船舶技術研究所報告 第26巻 第5号 研究報告(平成元年9月)

千田哲也* R.C.ブラット**

Grain Growth in Sintered ZnO and ZnO-Bi₂O₃ Ceramics

By

Tetsuya SENDA and Richard C. BRADT

Abstract

Grain growth in a high purity ZnO and for the same ZnO with Bi_2O_3 additions from 0.5 wt% to 4 wt% was studied for sintering from 900 °C to 1400 °C in air. The results are discussed and compared with previous studies in terms of the phenomenological kinetic grain growth expresson;

 $G^n - G_0^n = K_0 t \exp(-Q \swarrow RT)$.

For the pure ZnO, the grain growth exponent or n - value was observed to be three while the apparent activation energy was 224 ± 16 kJ/mol. These parameters substantiate the Gupta and Coble conclusion of a Zn²⁺ lattice diffusion mechanism. Additions of Bi₂O₃ to promote liquid phase sintering increased ZnO grain size and the grain growth exponent to about five, but reduced the apparent activation energy to about 150 kJ/mol, independent of Bi₂O₃ content. The preexponential term K₀ was also independent of Bi₂O₃ content. It is concluded that the grain growth of ZnO in liquid – phase – sintered ZnO – Bi₂O₃ ceramics is controlled by the phase boundary reaction of the solid ZnO grains and the Bi₂O₃ rich liquid phase.

1. 緒言

セラミックス材料は、従来の金属材料にくらべ、高 温での強度、耐食性、耐摩耗性等の性質に優れたもの があり、熱機関の熱効率改善や耐久性、信頼性の向上

* 材料加工部

**ワシントン大学 (University of Washington, Seattle, Washington 98195, U.S.A.)

[現在, ネバダ大学リノ校 (University of Nevada-Reno, Reno, Nevada 89557-0047, U.S.A.)] 原稿受付:平成元年6月30日 の可能性を持つ材料として注目されている。しかし, 実際に熱機関に使用するためには,機械的性質をはじ めとする諸性質についての理解がまだ十分とはいえな い。多結晶セラミックスの機械的性質が,結晶粒径と その分布,気孔率等で代表される微構造に依存するこ とはよく知られている¹⁻⁴⁾。一方,焼結セラミックスの 微構造は原料粉末の性状とともに焼結条件によって変 化する。そのため,焼結時の微構造の変化とその速度 を知ることは,機械的性質をはじめとする諸性質に関 する基礎的な理解を得るうえで重要である。また,所 要の強度や機能を得るために,焼結体の結晶粒径を制 御する必要がある(付録参照)。このような観点から, ZnOセラミックスを例として,その焼結時の結晶粒成 長と、Bi₂O₃ 添加の粒成長への影響とについて調べる ことを目的としてこの研究を行った。

ZnOに他の金属酸化物を添加したセラミックスは, 非線形の電流-電圧特性を持つ電子材料(バリスター) として広く使われている⁵⁻¹⁰。多結晶セラミックスの 電気的特性は,機械的性質と同じように、一般にその 微構造に直接依存する。ZnOでは,たとえば,バリス ター特性を表す一つのパラメーターであるブレイクダ ウン電圧が結晶粒径に依存することが知られている (付録参照)。このため,ZnOの焼結と結晶粒成長の研 究は,これまでに数多くなされてきた。

一定の温度で焼成したときの結晶粒成長は現象論的 に、積分したアレニウス式の形、

$$G^{n}-G_{0}^{n}=K_{0} t \exp(-Q/RT)$$
(1)

で表される。ここで、Gは温度T (K) でt時間焼成した ときの焼結体の平均粒径、G₀は初期粒径、nは粒成長指 数(n値)、K₀は定数、Qは活性化エネルギー、Rは気体 定数である。このとき、粒成長過程は、n値、K₀、Qに よって特性づけられる。初期粒径G₀が焼成後の粒径G にくらべ十分小さいとき、G₀の項を無視することがで き、式(1)は、

$$G^{n} = K_{0} t \exp(-Q / RT)$$
(2)

と書くことができる。Nicholson¹⁵⁾, GuptaとCoble^{16,17)}, DuttaとSpriggs¹⁸⁾は、純粋のZnO(添加物がないとい う意味で、以下では純ZnOという)の結晶粒成長を調べ たが、その結果はすべて式(2)でうまく表現されている。 そこでは、n値はすべて3で一致しているが、粒成長の 活性化エネルギーQは213から409 kJ/molの広がり があった。

低融点の第二相物質を添加して焼結中に液相を形成 させることは、セラミックスのち密化を促進し、かつ 粒成長を制御する方法として、 $MgO-V_2O_5$ 系(MgOic $V_2O_5 を液相物質として添加、以下同じ)、CaF_2-NaF$ $系、<math>UO_2-Al_2O_3$ 系などで応用されている³¹⁻⁵⁰⁾。ZnO-Bi₂O₃系では、 $Wong^{27}$ が、ZnOにBi₂O₃を1mol%まで 添加した系についての粒成長現象を報告している。そ れによると、Bi₂O₃-richな液相は焼結初期のち密化を 促進するとともに、焼結後のZnO結晶粒径は同じ条件 で焼成した純ZnOより大きく、粒成長は加速されてい た。Asokanら^{28,29)}の最近の研究でも、同じくBi₂O₃によ (372) る粒成長の加速が報告されている。しかし,Wong, Asokanらのいずれによっても、粒成長指数nや活性化 エネルギーQの観点から粒成長過程を解析する試みは なされておらず、Bi₂O₃ーrichな液相がZnOの粒成長に どのように影響するかについての定量的な検討はなさ れていない。一方、小松ら²²⁾は、いくつかの酸化物(低 融点ではない)の、ZnOの焼結におけるち密化過程への 影響を、焼結初期のZnO試料の収縮を測定することに より調べている。そして、酸化物の種類により焼結を 促進するものと抑制するものがあることを報告してい る。

ここでは、過去のこれらの研究成果を踏まえて、純 ZnOの結晶粒成長と、それへの Bi_2O_3 添加の役割につ いて、主として粒成長指数 (n値) と活性化エネルギー の観点から定量的に把握するために、高純度のZnOと それに Bi_2O_3 を系統的に添加したいくつかの組成につ いての結晶粒成長を調べた。得られた結果から、式(2) の関係を使って粒成長指数 (n値) と活性化エネルギー を求めた。この報告では、はじめに純ZnOの粒成長につ いての結果を述べ、過去の文献に報告されている結果 と比較しながら検討する。つぎに、ZnO- Bi_2O_3 系の結 果を述べ Bi_2O_3 添加の効果について検討し、最後に粒 成長機構を考察する。

2. 実験方法

この研究で用いたZnO粉末は、気相の純Znを酸化し てつくられた(フレンチプロセス)材料である*¹。Bi₂Q₃ を含む組成のものは、Bi₂Q₃粉末**¹をZnOに加え乳鉢 で混合した。組成は、純ZnOのほか、ZnOに 0.5、1、 2、4 wt%のBi₂Q₃をそれぞれ含むものの計5種類とし た。これらは、mol%でいうと、それぞれ 0.09、0.18、 0.36、0.72%となる。混合された粉末にさらに 3%の ポリエチレングリコール(Carbowax 4000)をバイン ダーとして混合し、直径 12.8 mm、厚さ 4 mmの円盤 状に 100 MPaでプレス成形した。成形体の密度は理論

*) St. Joe Zinc Co. (Monaca, PA 15061, U.S.A.) 製, Grade 911。 主な不純物; Fe₂O₃, 0.0015%; PbO, 0.0007%; CdO, 0.0006%; CuO, 0.0001%; MnO, 0.0005%; SiO₂, 0.0051%; 平均粒 径 0.1µm。

