of (1 -3 2) are 
proportional to exp (-i wkT0). llf there exists such a term in the 

(2) equation, the soultion Z kt2) of (1 -3 1) is known to diverge with 
respect to time T0. To avoid the dJlvergence of the solution, we should 

recognize the whole sum of the terms in [] of (1 -3 2) to be zero. 
In other words, under the condition (1-3 3), 

i x k (1)T1-EH(1) (K, K 1,K2)Xk1(1)X K2(1) =0  
kl, k2 

(1-3 4) 

should be satisfied. By virtue of (1-3 4),Xk'1> is determined with 

respect to T 1. The case of another combination is discussed in a 
similar manner. If the conditions (l -3 3) are not satisfied simul-
taneously at all, only the equation 

i XkCt)Tl = 0 

is required. It means that xk<t> is independent of T1. In reality, as 
for the deep-water gravity waves, the relations (1 -3 3) are not 

satisfied (see, for example Kinsman(1965)) so that xkc,t> is constant up 
to this order. By use of this result, the equation (1 -3 1) is easily 
solved for Z kc 2 >. 

As the next step, the solution Z kc2> is substituted in the third 

order equation and the caluculation is executed in the similar manner, 
then the conditions corresponding to (1 -3 3) are described as 

k 1 + k 2 = k + k 3 and wk 1 +(J) K2~(J)k+(J)k3 ・ (1-35) 

These are called the EtESONANCE CONDITION of deep-water gravity waves. 

The condition that the solution is valid for the long time is determined 
by a similar equation to (1 -3 4) and it represents the T2 dependence 

of the first order solution xk<1>. This is known as ZAKHAROV TYPE 
EQUATION and is discussed in Chapter3 of this paper. The properties of 

the equation are precisely interpreted in Appendixill-IX. 



There could be many other derivations to obtain the mutual 

interaction equation for water waves. The most formal treatment of the 

theory by use of CANONICAL THEORY is briefly interpreted in Appendixll. 

These treatment was applied to the stochastic problems in wind wave 

field by West(l981) slightly different manner from that discussed in 

this paper. 
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CHAPTER 2 EXPERIMENT IN A WAVE BASIN 

2. 1 Foreword 

In this Chapter, the experiment of non-linear resonant wave 
interactions perfor_med in the SHIP EXPERIMENT BASIN of the Ship Research 
Institute (see, Tomita & Sawada(1987)) is described. 

Long-time evolution of tertiary resonant waves has not yet been 
observed in a wave flume. Hence, the experiment is carried out to detect 
the evolution at the locations spreading widely in a flume. The investi-
gation is performed t<::> find what amount of interaction occurs under 
several conditions being prescribed. 

In this experiment, we choose the simplest feature for examining 
the resonant interaction phenomena of growing up of the tertiary wave by 
the perpendicularly intersecting two trains of waves generated with the 
wave-makers. According to the theory of resonant wave interaction 
discussed in Chapter 1, the resonance takes place under the condition 

k1-k2-k3+k4=0, w1-w2-w3+w4-0 (2 - 1) 

In particular, in this experiment, lk1=k4, w1=w4 and k1 is 
orthogonal to k 2. In this case, (2 -1) are solved with respect to r = 
w 1/  w 2 so that the exact resonance condition is given by r = 1. 736・・．
Under this condition, the short time behavior of tertiary wave was 
discussed by Phillips0960) and Longuet-Higgins(1962) theoretically, 
to which we refered briefly in Chapter 1. The experimental studies were 
also made by Longuet-Eliggins & Srnith(1966) and McGoldrick, Phillips, 
Huang & Hodgson(1966) in the smaller wave tanks with the sizes of not 
exceeding 3 meters sqrnare. All these: investigations mentioned above were 
confined to discuss the initial growth of tertiary wave and to verify 
its growth rate. On the contrary, in our experiment, the observations of 
long term development of tertiary waves are carried out by use of a 
comparatively. large basin. 

