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in time are addressed. The troubles encountered in the application of the method to 
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Following these recommendations, the numerical method based on the MAC 

method is applied to free surface problems in the second part of the paper. The 

boundary and initial conditions for the generation of periodic progressive waves are 

discussed. The computational results show that the wave that has the given wave 

length and frequency can be generated by 1しheproper boundary and initial condi-

tions. 
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1. Introduction 

Flows with free surfaces are important in many engineering applications. In 

particular, the surface flows around shi]Ps and other marine structures include many 

interesting fluid mechanical phenomena,. One such phenomenon・ associated with 

these free surface flows is that of wave breaking. The breaking of waves about 

marine structures causes large impact loadings and leads to undesirable increases 

in drag on ships. Thus, a better understanding of the mechanisms involved with 

breaking waves will perhaps lead to improved design and construction of ships and 
other marine structures. 

For engineering applications numerical solution of the governing equations is a 

useful tool for aiding in the design and construction of ships and marine structures. 

However, for engineering design and analysis the governing equations are averaged 

over time or space and thus the effects of turbulence must be incorporated into these 

averaged equations. This is the principal difficulty in using numerical approaches in 

that accurate turbulence models are requtired in order to obtain reliable predictions 
of the forces and flows about ships or oth er marine structures. Thus, it is very 
important that accurate and reliable turb:ulence models be used in these calculations. 

In order to construct reliable turbulence models for free surface flows it is nec-

essary to increase our basic understanding of these flows. The information required 

for these turbulence models has been tr叫itionallyobtained from laboratory exper-

iments. However, with the advent of powerful and fast supercomputers the use of 

direct numerical simulation (DNS), or full simulation, has opened up a new approach 

for increasing basic understanding of many turbulence phenomena. 

A full simulation is a calculation whi,ch produces an exact solution of the time-

dependent, N avier-Stokes equations ovelt'the full range of relevant length scales down 

to the smallest scales of the turbulence. Such a simulation requires tremendous com-

puter resources, but requires no time averaging of the governing equations nor any 

turbulence modelling. Therefore, the cakulations can be treated as an experiment 

with accurate, time-dependent data available at a large number of locations. 

Results obtained from full simulation can be used to support phenomenological 

turbulence modelling. The use of full silrrmlation has provided new insight into the 

problem of turbulent dispersion (Lee, Squires, et.al. [l]). DNS h邸 alsobeen instru-

mental in learning about the structure oJf turbulent channel flow (Moser and Moin 

[2]). Certain statistical correlations ne:eded for turbulence models are impossible 

to measure in laboratory experiments but very straightforward to obtain from the 

simulation data. 

To date full simulation h邸 beenappHed to canonical turbulent flows. Examples 

including isotropic turbulence, homogeneous turbulence, fully-developed flow in a 

channel, and flat-plate boundary layers. The geometry for each of these flows is 

simple and therefore very accurate numerical techniques may be applied to the 

computation of such a flow. Typically, spectral methods are used for the calculation 

of these flows. Spectral methods are mlllch more accurate than traditional finite 
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difference techniques in that the high wave number components of the solution are 

much more accurately represented and there is no phase error for a spectral method. 

Thus, to perform full simulations of free surface flows accurate numerical tech-

niques must be devised and tested so that tlb.e results obtained from the simulations 

may be trusted. It is important that the numerical technique be as accurate as 

possible so that the solutions obtained from the simulations be relatively free from 

errors associated with the numerical approx..imation of the governing equations. 

Since the governing equations for free surface flows are the incompressible 

Na vier-Stokes equations the principal di:fficulty with obtaining time-accurate so-

lutions arises from the fact that the continuity equation does not contain a time-

derivative explicitly. Thus, the constraint of mass conservation is obtained through 

the coupling of the continuity equation and the pressure in the momentum equations. 

As pointed out by Kim and Moin [3], the fact that the con1しinuityequation does not 

have a time derivative prevents the use of conventional alternating-direction-implicit 

(ADI) schemes for advancing the governing equations in tilme. Thus, one approach 

is to use the continuity equation along with the momentum equations to derive 

the Poisson equation for the pressure field.. In this way, the elliptic nature of the 

calculation is expressed by a single equation. It is also important to note that 

the numerical scheme preserves such global quantities as mass, momentum, kinetic 

energy, and circulation since •failure to do so can result in numerical instability. 

