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Abstract

In the first part of this paper, the fractional step method to solve the two-
dimensional Navier-Stokes Equations for incompressible viscous fluid flow is pre-
sented. The developed code is validated by some simple flow programs such as the
Tylor-Green problem of decaying vortices or the driven cavity flow problem. The
extension of the method to free surface flow problems is then made. Issues such as
grid generation, free surface boundary conditions and movement of the fre¢ surface
in time are addressed. The troubles encountered in the application of the method to
free surface flow problem are discussed and some recommendations for computaion
of the free surface flow using the fractional step method are made.

Following these recommendations, the numerical method based on the MAC
method is applied to free surface problems in the second part of the paper. The
boundary and initial conditions for the generation of periodic progressive waves are
discussed. The computational results show that the wave that has the given wave
length and frequency can be generated by the proper boundary and initial condi-
tions. ' :
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1. Introduction

Flows with free surfaces are important in many engineering applications. In
particular, the surface flows around ships and other marine structures include many
interesting fluid mechanical phenomena. One such phenomenon associated with
these free surface flows is that of wave breaking. The breaking of waves about
marine structures causes large impact loadings and leads to undesirable increases
in drag on ships. Thus, a better understanding of the mechanisms involved with
breaking waves will perhaps lead to improved design and construction of ships and
other marine structures.

For engineering applications numerical solution of the governing equations is a
useful tool for aiding in the design and construction of ships and marine structures.
However, for engineering design and analysis the governing equations are averaged
over time or space and thus the effects of turbulence must be incorporated into these
averaged equations. This is the principal difficulty in using numerical approaches in
that accurate turbulence models are required in order to obtain reliable predictions
of the forces and flows about ships or other marine structures. Thus, it is very
important that accurate and reliable turbulence models be used in these calculations.

In order to construct reliable turbulence models for free surface flows it is nec-
essary to increase our basic understanding of these flows. The information required
for these turbulence models has been traditionally obtained from laboratory exper-
iments. However, with the advent of powerful and fast supercomputers the use of
direct numerical simulation (DNS), or full simulation, has opened up a new approach
for increasing basic understanding of many turbulence phenomena.

A full simulation is a calculation which produces an exact solution of the time-
dependent, Navier-Stokes equations over the full range of relevant length scales down
to the smallest scales of the turbulence. Such a simulation requires tremendous com-
puter resources, but requires no time averaging of the governing equations nor any
turbulence modelling. Therefore, the calculations can be treated as an experiment
with accurate, time-dependent data available at a large number of locations.

Results obtained from full simulation can be used to support phenomenological
turbulence modelling. The use of full simulation has provided new insight into the
problem of turbulent dispersion (Lee, Squires, et.al. [1]). DNS has also been instru-
mental in learning about the structure of turbulent channel flow (Moser and Moin
[2]). Certain statistical correlations needed for turbulence models are impossible
to measure in laboratory experiments but very straightforward to obtain from the
simulation data.

To date full simulation has been applied to canonical turbulent flows. Examples
including isotropic turbulence, homogeneous turbulence, fully-developed flow in a
channel, and flat-plate boundary layers. The geometry for each of these flows is
simple and therefore very accurate numerical techniques may be applied to the
computation of such a flow. Typically, spectral methods are used for the calculation
of these flows. Spectral methods are much more accurate than traditional finite



difference techniques in that the high wave number components of the solution are
much more accurately represented and there is no phase error for a spectral method.

Thus, to perform full simulations of free surface flows accurate numerical tech-
niques must be devised and tested so that the results obtained from the simulations
may be trusted. It is important that the numerical technique be as accurate as
possible so that the solutions obtained from the simulations be relatively free from
errors associated with the numerical approximation of the governing equations.

Since the governing equations for free surface flows are the incompressible
Navier-Stokes equations the principal difficulty with obtaining time-accurate so-
lutions arises from the fact that the continuity equation does not contain a time-
derivative explicitly. Thus, the constraint of mass conservation is obtained through
the coupling of the continuity equation and the pressure in the momentum equations.
As pointed out by Kim and Moin [3], the fact that the continuity equation does not
have a time derivative prevents the use of conventional alternating-direction-implicit
(ADI) schemes for advancing the governing equations in time. Thus, one approach
is to use the continuity equation along with the momentum equations to derive
the Poisson equation for the pressure field. In this way, the elliptic nature of the
calculation is expressed by a single equation. It is also important to note that
the numerical scheme preserves such global quantities as mass, momentum, kinetic
energy, and circulation since failure to do so can result in numerical instability.