Several remar~iable results are obtained in this experiment. 
Above a 11, it is confirmed that the 1 ar ge amp 1 i tude resonant waves which 
are comparable to that of primary waves appear at the longer fetches 
than those in previous: ex per i men ts. These resonant waves travel in the 
direction which the theory predicts. Moreover, resonant waves are 
directly observed by photo as an evidence of their existings, for the 
first time in the field of pure gravity-waves. We examine in the next 
place the short fetch behavior of re,sonant wave growth to compare it 



with those of the papers above. Finally, we advance further to the long 

fetch behavior of resonant waves an1d find the recurrence properties (see 

for example Waters & Ford(1966)) of interaction among gravity waves. 

The results are compared with the theory given by Zakharov(l968).which 

could be applied to the case of this experiment. 

In addition to these studies, the observation of the resonant 

interacting wave system. by photographic technique was recently carried 

out by Strizhkin & Ralentnev(l986)in real open ocean. 

2. 2 Description of the Apparatus 

As is seen in Fig-2 :--1, the basin has the'size of. 80 m in 

length, 80 m in width and 4. 5m in depth. Two wave-makers are installed 

in the adjacent sides of the basin. The first one is plunger type of 54 

m in width drived with 24 sets of 6k w minertia motor, the second one 

is flap type of 80 m in width drived with two sets of 90 kw  DC motor. 

Many trains of waves advancing in different directions can be generated 

with them. There exists absorbing artificial ・beaches at the opposite 

side of each wave-maker. The precise specification of the facility is 

explained in Shiba(1961) and Takaishi et. al. (1973a, b). 

All wave gauges are capacitance type with nominal precision of 

士1%and are arranged on the wire rope suspended above the surface of 

the basin.. Each probe is fixed vertic,ally by anchor settled on the 

bottom. Three examples of the measurement are shown in Fig-2 -2. In 

this figure, the cases that (a) first wave only, (b) second wave only 

and. (c) both waves are simultaneously generated are shown. Upper six 

rows represent the water surface variations detected by each probe, lower 

two rows are for the strokes of both wave-makers. 

Data collection system is schematically drawn in. Fig-2 -3. 

Output signals are sent into the recorder and they. are also transferred 

into disquet of a desktop computer through AD converter. Length of 

each run is 1 imited to 200 seconds for・ suppressing the effect of wave 

reflection. Data are digitized every 0. 1 second so that-we keep the 

Nyquist frequency as 5H z. This.is sufficiently large value for the 

present pro bl em. 

The effect that the strokes of the wave-makers are finite is 

considered to be negligible in this experiment. We set the strokes as 

small as possible to avoid. the unfavourable effects of wave breaking, 

second order wave generation and/or third order wave instabi 1 i ty. 

Nevertheless, diffraction is not completely neglected because the total 

widths of the partitions arenot infinite (diffraction effect was 
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examined by Ishida et. al. (1980) for this basin applying the wave making 
theory). In order to avoid the ambiguity that the height of mechani-
cally generated waves is not constant along its crest, average values 
for the waves are used. 

2. 3 Method of Experiment 

Having described the experimental apparatus, let us now turn to 
the method of measurement. The measurements are executed on two sorts of 
arrangement of wave gauges shown in Fig-2 -4 (Case I) and Fig-2 -5 
(Case Il). The former is used to reexamine the short term behavior of 
tertiary wave which was carried out by McGoldrick's experiment and for 
the first time to detect the direction of propagation of tertiary 
resonant wave. The latter is used for the measurement of long term 
developement of tertiary resonant waves. At each measurement, the 
amplitudes of three component waves which would simultaneously exist in 
the basin are estimated by the power spectral analysis by means of FF  T 
as follows 

Aげ／ 2= (pぃ＋ Pげ Pい） △ f. (2 -2) 

In this equation, A k and Pk  denote the amplitude and component energy 
density corresponding to・the frequency f = k△ f (△ f = 0. 0098 sec―1). 
As is well known in spectral analysis, the energy at single frequency is 
apt to disperse to its neighbourhoods caused by that the length of data 
is finite. The precision of this method is tested by aid of dummy data 
made with electric oscillator. By this test a single component of energy 
is apparntly broadened in width of士10△ f band at the attenuation of 
-30 ct B. Considering the noise property of real data, the band width of 
3 △ f =O. 029 sec-1 is adopted as shown in (2 -2). By using (2 -2), 
restoration ratio of the test data is about 97%. 