The objective of this paper is to de1monstrate the application of one method 

for solving the incompressible N avier-Stokes equations which satisfies global conser-

vation of the above quantities. In the first part of this paper the fractional step 

method of Kim and Moin is described a][ld results from 1しhemethod are obtained 

for the Taylor-Green problem of decaying vortices and also flow in a driven cavity 

at four Reynolds numbers. Extension of 1Ghe method to the free surface problem is 

then discussed. Issues such as grid generation, free surface lboundary conditions, and 

movement of the free surface in time are addressed. The present work will provide 

more detail of the fractional step method of Kim and Moin and it is thus hoped the 

additional detail will be useful to future us(ers of the method. 

In the second part, the numerical method based on the MAC method is applied 

to free surface problems. The boundary amd initial conditions for the generation of 

periodic progressive waves are discussed. The computational results show that the 

wave that has the pre-determined wave le11gth and frequency can be generated by 

the proper boundary and initial conditions., 

Part I. Fractional Step Method 

2. Numeri碑 Method

The method used for the results obtained in this paper is based on the fractional 

step method of Chorin [4] for time-advancement of the Na vier-Stokes and continuity 
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equations for incompressible viscous flow: 

珈 iI 8(u，も） 8P I 1 82u, 
＝一8t 

＋ 
8x. 

＋ 
J 

8xi ・ Re 8x ;8x 
J J 

(2.1) 

如
--＝ 0 
伽

(2.2) 

where both the dependent and independent variables have been appropriately non-
dimensionalized. 

Application of the fractional-step, or time-split, method to the incompressible 
Na vier-Stokes equations is a "natural" choice for advancing the equations since the 
pressure field may be interpreted as a projection operator which projects an arbitrary 
velocity field onto a divergence free vector field. Thus, a two-step time-advancement 
scheme of equations (2.1) and (2.2) is 

伝ー U叫 ,5pn 3 o(u凸）n
= - --

6t 伝 2 OXj 

1 o(uiujr-1 I 1 o2 +—+-— ^n. 
2 OXj ・ 2Re OXjOXj 

（山＋ Uni)

J J 

(2.3) 

un+li —U,i 5pn+l 
＝一6t 6xi 

1 62 
＋ーー一(ttn+liーむ）＋竺
2Re 6x]•6xJ 6xi 

(2.4) 

and 
如吋1.

｀ 
__: = 0. 

6xi 
(2.5) 

Note that by adding equations (2.3) and (2.4) the intermediate velocity field, 
如 andthe value of the pressure gradient at time level n vanish from the discrete 
approximation. The re邸 onfor subtracting the time level n pressure gradient from 
equation (2.3) and then adding it to equation (2.4) will become evident when bound-
ary conditions for the intermediate velocity field are derived. The first fractional 
step (equation (2.3)) is a second order accurate approximation of the non-linear and 
viscous terms (second o『derexplicit Adams-B邸 hforthfor the non-linear terms and 
second order implicit Crank-Nicholson for the viscous terms). The second fractional 
step can be shown to be the correction, or projection, of the intermediate velocity 
field, ui, onto a divergence-free vector field by equating theふvergenceof a new 
variable, <p, with the right-hand side of equation (2.4): 

婦n+1 6Pn+1 1 6 26戸
---=— +―- （un+l・一

6x,. 6x,. 2Re 6x 6x ｀出）＋ー6xi 
(2.6) 
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thus the second fractional step may be rewritten as 

un+¥ -Ui o¢n+l 

6t 6叩
＝ (2.7) 

The pressure can be expressed in terms of this nevv variable ¢ through the 

following relations: 

婦n+l 研 1. 52 
-―=  --+-——一(un+l ・一

紐i 6叩 2Re6x.6x. 
，出）

J J 

(2.8) 

where 
p = pn,+1 _ pn, (2.9) 

Equation (2. 7) can be used to express the second term on the right hand side of 

equation (2.8) in terms of</> and thus by integrating (2.8) one can show 

P= <pn+l 
ot 024>n+l 

2Re 6x6x. 
(2.10) 

All spatial derivatives in (2.3) and f2.4) are expressed using second order ac-

curate central differences on a fully staggered grid (Figure 1). For the staggered 

grid the continuity equation is enforced about the pressure nodes (in each cell) and 

the momentum equations are satisfied about the velocity nodes. Since a staggered 

grid is used, pressure boundary conditio111s are not requiried. It may also be shown 

that in the absence of time-differencing errors and viscosity, global conservation of 

momentum, kinetic energy, and circulation are preserved (Lilly [7]). The principal 

difficulty of using staggered grids is that some velocity components are not defined 

on the boundaries. Extension to higher orders of accuracy is also difficult. 