**) Ventron Corp. (Danvers, MA 01923, U. S.A.) 製。

密度のおよそ65%であった。成形された試料は、バイ ンダーを焼却除去するため、まず大気中でゆるやかに 500℃まで昇温しそこで 30 分間保持した。つづいて所 定の焼成温度まで10℃/minで昇温し所定の時間焼成 した。焼成温度は、900℃、1030℃、1192℃、1400℃の 4つとした。これらは1/T(K-1)で等間隔になるよう 定めた。純ZnOについてはこのほかに 1106℃と 1289℃ での焼成も行った。焼成時間は、それぞれの温度で0.5 から16時間の間で4つの異なる時間を定めた。焼成後 の試料の寸法と重量を測定し、焼結体の密度を計算し た。結晶粒径を測定するために、焼成した試料をアク リル樹脂に埋め込み、最初はSiC研磨紙で、ついでアル ミナ粉末バフで研磨し、最終的に 0.3 µmのアルミナ で仕上げた。つぎに、希釈した酢酸で研磨面を腐食し、 顕微鏡写真を撮影した。結晶粒径は、顕微鏡写真上で、 任意に引いた直線が粒界と交わってできる切片の長さ の平均値Lから求めた。Mendelson⁵¹⁾は、ケルビンの14 面体(tetrakaidecahedron)の任意の断面上にひいた 任意の直線の切片の長さについて統計的解析を行い、 14 面体の平均面間距離で代表される平均粒径Gが,

G = 1.56 L

(3)

の関係で推定できることを示しており、これに従って Gを求めた。

3. 結果と考察·

3.1 ZnOの結晶粒成長

純ZnOの焼結体の相対密度を図-1に示す。得られ た密度はほとんどすべて理論密度(5.61g/cm³)の約 98%であったが、比較的高い温度で長時間焼成した試 料では、密度の低下がみられた。過去の文献にもみら れるように、900℃であっても、ち密化のプロセスは最 初の1時間で本質的に完了していることがわかる。ま た、密度低下は、ZnOに吸着していたガスが温度の上昇 により気孔の中にたまってくるためと考えられてい る¹⁷。

1289℃で1,2,4,8時間焼成したZnOの微構造顕微 鏡写真を等温焼成による微構造発達の例として図-2 に示す。焼成時間の増大とともに平均の結晶粒径が大 きくなっているのが明らかにわかる。粒成長を表す式 (2)の両辺の対数をとると,

Log G= $(1/n) \log t + (1/n) [\log K_0 -0.434 (Q/RT)]$ (4)

となる。ただし、log e=0.434 とした。

ここで、log G (粒径) とlog t (時間)の関係を プロットすると、その傾き (1/n)から粒成長指数 (n 値)を定めることができる。図-3は、900℃から 1400℃ までの間の高純度ZnOの等温結晶粒成長を式(4)の形に 即して表したものである。図中の直線は、900℃を除い て傾き 1/3 を表している。式(4)からも容易に想像され るように、焼成温度が高いほど、また焼成時間が長い ほど平均粒径は大きくなっている。比較的高い温度で 焼成した場合、傾きは 1/3の直線にほぼ沿ってい る。傾きの逆数であるn値は1030℃で2.4、1192℃で 3.3、1289℃で3.2、1400℃で3.9 であった。これは、 n値がほぼ 3 であるということであり、純ZnOの結晶粒 成長が、

$$G^{3} = K_{0} t \exp(-Q / RT)$$
(5)

で表せることを示している。緒言でも述べたように, ZnOの粒成長指数が3であるという結果は,これまで に何人かの研究者によって報告されている。そして, Atkinson⁵²⁾の総説に述べられているように,単相の純 粋物質の粒成長ではn=3が期待されるべき値である と思われる。しかし,比較的低い温度,すなわち900℃

123

(373)

図-2 ZnO焼結体の微構造(1289℃で焼成) (a) 1 h焼成、(b) 2 h、(c) 4 h、(d) 8 h

図-3 純ZnOの等温結晶粒成長(900℃を除 いて、各直線は傾き1/3を表す。)

と1106℃においては、粒成長指数は3より少し大きいようにみえる。このことについては、後で考察する。

文献にみられるZnOの粒成長のデータの中で 1200℃で焼成されたものについて、この研究での 1192℃のデータとあわせて比較したものを図-4に示 す。GuptaとCoble¹⁶⁾およびDuttaとSpriggs¹⁸⁾の報告し ている平均粒径は、この研究の結果に非常に近い。し かし、Nicholson¹⁵⁾、Wong²⁷⁾およびAsokanら²⁸⁾の研究 では、この研究にくらべかなり小さい粒径が得られて (374) いる。(Nicholsonは,900℃から1100℃までの焼結の結 果しか示していないため,それらのデータから1200℃ の場合を推定したものを図-4に示している。)この違 いは,出発原料であるZnOの粉末の形状,粒径とその分 布,比表面積,粒界移動を妨げる不純物の含有量など の違いによるものと考えられる。それぞれの報告には, 粉末の製法や化学分析結果等の記述はないが,この研 究で用いたフレンチプロセスの粉末と他の製法による ものとでは,不純物の含有や粉末の形状にはかなりの 違いがあることはよく知られている。

Nicholson¹⁵, GuptaとCoble¹⁶, DuttaとSpriggs¹⁸, およびReadey¹⁹らは、すべて純ZnOの結晶粒成長指数 を3と報告している。Wong²⁷⁾の結果は (log G)/ (log t) が 1/3よりかなり小さい、すなわち粒成長 が (対数的な意味で)遅いことと同時に、(log G)/ (log t)の関係は明らかに直線的でないことが特徴 的である。この非直線性のためと思われるが、Wongは 論文のなかでn値を示していない。そこで、(log G) 対(log t)のプロットのなかの比較的直線性のよい部 分についてn値を計算したところ、1200℃から1400℃ のあいだではおよそ6、また1100℃では10以上と推定 された。そして、純ZnOに関しては、明らかに焼成温度 が高いほどn値は小さいという傾向を示していた。

図-4 ZnOの結晶粒成長の比較(1200℃付近)

Asokanら²⁸⁾は、いろいろな温度についてすべて2時間 焼成したZnOの粒径だけを報告しているため、彼らの 結果から粒成長指数を推定することはできなかった。

粒成長指数がたとえば5というような大きな値をと るということについては、Wongの結果を含め実験的 には数多く報告されているが、満足できる理論的説明 はない。式(4)をlog tで微分して対数的な意味におけ る結晶粒成長速度を、

d
$$(\log G)/d (\log t) = 1/n$$
 (6)

と定義することができる。このような対数的な意味に おける粒成長速度という概念で考えると、粒成長指数 nが大きいということは、粒成長が遅いということを 意味する。MoriyoshiとKomatsu²⁰⁾は、酸素雰囲気での ZnOの焼結の初期段階で調べた粒成長において、約10 という大きい粒成長指数を観測している。さらに、 NorrisとParravano¹⁴⁾は、1050℃から1200℃における ZnOの焼結初期段階に関する研究の中で、焼結速度を 代表するパラメーターとしてZnO球形粒子のネック成 長(付録参照)を測定し、温度が低いほど成長速度が 低い(すなわちネック成長のn値が大きい)ことを報告 している。この場合には、温度が低いほうが焼結はよ り初期の段階にあると考えられる。これらの結果は、 焼結初期段階ではn値が大きい(粒成長速度が低い)こ とを示唆していると思われる。焼結の初期段階では、 粒成長過程だけでなく,他の現象,たとえばネック成 長などが同時に起っていると考えられるが,結晶粒や ネックの巨視的な測定だけから,それぞれの現象がど の程度寄与するかを独立に求めることは難しい。しか しながら,これまで検討してきたことから考えて,比 較的低い温度での焼結や焼結の初期段階において結晶 粒成長のn値が大きな値をとることがあることには, 粒界移動に卓越して起る他の何等かの物理過程(たと えばネック成長)が寄与していると考えられる。した がって,この研究で観察された900℃と1106℃の場合 についても,比較的低い温度であって,そこでは粒成 長以外の他の現象が並行して起っていて,その結果大 きなn値が観測されたものと考えられる。

図-5は、図-1に示したデータから構成したアレニ ウスプロットで、log (G^{3}/t) と1/Tの関係を表して いる。式(3)は、

$$\log (G^3/t) = \log K_0 - 0.434 (Q/RT)$$
 (7)