The objective of this paper is to demonstrate the application of one method
for solving the incompressible Navier-Stokes equations which satisfies global conser-
vation of the above quantities. In the first part of this paper the fractional step
method of Kim and Moin is described and results from the method are obtained
for the Taylor-Green problem of decaying vortices and also flow in a driven cavity
at four Reynolds numbers. Extension of the method to the free surface problem is
then discussed. Issues such as grid generation, free surface boundary conditions, and
movement of the free surface in time are addressed. The present work will provide
more detail of the fractional step method of Kim and Moin and it is thus hoped the
additional detail will be useful to future users of the method.

In the second part, the numerical method based on the MAC method is applied
to free surface problems. The boundary and initial conditions for the generation of
periodic progressive waves are discussed. The computational results show that the
wave that has the pre-determined wave length and frequency can be generated by
the proper boundary and initial conditions.

Part I. Fractional Step Method

2. Numerical Method

The method used for the results obtained in this paper is based on the fractional
step method of Chorin [4] for time-advancement of the Navier-Stokes and continuity

(231)



(232)

equations for incompressible viscous flow:
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(2.1)

Bu;

5o = (2:2)
where both the dependent and independent variables have been appropriately non-
dimensionalized.

Application of the fractional-step, or time-split, method to the incompressible
Navier-Stokes equations is a “natural” choice for advancing the equations since the
pressure field may be interpreted as a projection operator which projects an arbitrary
velocity field onto a divergence free vector field. Thus, a two-step time-advancement

scheme of equations (2.1) and (2.2) is
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Note that by adding equations (2.3) and (2.4) the intermediate velocity field,
4;, and the value of the pressure gradient at time level n vanish from the discrete
approximation. The reason for subtracting the time level n pressure gradient from
equation (2.3) and then adding it to equation (2.4) will become evident when bound-
ary conditions for the intermediate velocity field are derived. The first fractional
step (equation (2.3)) is a second order accurate approximation of the non-linear and
viscous terms (second order explicit Adams-Bashforth for the non-linear terms and
second order implicit Crank-Nicholson for the viscous terms). The second fractional
step can be shown to be the correction, or projection, of the intermediate velocity
field, 4;, onto a divergence-free vector field by equating the divergence of a new
variable, ¢, with the right-hand side of equation (2.4):
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thus the second fractional step may be rewritten as
unt, — gt
st b

The pressure can be expressed in terms of this new variable ¢ through the
following relations:

(2.7)
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P = prtt — pn, (2.9)

Equation (2.7) can be used to express the second term on the right hand side of

equation (2.8) in terms of ¢ and thus by integrating (2.8) one can show
St 62¢n+1
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All spatial derivatives in (2.3) and (2.4) are expressed using second order ac-
curate central differences on a fully staggered grid (Figure 1). For the staggered
grid the continuity equation is enforced about the pressure nodes (in each cell) and
the momentum equations are satisfied about the velocity nodes. Since a staggered
grid is used, pressure boundary conditions are not required. It may also be shown
that in the absence of time-differencing errors and viscosity, global conservation of
momentum, kinetic energy, and circulation are preserved (Lilly [7]). The principal
difficulty of using staggered grids is that some velocity components are not defined
on the boundaries. Extension to higher orders of accuracy is also difficult.

To avoid the stability restriction imposed by the viscous terms an implicit time-
advance scheme is used in equation (2.3). Rewriting the first fractional step
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where A; = (6t/2Re)(62/62?), Ay = (6t/2Re)(62/6y?), As = (6t/2Re)(82/62%). To
solve equation (2.11) requires the inversion of a large sparse matrix. For computa-
tions using a large number of grid points this is not practical so equation (2.11) is
factored into the following form:
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In equation (2.12) terms of order 6t have been neglected but only inversion of
tridiagonal matrices is required. One issue that arises in solving a factored system
such as equation (2.12) is the boundary conditions for the intermediate velocity
fields. To illustrate this consider the solution of the two dimensional problem:

(1= A1 = A) (85 — u™j) =

6t fi; + 2(Ar + Ar)u”;; (2.13)

where f; ; are the non-linear terms advanced by second order Adams Bashforth and
the pressure gradient evaluated at time level n in equation (2.12). For simplicity,
rewrite the above equation as

(1 - A;)(1— Ap)Au;; = RHS; ;. (2.14)
To solve the above rewrite the system as
(1 - Ag)Au;,j = A'ul.‘,j (2.150)

(1— A;)Ad;; = RHS:, (2.15b)
Expanding the second step (equation (2.15b)):
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for an equally spaced grid in the x-direction. Defining f = —6t/2Reéz? equation
(2.17) becomes

BAU 41 ; + (1 — 2B)A,; + BAY;—1; = RHS;
i=1,...;,NX
j=1,...,NY (2.18)

Thus, boundary values are required for Au'q; and Au'yx41;. These boundary
conditions are obtained from the second sweep, i.e., equation (2.15a). For example,
at e =1

AUIO,J‘ = (1 - Az)AuO_J' (219)
and expanding this gives
, st
Au 0, — A’UO,J' - W(AUOJ‘*‘I - ZAUO’J' + AuO,j-—l)° (220)



It should be noted that by neglecting the second term on the right hand side of
equation (2.20) the boundary conditions for the first sweep will be accurate to order
§t2. ‘

The continuity equation, (equation (2.5)), and the second fractional step (equa-
tion (2.4)) may be used to obtain an equation for ¢™+1. Enforcing the continuity
equation at time level n + 1 and using equation (2.7) to express the new time level
velocity in terms of ¢**! yields the following:

e . Bt 1 (6&g,j + 55‘:',;')
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(2.21)
for points away from the boundaries. For points near the boundaries the above
equation is slightly modified by the velocity boundary conditions. For example,
near the lower boundary the term §%¢/8y? is expressed as

¢in 1 ia—din b1 — dio
e E( 50 - 5 ) (2.22)
and using equation (2.7) this is
e — - 1, R
_¢1,1 6y¢t,0 = v :,llgt Vi1/2 (223)
therefore 54 w p “ ) ,
6,1 2 — Qi o" i1/2 — Yi1)2
—_—= 2.24
52 g oy T 5 ) (2:24)

A solution to equation (2.21) may be obtained using transform methods. For
the two-dimensional problem with a uniform grid spacing in the z direction the
value of ¢"*1; . may be expressed as

ot = Aff é ms(—i(z' - l)) (2.25)
T LMY T )
Using this in equation (2.21) and the orthogonality property of cosines one can
obtain ‘ .
62¢1,‘ 7 A
sz — kYo = Qu; (2.26)

where k') = 2(1 — cos(nl/NX))/6x? is the modified wave number for central dif-
ferences and @, is the transformed source term. Thus, for each wave number a
tridiagonal matrix is inverted to obtain the values of the coefficients of that wave
number. The zeroth wave number is a special case and must be handled differently
since the tridiagonal matrix for k', = 0 is singular. For this case equation (2.26) is

i _
—6?2'1 = Ql’]‘ (2.27)
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and for an equally spaced grid in the y-direction this equation applied at node j
yields the value of ¢g ;41 .

boj41 = 63° Qo + 200, — Po,j-1 (2.28)

for y=1,..., NY — 1. The value of qgo,l is obtained from the boundary data. From
equation (2.7)

Sdos _ -
by =0 (2.29)
where - )
. 031}!2 — Yo,1/2 .
—-q=———" .30
a 5 (2.30)
thus ) ) ‘
$o,1 = o0 + 6ya. (2.31)

Arbitrarily choosing oo to be zero allows determination of $o,1 from (2.31) and the
rest of the zeroth mode coefficients from equation (2.27). It should be remarked
that this method of solution is entirely consistent with the solution of the Poisson
equation with Neumann boundary conditions. For additional details see Kim and
Moin [3] and Peyret and Taylor [5].