To avoid the stability restriction imposed by the viscous terms an implicit time-

advance scheme is used in equation (2.3). Rewriting the first fractional step 

(1 -A 1 -A2 -A3)（む一 u叫） ＝ 6t(--
3 8(u凸）n

2 OXj 

1 o(ui%）”ー1 oP叫
十一
2 6xJ. 6xi‘ 

--） ＋ 2（ふ＋ A2+ A3)u叫 (2.11)

where A1 = (ot/2Re)(o2/ox2), A2 = (ot)'2Re)(o2/oyり， A.3= (ot/2Re)(o2/oz2). To 
solve equation (2.11) requires the inversion of a large sparse matrix. For computa— 

tions using a large number of grid points this is not practical so equation (2.11) is 

factored into the following form: 

(1-ふ）（1-A2)(lーん）他一 u叫） ＝ 6t(--
3 6（UjUjr 

2 OXj 

1 o(u凸）n+l oP八
+- -- l + 2（ふ＋A2+ん）u叫．
2 6xJ. 6x;) 

(2.12) 
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In equation (2.12) terms of order 6柱 hiavebeen neglected but only inversion of 
tridiagonal matrices is required. One issue that arises in solving a factored system 
such as equation (2.12) is the boundary conditions for the intermediate velocity 
fields. To illustrate this consider the solu1tion of the two dimensional problem: 

(1 -A1)（1 -A:！)（如ー U叫，j)= 

6tん＋ 2（ふ＋A2)u叫，j (2.13) 

where fi,j are the non-linear terms advanced by second order Adams Bashforth and 
the pressure gradient evaluated at time level n in equation (2.12). For simplicity, 
rewrite the above equation as 

(1-ふ）（l-A2:）△叩＝ RHSi,i・

To solve the above rewrite the system as 

{2.14) 

(l -A2)△it,,j =△u'i，J 

(l -A1)△心＝ RHS;,3

Expanding the second step (equation (2.15b)): 

（ 
6t 炉

1 一瓦戸）△u'i,J• = RHSi,J. 

△u'i,j・— 6t
2Reox2 

（△tt¥+1,j -2△u'i,j十△u';-1J)= RH Si,i (2.17) 

for an equally spaced grid in the x-direction. Defining {3 = -ot /2Reo丑 equation
(2.17) becomes 

(2.15a) 

(2.15b) 

(2.16) 

¢△u'i+1,j + (1 -2/3)△u'1i,j + (3△u¥-1,j = RH Si,1 

i= l,... ;NX 

j = 1,....,NY (2.18) 

Thus, boundary values are required for△u'o,j and△u'N x +1J. These boundary 
conditions are obtained from the second sweep, i.e., equation (2.15a). For example, 
at i = 1 

△u'ぃ＝（l・-A2)△Uo,J 

and expanding this gives 

6t 
△u'。,j=△Uo,j-（△u。,j+l-2△u。,J十△u。,J-1)．

2Re5y2 

(2.19) 

(2.20) 
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It should be noted that by neglecting the second term on the right hand side of 

equation (2.20) the boundary conditions fc;r the first sweep will be accurate to order 

紀．

The continuity equation, (equation (2.5)), and the second fractional step (equa— 

tion (2.4)) may be used to obtain an equation for ¢n+l. Enforcing the continuity 

equation at time level n + l and using eql!lation (2.7) to express the new time level 

velocity in terms of ¢n+l yields the followiing: 

炉¢n+1.． 62¢n+1・ • 
”+ 紐2. 6y2 

心旱エ十三ft(~+~) (2.21) 

for points away from the boundaries. For points near the boundaries the above 

equation is slightly modified by the velocity boundary conditions. For example, 

near the lower boundary the term四／6y2is expressed as 

竺＝上（止辛＿知ー令，0I

6y2 6y 6!l 6y 
） 

and using equation (2. 7) this is 

如ー釘o {!)n+l i,1/2 -Vi,1/2 
- ＝. 

