Part II. Free Surface Flow Simulation

In part I the fractional step method for the incompressible Navier-Stokes equa-
tions is applied to the free surface problem. However, for some reasons the steady
solution cannnot be obtained. In this part, following the recomendations made in
part I, another numerical method to solve free surface problems using a fixed grid is
described. The numerical scheme used here is the MAC method which is based on
the basically same concept as the fractional step method to satisfy the divergence-
free condition with pressure correction. The numerical results for the generation of
periodic progressive wave are also shown.

5. Numerical Method
5.1 Governing Equations and Basic Algorithm

The governing equations are the two dimensional Navier-Stokes equations (2.1)
and the continuity equation (2.2) for the incompressible fluid.

The general curvilinear coordinates system (£, n) is introduced to use the non-
uniform grid. This computational coordinates do not fit to the free surface shape.
The free surface configuration is determined by the nonlinear kinematic free surface
condition. The coordinates transformation is given as follows;

€= E(z,9),n = n(z, ), t = t (5.1)

The momentum equations (2.1) and the continuity equation (2.2) are trans-
formed through equation (5.1) as;

U+ Uug + Vu,

1
= ~(&p} + 10 + (V) (5.20)

ve+ Uve + Vo,

= ~(&p} + mpy) + 5 (V) (520

Eotg + Moty + &g + MUy =0 (5.3)

where (U, V) are the unscaled contravariant velocity components and defined as

U=&u+&u (5.4a)

V=nu+nu (5.4b)
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and p* is modified pressure defined by equation (4.7)

V2 is the transformed Laplacian operator and defined as

Viq = (&+E)qee + (M2 + 1) any
+2(€::77.1: + €yny)qfﬂ (55)
+(&as + &) 26 + (N + My )an

where g is arbitrary scalar quantity. ¢, £, and so on appeared in equations (5.2)-
(5.5) are the metrics of the grid. It should be noted that the transformed momentu
equations (5.2) are not in the conservative form. ’

The basic algorithm is the same as that of the MAC method [9]. The dis-
cretization is made in the non-staggered grid, that is, all variables are defined in
the intersections of grid lines. The present method is based on the time marching
procedure and is divided into two stages.

On the first stage, velocity is updated by the momentum equations (5.2). The
forward difference is used in time. The spatial differences are the fourth-order central
difference for the convection terms and for the grid metrics terms and the second-
order central difference for the pressure gradient terms. The fourth-derivative ar-
tificial numerical dissipation terms are added to the convection terms to stabilize
computation. The resultant finite-difference equation for equation (5.2a) is

n+l . W Lo
Uiy — Ui _ U .ui—2,j = Ui42,5 — 8(“1—1,] - ut+1,1)

5t 4 12

—B(tiva; + tiv2y — Hi-15 + Uig1,) + 6u; ;)

_y, Yig-2 ~ Y42 8((wij—1 = Uij+1)
™ 12

=B (i 2 + Uiz — 41 + Ui j41) + 6uij)

1
+ﬁ;[( 25+ 60 ) wimy; — 2ui; + Ui ;)

+(n2 5+ 02 ) (Wi o1 — 205 — 4 j41)

) Uit1,j+1 ~ Uitl,j=1 ~ Ui-1,541 + Uiv1,j-1
J ’

4

+2(&zi jMai g + Eyiriyi

) Uity — Ui-15

+(€esij + Eyyig 5



Uij+1 — Uij—1
H(aaij + Nyyig} =]
i Piy1, ; Pi-1,5 (5.6)

* -
~Pig41 T P
—Nzi,j 2

where superscript n + 1 denotes the value at (n + 1)-th step and superscripts n
are dropped for simplicity. 6t is the time increment and 3 is the parameter that
determines the magnitude of the artificial dissipation.

On the second stage, pressure on the next time step is computed so that the
velocity field on the next time step may satisfy the continuity condition. By taking
divergence of the momentum equation s (5.2), the following Poisson equation for
pressure is derived.