The cosine series shown in equation (2.25) accounts for the fact that grid is
staggered, i.e., pressure is not defined on the boundaries of the domain. Thus, the
actual implementation of equation (2.25) is complicated by this fact and further ma-
nipulations must be done in order to use fast transforms to compute the coefficients
of the series. Appendix A describes the steps necessary to use fast transform meth-
ods to compute the coefficients in equation (2.25). It should also be remarked that
the use of trigonometric expansion such as that shown in equation (2.25) is valid
only for an equally spaced grid in the z-direction. Thus, for complex geometries one
would have to resort to iterative methods such as SOR or multi-grid for obtaining
a solution of the Poisson equation.

Finally, given the new values of #"*! obtained using the relations shown above
the new time level velocities may be calculated from equation (2.7).

2.1 Boundary Conditions for Intermediate Velocity Field

For fractional step methods boundary conditions for the intermediate velocity
field are required for the tridiagonal matrix inversion in equation (2.12). It should
be noted that for an explicit time advancement of the governing equations the solu-
tion at the new time level is independent of the boundary values of the intermediate
velocity field (see Peyret and Taylor [5] for further discussion). The boundary con-
ditions used for the intermediate velocity fields for the results shown in this paper
are slightly different than those of Kim and Moin [3].



As shown by Kim and Moin, to construct proper boundary conditions for 4;, it
is regarded as an approximation to u*; where the continuous function satisfies

6u*i _ _c’?u*;u*j 1 3211*,' oP*
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following Kim and Moin,
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thus, boundary conditions accurate to order §¢* are obtained. The significant differ-
ence between the above derivation of the boundary conditions and that done by. Kim
and Moin is that the pressure gradient at time level n has been included in equation
(2.3). Thus, the final result (equation (2.1.3)) is a more simple approximation of the
boundary conditions than that obtained by Kim and Moin. Kim and Moin’s result

is
., 0P

i = 4 (X, tpg1) + bto—+ O(6t?) (2.1.4)

For a staggered grid the pressure gradient is not available along the boundaries and

must therefore be extrapolated from the interior points.’

3. Numerical Checks of the Method

To test the various parts of the method such as the implicit treatment of the vis-
cous terms, boundary conditions of the intermediate velocity field, etc. the Taylor-
Green problem of decaying vortices was computed. This two-dimensional unsteady
flow is a solution to the Navier-Stokes and continuity equation

u(z,y;t) = —cos(m)éin(g))e"zt ' ‘ (3-1a)

v(z,y;t) = —sin(z)cos(y)e ‘ (3.1b)
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P(z,y;t) = %—(cos(Zw) + cos(2y)) e 4 (3.1¢)

Errors in the u-component of velocity from two calculations using a different
number of grid points are shown in Table 1. As expected, increasing the number
of grid points decreases the error. These results also show the spatial differencing
scheme is second order accurate.

The implicit part of the method was checked by integrating the following equa-
tions

du P 1 2
= o + EV U (3.2a)
v oP 1_,
-y + EV v (3.2b)
du v
2z T 3y = 0. (3.2¢)

Since the non-linear terms have been eliminated, solution of the above equations
should be independent of the time step if the time-advance scheme is unconditionally
stable. It was found that stable solutions were obtained using time steps as large
as 6t/(Rebz?) = 10* using the boundary conditions for the intermediate velocity
field given by equation (2.1.3). It was also found that for computations of the
cavity flow with the non-linear terms the steady state solutions obtained using an
implicit treatment of the viscous terms were identical to solutions obtained using an
explicit treatment of the viscous terms, giving another indication that the boundary
conditions for the intermediate velocity field are consistent. It should be noted,
however, that the boundary conditions given by equation (2.1.3) presume the values
of the velocity field are known at the new time level. For flows that do not have a
steady state solution (e.g., turbulence) this may not be true and this may affect the
stability of the method. As mentioned previously, one disadvantage of the staggered
grid approach is that some velocity components are not defined on the computational
boundaries. Thus, to enforce boundary conditions such as no-slip a fictitious point
outside of the boundary is used (see Figure 2). Since the value of this velocity is not
known at time level n + 1, it is approximated as the value from time level n. One
alternative to such a procedure is to move the fictitious point to the boundary of
the domain. The advantage of moving the points to the boundaries of the domain is
that the boundary values are known, of course. However, for such a grid the order
of accuracy of the spatial differencing scheme is first order along the boundaries (see
Peyret and Taylor for further discussion). The code using the fractional step method
outlined above was modified such that both the u and v velocity components were
defined on the boundaries and for the driven cavity flow the results are virtually
identical. It was found that steady state solutions were obtained in fewer iterations

- when the velocity points are defined on all boundaries. Thus, it is preferred to
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define velocity components on all boundaries at the sacrifice of accuracy near the
boundaries.