6y 6t 

therefore 
訊加 1知ー如 vn+l i,1/2 -'V1i,1/2 
―=-（一
6y2 6y 6y 

＋ 
Dt 

） 

(2.22) 

(2.23) 

(2.24) 

A solution・to equation (2.21) may be obtained using transform methods. For 

the two-dimensional problem with a uniform grid spaciillg in the x direction the 

value of 4>n+ ¥i may be expressed as 

NX Tl.1 
<Pn＋切＝区和cos（冠（i-i))

l=l 

(2.25) 

Using this in equation (2.21) and the orthogonality property of cosines one can 

obtain 
炉必l,J. ＾ 
---K1]如＝仇 (2.26)
6y2 

where kり＝ 2,.(1-cos(1rl/NX))/8x2 is tbe modified wave number for central dif-

ferences and Q1,1 is the transformed source term. Thus, for each wave number a 

tridiagonal matrix is inverted to obtain 1the values of the coefficients of that wave 

number. The zeroth wave number is a special case and must be handled differently 

since the tridiagonal matrix for kり＝ 0is singular. For this case equation (2.26) is 

炉輩l,j r, 
＝ 6y2 Ql,J (2.27) 
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and for an equally Aspaced grid in the y-direction this equation applied at node j 
yields the value of <p。,j+l

^ ＾ ＾ ＾ 伽，j+l=耐Q。1,j+ 2¢。J―¢。,j-1 (2.28) 

for j = I,..., NY -I. The value of J。,1.is obtained from the boundary data. From 
equation (2.7) 

磁，1 ＾ ・ = a 
初

(2.29) 

where 
n̂+1 ^ 

^ V。,il2-vo,1/2 
-a=~ 

5t 

＾ ＾ 伽，1= </>。,o+ oya. 

(2.30) 

thus 

(2.31) 

Arbitrarily choosing ¢。,0to be zero allows determination of ¢。,1from (2.31) and the 
rest of the zeroth mode coefficients from equation (2.27). It should be remarked 
that this method of solution is entirely consistent with the solution of the Poisson 

equation with Neumann boundary conditions. For additional details see Kim and 
Moin [3] and Peyret and Taylor [5]. 

The cosine series shown in equation (2.25) accounts for the fact that grid is 
staggered, i.e., pressure is not defined on the boundaries of the domain. Thus, the 
actual implementation of equation (2.25) is complicated by this fact and further ma— 

nipulations must be done in order to use f邸 ttransforms to compute the coefficients 

of the series. Appendix A describes the stieps necessary to use fast transform meth-
ods to compute the coefficients in equation (2.25). It should also be remarked that 
the use of trigonometric expansion such a.s that shown in equation (2.25) is valid 
only for an equally spaced[ grid in the x-dlirection. Thus, for complex geometries one 
would have to resort to i1しerativemethods such as SOR or multi-grid for obtaining 

a solution of the Poisson equation. 
Finally, given the ne,,.v values of ¢n+l obtained using the relations shown above 

the new time level velocities may be calculated from equation (2. 7). 

2.1 Boundary Conditions for Intermediate Velocity Field 

For fractional step methods boundary conditions for the intermediate velocity 

field are required for the tridiagonal matriix inversion in equation (2.12). It should 
be noted that for an explicit time advancement of the governing equations the solu-

tion at the new time level is independent of the boundary values of the intermediate 

velocity field (see Peyret and Taylor (5] fo:r further discussion). The boundary con-
ditions used for the intenmediate velocity fields for the results shown in this paper 

are slightly different than those of Kim and Moin [3]. 
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As shown by Kim and Moin, to construct proper boundary conditions forむ， it

is regarded as an approximation to u* i wh:eire the continuous function satisfies 

珈＊i_ 8u*iら 1 82u*i 8P* 
ー＝—＋- --
祝妬 Re8xj妬伽

following Kim and Moin, 

珈＊，・ 1r,?. 82u¥ 
妬~ u¥(x, tn + ot) = u¥(x, tn) + ot ——+ -6ゼ――8t. 2 祝2

= u¥(x, tn) + ot［一已竺i十上立こ一竺
妬 Re8x]8xJ. 8xi l 

1 8 珈＊iら 1 82u*i 8P* 
＋誓ー[- -―--2 祝 8xj

＋ 
Re 0x]0xJ. 0xi l 

Since u* i(x, tn)＝叫X,in), 

妬＝叫x,tn)＋叫ー処位＋上 0%i.＿竺
妬 Re8x]•8xJ. 8xil 

+o（紀）＝叫x,tn)這誓＋0（紀）

＝山(x,tn+1) + 0（紀）

(2.1.1) 