と書くことができる。このプロットの傾斜-0.434 (Q/RT)から粒成長の活性化エネルギーQを求める ことができる。ただし、ここで得られるQは、あくまで もみかけの活性化エネルギーであり、さきに考察した 粒成長以外の過程の影響が含まれる可能性があること に注意しておく必要がある。それぞれの温度において、 縦軸方向のばらつきがいくらか存在することは、図-

(375)

126

3 で粒成長が傾き 1/3 の直線から少しずれているこ とに対応する。それらのばらつきを考慮にいれても 900℃から 1400℃までの全範囲にわたって, log (G³/ t) と (1/T) とはかなりよい直線関係であるといえる。 このことから,低い温度での高いn値を示す(すなわち 遅い) 粒成長や,高い温度での密度低下など,粒成長 以外の現象の関与が観察されたとはいうものの,実験 の温度範囲においては,粒成長(すなわち粒界移動) は本質的に同じ機構に支配されていることが示唆され る。直線の傾きから計算した,粒成長の活性化エネル ギーは 224±16 kJ/molであった。(本報告の中で,± は,回帰分析における信頼水準 95%の区間幅を表す。)

表-1にZnOに関する過去の文献にみられる粒成長 指数(ネック成長なども含む)と活性化エネルギーを まとめた。この研究で得られた活性化エネルギーは, GuptaとCoble¹⁶⁾の報告している253 kJ/mol,および DuttaとSpriggs¹⁸⁾の213 kJ/molに近く,両者の中間 になる。GuptaとCobleは,この活性化エネルギーが ZnO結晶格子中のZn²⁺イオンの拡散の活性化エネル ギーにほぼ一致することなどから,ZnOの粒成長すな わち粒界移動はZn²⁺の格子拡散により律速されてい ると結論した。この研究の結果は,彼らの結論を支持 しているものといえる。

表-1に示すように、200 kJ/molのレベルより高い 活性化エネルギーもいくつか報告されている。Norris とParravano¹⁴は、表面拡散や蒸発・再析出過程が主で あると考えられる焼結の初期段階を調べ、ZnOの球粒 子のネック成長から活性化エネルギーを求めている。 (376) Nicholson¹⁵⁾も、酸素雰囲気でなされた実験結果とし て、図-4 でみた小さい平均粒径とともに、かなり高い 活性化エネルギーを報告している。これは図-4の考 察でも述べたように、おそらく不純物の影響と思われ る。Wong²⁷⁾は粒成長の活性化エネルギーに関して述 べていないが、文献に示されたデータの比較的直線性 のよい部分を用いて活性化エネルギーを計算してみる と 243 kJ/molであった。Wongの結果は、粒成長指 数が大きいことや(log G)対(log t)のプロット では直線を示さないことなど、この研究の結果とかな り異なる点があるにもかかわらず、活性化エネルギー ではこの研究の結果にきわめて近い値が得られた。小 松ら^{22,23)}、およびWhittemoreとVarela²⁴⁾は、この研究 の実験範囲にくらべ低い温度での焼結初期段階の試料 の収縮を測定し、この研究で得た粒成長の活性化エネ ルギーに非常に近い活性化エネルギーを得ている。 WhittemoreとVarelaは同時に3よりも大きいn値を 報告しているが、それは前に考察した焼結初期段階で はn値が大きくなるという説明と一致することであ る。

以上のことから、大気中で焼成された純ZnOの結晶 粒成長について、次のようにまとめることができる。 純ZnOの結晶粒成長は、他の多くの粒成長と同じよう に式(2)の形で表すことができ、十分に発達した微構造 を持つ段階のものについては、n値は 3、活性化エネル ギーは 224±16 kJ/molであった。比較的低い温度で 焼成した場合にはn値はそれより大きくなるが、それ は粒界移動以外の過程(例えばネック成長)が存在す るためと思われる。ZnOの粒成長の速度は、ZnO結晶格 子中のZn²⁺イオンの拡散に支配されると考えられる。

3.2 ZnO-Bi₂O₃セラミックスにおけるZnO結晶粒 成長

3.2.1 粒成長パラメーターに関する結果と考察

純粋のBi₂O₃の融点は、825℃⁵³⁾であるから、900℃以上におけるZnO-Bi₂O₃組成の焼結は、Bi₂O₃-richな液相が存在する状態で進行すると考えられる。液相存在下での焼結(液相焼結)に関する研究は、Lenel³¹⁾をはじめ、Kingery³³⁾、HeadyとCahn^{41,42)}、HuppmanとPetzow⁴³⁾、Marionら⁴⁷⁾など数多くなされてきた。また、German⁴⁸⁾は、液相焼結に関する著書の中で、液相焼結の過程に関するレビューを行っている。しかしながら、液相焼結の後期段階における結晶粒成長の現象について述べられたものは多くない。知られているも

文 献 (発表年)[文献番号]	測定されたパ ラメーター	温度範囲 (℃)	成長指数 (n値)	活性化エネ ルギー (kJ/mol)
Norris & Parravano (1963) [14]	球粒子のネッ ク成長	1050-1250	3 .	440-461
Nicholson (1965) [15]	結晶粒成長	900-1100	3	409
Gupta & Coble (1968) [16,17]	結晶粒成長	900-1300	3	253 ± 42
Dutta & Spriggs (1968) [18]	結晶粒成長	950-1250	3	213
Moriyoshi & Komatsu (1968) [20]	焼結初期の収 縮	800-1000	-	193
小松ら(1969)[23]	焼結初期の収 縮	800- 900	-	223
Gupta (1971) [21]	結晶粒成長	1100-1300	5	-
Whittemore & Varela (1981) [24]	表面積の減少	450- 550	3.6-3.8	184
Whittemore, et al. (1983) [26]	焼結初期の収 縮	600- 725	-	267
Wong (1980) [27]	結晶粒成長	1100-1400	6•'	243- '
Readey et al. (1988) [19]	結晶粒成長	950-1200	3	326
本研究	結晶粒成長	900-1400	3	224±16
			-	

*:論文中のデータをもとに、本研究の中で計算して求めた。

のとしては、Greenwood³²⁾, Wagner³⁶⁾, Buistら³⁸⁾, Nicholson³⁹⁾およびLay⁴⁰⁾などである。ここではこれら の文献を念頭において、Bi₂O₃が存在する場合のZnO の結晶粒成長を、酸化物セラミックスの液相焼結時の 粒成長の一つの典型的なモデルと考えて考察を進め る。

1192℃で4時間焼成したZnO-Bi₂O₃セラミックス の顕微鏡写真を図-6に示す。Bi₂O₃を添加したZnOの 平均粒径は、どれも同じ条件で焼成した純ZnOの平均 粒径より明らかに大きい。また、多くの気孔がZnO-Bi₂O₃セラミックスの粒界及び粒内にみられるのが特 徴的である。気孔は純ZnOより多く、高温で焼成したも のに特に顕著であった。さらに、Bi₂O₃添加量が増える にしたがって気孔率が高くなっているように思われた。 $ZnO-Bi_2O_3$ セラミックスの密度について、1192℃で焼成した場合を例として図-7に示す。この例からわかるように、密度は、焼成時間が長くなるとともに低下してくる傾向がある。さらに注意すべきことに、 $ZnO-Bi_2O_3$ 系では、 Bi_2O_3 の密度(8.90g/cm³)はZnOの密度(5.61g/cm³)より高いにもかかわらず Bi_2O_3 添加量を増すと密度はかえって低下している。(気孔の増大は、3.2.3で考察する。)

 $ZnO-Bi_2O_3$ の4つの組成のものについて、その等 温粒成長を、図-3と同じように(log G)対(log t) の形で表したのが図-8である。直線の傾きは、図-3 に示した純ZnOの粒成長にくらべかなりばらつきが多

(377)

図-6 ZnO-Bi₂O₃系セラミックスの微構造(1192℃で4h焼成した。)(a) 純ZnO、(b) 0.5%Bi₂O₃、(c) 1%Bi₂O₃、(d) 2%Bi₂O₃、(e) 4%Bi₂O₃.