As a final check of the method the flow in a driven cavity was computed.
The flow in a driven cavity has long been a standard test problem for Navier-

Stokes solvers. Since a large number of investigators have applied their codes to this:

problem there is general agreement of the results for Reynolds numbers up to 10000.
It should also be mentioned that flow in a driven cavity becomes three-dimensional
at moderately low Reynolds numbers (around Re=1000) and thus two-dimensional
simulations of this flow at high Reynolds numbers are only of use as a test problem
for Navier-Stokes solvers. ; ,
For this flow the upper wall of the cavity is moved at a constant velocity to
the right (uwer = 1) and the resulting flow field consists of several standing. vor-
tices, whose characteristics are functions of the Reynolds number. Figure 3 shows
streamline contours for four different Reynolds numbers. It can be seen from the
Figure that as the Reynolds number is increased the streamline pattern becomes
more asymmetric. Vorticity contours are plotted in Figure 4 and again show this
increasing asymmetry with increasing Reynolds number. At Re = 1 the.flow field
is virtually symmetric about the centerplane. Figure 5 shows the u-velocity profile
along the cavity centerplane for Re = 1 from calculations using a 21 x 21 grid and a
31 x 31 grid. It can be seen the two velocity profiles are nearly converged. Another
calculation was done using a 31 x 31(Re = 1) grid but with a clustering of points
near the upper and lower walls in order to check the results for a non-unform grid.
The mapping of the uniform grid to the non-uniform grid in the y-direction for this

calculation was _ (2p-1)

yi=1L £ | (3.3)

7 y (2y;-1)
201+ [ )
(see Anderson, Tannehill, and Pletcher [6] for further details). -

The velocity profiles from a uniform grid calculation and the non-uniform grid
calculation are shown in Figure 6. It can be seen there is a reasonable convergence
in the results from the two calculations. Velocity profiles from the centerplane of
the cavity for the four different Reynolds numbers used in the calculation are shown
in Figure 7. This Figure shows the increase in the velocity gradient with increasing
Reynolds number. Finally, in Table 2 are shown values of the stream function and
vorticity at the center of the primary vortex for the different Reynolds numbers
used in these calculations. Also shown in the table are values of these quantities
obtained from the simulations done by other investigators. It can be seen from the
table that the agreement between the results obtained from these simulations and
those of other investigators is excellent.

4. Extension of the Fractional Step Method to the Free Surface Problem

The fractional step method described above was applied to the simulation of the
two-dimensional free surface flow shown in Figure 8. Periodic boundary conditions
were applied at the east/west boundaries and zero-gradient conditions were applied

11
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along the lower boundary. Various boundary conditions were applied to the veloci-
ties in the cells containing the free surface such as extrapolation and the constraint
of incompressibility. As was mentioned earlier, it is desirable that the numerical
method be as accurate as possible. One reason for using periodic boundary condi-
tions is that the solution may be expanded in a Fourier series (whose convergence
properties are much better than finite differences). It was found, however, that for
the free surface problem outlined in Figure 8 the use of a spectral method is very
difficult and therefore a finite difference scheme was used.

To apply the fractional step method to the free surface problem as outlined with
the given boundary conditions certain modifications must be made to the method.
The most significant modification, of course, is the treatment of the free surface.
Aside from the velocity and pressure fields an additional unknown is introduced
into this problem: the height of the free surface. There are two approaches for time
advancing the height of the free surface, a Lagrangian and an Eulerian method.
In the Lagrangian approach marker particles on the free surface are tracked and
in this way the location of the free surface is known at all times. This approach
was originally used by Harlow and Welch [9] in applying their Marker-and-Cell
technique to calculating free surface flows and has been successfully applied by
other investigators as well. The principal drawback of this method for following the
free surface is that it must be located within the computational domain at all times
and thus there will always be some amount of wasted storage of the points above
the surface which are devoid of fluid. In the Eulerian approach to determining the
location of the free surface the differential equation for the surface height is solved
along with the momentum and continuity equations and thus the free surface height
is advanced in time in a similar fashion as the velocity field ( for example Hino [10]).
This approach has the advantage that there is no wasted storage when a body-
fitted coordinate system is used in which the free surface is always located along
the upper boundary of the computational domain. Since a body-fitted coordinate
system is used the governing equations must now be mapped from the Cartesian grid
(z,y) to the body-fitted coordinate system (£, 7). The mapped equations written in
conservation law form are