(2.1.2) 

(2.1.3) 

thus, boundary conditions accurate to order ot2 are obtained. The significant differ-

ence between the above derivation of the boundary conditions and that done by Kim 

and Moin is that the pressure gradient at time level n has been included in equation 

(2.3). Thus, the final result (equation (2.1.3)) is a more simple approximation of the 

boundary conditions than that obtained by Kim and Moin. Kim and Moin's result 

1S 

＾ （ 
. oP 

Ui = Ui(x, tn+1) + ot~ 
ぬi

+o（紀） (2.1.4) 

For a staggered grid the pressure gradient is not available along the boundaries and 

must therefore be extrapolated from the interior points. 

3. Numerical Chec;ks of the Method 

To test the various parts of the method such as the impllicit treatment of the vis-

cous terms, boundary conditions of the in1termediate velocity field, etc. the Taylor-

Green problem of decaying vortices was computed. This two-dimensional unst_eady 

flow is a solution to the N avier-Stokes and continuity equation 

u(x,y;t) = -cos(x)sin(y)e―2t 

v(x,y;t) = -si][l(x)cos(y)e―2t 

(3.la) 

(3. lb) 
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-1 
P(x, y;t)＝丁(cos(2x)+ cos(2y)) e―4t (3.lc) 

Errors in the u-component of veloci1ty from two calculations using a different 
number of grid points am shown in Table 1. As expected, increasing the number 
of grid points decreases the error. These results also show the spatial differencing 
scheme is second order accurate. 

The implicit part of the method was checked by integrating the following equa-
tions 

8u 8P 1 
-＝ --—+—•% at ax. Re 

av aP 1 
-＝ --—+—•% 
at 勃 Re

au av 
—+ -― =0. ax. 8y 

(3.2a) 

(3.2b) 

(3.2c) 

Since the non-linear terms have been eliminated, solution of the above equations 
should be independent of the time step if tih.e time-advance scheme is unconditionally 
stable. It was found that stable solutions were obtained using time steps as large 
as 8t/(Re紀）＝ 104using the boundary conditions for the intermediate velocity 
field given by equation (2.1.3). It was,also found that for computations of the 
cavity flow with the non-linear terms the steady state solutions obtained using an 
implicit treatment of the viscous terms were identical to solutions obtained using an 
explicit treatment of the viscous terms, giving another indication that the boundary 
conditions for the intermediate velocity field are consistent. It should be noted, 
however, that the boundary conditions given by equation (2.1.3) presume the values 
of the velocity field are known at the new time level. For flows that do not have a 
steady state solution (e.g.., turbulence) this may not be true and this may affect the 
stability of the method.. As mentioned previously, one disadvantage of the staggered 
grid approach is that some velocity components are not defined on the computational 

boundaries. Thus, to enforce boundary conditions such as no-slip a fictitious point 

outside of the boundary is used (see Figure 2). Since the value of this velocity is not 
known at time level n + l, it is approximated as the value from time level n. One 
alternative to such a procedure is to mov1e the fictitious point to the boundary of 
the domain. The advantage of moving the points to the boundaries of the domain is 
that the boundary values are known, of course.・ However, for such a grid the order 

of accuracy of the spatial differencing sche1ne is first order along the boundaries (see 
Peyret and Taylor for further discussion). The code using the fractional step method 
outlined above was modified such that boith the u and v velocity components were 
defined on the boundaries and for the ddven cavity flow the results are virtually 
identical. It was found that steady state solutions were obtained in fewer iterations 
when the velocity points are defined on all boundaries. Thus, it is preferred to 
define velocity componen1しson all boundaries at the sacrifice of accuracy near the 

boundaries. 



As a final check of the method the_ flow in a driven cavity was computed. 