図-7 ZnO-Bi₂O₃セラミックス焼結体の密度

い。最小自乗法で求めたそれぞれの直線の傾きの逆数 すなわちn値は、900℃では 1.7 から 2.9、1030℃では 2.9 から 5.7、1192℃では 3.9 から 5.5、そして 1400℃ では 3.0 から 8.1 の間にばらついた。これらから、一 般に、 $ZnO-Bi_2O_3$ セラミックスでは、粒成長指数n値 は、焼成温度が高くなるとともに大きくなる傾向があ るように思われる。

図-9は、4つのZnO-Bi₂O₃組成のものと純ZnOの (378) 粒成長を、二通りの方法で比較したものである。 図-9(a)は、1192℃で焼結した5種類の組成について、 粒径と焼成時間の関係を示したものである。純ZnOに くらべ、ZnO-Bi₂O₃組成のものは平均粒径が大きく、 傾きが小さくなっているが、4つの組成の間の差はそ れほどない。図-9(b)では、4つの焼成温度について 焼成時間を2時間とした場合の平均粒径をBi₂O₃添加 量との関係で表している。この図からは、0.5%という わずかなBi₂O₄添加によって非常に急激に粒径が変化 する一方、それ以上添加量を増してもそれほど粒径に 差がないことがわかる。Bi2O3の添加は、0.5%から4% の間では粒径に大きな影響を与えないうえ、添加量を 増すと粒径が増す(あるいは減る)というような特定 の傾向もみられない。ただし、900℃で焼成した場合に ついては、4%Bi₂O₃組成のものは、2%以下のものにく らべかなり粒径が大きくなっている。これはほとんど 唯一の例外で、全般的にみてBi₂O₃を含む4つの組成 の間には、ほとんど粒径に差がないことから、1030℃ から1400℃の間では、これら4つの組成の粒成長はお そらく同じ機構に支配されているのであろうと推定さ れる。

Wong²⁷⁾もまた, Bi₂O₃の添加によりZnOの結晶粒成 長が加速されることを見いだしている。彼は, ZnOの粒

(a) 1192℃での焼結、

(b) 2 h 焼成

図-9 ZnOの結晶粒径へのBi2O3添加量の影響

径は 0.2 mol% (1.1 wt%) まではBi₂O₃添加量に依存 するが、それからは1.0 mol%まで添加量を増しても 添加量に対する依存性はそれほどないことを報告して いる。Asokanら²⁸⁾は、1 wt%程度のまでのBi₂O₃添加 に対してZnO粒径は添加量依存性がみられたと報告し ている。これらの結果をすべて考えあわせると、純ZnO にBi₂O₃を少しずつ添加していくと、ZnO粒成長機構 は純ZnOのそれから変化するが、添加がある量(「臨界 値」とでもいうべき量)に達すると、それ以上添加量 を増しても粒成長機構は本質的には変わらなくなるの ではないかと思われる。その臨界値となるBi2O3の添 加量は、この研究では0.5 wt%かそれ以下のところに あるが、Asokanらの実験ではもう少し大きいところ (1 wt%程度)にあると考えるべきであろう。そして, その値は、純ZnOの粒成長の考察で考えたのと同じよ うに, ZnO粒子の大きさやその分布,形,あるいは不純 物の種類と含有量等により多少変化するであろうこと は十分に考えられる。

図-8のZnO-Bi₂O₃セラミックスの粒成長の結果 は純ZnOのそれとくらべ直線の傾きにばらつきが大き く、n値は一定ではないようにも思われる。しかし、 1030℃と1400℃の間では4つのZnO-Bi₂O₃組成の間 に本質的な差はないという考察にしたがって、これら 4つの組成の粒成長のデータをまとめてそれぞれの温 度におけるn値を求めた。(たとえば、図-9(a)で4つ の組成について一本の近似直線を引き、その傾きを求 めた。) その結果, 1030℃では 4.3, 1192℃では 4.7, そして1400℃では5.4であった。図-8の考察のとこ ろでも述べたように、高温ほどn値が大きくなる傾向 がみられる。しかし、その差はそれほど大きくないた め、ここでもう一度、これらの温度範囲では同じ粒成 長機構に支配されていると考えて、全体の平均の粒成 長指数としてn=5を選ぶことにする。(温度による差 は、3.2.3 でもう一度考察する。) このようにして、log (Gⁿ/t) 対 (1/T) のアレニウスプロットをとったも のを図-10に示す。n値の選択が不適切であれば、各温 度において縦軸方向のばらつきとして現れることにな るが、図-10の各プロットでは、1030℃と1400℃の間 で、ばらつきはこの種のデータとしては満足できる範 囲にあり、また直線関係はたいへんよい。このことは、 n=5としたことが適切であったことを示している。一 方,4%Bi₂O₃については,900℃を含めてよい直線関係 があるが、そのほかの組成では900℃は直線からはず れている。また、縦軸方向のばらつきも大きく、図-8からもわかるように、900℃ではn値を5とするのは 最適でないと考えられる。これらのことは、900℃程度 のレベルでは、粒成長機構が1030℃以上とは少し異っ ていることを示唆している。また、そこではBi₂O₃添加 量への依存性がいくらか存在しているものと考えら れ、Bi₂O₃の添加量の臨界値は、温度にも依存するもの

図-10 ZnO-Bi₂O₃セラミックスの粒成長のアレニウスプロット (a) 0.5%Bi₂O₃、(b) 1%Bi₂O₃、(c) 2%Bi₂O₃(d) 4%Bi₂O₃.

(380)

と想像される。

ここでは直線にのるデータの範囲(すなわち主として 1030℃以上)でさらに考察を進める。直線の傾きから求められる活性化エネルギーは、 $0.5\%Bi_2O_3$ では 150 ± 25 kJ/mol, 1%では 148±31 kJ/mol, 2%では 153 ± 48 kJ/mol, そして 4%では 156 ± 30 kJ/molで あった。これらの 4 つの値は非常に近く、実質的には同じものとみなすことができ、純ZnOについて得られた 224 ± 16 kJ/molにくらべ低くなっている。4 つの ZnO-Bi_2O_3組成の活性化エネルギーがすべて同じという事実は、これらの組成の間では粒成長機構が本質的に同じであるという先ほどの仮説を支持するものである。

図-10 で得られた直線から,式(2)のK₀項を求めるこ ともできる。計算結果を表-2 に示す。Bi₂O₃を含む4 つの組成については,K₀あるいはlog K₀の差はごく わずかであり,信頼水準95%の区間幅から考えて本質 的な差はないとみなせる。残念ながら,K₀項の単位は n値により異なるため,ZnO-Bi₂O₃組成と純ZnOのK₀ とを直接比較することはできないが,K₀項についても 粒径,n値,活性化エネルギーと同じように,4つの組 成の間で等しいということは,4つの組成は同じ粒成 長機構に支配されているというこれまでの結論を裏付 けているといえる。

Wong²⁷⁾の論文では、 Bi_2O_3 を含む組成の粒成長に関係するn値または活性化エネルギーの意味での解析を行っていない。おそらく、それは(log G)対(log t) のプロットが特に焼成時間の長いところで直線で近似できないことによると思われる。しかしながら、純ZnO について試してみたように、Wongの示している 0.1

mol% (0.57 wt%) と 0.5 mol% (2.88 wt%) の組成 のものに関するデータの中で,直線関係のよい部分だ けを使ってn値を推定することはできる。1000℃-1400℃に対して,得られたn値は,0.1 mol%Bi₂O₃の組 成では,0.5時間から16時間焼成の範囲で3.0から9.2 であり,0.5 mol%組成では 0.5 時間から 4 時間焼成の 範囲で 1.9 から 6.1 であった。アレニウスプロットを 構成するためにはそれぞれの組成に対してn値を 1 つ に決める必要がある。そこで,代表値として 0.1 mol% についてはn=5,0.5 mol%についてはn=3を用いて log (Gⁿ/t) 対 (1/T) をプロットしたところ,活性 化エネルギーはそれぞれ 194 kJ/molと 163 kJ/mol であり,この研究で得られた値に近いものが得られた。