Our experimental situation and the size of facility lie between 
most of smaller-scale indoor laboratories and large natural sea field. 
So the unfavourable affections caused by viscosity and capillarity of 
water are negligible. All the works are conducted during calm weather, 
because the basin・ is in open air. Several runs are tested and checked 
for inspection over the total inevi-table effects due to deformation of 
waves by wind, reflection, diffraction, breaking, instability of waves 
and interference with sensors. The primary waves detected repeatedly at 
the positions closely located as Fig-2・ -4 show a good agreement in 
each other. However, the records of the tertiary wave fluctuates with 



about 8% of standard deviation. For the frequency, although the motor 

speeds could be kept constant to within 0.16%, the spectral estimate (2 

-2) has a width of △ f so that the precision of 7 is evaluated to△ 7 

＝ △ f / f 2----0. 017. 

The elements of the mechanically generated waves used in the 

experiment are shown in Table-2 - 1,、

2. 4 Initial Growth of Tertiary Resonant Wave 

First of ・all, we examine whether the tertiary resonant wave 

k3 predicted by the theory grows in a basin or not, when we generate a 

pair of waves k1 and k2 mechanically by the wave-makers. An・exarnple is 

shown in Fig-2 -6. In this case, r = 1. 793 and the sensor is located 

at 45 m from the first wave-maker (nearly mid-point of the basin). In 

this figure, there appear clearly three line spectra, the lower two 

lines corresponding to f 1=w1/2 1r =1.016 and 『2=W 2/ 2冗＝ 0.56 6 

are due to the waves generated by the wave-makers. Remaining one found 

in higher range is the wave generated by the waves of frequencies f 1 

and f 2. The frequency of this component is f 3=1. 475 and it just 

agrees with the theoretically predicted 2 f 1-f 2=1.466 within the 

resolution △ f =O. 0098. This relation holds good in every case of 

different values of f 1 and f 2. From this Figure, one can see that the 

resonant wave which is to be a third! order quantity in theory exceeds 

the other second order harmonic components and the amount reaches as 50----

60 % of the first order primary wave. This ratio is more than twice as 

large as those reported in the previous experiments. 

In order for reexamining the previous experimental results, we 

evaluate the initial growth rate of resonant waves and its dependence 

upon the frequency ratio r of the primary waves. As explained in § 1. 

3, ・ the initial growth rate G is connected to observable quantities 

such that 

A 3/ d (A 1 k 1) 2 (A 2 k 2) = G (r, 0) I sin o k d / o k d I. 

2 o k 

k3 
（ 4 

2 7 o -l. 

8 7 83 

4 7討＋ 1

(2-3-1) 

) (r-10). 

(2-3-2) 
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Where, d is the fetch of interaction, o k is the detuning wave-number 
of primary waves and 0 is the angle of intersection. 

The initial growth rate G was evaluated 0.442 when 0＝冗／ 2 

and r 0=1. 736 (the value of G is nearly constant with r around r 0) 
In Fig-2 -7, the values of the left-hand side of (2 -3 - 1) calcu-
lated from the measurement data at the location in Fig-2 -4 (Case I) 
are shown against 1. In this case, the wave gauges are located near to 
the wave-makerl to obtai-n the initial growth data. The solid curve is 
drawn by the right-hand side of (2 -3) fitted by inspection with G 

and r as parameters. From Fig-2 --7, it is estimated that G =O. 50 
and r 0=1. 79. A comparison with McGold~ick's result is shown in Table-
2 -2. In this initial stage, the results of r 0 agree fairy well and 
are somewhat greater than that of the theory. This fa~t will be partly 
explained by the concept of NON-LINEAR RESONANCE CONDITION introduced in 
Chapter 3. The value G in this experiment lies between the value of 
their experiment and the classical theory. 