The flow in a driven cavity has long been a standard test problem for N avier-

Stokes solvers. Since a large number of investigators have applied their codes to this 

problem there is general agreement of the results for Reynolds numbers up to 10000. 

lt should also be mentioned that flow in a driven cavity becomes three-dimensional 

at moderately low Reynolds numbers ・(around Re=lOOO) and thus two-dimensional 

simulations of this flow at high Reynolds numbers are only of use as a test problem 

for N avier-Stokes solvers._ 

For this flow the upper wall of the cavity is moved at a constant velocity to 

the right (Uwall = 1) and the resulting flow field consists of several standing vor-

tices, whose characteristics are functions of the Reynolds number. Figure 3 shows 

streamline contours for four different Reynolds numbers. It can be seen from the 

Figure that as the Reynolds number is inc:reased the streamline pattern becomes 

more asymmetric. Vorticity contours are plioUed in Figure 4 and again show this 

increasing asymmetry with increasing Reynolds number. At Re = l the. flow field 

is virtually symmetric about the centerplane. Figure 5 shows the u-velocity profile 

along the cavity centerplane for Re = l from calculations using a 21 x 21 grid and a 

31 x 31 grid. It can be seen the two velocity profiles are nearly converged. Another 

calculation was done using a 31 x 31(Re :;::: 1) grid but with a clustering of points 

near the upper and lower walls in order to check the results for a non-unform grid. 

The mapping of the uniform grid to the non-uniform grid in they-direction for this 

calculation was 
((3＋ 1)［幽知1)

Yi= Ly 
(/3-1)] -(3 ＋1. 

2(1 +［鮨](2y]ー1))

(3.3) 

(see Anderson, Tannehill, and Pletcher [6] for further details). 
The velocity profiles from a uniform grid calculation and the non-uniform grid 

calculation are shown in Figure 6. It can be seen there is a reasonable convergence 

in the results from the two calculations. Velocity profiles from the centerplane of 

the cavity for the four different Reynolds numbers used in the calculation are shown 

in Figure 7. This Figure shows the increase in the velocity gradient with increasing 

Reynolds number. Finally, in Table 2 are shown values of the stream function and 

vorticity at the center of the primary vortex for the different Reynolds numbers 

used in these calculations. Also shown in the table are values of these quantities 

obtained from the simulations done by other investigators. It can be seen from the 

table that the agreement between the resuHs obtained from these simulations and 

those of other investigators is excellent. 

4. Extension of the Fractional Step Method to the Free Surface Problem 

The fractional step method described above was applied to the simulation of the 

two-dimensional free surface flow shown irn Figure 8. Periodic boundary conditions 

were applied at the east/west boundaries amd zero-gradient conditions were applied 

1 1 
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along the lower boundary. Various boundary conditions were applied to the veloci-

ties in the cells containing the free surface such as extrapolation and the constraint 

of incompressibility. As was mentioned earlier, it is desirable that the numerical 

method be as accurate邸 possible.One reason for using periodic boundary condi— 

tions is that the solution may be expanded in a Fourier series (whose convergence 

properties are much better than finite differences). It was found, however, that for 

the free surface problem outlined in Figure 8 the use of a spectral method is very 

difficult and therefore a finite difference scheme w邸 used.

To apply the fractional step method to the free surface problem as outlined with 

the given boundary conditions certain m1odifications must be made to the method. 

The most significant modification, of course, is the treatment of the free surface. 

Aside from the velocity and pressure fo~lds an additional unknown is introduced 

into this problem: the height of the free surface. There are two approaches for time 

advancing the: height of: the free surface, a Lagrangian and an Eulerian method. 

In the Lagrangian approach marker particles on the free surface are tracked and 

in this way the location of the free surfiace is known at all times. This approach 

was originally used by Harlow and ¥Vellch [9] in applying their Marker-and-Cell 

technique to calculating free surface flows and has been successfully applied by 

other investigators as well. The principal drawback of this method for following the 

free surface is that it must be located within the computational domain at all times 

and thus there will always be some arrwunt of wasted storage of the points above 

the surface which are devoid of fluid. In the Eulerian approach to determining the 

location of the free surface the differential equation for the surface height is solved 

along with the momentu:m and continuity equations and thus the free surface height 

is advanced in time in a similar fashion as the velocity field (for example Hino (10]). 
This approach has the叫 vantagethat there is no wasted storage when a body-

fitted coordinate system is used in which the free surface is always located along 

the upper boundary of the computational domain. Since a body-fitted coordinate 

system is used the governing equations must now be mapped from the Cartesian grid 

(x, y) to the body-fitted coordinate systern (~, 17). The mapped equations written in 

conservation law form are 
8 q 
ー(-)＋凡
8tJ ＾ ＋GT/= 0 (4.1) 
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(J is the Jacobian of the transformation).. The height of the free surface, h(x; t) is 

given by 
oh.  oh 
- ＝ -uら—+ v 
Ot oc (4.3) 