VzP* = "‘§th - nan
=& Lg = nyLy (5.7)
-D,
where : 1
K =Uu+Vu,— E(Vzu)

L =Uv+Vuy,— %(Vzv)

D = &ug + muuy + §ue +nyuy

The right-hand-side of equation (5.7) is evaluated by the values at the present time
step. The spatial differences for K and L are the same as those for equation (5.6).
The time differential appeared in the last term is expressed by the forward differ-
ence. Then D, divergence of velocity, on the next time step is set zero from the
continuity condition, while D on the present time step which is not necessarily zero
due to numerical error is evaluated by the second-order central difference. This can
eliminate the accumulation of numerical error [9]. The left-hand-side of equation
(5.7) is evaluated by the second-order central difference and is solved iteratively by
the Successive Over Relaxation method. '

5.2 Free Surface Conditions
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In this computation, the effects of viscosity and surface tension to the free
surface conditions are neglected for simplicity. Therefore, the free surface conditions
consist of the following two conditions. One is the pressure condition that means
that pressure on the free surface is equal to atmospheric one or to prescribed value.
The other is the kinematic condition that tells the fluid particles on the free surface
keep staying on it. Because the grid points are not on the free surface in the present
grid system, it is not easy to satis{y the free surface conditions on the exact location
of the free surface.

The pressure condition is implemented in the solution process for the Poisson
equation for pressure. To give the boundary condition at the intermediate point
between grid points, where the free surface is located, the ’irregular stars method’
used in the SUMMAC method [12] is extended to the curvilinear coordinates system.

The kinematic condition is used to determine the free surface shape in the time
marching process. The wave elevation is defined in the computational coordinates
as

n = h(¢,1) (5.8)

The kinematic condition is written as

hi+Uh¢—V =0 on n=h (5.9)

equation (5.9) is transformed into the finite-difference form in the same manner as
that for the momentum equations (5.6). Velocity (U, V) on the free surface is ex-
trapolated equally from the value at the adjacent lower grid points.

5.3 Other Boundary Conditions

The periodic boundary condition is used in the horizontal, z—, direction because
the progressive periodic waves are considered. At the bottom of the computational
domain, pressure and velocity are set equal to the values of the adjacent inner points.

6. Generation of Periodic Wave

To demonstrate the applicabilty of the method, the generation of the periodic
progressive waves is numerically simulated. The proper initial and boundary condi-
tions to generate periodic waves are discussed in this section.

The simplest initial condition is the still state, that is, velocity is zero and
pressure is hydrostatic in the whole domain of computation. Alternative is to give
an analytic solution of a periodic wave as the initial condition. In the latter case, the
linear analytic solution for waves of infinitesimal amplitude is not adequate because



the linearized free surface condition of the theory is not consistent with the fully
nonlinear free surface condition implemented in the numerical scheme. Analytic
. solutions for waves of finite amplitude such as Stokes theory can be used as the
initial condition. The former condition, the still state, is used here for simplicity.

One way to generate waves is the oscillation of velocity and/or pressure in the -

inflow boundary[13]. This method simulates numerically a wave maker of a flap
or piston type in an actual experimental tank. However, this approach cannot be
adopted when the periodic condition is used in the horizontal direction, because the
numerical wave maker generates waves which propagate in two, positive z— and
negative z—, directions. In case that the periodic condition is not used in space,
the wave propagating in the direction oppsite to the computational domain does
not affect the solution. However, with the periodic boundary condition, two waves
propagating in the opposite directions affect each other and the solution differs from
that for a single wave.

The other way is to give pressure distribution on a free surface. Periodic dis-
tribution of surface pressure that runs with the constant speed can generate the
periodic progressive wave. This does not conflict with the periodic boundary condi-
tion of the scheme and is used here.