Also by means of this location of wave gauges (these six gauges 
are tightly attached to a stainless steel bar with the mutual distances 
of 0. 45m, 1. 05m, 1. 20m, 0. 60m, 0. 30m as consisting a linear array), 
the determination of the direction of tertiary wave which has not 
executed in the previous papers is examined. By the theory due to 
Longuet-Higgins(1962), the angle of tertiary wave to the primary first 
wave is predicted 9. 2 4 degrees for the case of exact resonance. 

Defining the mutual distance between wave gauges D12 and the 
relative angle to the wave a shown as in Fig-2 - 8, the phase 

difference </> 12 of the wave for D12 is written as 

¢12=kD12sina, (2 -4) 

where, k is the wave..,.nurnber concerned. Otherwise, phase difference can 
be calculated from the data obtained at two wave gauges by their CROSS 

SPECTRUM. If co-spectrum and quadra ture-spectrurn are expressed as C 12 
and Q 12, </J 12 is correlated. by them as 

¢12=tan―1 (Q 12/ C 12) (2 -5) 

In Fig-2 -9, we show the co~erence among the data measured with the 
wave gauges 1 and 3.. Al though there appears some broadening around 
the second primary wave, the coherence is almost nearly unity at around 

the three wave frequencies considered here. Fig-2 -1 0 shows the 



phase spectrum of this data. Choosing every pair of gauges from six, the 

phase o = ¢ /冗 of three waves f 1, f 2, f 3 is clescri bed against D 1 m 

(D 1m (l,m=l, 2, ・・・, 6) is distributed not to be equal for every pair of 

the gauges) in Fig-2 - 1 1 (a), (b),. (c) respectively. Using the data 

k1=3.993, k2=1.291, k3=8.l88 in the formulae 

O n = (k n D 1. m/冗） sinan, (2 -6) 

where n = 1. 2, 3 and 1. m = 1. 2,・・・・・， 6，

we can determine a 1, a 2, a 3 ・ from the tangent of each plot. The 

straight lines in Fig-2 - 1 1 are t)btained by means of the least square 

method. By these Figures, we can estimate that a11=1.09, a2=73.40 and 

a 3 = -7. 85degrees so that the direction of tertiary wave from the first 

primary wave is a3-a1=-8.94degrees, while the theoretical prediction 

in this case is -9.19 degrees. We can recognize that the agreement of 

both values is satisfactory. 

2. 5 Long Term Evo 1 u ti on of Tert 1i ary Resonant Wave 

In this section, we investigate the long term behavior of the 

tertiary resonant wave. In order to perform this task, wave gauges are 

arranged as shown in Fig-2 - 5 (Case II). Six wave gauges are set at 

the distance from the first wave-maker of 26. 56 m, 35. 96 m, 41. 15 m, 

45. 36 m, 50. 95 m and 61.15 m alo111g the direction of tertiary waves. 

They are the very 1 onger fetches than those. of the Case I and those of 

the previous works (their maximum S)Pan of observation is about ・15 m 

after transforming the size to the)Present experiments). 

The results are explained ilfl the following. In Fig-2 -1 2 

through Fig-2 - 1 8, the amplitudes of tertiary waves are plotted 

against the distances along・the diriection of propagation. 

For describing the observational results clearly, we explain 

them corresponding to the experimental conditions in order: 

1) r-1. 72 (nearly resonant), A1 and A2 (-2. l5cm) are both small. 