(240) 



The vector of dependent variables, q, and flux vectors are given by: 

q= m F=  ［ご―Tx：ェェ］

G=[炉u:［―_T1yu l (4.4) 

and the shear stresses are expressed邸

1 1 
戸＝（瓦＋叫2uェ， T．cy=（瓦＋叫（％＋む）

r.... = (.; yy ＝（一
Re 

＋叫2vy (4.5) 

For the free surface problem the coordinate transformations are Ati~e-dependent 
since the grid follows the surface and thus the mapped flux vectors, F, G are modifed 
accordingly. For the geometry shown in Figure 8 the folloiwing coordinate transfor-
mation was used: 

y 

C = C(x) ＝ x 

n = n(x, y;t) 
h(x; t) 

(4.6a) 

(4.6b) 

Equations (4.1) and (4.3) were solved using second order Runge-Kutta. Since 
the grid locations are_ time-dependent proper care must be exercised to ensure that 
the correct time levels of the metrics are u:sed in updating the momentum equations, 
solving the Poisson equation for pressure, etic. This is more 1difficult when a staggered 
grid is used since separate metrics for the u and v momentum equations and the 
continuity equation must be stored. 

Aside from solving the governing equations in the imapped e, 77 domain the 
treatment of the boundary conditions along the free surface must be addressed. For 

the free surface problem pressure boundairy conditions are naturally specified along 

the surface. However, for the fractional step method on a staggered grid boundary 
conditions for the pressure field are not riequired. The pressure is a scalar quantity 
that is obtained to enforce the divergence-free constraint. Thus it is critical that the 

pressure calculated from the Poisson equation maintain the divergence-free condition 

of the velocity field since failure to do so may result in instability of the numerical 
method. This is especially important in a. method that drnes not introduce artificial 

dissipation either through upwind differencing of the convective terms or the explicit 
use of extra dissipative terms in the governing equations.. For the fractional step 
method described above there is no introduction of artificial dissipation. At first 

glance, it may also appear there is some inconsistency in specifying pressure bound-

ary conditions along the free surface and then forcing the pressure field determined 
using these boundary conditions to enforce the continuity constraint. However, it 
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is important to keep in mind that the le11el of pressure is not important, only the 
difference (i.e., the gradient). However邸 willbe shown, there is some ambiguity 
in the derivation of the Poisson equation which makes it difficult to enforce the di-
vergence free constraint for the free surface problem when ・a time-dependent grid is 
used to follow the surface. For the free surface problem the pressure is re-defined to 
include the hydrostatic component, i.e., 

P* = P+  gy. (4.7) 

Thus, boundary conditions for the variable P* are given by equation (4.7). For 
small surface curvature the static pressure, P, can be approximated by (Hirt and 
Shannon) 

P=2v 
珈 n

8n 
(4.8) 

where n is the local outward normal direction of the free surface. 
Another important issue that arises in solving the governing equations on a non-

uniform grid is the averaging that is required in computing the non-linear terms in 
the momentum equations. For a uniform grid the term 8uu/ ox in the x-momentum 
equation is approximated on the staggered[ grid using second order accurate central 
differences as follows: 

o(uu)i,j l 
2 2 （い1,j十山，j)~ (ui,j・十 Ui-1,j

=-［一—
） 

紐紐 2 2l  ・ (4.9) 

On a non-uniform grid there will be a loss of accuracy if the above formula is used 
to compute the averages for the non-linear terms. Thus it is necessary to use area-
weighted averages for these terms. For highly skewed grids it may be necessary to 
include more of the neighboring points in computing the averages. 

However, as mentioned above, a more critical aspect of solving the govern-
ing equations on a non-uniform grid is t.he derivation and solution of the Poisson 
equation and subsequent enforcement of the divergence-free constraint. For the 
coordinate mapping given by equations (4.6a) and (4.6b) the continuity equation is 

羹（缶）＋喜（胴＋嘉（胴＝ 0 (4.10) 

From section 2 it was shown that the second fractional step is used to derive the 
Poisson equation for pressure. For the mtapping given by equations (4.6a, b) the 
second fractional step is given by: 

叱＋1/J-如／J 6 ( 6  
6t =—忍砂）—叫号化）
1')rtl /J —如／J6

6t 
= --（互．，

的 J叫

(4. lla) 

(4.llb) 