. . ) .
(1 X = A
L)+ B 4Gy =0 (4.1
where : ¢
Fz-t-q+«-iF+§y-G
J J J (4.2)
A T Ty '
G~Jq~{ JF+JG

(J is the Jacobian of the transformation). The height of the free surface, A(z;1) is

iven by
& oh oh
+

5= "agg

5 (4.3)



The vector of dependent variables, ¢, and flux vectors are given by:

[

U u? + P— Tazx
g=|v | F= UV — Tyy
0 U
UV — Tyy
G=|v’+p—Ty (4.4)
v

and the shear stresses are expressed as

1 1
Tez = (—1—2;4' I/t)2u;p y Toy = (Et; + 1) (uy +vz)

1 ,
Tyy = (E + 1) 2v, (4.5)

For the free surface problem the coordinate transformations are time-dependent
since the grid follows the surface and thus the mapped flux vectors, F, G are modifed
-accordingly. For the geometry shown in Figure 8 the following coordinate transfor-
mation was used: :

£=¢(z)=2 (4.6a)
n=n(z,y;1t) =,7l_(?y;t_) (4.6b)

Equations. (4.1) and (4.3) were solved using second order Runge-Kutta. Since
the grid locations are time-dependent proper care must be exercised to ensure that
the correct time levels of the metrics are used in updating the momentum equations,
solving the Poisson equation for pressure, etc. This is more difficult when a staggered
grid is used since separate metrics for the u and v momentum equations and the
continuity equation must be stored.

Aside from solving the governing equations in the mapped &,7 domain the
treatment of the boundary conditions along the free surface must be addressed. For
the free surface problem pressure boundary conditions are naturally specified along
the surface. However, for the fractional step method on a staggered grid boundary
conditions for the pressure field are not required. The pressure is a scalar quantity
that is obtained to enforce the divergence-free constraint. Thus it is critical that the
pressure calculated from the Poisson equation maintain the divergence-free condition

~of the velocity field since failure to do so may result in instability of the numerical
method. This is especially important in a method that does not introduce artificial
dissipation either through upwind differencing of the convective terms or the explicit
use of extra dissipative terms in the governing equations. For the fractional step
method described above there is no introduction of artificial dissipation. At first
glance, it may also appear there is some inconsistency in specifying pressure bound-
ary conditions along the free surface and then forcing the pressure field determined
using these boundary conditions to enforce the continuity constraint. However, it
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is important to keep in mind that the level of pressure is not important, only the
difference (i.e., the gradient). However as will be shown, there is some ambiguity
in the derivation of the Poisson equation which makes it difficult to enforce the di-
vergence free constraint for the free surface problem when a time-dependent grid is
used to follow the surface. For the free surface problem the pressure is re-defined to
include the hydrostatic component, i.e.,

P*=P+gy. (4.7)

Thus, boundary conditions for the variable P* are given by equation (4.7). For
small surface curvature the static pressure, P, can be approximated by (Hirt and
Shannon)
Ou,
on

where n is the local outward normal direction of the free surface.