{Fig-2 - 1 2 } 

In this case, ・t.he growth of resonant waves are nearly straight. The 

broken line shows the theory of Longuet:-Higgins(l!962) (equation (2 

-3)). The long fetch behavior can be explained in this case 

qualitatively by the classical theory. 
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2) r""l.72 (nearly resonant), A1 (----4cm) is larger than the case①. 
{Fig-2-13} 

While A2 (,..,_,2. 5cm) is as same as tltie case①,resonance does not 
strongly occur and the amplitude of tertiary wave is in every point 
small. The curve represents the qua1si-stationary solution given by (3 -

8) by means of the Zakharov theory .. 

3) r-1.79 (off resonant), A1 is small and A2 (-5cm) is moderate. 
{Fig-2 _:.. 1 4} 

In this case, A3 is nearly constant (slowly varying) thorughout the 
fetch where the measurements are made. The manner of variations looks 

almost para 11 el and・ the values are found 1 arger as A 1 increases from 
1. 80 to 2. 84. In the last case (A 1 is the largest), the values of Ag 

amounts to about 1. 5 icm. The apprec;iabre values of resonant waves are 
observed in the first time in such :1 off resonant cases. 

4) r-1.79 (off reso1t1ant). A1 is larger than the case 3) while A2 is 
small. {Fig-2 - 1 5} 

This is rather curious result. Although the condition is so far from 

the case 1), the growth of A3 is c<learly straight. The broken line in 
this figure is the ・theoretical oneli・ke the item 1) (omitting the de-

tuning factor)•· The dashed-and.,..dotted line is determined by the least 
square fitting,. Looking at the discJrepancy between both lines. it 

suggests that in this case, a sort of non-linear resonance condition 
including the amplitude dependence 1to. the wave velocity would hold and 

it suppresses the free evolution of tertiary wave. 

5) r -1. 79 (off resonant), A 1. is larger than case 3). {Fig-:-2 - 1 6} 
A3 clearly decreases as the fetch Jlncreases and diminish to zero (re-

currence phenomena) instead that the asymptotic steady states take place 
in a longer fetch. 

6) r -1. 82 is larger, A 1 and A2 are both large. {Fig-2 - 1 7} 

In this case, it is characteristic under this condition that. the 
magnitudes of A 3 decrease initially as the fetch increases and then grow 

up once again. Subsequently resonant waves. repeat the same process. 
However this is not. sure in the present experiment.because the length of 

the basin is not enough long to pursuit this character. This. tendency 
appears the faster (at the short er fetch) with the 1 arger A 1. 



7) The largest wave obtained.・ in this、experiment is shown in Fig-2 -1 
8. In this experiment, tertiary resonant waves has never exceeded 2. 5 
cm  in amplitude (5 cm  in wave height). This limitation may depend 
upon the wave-steepness of the primary waves used in this experiment. 
Local breaking of waves is apt to arise particularly in such a composed 
wave system that mechanically and spontaneously generated waves consist 
of a comparatively wide spread frequency components. These lo'cal 
breakers possibly prevent the resonance mechanisms from being suf-
ficiently enhanced. 

8) In the case ofrfar from re, say r <1.6 or r >2.0, it is verified 
that no wave is•generated at all. 

In general. the straight resonant growth is seriously dependent 
on the conditions among the frequencies and amplitudes of primary waves. 
On the contrary, the recursive resonant growth occurs in somewhat soft 
conditions whereas the maximum values of them are comparative to the 
former. The decreasing of amplitudes of tertiary waves at the longer 
fetch rather revea・ls that the strong interaction takes place even in 
this region, otherwise the resonant waves which are once g.enerated at 
shorter fetch would travel to the Olllter region without decaying their 
amplitude at all. 