3.2.2 粒成長機構

液相の存在による粒成長の促進は、これまでにフッ 化物や酸化物セラミックスについて報告されている。 Kingeryら³⁵はCaF₂の粒成長がNaFの添加により加 速されたことを報告している。Nicholson³⁹は、V₂O₅液 相によりMgOの粒成長が促進されたことを報告して いる。同じように、Jacksonら³⁷⁾およびBuistら³⁸⁾は MgOとCaOについて研究している。Baldo⁴⁹⁾は、ドロ マイトの二つの主相であるCaOとMgOの両方の粒成 長がFe₂O₃-richの液相の存在により加速されること を見いだした。これらの研究の中で、Nicholsonと Baldoは、活性化エネルギーに関する解析を行ってお り、両者とも液相の存在により、粒成長の促進ととも に活性化エネルギーの低下が認められたことを報告し ている。

焼成中に固体粒子表面が液相にヌレていて、しかも

	and the second			
組 成	log Kø	K _e	n値	活性化エネルギ-
ZnO	11.49 ± 0.35	$2.95 \times 10^{11} \ \mu \text{ m}^3/\text{h}$	3	224±16 kJ/mol
Zn0-0.5%Bi ₂ 0 ₃	12.83±0.31	$6.76 \times 10^{12} \ \mu m^5/h$	5	150±25 kJ/mol
ZnO-1% Bi ₂ O ₃	12.96±0.39	8.89×10 ¹²	5	148±31
ZnO-2% Bi ₂ O ₃	13.19±0.61	1.49×10 ¹³	5	153 ± 48
ZnO-4% Bi ₂ O ₃	13.13±0.60	1.35×10 ¹³	5	156 ± 30

表-2. 結晶粒成長のパラメーター

(381)

その固体が液相に可溶である場合には、界面活性の大 きい比較的小さな粒子が液相に溶け出し、液相内を拡 散し, 比較的大きい粒子の表面に再析出し, 結果とし て大きな粒子はより大きくなり小さな粒子は消滅する というかたちで結晶粒成長が進むいう機構が考えられ ている^{32,48,50)}。一方、ZnO-Bi₂O₃系についてのこれま での研究からは、全てのZnO粒子は、焼結中、Bi₂O₃richな液相に連続的に囲まれていると考えられる。 Morris⁵⁴⁾は、ZnO-0.5 mol%Bi₂O₃組成のものについ て焼成後ZnO粒子のみを溶解除去した試料をSEM観 察することにより、ZnO粒子の粒界に膜状のBi₂O₃richの連続相が存在することを確かめた。Clarke⁵⁵⁾、 Kingeryら⁵⁶⁾, Asokanら⁵⁾, そしてCervaと Russwurm⁶⁾も、同じような微構造を観察している。し たがって、ZnO-Bi₂O₃系におけるZnO結晶粒成長機構 は、小さな粒子から大きな粒子への溶解-拡散-再析 出過程を通してのZnOの物質移動によるものと考えら れる。

前節の最後にWongのデータから求めた活性化エネ ルギーをこの研究の実験から得たそれとあわせて考え てみる。図-11はBi₂O₃添加による活性化エネルギー の変化を表すもので、Wongのデータのほか純ZnOに ついても、文献から得た値を合わせて示している。ZnO 粒成長の活性化エネルギーはBi₂O₃のわずかな添加に より純ZnOのそれから急激に小さくなるが、その後は 少なくとも4wt%Bi₂O₃のレベルまではBi₂O₃添加量 にかかわらず約150 kJ/molで一定となる。これは、

図-11 ZnOの結晶粒成長の活性化エネルギー へのBi₂O₃添加量の影響

Nicholson³⁹⁾が V_2O_5 液相が存在する場合のMgO粒成 長について報告しているものと同じ傾向である。活性 化エネルギーの最初の急激な変化は、ZnOの粒成長機 構が、純ZnOにおいては Zn^{2+} イオンのZnO格子中の拡 散に支配されるものであったのから、Bi₂O₃の添加に よりZnOの液相への溶解と大きな粒子上への再析出と いう機構に変化したことによるということは明らかで あろう。

つぎに、さらに添加量を増したときに活性化エネル ギーが150kJ/molのレベルから変化しないことを説 明する必要がある。ここで考えている液相を通しての 物質移動の現象は、ZnO粒子と液相の境界における ZnOの溶解、Bi₂O₃-richな液相内のZnOの拡散の過 程、および大きな粒子表面への再析出の過程の3つの 過程からなっている。このうち、溶解と再析出は可逆 反応の画面であり、本質的には同一の現象とみること ができるから、ここでは、溶解-再析出か、液相内の 拡散かのどちらが律速過程であるかを考察すればよい ことになる。

Nicholson³⁹⁾がV₂O₅中のMgOに関して考察したよ うに、まず、ZnO-Bi₂O₃セラミックスの粒成長の律速 過程はBi₂O₃-richの液相内のZnOの拡散であると仮 定してみる。この仮定は、液相内の拡散ではしばしば 固体内のそれにくらべ、活性化エネルギーが低いこと を考えると自然な仮定であって、事実多くの液相焼結 はこれで説明されている。ZnO-Bi₂O₃系の相平衡図 は残念ながら得られていないが、温度の上昇とともに Bi₂O₃-rich液相の平衡組成が変化するであろうこと は容易に想像される。また、Bi₂O₃の添加量を増すと、 Bi₂O₃-richな液相の総量(体積比)が増加することも 明白である。このように、温度や組成の変化により Bi₂O₃-rich液相の組成や体積比が変化すると、その液 相内のZnOの拡散に関する活性化エネルギー等も変化 するであろうことは、きわめて合理的な推測である。 しかしながら、図-11の結果は、少なくとも1030℃か ら1400℃の範囲では、温度や添加量に関係なく活性化 エネルギーは一定であることを示している。したがっ て、Bi₂O₃-richの液相内のZnOの拡散は、ZnO物質移 動(すわちここでは粒成長)の主たる律速過程ではな いということが示唆される。しかしながら、温度や液 相組成の違いはZnO拡散過程にそれほど大きな影響を 与えず、この研究の実験精度では、活性化エネルギー 等がみかけ上一定になるだけであるという議論ももち ろん可能である。

(382)

Yanら50)およびLav40)がともにその考察のなかで引 用しているように、Wagner³¹⁾は拡散律速の液相焼結 に関する研究の中で、小さな粒子から大きな粒子へ物 質移動する過程において、 粒界に存在する液相の厚さ はきわめて重要な要因の一つであるとしている。すな わち、もし、Bi₂O₃-richの液相内のZnO拡散過程が ZnO粒成長を律速するのであるならば、ZnOの粒成長 速度は、拡散していく液相粒界層の厚さに反比例ある いはそれに近い何らかの関係があるはずである。この 研究ではBi₂O₃添加量は、0.5%から4%までの8倍の 範囲で変化している。平均粒径や粒径分布にそれほど の差がない場合にはZnO粒子の表面積の合計はほぼ同 じであろうから,添加量の変化の範囲と同等の変化が 粒界層の膜厚にもあるはずである。しかしながら、実 験結果では、平均粒径、活性化エネルギー、Ko項のい ずれにも明らかな差はなかった。したがって、Bi₂O₃rich液相内のZnO拡散過程は、おそらくZnO粒成長の 律速過程ではないという先ほどの結論は正しく、残る 液相と粒子の境界での溶解-再析出反応の方がZnO粒 成長を律速しているという可能性がきわめて高いと思 われる。