Notice that in equation (4.10) the quantity 8(17ェu/ J) / DrJ is required. Since the 

continuity equation is enforced about the pressure nodes this quantity is not available 

at the grid pointsちj+ 1/2 andもj-1/2 and must be obtained from averages of 

the neighboring points. This averaging mlllst be done such that the divergence-free 

constraint is satisfied. This also presents a, difficulty in solving the Poisson equation 

The Poisson equation is 

紐責峠））＋紐喜呼））＋喜崎峠））＋

五(nェ喜峠））＋喜疇厚））＝

羹（知）＋嘉（知）＋嘉（胴 (4.12) 

The principal difficulty in solving the above equation is the appearance of the mixed 

derivatives. There are two possible alte1matives to computing these terms. For 

example, consider the evaluation of the second term 9n the left hand side of equation 

(4.12) One possible evaluation of this terna would be 

6 6 mP 
酎勺江戸）＝

1 (ei+l,j 11J::c ー（一(-R・+ll,j+1--
n::c ． 

2△¢ 2△nJ  J 
1{+1J-1) 

炉，J• (n::cn::c 
一瓦了叫，j+l-了R-1，た1)) (4.13) 

Notice that this approximation does not make any use of the information of the 

pressure at point i, j. Thus, another possibility for calculating the m如 dderivative 

is to use average values, i.e. 
6 6 n」P
酎冠ナ戸）＝

臼年(~~+1/2,j,+l/2 一生~+1/2,j-1/2)
△£ △n J J 

&-1/2,J. nェ-— ('2f-~-1/2,j+l:/2 一生piー1/2,j-1/2))
△nJ  J 

(4.14) 

where quantities such as Pi+i/2,j-i/2 are obtained from averages of the neighboring 

points. However, if averages are used to compute these values some type of area 

weighting should be used. The use of equation (4.14) also has the disadvantage in 

that the average values must be continuously updated in an iterative procedure. 

Since a non-uniform grid is used to for solving the free surface problem the use of 

trigonometric expansions can no longer be used for solving the Poisson equation and 

one has to resort to more traditional iterative methods for determining the pressure, 

such as Successive-Over-Relaxation. 
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Finally, since the grid is time-dependent the correct time levels of the metrics 

must be used. In the fra1ctional step method the pressure is calculated at the new 

time level based on the velocities at the previous time level. It is not clear what 

effect the different time levels of the metrics will have on the subsequent enforcement 

of the divergence-free constraint. 

It was found that the fractional step rnethod applied to the free surface problem 

shown in Figure 8 did not yield stable solutions in time. It is believed the principal 

reason stable solutions could not be obtained is the difficulty in maintaining the con-

servation properties of the governing equa~tions on the time-dependent non-uniform 

grid. It w邸 alsofound through the course of the calculations that the divergence-

free constraint was not satisfied, thus solution of the Poisson equation did not yield 

a pressure field that would in turn produced a divergence free velocity field. As 

previously mentioned this is probably due to the ambiguity in the derivation of the 

Poisson equation. The divergence of the velocity field was found to be the largest in 

the cells nearest the free surface. This is probably because of the choice of bound-

ary conditions for the velocities in the cellls containing the free surface. Boundary 

conditions such as zero-extrapolation do not give a velocity divergence of zero in 

the cells containing the free surface and this adversely effects the velocities in the 

adjacent cells. 

4.1 Recommendations for computation of the free 

surface problem using枷 fractionalstep method 

The use of the Lagrangian approach in obtaining the surface height has been 

successfully used by other investigators iin simulating free surface problems. A dis-

tinct advantage of this approach is that the computational grid does not change in 

time. Thus problems witlli averaging to compute the non-linear terms do not arise 

and derivation of the Poisson equation is very straightforward (for a uniform grid 

calculation). This approa<;:h is perhaps mlore computationally efficient since the grid 

does not need to be re-generated at every time step. Therefore the first recom-

mendation for future work is to use the fra~ctional step method on a fixed grid with 

marker particles to track the height of the free surface. This approach would be very 

similar to Harlow and Welich's early calcuhLtions of free surface flows. An advantage 

of this approach is, that since a fixed grid :system is used, spectral differencing may 

be possible in the periodic direction. This would be an excellent feature of a method 

that would be used for turbulence simulation since this would decrease the errors 

associated with the numerical approximation of the Na.vier-Stokes equations. 