The tertiary resonant waves generated by mutual interaction of 
primary waves can be• observed by the naked eye in this experiment. 
Since the wave velocity of tertiary wave is much less than the primary 
waves, it can be left in the basin after stopping the wave-makers and 
passing the primary waves away to the absorbing beaches. This fact is 
another confirmation that these tertiary waves are free waves in ac-
cordance with the theory. Three photographs on the experiment of the 
generated resonant wave・ are shown illl ・Fig-2 -1 9. The direct photo-
graphic observation of deep-water gravity wave interaction had not been 
known in the :past. From the picture of Fig-2 -1 9 (c), wavelength 
of the tertiary wave taken in the photo is measured as 72. 5 ・ cm. While 
the theoretical length is 71. 7 cm.. 
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CHAPTER 3 NUMERICAL SOLUTION OF ZAKHAROV EQUATION 

3. 1 Foreword 

The non-linear theory described in § 1. 5 gives an integro-
differential equation which governs the slow variations of first order 
amplitude and phase components among multiple directional waves. This 
type of equation was first derived by Zakharov(1968). and is called 
the ZAKHAROV EQUATION. In general. it is difficult even to obtain the 
solution of this equation by numerical method, not to mention to solve 

it analytically. So, the Zakharov equation has never been applied except 
for the stability problems of monochromatic wave train. 

In this Chapter.we deal with this equation in the most important 
case of three waves mutual interaction by regarding it as a system of 

ordinary differential equations. At first, a simple approximate solution 
to this system of equations is derived analytically assuming that the 
en・ergy transfer among waves is not so large. This solution lends itself 
to consider the resonance condition with the amplitude effect taking 
into account. In the next place, the measurements at shorter fetches 
given by McGoldrick et. al. (1966) is successfully compared with this 
theory. A simple and clear evaluation of the limiting wave height of 
resonant waves is also put forward in terms of the first primary wave 
amplitude. The result is confirmed numerically by the repeated execution 
of long-time numerical integration of this system of equations. Through 
this calculation, recurrence properties which are found and desc.ribed to 
some extent in Chapter2 are reproduced. 

The comparison of the results are made with experiments de-
scribed in Chapter2, and the comprehensive discussion on the resonant 

interaction phenomena are yielded in Chapter4. At the last section of 
this Chapter, a related problem on. instability prorerties of a quasi-

monochromatic wave train are treated by the same method. The relation of 
this equation with Hasselmann's energy flux, equation among continuous 
spectral component is interpreted in AppendixIII. The relation with Non-
linear Schroedinger equation is also explained in AppendixN. 

3. 2 Numerical Experiment 

The fundamental integro-differential equation has the form 



i 8 B ; ［'t)＝ ll『OOdK 1 d K2 dい T (k, k1, k2, ks) 

B※ (k1, t) B (k2, t) B (k3, t) o (k+k1-い-k3)

exp { i (w + w 1 ~ w 2―W3) t}. (3 - 1) 

This is conceptually equivalent to (1 -3 4). In this expression, the 

simbol o is Dirac delta-function. The explicit form of the kernel T is 

presented in AppendixV. Using the quantity B, surface elevation 77 is 

expressed as 

7J (x, t) =(2冗）ー1J_:°lk / 2 w) -1 d k B (k, t) exp i (k • x -w t) 

(3 -2) 

Pulling out from (3 - 1) the three components discussed in Chapter 2, 

it is transformed into ordinary differential equations as 

. d B 1 
1 -

d t 
[T1111B1B1※＋T12218282*+T133t 8383町 81+

i △ 0 1123t 
T 11 23 e B占B2 B 3, (3 -3 -1) 

. d B 2 ~～  
1 - = ※ 

d t 
[T2112B1B1※+T  2222 B 2 B 2*+ T 2332 B 3 B 3町 B2+ 

and 

i △ 0 2311 t 
T 23 1 1 e B 3町31 B t (3-3-2) 

. d B 3 
1 -

d t 
[T31gB1 B 1*＋ 73223 B 2 B 2m.t T3333 B3 B 9] B3 + 

i △W3211t 
T 32 1 1 e B 2※B 1 B 1. (3-3-3) 

These are actually the six degree n(')n-linear equations with respect to 

the real and imaginary parts of B. 
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Where, T1234 denotes T (k1, k2, k3, k4) and conventional notations 

T1234= T1234+ T124:s, △W 123 4 = W 1 + W 2―W3―w4 are used. It is 
confirmed that this discretized approximation is self-consistent and the 
other components play no role at least in the first order.. if they does 
not exist a priori. The first terms in the right-hand sides of (3 -3 -
1),..._,, (3 -3 -3) represent the phase velocity effect in tertiary wave 
interaction which is briefly interpreted in AppendixVI. 