この研究のBi₂O₃-rich液相存在下でのZnO粒成長 は、いくつかの観点からみてNicholson³⁹⁾のV₂O₅液相 存在下でのMgO粒成長の研究結果に似ている。両方と も、液相を添加しない場合にくらべると、液相の存在 により粒成長が促進されており、また活性化エネル ギーが低下している。さらに、どちらも粒成長の活性 化エネルギーは液相の含有量に依存しない。しかし, Nicholsonの実験では、MgOの平均粒径がV2O5の添加 量にはっきりと依存している。一方、この研究では、 粒径もまたBi,O。添加量によってほとんど変化してい ない。Nicholsonは、粒径への影響が顕著であるため、 MgO-V₂O₅系では液相内のMgO拡散が律速過程であ ると結論している。一方この研究では、添加量への依 存性のみられるものがないことから、ZnO粒成長は粒 界での溶解-再析出反応に律速されると考えるのが妥 当である。この結論は、液相内の拡散が否定されたこ とにより、間接的に粒界反応律速が示唆されているに 過ぎない。また、 Bi_2O_3 中の Zn^{2+} イオンや O^{2-} イオンの 拡散の活性化エネルギーやZnO固体とBi₂O₃-rich液 相の境界での反応の活性化エネルギーに関する報告は まったくないため、これを直接検証することは残念な がらできない。しかし、この結論は、この研究で得ら れた実験結果をすべて矛盾なく説明することができる

ものである。

3.2.3 気孔率の増加

Bi₂O₃-richの液相の存在するZnO-Bi₂O₃セラミッ クスの焼結では、純ZnOとくらべ平均粒径が大きいが、 同時に1030℃と1400℃の間では粒成長指数もまた大 きい。すなわち、平均粒径が大きいにもかかわらず(対 数的意味における) 粒成長速度は逆に低い。つまり, これらの温度領域では、初期に粒成長が加速されて大 きい平均粒径を示すがその後一種の飽和現象が起こり 粒成長速度が遅くなっていると考えられる。Wong²⁷ の研究からもこの傾向を知ることができる。彼の結果 では、1000℃から1400℃の間ではじめ高い粒成長速度 を示していたものが長時間になると速度が低くなって いる。このために、彼の結果は、 $(\log G)$ 対 $(\log t)$ のプロットは直線になっていない。また、図-8から は、高温で焼成した場合ほど粒成長指数が大きくなる 傾向がみられた。すなわち、高温ほど粒成長の飽和が 早く始まることを示しているといえる。

ここで注目すべきことは、Bi₂O₃を添加したZnOで、 気孔の成長がみられたことである。図-7に示した密 度測定の結果は、Bi₂O₃添加量が増加するほど、または 焼成時間が長くなるほど気孔率が増加するという図-6の微構造写真の観察結果を裏付けるものである。気 孔は、粒界、粒界三重点、および粒内のいずれにも存 在する。これらの気孔の原因は、純ZnOの考察でも述べ たように、ZnO粒子に吸着していたガスの濃縮、ZnOそ のものの蒸発などが考えられるが、低融点ということ から想像されるBi₂O₂の揮発性の高さが関係している とも思われる。同じような気孔率の増大は、他の液相 焼結セラミックスでも観察されている。気孔の存在が 粒界の移動を抑制し、従って粒成長速度を遅くするこ とは、理論的にも実験的にも示されている57-61)。Wong の結果では長時間側で粒成長速度が低くなっており、 この研究では高温ほど粒成長速度が低くなっている。 これらは、気孔率の増大と一致しており、気孔の成長 が粒成長を抑制しはじめるものと考えられる。すなわ ち、Bi₂O₃の添加はZnOの粒成長に二通りの影響を与 える。一つは、まず最初に液相を形成して粒成長を促進 することであり、もう一つは、ある程度の粒成長の後, 気孔の成長を促し逆に粒成長を抑制することである。

4. 結言

高純度ZnO焼結体と、ZnO-Bi₂O₃セラミックスの結 晶粒成長過程を、Bi₂O₃添加量は0.5 wt%から4%ま で、焼結温度は900℃から1400までの範囲で系統的に 調べた。純ZnOについては、平均粒径は焼成時間の1/ 3 乗に比例して増大した。すなわち、粒成長指数(n値) は3 であった。また、粒成長の活性化エネルギーは、 224±16 kJ/molであった。これらの結果は純ZnOの 粒成長がZnO格子内のZn²⁺イオンの拡散に律速される という過去の文献の結果とよく一致した。

Bi₂O₃を添加すると、焼結体の平均粒径は著しく増 大したが、0.5%から4%の範囲では添加量の多少は粒 径にほとんど影響しなかった。1030℃から1400℃の範 囲で、粒成長指数はおよそ5程度であり、純ZnOのn値 より大きかった。平均粒径が大きいにもかかわらず大 きいn値を示すのは、Bi₂O₃の添加により時間とともに 気孔の成長が促されたためと考えられた。同じ温度範 囲での粒成長の活性化エネルギー、純ZnOのそれより かなり低い約150kJ/molであった。この値も,さらに K₀項もBi₂O₃添加量による変化はほとんどなかった。 これらのことから、ZnO-Bi₂O₃セラミックスの粒成 長は、小さいZnO粒子がBi₂O₃-rich液相中に溶解し液 相中を拡散し大きい粒子の表面に再析出するという機 構により進行し、そのなかで律速過程は液相中のZnO の拡散ではなく、ZnO粒子と液相の境界での溶解-再 析出反応であると考えられた。

この研究は千田が科学技術庁長期在外研究員として ワシントン大学に滞在したときに行われた。

焼結体試料の作成に多大の協力をいただいたC.Y. Tan君,画像処理装置の提供をいただいたワシントン 大学のR.C.Dunnel,J.K.Stein両教授,および論文の 原稿に対して貴重な批評・助言をいただいたT.K. Gupta氏(Alcoa),L.M.Levinson氏(GE),ワシント ン大学のW.D.Scott,O.J.Whittemore両教授,およ び慶応大学の山口 喬教授にお礼を申し上げます。ま た,最終原稿に目を通していただいた材料加工部の藤 井部長,および宗像,天田両室長に感謝いたします。

参考文献

- 1) S.L.Blum: Microstructure and Properties of Ferrites, J.American Ceramic Society (以後J. Am.Cer.Soc.と略する), Vol.41, No.11 (1958) pp.489-93.
- R.E.Fryxell and B.A.Chandler: Creep, Strength, Expansion, and Elastic Moduli of Sintered BeO As a Function of Grain Size, Porosity, and Grain Orientaion, J.Am.Cer. Soc., Vol.47, No.6 (1964) pp.283-91.
- E.M. Passmore, R.M. Spriggs, and T. Vasilos: Strength-Grain Size-Porosity Relations in Alumina, J. Am. Cer. Soc., Vol. 48, No.1(1965) pp.1-7.
- 4) J.A.Kuszyk and R.C.Bradt: Influence of Grain Size on Effects of Thermal Expansion Anisotropy in MgTi₂O₅, J.Am.Cer.Soc., Vol. 56, No.8 (1973) pp.420-23.
- M. Matsuoka: Nonohmic Properties of Zinc Oxide Ceramics, Japanese J. Appl. Phys., Vol. 10, No.6 (1971) pp.736-46.
- 6) J.Wong and W.G.Morris: Microstructure and Phases in Nonohmic ZnO-Bi₂O₃ Ceramics, Am. Cer.Soc.Bull., Vol.53, No.11 (1974) pp.816-20.
- 7) L.M.Levinson and H.R.Philipp: Zinc Oxide Varistors-A Review, Am.Cer.Soc.Bull., Vol. 65, No.4 (1986) pp.639-46.
- 8) T.K.Gupta: Influence of Microstructure and Chemistry on the Electrical Characteristic of ZnO Varistors, in Tailoring Multiphase and Composite Ceramics, edited by R.E.Tressler, et al., Plenum Press (1986) pp.493-507.
- 9) T.Asokan, G.N.K.Iyengar, and G.R.Nagabhushana: Influence of Process Variables on Microstructure and V-I Characteristics of Multicomponent ZnO - Based Nonlinear Resistors, J.Am.Cer.Soc., Vol.70.No.9(1987) pp.643-50.
- 10) H. Cerva and W. Russwurm: Microstructure and Crystal Structure of Bismuth Oxide Phases in Zinc Oxide Varistor Ceramics, J. Am. Cer. Soc., Vol.71, No.7 (1988) pp.522-30.
- 11) M. Sumiyoshi: Ceramic Varistor, in JFCA 1988

Annual Report to Overseas Readers, (1988) pp. 42-50.