7. Numerical Results
7.1 Computational Conditions

‘Computational grid used is shown in Figure 9. The grid is orthogonal and
consists of straight lines, though the present scheme can cope with the general
curvilinear grid. The number of grid points is 51 x 51 and the computational domain
is

0<z<1.02

—0.990668 <y < 0.2

The grid spacing in the horizontal direction is constant and 0.02, while that in
the vertical direction is gradually varing from 0.01, the minimum value, to 0.10564,
the maximum. The grid points are clustered near the free surface. The time incre-
ment 6t is set 0.002 and the parameter £ is set 0.1.

7.2 Result

The pressure distribution on the free surface is given by the following equation,
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p*(z,9,t) = gy + gwa cos(kz — ot) (5.10)

where (z, y) are the free surface location at time ¢ and w, is the amplitude of pressure
oscilation defined with the dimension of water head. k is the wave number defined
by the wave length ) as

2m

By

and o is the angular frequency of the wave. In the water waves, o is related to the
wave length by the following relationship,

Here, the wave length X of the generated wave is set 1.02 so that the compu-
tational domain in the horizontal direction is equal to one wave length and w, is
set 0.002. The velocity vector maps and the pressure distribution at various time
steps are shown in Figure 10. The periodic wave is generated well. The pressure
distribution beneath the free surface is smoothly connected to the pressure on the
free surface. The velocity distributions show the approximately exponential decay
in the depthwise direction. Figure 11 shows the time history of the wave elevation
at z = 0. The wave amplitude becomes almost steady and nearly equal to 0.02 at
t = 8. The computed wave amplitude is about ten times as large as w,. Further
investigation is required to explain the relation between w, and the wave amplitude.
The period of the computed wave is about 0.81 and is almost equal to that given in
the surface pressure condition.

k=

8. Conclusion

In part I, the fractional step method for incompressible fluid is presented to-
gether with some numerical results. The extension of the method to free surface
problems are then made. The troubles encountered in the application of the method
to free surface flow problem are discussed and finally some recommendations for
computaion of the free surface flow using the fractional step method are made.

In part II, the numerical method based on the MAC method is applied to free
surface problems. The boundary and initial conditions for the generation of periodic
progressive waves are discussed. The computational results show that the wave that
has the pre-determined wave length and frequency can be generated by the proper
boundary and initial conditions.

The fractional step method has the advantage of the exact conservation of
mass because it assures that the divergence-free condition is satisfied at each time
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step. The MAC method is simpler than the fractional method. However, the mass
conservation is satisfied only indirectly through the Poisson equation for pressure.
Therefore, for applications that require the strict conservation of mass the fractional
step method is preferable, though more efforts should be made to apply the fractional
step method to free surface problems.
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Appendix A

For the staggered grid the pressure nodes are located one-half of a grid cell
from the boundaries. Because of this the cosine series used to represent the
pressure must be manipulated before fast transforms may be used. A cosine
series for the variable ¢ with N points is

N, w1
¢ = g drcos (i + 3)
i=01,..N—-1 (A1)
Multiplying (A.1) by cos(#!'(i + 1/2)/N) and summing over ¢ gives
1
3 pucon(i+ ) =

=0

N-1N-1 xl’ 1
zCOS( Yi+ ))COS(N(HE))

2

=Y by DleosT (4 1)+ 5)

+cosﬁ(l =G+ %)] (’A.2)

To simplify this make use of the fact that the following quantity
Z cos— (i+ )J
=0

is equal to 0 if j # 0 and equal to N if 7 = 0. Therefore, for | # ' A.2 is zero
and for [ =" #0: '

E cos—— +GE+ 1) 0

1=0 N
Z cos—(l -G+ )
1=0
Fori=10'=0
N-1 - 1
> [COSN (+@E+ )+ LOS——(I =1 )(z + )] 2N
1=0
thus

E dz.,cos (z + —)

1=0
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1=0,2,...N—-1 (A.3)

with a factor of 1/2 multiplying the coefficient for do. Equation (A.3) can be
rewritten as

b= 23 gteoscos ™ — gin™ign Tl 2
VTN & KOSy TN N
2 N4l wli ,_ 7l
-1\7( g ¢.'c057)cos2N Z $isin— smz—-N— (A.4)

or
= ——[( Z ¢,cos——-—) -1 Z (}S.smw—ll)
1=0 §=
1=-M“qm”wN—1 (A.6)