Before solving (3 -3 -l).,...,;, (3 -3 -3), we discuss about 
the conservation laws of this system. 

Taking notice on the magnitude of B. the symmetrical property 
of the equations leads that 

2T112s-1 I B1 I 2+T2s11-1 I B2 I丘 Ts211-11B312= canst 

and 

T 2 3 1 1 -1 I B ~~ I 2 - T 3 2 1 1 -t I B 3 I 2 = cons t.  
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From the expressions (3 -3 -1)..._ (3 -4 -2), one can immediately 
notice for the energy transfer among these three waves that the first 
primary wave B 1 shears its energy to B 2 and B 3 for grOwi ng them, that 
is, the energy flows from B 1 toward B 2 and B釦 orvice versa. The first 
primary wave B 1 plays the most fundamental role in this・ interact ion and 
unlike it, the role of the second primary wave B2 is subsidary. 

Considering that the complex amplitude B has a relation with 
the actual wave amplitude A as 

I 

I B (k) 
2 0 で. I=冗(-一
k 

) ~ A (k), 

it leads to 

I B (k) I 2＝冗 2(号） A (k) 2 

(3 -5) 

(3 -6) 

Because A 2 is proportional to the energy of waves, I B (k) I 2 means 
the wave action (see Leibovich et.al. (1974) or Phillips(1977)) in th_is 
system. Conservation laws are interpreted in more details in AppendixW. 

In the next・ step, we examine an approximate analYtical solution 

(278) 



of equation (3 -3 -1),.,._, (3 -3 --3). In this approximation, we 

assume that the amplitude of resonant wave is much less than those of 

the primary waves. By use of this assumption, we neglect the terms con-

taining 83 in (3 -3 - 1),.,._, (3 -3 -3).. In this manner, the ampli-

tudes of the primary waves are regarded as constants so that the quanti-

ties in [] of (3 -3 - 1) - (3 -a -3) should be also constants. 

They are denoted by e 1, e 2 and e 3 (△ w = 0 is set without loss of 

generality), that is, 

～ 
81 = [T1111B1B1※+T  12 2: t B 2 B 2 *], 

and 
応＝［T,2112B 11 B: 1*+ T 2222 B 2応町

～會～
O) 3, = ［ T'3 1 1 3B、 1B 1※+T  32.23 B 2 B 2町．

Re:];r)Jre,s:entin:g; B m, (t:} = b rn (t). exp:ir i x n (t), (n= 1, 2, 3) under the 

c; 01:n s; trn・社豆rutof b n, x・ n beiHg real funict ions,・ we get from (3 -3 - 1) 

and (3 -3 -2) that b 1 (t) = b 10,, b 2 (t) = b 20, X 1 (t) = -0 1 t 

and x 2 (t) = -0 2 t十冗／2.・ Us in g; th em to the 1 as t e qua t ion (3 -3 -

3), it reduces to 

― =T3211b102h20;cos { (201-82) t+x叶
d b 3 

d t 

and (3 -7 -1) 

賛主 =-83-T3211b102b20b3-1sin { (201-82) t +x3} 

(3-7-2) 

which are non-1 inear equations with respect to b a and x 3. Considering 

the initial condotionb3=0, X3=0,at t=O, we introduce an undetermined 

constant /3 as x 3= -/3 t and integrate (3 -7 -1). The result is 

b3= {K/ (201-82-/3)} sin (201―-02-/3) t 

where K=T3211b102b20. Substituting X3 and b3 into (3-7-2), 

we can determine/3as follows 

-B =-03 -（201 -0r  B), thatis, B = 0 1ーナ02十古 03 . 
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