- P.Palanisamy and T.Asokan: Intelligent Processing of ZnO-Based Ceramics, Am.Cer.Soc. Bull., Vol.67, No.10 (1988) pp.1695-98.
- 13) V.J.Lee and G.Parravano: Sintering Reactions of Zinc Oxide, J.Appl.Phys., Vol.30, No. 11 (1959) pp.1735-40.
- 14) L.F. Norris and G. Parravano: Sintering of Zinc Oxide, J.Am.Cer.Soc., Vol.46, No.9 (1963) pp.449-52.
- G.C. Nicholson: Grain Growth in Zinc Oxide, J. Am. Cer. Soc., Vol. 48, No. 4 (1965) pp.214-15.
- 16) T.K.Gupta and R.L.Coble: Sintering of ZnO:
 I, Densification and Grain Growth, J.Am. Cer.
 Soc., Vol.51, No.9 (1968) pp.521-25.
- 17) T.K.Gupta and R.L.Coble: Sintering of ZnO.
 II, Density Decrease and Pore Growth During the Final Stage of the Process, J.Am.Cer.Soc., Vol.51, No.9 (1968) pp.525-28.
- 18) S.K.Dutta and R.M.Spriggs: Grain Growth in Fully Dense ZnO, J.Am.Cer.Soc., Vol.53, No. 1 (1970) pp.61-62.
- 19) D. W. Readey, T. Quadir, and J. H. Lee: Effects of Vapor Transport on Microstructure Development, Ceramic Microstructures'86, edited by J. A. Pask and A. G. Evans, Plenum Pub. Co. (1968) pp.485-96.
- 20) Y. Moriyoshi and W. Komatsu: Kinetics of Initial Sintering with Grain Growth, J.Am.Cer. Soc, Vol.53, No.12 (1970) pp.671-75.
- 21) T.K.Gupta: Inhibition of Grain Growth in ZnO, J.Am.Cer.Soc., Vol.54, no.8 (1971) pp.413-14.
- 22)小松和蔵,宮本美貴夫,藤田尚志,守吉佑介:酸化 亜鉛および酸化ニッケルの焼結における添加物の 影響,窒業協会誌,76巻,12号(1968) pp.407-12.
- 23)小松和蔵,守吉佑介,瀬戸直人:酸化亜鉛の焼結に おける混合効果,窒業協会誌,77巻,10号(1969) pp.347-53.
- 24) O.J. Whittemore and J.A.Varela : Initial Sintering of ZnO, J.Am.Cer.Soc., Vol.64, No. 11 (1981) pp.C-154-C-155.
- 25) K.Kobayashi, P.Dordor, J.P.Bonnet, R.

Salmon, and P. Hagenmuller: Densification Process in Undoped Zinc Oxide, J. Materials Research, Vol.2, No.4 (1987) pp.478-84.

- 26) O.J. Whittemore, J.A. Varela, and E.S. Tosaya: Pore Growth During the Sintering of ZnO, Ceramic Powders, edited by P. Vincenzini, Elsevier Scientific Pub.Co. (1983) pp.849-59.
- 27) J. Wong: Sintering and Varistor Characteristics of ZnO-Bi₂O₃ Ceramics, J. Appl. Phys., Vol.51, No.8 (1980) pp.4453-59.
- 28) T. Asokan, G. N. K. Iyengar, and G. R. Nagabhushana: Studies on Microstructure and Density of Sintered ZnO-based Non-linear Resistors, J. Materials Science, Vol.22, No. 6 (1987) pp.2229-36.
- 29) T. Asokan, G. N. K. Iyengar, and G. R. Nagabhushana: Inhomogeneity in Sintered ZnO Based Non – linear Resistors, Ceramics International, Vol.14, No.1 (1988) pp.35-41.
- 30) G.Y. Sung and C.H. Kim: Anisotropic Grain Growth of ZnO Grain in the Varistor System $ZnO - Bi_2O_5 - MnO - TiO_2$, Advanced Ceramic Materials, Vol.3, No.6 (1988) pp.604 - 06.
- 31) F. V. Lenel: Sintering in the Presence of a Liquid Phase, Trans. A. I. M. E., Vol. 175 (1948) pp. 878-905.
- 32) G.W.Greenwood: The Growth of Dispersed Precipitates in Solutions, Acta Metall., Vol.4, No.3 (1956) pp.243-48.
- 33) W.D.Kingery, Densification during Sintering in the Presense of a Liquid Phase I.Theory, J. Appl.Phys., Vol.30, No.3 (1959) pp.301-06.
- 34) W.D.Kingery and M.D.Narasimhan: Densification during Sintering in the Presence of a Liquid Phase II. Experimental, J.Appl.Phys., Vol.30, No.3 (1959) pp.307-10.
- 35) W.D.Kingery, E.Niki, and M.D.Narasimhan: Sintering of Oxide and Carbide-Metal Compositions in Presence of a Liquid Phase, J. Am.Cer.Soc., Vol.44, No.1 (1961) pp.29-35.
- 36) C.Wagner: Theory of Precipitate Change by Redissolution, Z.Elektorochemie, Vol.65, No. 7∕8 (1961) 581-91.
- 37) B. Jackson, W. F. Ford, and J. White: The Influ-

ence of Cr_2O_3 and Fe_2O_3 on the Wetting of Periclase Grains by Liquid Silicate, Trans. British Ceramic Soc., Vol.62 (1963) pp.577-601.

- 38) D.S.Buist, B.Jackson, I.M.Stephenson, W. F.Ford, and J.White: The Kinetics of Grain Growth in Two-Phase (Solid-Liquid) Systems, Trans. British Ceramic Soc., Vol.64 (1965) pp. 173-209.
- 39) G.C. Nicholson: Grain Growth in Magnesium Oxide Containing a Liquid Phase, J.Am.Cer. Soc., Vol.48, No.10 (1965) pp.525-28.
- 40) K.W.Lay: Grain Growth in UO₂-Al₂O₃ in the Presence of a Liquid Phase, J.Am.Cer.Soc., Vol.51, No.7 (1968) pp.373-76.
- R.B. Heady and J. W. Cahn: An Analysis of the Capillary Forces in Liquid-Phase Sintering of Spherical Particles, Metall. Trans., Vol.1, No.1 (1970) pp.185-89.
- 42) J.W.Cahn and R.B.Heady: Analysis of Capillary Forces in Liquid Phase Sintering of Jagged Particles, J.Am.Cer.Soc., Vol.53, No. 7 (1970) pp.406-409.
- 43) W.J.Huppman and G.Petzow: The Elementary Mechanisms of Liquid Phase Sintering, Sintering Processes, edited by G.C. Kuczynski, Plenum Press (1980) pp.189-201.
- 44) D. F. K. Hennings, R. Janssen, and P. J. L. Reynen: Control of Liquid-Phase-Enhanced Discontinuous Grain Growth in Barium Titanate, J.Am.Cer.Soc., Vol.70, No1(1987) pp.23-27.
- 45) W. A. Kaysser, M. Sprissler, C. A. Handwerker, and J.E. Blendell: Effect of a Liquid Phase on the Morphology of Grain Growth in Alumina, J. Am. Cer. Soc., Vol. 70, No.5 (1987) pp.339-43.
- 46) A. Potin, J. Ravez, and J. P. Bonnet: Liquid-phase Sintering of Barium Titanate with Lithium Fluoride, J. Materials Research, Vol.2, No. 4 (1987) pp.485-88.
- 47) J.E. Marion, C.H. Hsueh, and A.G. Evans Liquid – Phase Sintering of Ceramics, J.Am. Cer.Soc., Vol.70, No.10 (1987) pp.708-13.