Comparing A.6 and A.4 gives

wl l
oW + Im(¢,)sm2N

1=0,1,...,N—1 (A.7)

—[Re(qS,)cos

Equation (A.7) gives the coefficients of the cosine series for the staggered grid.
Similar manipulations are necessary for computing the function ¢; from the
coefficients ¢;. The backward transform is given by:

N-1
¢ = Z% <;31cos%rv—l-(i + %)
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i=0,1,...,N—1 (A.8)
Define the variable, ¢;* as
N-1
— Z qﬁlei%‘(i+%) ,
1=0
N-1 1 N-1 I
; ,cos—j-v— i+ = 2 )+ ZO ¢,s1n-71—:[—(z + ;)
i=0,1,... ,N—1 (A.9)
Thus ¢; = Re(#:")
From (A.9)
N1
— Z qble:,—ﬁ-l(vf';)
l==N
Z (d),cos + i¢+ lsm———-)e'?'ﬂl'
I=—N
i=01,.. . ,N—1
if )
$r=0
for
l=-N,...,—1

Thus, to summarize:

[ 1] Given a set of ¢ (real), | =0,1,...N —1

[ 2] Extend the sequence éi to 2N, ¢;1 =0forl<0

[ 3] Calculate & = ¢1cos + z¢;sm

[ 4] Backward transform éi,l==N,...,0,...,N —1 to obtain ;"
[ 5] ¢: will be the real part of ¢;*.
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Table 2 :

Table 1 © Maximun error in the « velocity

component after 30 steps.

Grid Error
21 x 21 | 6.9724 x 10°°
41 x 41 ] 1.7588 x 10~°

Stream function and vorticity at center of primary vortex for different

Reynolds numbers.

Present Kim and Moin [3] | Schreiber and Keller [8]
Re ¥, (w) ¥, (w) ¥, (w)
grid points grid points grid points
T [ —0.100,(=3.217) | —0.099, (~3.316) | _ —0.100, (3.232)
65 x 65 65 x 65 121 x 121
400 | —0.112, (—2.257) | —0.112,(—2.260) |  —0.113, (—2.281)
65 x 65 65 x 65 141 x 141
1000 | —0.116, (—2.030) | —0.116,(—2.006) | —0.116, (—2.026)
97 x 97 97 x 97 141 x 141
4000 | —0.112, (—1.804) | —0.114,(—1.879) |  —0.112, (~1.805)
97 x 97 97 x 97 161 x 161
Vij+1/2
AN
O
. Fi; L
Ui-1/2,5 O X Uit1/2,5 A
= O —¢= Uj41[21
S N N
Vi g-1/2 =< —>¢— Ui41/2,0

Fig. 1 Staggered grid in two dimensions.
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Fig. 2 Staggered grid near boundaries.
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Fig. 4 Contours of constant vorticity from cavity flow.(a) Re=1, (b) Re=400,
(c) Re=1000, (d) Re=4000.
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Fig. 5 Streamwise velocity profile at cav-
ity midplane for Re=1.(a)21X21,
(b)31x31.
y
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Fig. 6 Streamwise velocity profile at cav-

ity midplane for Re=1, 31%31.(a)
uniform grid, (b) non-uniform grid.
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Fig. 7 Streamwise velocity profiles at cav-
ity midplane for (a) Re=1, (b) Re=
400, (c) Re=1000, (d) Re=4000.

Fig. 8 Geometry of free surface flow.
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Fig. 9 Compuataional grid for periodic wave generation.
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t=12.0 (6000-th step) t=12.2 (6100-th step)
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Fig. 10a Velocity vectors and pressure contours on various time steps.
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Fig. 11 Time history of wave elevation at
x=0.
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