Another important issue that arises in solving the governing equations on a non-
uniform grid is the averaging that is required in computing the non-linear terms in
the momentum equations. For a uniform grid the term §uu/éz in the x-momentum
equation is approximated on the staggered grid using second order accurate central
differences as follows:

§(uu); ; Uip1,; + “w) Ui+ u;_l,j)z
5.73) T bz [( 2 ( 2 ] (4.9)

On a non-uniform grid there will be a loss of accuracy if the above formula is used
to compute the averages for the non-linear terms. Thus it is necessary to use area-
weighted averages for these terms. For highly skewed grids it may be necessary to
include more of the neighboring points in computing the averages. ‘

However, as mentioned above, a more critical aspect of solving the govern-
ing equations on a non-uniform grid is the derivation and solution of the Poisson
equation and subsequent enforcement of the divergence-free constraint. For the
coordinate mapping given by equations (4.6a) and (4.6b) the continuity equation is

T 'z a Y ‘
50 + 3 () + 2 (2) =0 (4.10)

P =2y

(4.8)

From section 2 it was shown that the second fractional step is used to derive the
Poisson equation for pressure. For the mapping given by equations (4.6a,b) the
second fractional step is given by:

n+1 -
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Notice that in equation (4.10) the quantity 6(n;u/J)/én is required. Since the
continuity equation is enforced about the pressure nodes this quantity is not available
at the grid points 4,7 + 1/2 and 7,7 — 1/2 and must be obtained from averages of
the neighboring points. This averaging must be done such that the divergence-free
constraint is satisfied. This also presents a difficulty in solving the Poisson equation
The Poisson equa,tion is

E P ‘5 6 n;P ) 5 &P
_(77:c 6 ( )) + ( 6517(771‘,]})))
€:c N Nz o 0 Y
a§< )'*'5;7'(; )+3_n(777") (4.12)

The principal difficulty in solving the above equation is the appearance of the mixed
derivatives. There are two possible alternatives to computing these terms. For
example, consider the evaluation of the second term gn the left hand side of equation
(4.12) One possible evaluation of this term would be

Ne P
(5:577( 7)) =
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E’ 3 (M= N
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Notice that this approximation does not make any use of the information of the
pressure at point ¢, j. Thus, another possibility for calculating the mixed derivative
is to use average values, i.e.
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where quantities such as P;y1/2;-1/2 are obtained from averages of the neighboring
points. However, if averages are used to compute these values some type of area
weighting should be used. The use of equation (4.14) also has the disadvantage in
that the average values must be continuously updated in an iterative procedure.
Since a non-uniform grid is used to for solving the free surface problem the use of
trigonometric expansions can no longer be used for solving the Poisson equation and
one has to resort to more traditional iterative methods for determining the pressure,
such as Successive-Over-Relaxation.
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Finally, since the grid is time-dependent the correct time levels of the metrics
must be used. In the fractional step method the pressure is calculated at the new
time level based on the velocities at the previous time level. It is not clear what
effect the different time levels of the metrics will have on the subsequent enforcement
of the divergence-free constraint.

It was found that the fractional step method applied to the free surface problem
shown in Figure 8 did not yield stable solutions in time. It is believed the principal
reason stable solutions could not be obtained is the difficulty in maintaining the con-
servation properties of the governing equations on the time-dependent non-uniform
grid. It was also found through the course of the calculations that the divergence-
free constraint was not satisfied, thus solution of the Poisson equation did not yield
a pressure field that would in turn produced a divergence free velocity field. As
previously mentioned this is probably due to the ambiguity in the derivation of the
Poisson equation. The divergence of the velocity field was found to be the largest in
the cells nearest the free surface. This is probably because of the choice of bound-
ary conditions for the velocities in the cells containing the free surface. Boundary
conditions such as zero-extrapolation do not give a velocity divergence of zero in

 the cells containing the free surface and this adversely effects the velocities in the
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adjacent cells.

4.1 Recommendations for computation of the free
surface problem using the fractional step method

The use of the Lagrangian approach in obtaining the surface height has been
successfully used by other investigators in simulating free surface problems. A dis-
tinct advantage of this approach is that the computational grid does not change in
time. Thus problems with averaging to compute the non-linear terms do not arise
and derivation of the Poisson equation is very straightforward (for a uniform grid
calculation). This approach is perhaps more computationally efficient since the grid
does not need to be re-generated at every time step. Therefore the first recom-
mendation for future work is to use the fractional step method on a fixed grid with
marker particles to track the height of the free surface. This approach would be very
similar to Harlow and Welch’s early calculations of free surface flows. An advantage
of this approach is, that since a fixed grid system is used, spectral differencing may
be possible in the periodic direction. This would be an excellent feature of a method
that would be used for turbulence simulation since this would decrease the errors
associated with the numerical approximation of the Navier-Stokes equations.