(386)

- 48) R.M.German: Liquid Phase Sintering, Plenum Press (1985).
- 49) J. B. Baldo: Grain Growth in Refractory Dolomites, Ph.D.Thesis, University of Washington, Seattle, WA, U.S.A. (1986).
- 50) M. F. Yan, R. M. Cannon, and H. K. Bowen: Grain Boundary Migration in Ceramics, Ceramic Microstructures '76, edited by R.M.Fulrath and J.A.Pask, Westview Press (1977) pp.276-307.
- 51) M.I. Mendelson: Average Grain Size in Polycrystalline Ceranics, J.Am.Cer.Soc., Vol.52, No.8 (1969) pp.443-46.
- 52) H.V.Atkinson: Theories of Normal Grain Growth in Pure Single Phase Systems, Acta Metall., Vol.36, No.3 (1988) pp.469-91.
- 53) E.M.Levin, C.R.Robbins, and H.F.McMurdie: Phase Diagrams for Ceramists, Am.Cer.Soc. (1964) p.569.
- 54) W.G. Morris: Electrical Properties of ZnO-Bi₂O₃ Ceramics, J.Am.Cer.Soc., Vol.56, No. 7 (1973) pp.360-64.
- 55) D.R.Clarke: The Microstructural Location of the Intergranular Metal Oxide Phase in a Zinc Oxide Varistor, J.Appl.Phys., Vol.49, No. 4 (1978) pp.2407-11.
- 56) W.D.Kingery, J.B.Vander Snade and T. Mitamura: A Scanning Transmission Electron Microscopy Investigation of Grain Boundary Segregation in a ZnO-Bi₂O₃ Varistor, J.Am. Cer.Soc., Vol.62, No.3-4 (1979) pp.221-22.
- 57) W.D.Kingery and B.Francois: Grain Growth in Porous Compacts, J.Am.Cer.Soc., Vol.48, No. 10 (1965) pp.546-47.
- 58) F.A. Nichols: Theory of Grain Growth in Porous Compacts, J. Appl. Phys., Vol. 37, No. 13 (1966) pp.4599-4602.
- 59) R.J.Brook: Pore-Grain Boundary Interactions and Grain Growth, J.Am.Cer.Soc., Vol.52, No.1 (1969) pp.56-57.
- 60) F. M. A. Carpay: The Effect of Pore Drag on Ceramic Microstructures, Ceramic Microstructures '76, edited by R. M. Fulrath and J. A. Pask, Westview Press (1977) pp.261-75.
- 61) A.M.Glaeser: Microstructure Development in

136

Ceramics: The Role of Grain Growth, 窯業協会 誌, 92 巻, 10 号 (1984) pp.537-46.

付録

多結晶セラミックスと結晶粒成長

セラミックスの粉末をプレス成形したものを焼成す ると、粉末粒子間の気孔が減少しち密化していき、最 終的に気孔の少ない(気孔のない)焼結体となる。こ の過程は焼結とよばれる。焼結の中期から後期におい て、ち密化が十分に進み最終密度に近くなると、結晶 粒が、その粒径分布の形は変えずに平均粒径が大きく なるという現象が支配的となる。これを結晶粒成長と いう。なお、焼結初期にはち密化過程が支配的であり、 この過程を調べるための一つの方法として、球形粒子 の接触面にできるネック部分の成長を測定する研究が なされている。

焼結体の性質の多くは、微構造に依存する。微構造 は、結晶の粒径と粒径分布・形状、気孔の大きさ・位 置・形状、粒界の組成・厚さ等によって表現される。 諸性質の微構造依存の例を結晶粒径についてみると、 付図 -1^*)はホットプレスで焼結したMgTi₂O₅につい て、曲げ強度 (Modulus of Rupture) と単位面積当り の破壊エネルギー (Work of Fracture、荷重一変位曲 線の積分と破断面の面積から計算されている) がそれ ぞれ結晶粒径により変化することを表している。した がって、セラミックスを舶用機関の構造材料等に応用 する場合、好ましい機械的性質を得るためには、結晶 粒径を制御する必要があることがわかる。

この研究の対象としたZnOは、電圧と電流が比例し ない(オームの法則を満たさない)バリスター(Varistor, Variable Resistorからの造語)と呼ばれる電子材 料として応用されている。電圧-電流曲線がフラット になっている領域でバリスターとして使われるが、電 圧を下げていくとあるところでオームの法則に従うよ うになる。その限界電圧値をブレイクダウン電圧と呼 ぶ。付図-2**)は、一定の電流値(10⁻³Aと10⁻⁷A)に 対する単位長さ当りのブレイクダウン電圧が結晶粒径 の逆数に比例することを示している。

本文の式(1)で表される結晶粒成長は,n値,K₀, 活性化エネルギーQで特性づけられる。一方,焼結体の 微構造は,出発原料粉末の粒径・粒径分布・形状,焼 成の温度・時間・圧力・雰囲気,添加物または不純物 の種類と量等に依存する。これらの条件が結晶粒成長

付図-1 MgTi₂O₅の曲げ強度と破壊エネルギー への結晶粒径の影響*¹

*) J.A.Kuszyk and R.C.Bradt: Influence of Grain Size on Effects of Thermal Expansion Anisotropy in MgTi₂O₅, J.Am.Cer.Soc., Vol.56, No.8 (1973) pp.420-23.

**) J.Wong: Barrier Voltage Measurement in Metal Oxide Varistors, J.Appl.Phys., Vol.47, No. 11 (1976) pp.4971-74. 138

にどのように影響するかを調べることにより,結晶粒 径制御の方法が明らかになると考えられる。しかし, 個々の要因がどのように結晶粒成長に寄与するかはあ まり解明されていない。そのため,本研究では,過去 にある程度の研究の発表されている純ZnO-Bi₂O₃系 について,粒成長パラメーターの定量的評価と粒成長 機構の考察を行った。

所外発表論文等概要

<推進性能部> 通常型及びハイリー・スキュード・プロペラの 翼面圧力計測について ーキャビテーションが発生しない場合ー

Measurement of Pressure Distribution on a Conventional and a Highly Skewed Propeller Model —Under Non-Cavitating Condition—

> 右近良孝 黒部雄三 工藤達郎 平成元年5月 日本造船学会論文集 巻165号

プロペラ翼面圧力計測は理論の検証や物理現象の 把握の観点からも重要であり、特にハイリー・スキュー ドプロペラHSPの特性解明に不可欠である。

本論文では実船プロペラ翼面圧力計測に対応した模型での計測ということから,不均一流中及びキャビ テーション発生状態での計測が可能な計測法の開発を 目的としている。このため,チャンバー型圧力計が用 いられ,応答特性も水中スピーカーを用いた基礎的試 験により確認を行った。圧力計の取り付け方法に関し て在来法ではプロペラがスラストを発生する時に生じ る翼の変形が圧力計の出力に甚大な影響を与えること を見い出だした。接着剤や取り付け方法を改良して, 翼の変形が圧力計に影響を与えない取り付け方法を開 発するとともに,これの確認も行った。

上記の圧力計測法に基づき,通常型プロペラCPと HSPについて圧力計を行い,既存の揚力面理論計算値 との比較も行った。

均一流中でのCPの圧力に関しては高回転数での実 験では正面側を除き、良い対応が得られた。正面側に ついては相当二次元翼の概念に基づく計算法の問題点 が指摘できた。一方、HSPの圧力に関しても同様の結 果が得られたが、新しい知見としては翼端での圧力が 荷重度によって計算値より大幅にずれ、これによって HSP独特の前縁剝離渦の存在が推察できた。

不均一流中でのCPの圧力分布及び一回転中の圧力 変動と理論値との相関は均一流中でのそれと同じで あった。一方,HSPに関しては翼端での圧力が全く理 論計算値とは合わず,翼の変形や粘性の影響の他に, 前縁剝離渦の影響も考えられ,理論の改良の余地を指 摘することができた。

本論文で得られた計測データはCFDによる新しい プロペラ理論計算や揚力体理論の検証のための貴重な データ・ベースとなると考えられる。