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ABSTRACT

This paper deals with stochastic analysis of slow drift responses(forces and
motions) of floating structures moored in random seas and their statistical pre-
dictions. First the study review for slow drift forces causing the slow drift motion
is described, and four problems which must be solved in future are discussed.
Second it is shown that nonlinear responses (total second order responses) in-
cluding the slow drift responses can be represented by a two term Volterra
functional series. Physical meanings of kernel functions in the functional series
are investigated from a viewpoint of transfer functions(or frequency response
functions). It is shown that the kernel functions can be estimated not only
from bispectral analyses of experimental data but also by numerical calculations
based on the potential theory. Furthermore on the basis of the mathematical
fact that the second term in the Volterra functional series can be expressed by an
equivalent linear process of instantaneous wave power in stochastic sense, new
functional model is developed. This is based on the Wiener filter theory. This
model is used to solve the problems excluded in the investigations obtained up
to now. The problems are as folows: a) Hydrodynamic forces of slow drift mo-
tion in still water are modified in waves; b) Newman- Pinkster’s approximation
for slowly varying drift forces does not satisfy the condition of physical causal-
ity. Comparisons between simulated results and experimental ones have been
conducted in both frequency and time domains. Main results are as follows: 1)
Viscous drift force exists in addition to the drift force driven from the poten-
tial theory and it becomes significant compared with the potential drift force
for large wave height. It is shown that the approximate method which takes
into account the viscous drift force; 2) The hydrodynamic forces of slow drift
motions are modified in waves and this phenomenon is caused not only by the
wave drift damping ( speed dependence of added resistance in waves) but also
by increase of viscous damping force in waves. The ratio between the damping
force in waves and that in still water was not more than 1.6 in the experiments
which we carried out during this research project. But the problem why the
hydrodynamic forces in still water are modified in waves remains completely
unsolved; 3) It has been confirmed that the experimental and simulated results
are in good agreement with each other provided we know how much the added
mass and the damping forces in still water are modified in waves.

Finally a theory of probability density functions (p.d.f.’s) is developed for an
instantaneous total second order response and its maxima, in order to predict
1/n th highest mean amplitudes and extreme statistics of total second order
responses. New formula for the total second order p.d.f.’s which include not
only quadratic but also linear responses are derived. These p.d.f.’s can be rep-
resented by the generalized Laguerre polynomials of which the first term is a
Gamma p.d.f. consisting of three parameters. Assuming that the response
and its time derivative processes are mutually independent, the 1/n th highest
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mean amplitude can be evaluated numerically from the derivative of the instan-
taneous response p.d.f.. This method is first applied to the sway motions of
moored floating semi-circular and rectangular two dimensional cylinders, and
the applicability of the method is studied by comparisons with Naess’ exact so-
lution. The variation of the 1/n th highest mean amplitude of the total second
order response is then investigated following increases in damping and restoring
forces. And comparisons between the experimental results and the estimated
ones obtained from the present theory are carried out. The applicability of the
present theory has been confirmed. The results are as follows: 1) It is confirmed
through comparisons with Naess’ exact solution that the present method is an
accurate approximation for pure second order responses(slow drift responses);
2) The p.d.d. of the total second order response differs from that of the pure
second order response. In fact it becomes a widely-banded distribution with an
increase in the damping coefficient. Additionally it significantly deviates from
Gaussian p.d.f.; 3) It is confirmed that the usual prediction method based on
the Longuet-Higgns’ method significantly underestimates the measured results
while the present method estimates them very well. And it is shown that the
extreme response of the total second order response is greater than that based
on the assumption of the pure second order response.



Chapter 1

Introduction

A floating city and a floating airport interest people more than before, and
floating drilling rigs are forced to operate under severe environmental conditions.
The accurate estimation of motions and wave forces acting on these structures
is important for economical and safety design of these structures!)?:3):4)  For
instance, an accurate motion prediction is required to evaluate the workability
of the structure and the predictions of mooring forces and horizontal excursions
are needed to design the safety mooring system. Since all of these responses
are random variables, these evaluations must be conducted by extreme values
of the responses. In order to obtain the extreme statistics of these random
responses, instantaneous and peak probability demsity functions are required.
If the probability density functions (p.d.f.’s) are obtained, short term and long
term predictions of the responses of the structure become possible®.

There are two methods for obtaining peak p.d.f.’s®). The one is deterministic,
and the other is nondeterministic. For both methods, frequency response func-
tions of exciting forces to incident waves and hydrodynamic forces ( i.e. added
mass and damping force coeflicients ) are required. In the case of ships, many
studies have already been reported for these hydrodynamic problems. For ex-
ample, there is the strip method™® as a popular calculation method, and detail
investigations?+1? for the accuracy of the strip method have sufficiently been
made. There is the three dimensional source distribution method'? to get an
exact solution for ideal fluid flow. (But the validation is still required)

The deterministic manner is summarized as follows: .

The wave force time history in random seas is obtained from the wave force
frequency response function and the random wave time history and the mo-
tion time series is numerically calculated by solving a motion equation in time
domain. By the statistical analysis of the motior time history, a histogram cor-
responding to a peak p.d.f. is obtained. The merits of this manner are that the
motion time history can be obtained even if the motion equation is nonlinear
and that the peak p.d.f. can be found out without calculating the motion fre-
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quency response function. However since the statistical values obtained in this
way are nothing but one sample in statistical sense, numerous calculations are
required to get stable statistical values. Namely, in order to reduce a scatter
of statistical values, it is necessary to get ensemble of sample statistical values
obtained from many calculations of motion time histories. Even if the Ergod-
icity is assumed, statistical analysis of a motion time history with an infinite
duration is required to get ensernble statistical values. Thus it is remarkably
difficult to get ensemble statistical values by using the deterministic manner.

Another problem in the deterministic manner is a frequency dependency
of hydrodynamic coefficients in the motion equation. Since the hydrodynamic
coefficients of the motion equation is a function of wave frequencies in general,
exactly speaking, the motion equation becomes a differential-integral equation.
It is very difficult to solve the equation in time domain since the hydrodynamic
coefficient in an infinite frequency is required.

While, on the nondeterministic manner, Cartwright and Longuet-Higgins*?
have shown that the peak p.d.f. for linear responses can be represented by
a Tesponse variance and a band width parameter. Thus in the case of linear

" responses, the peak p.d.f. can be obiained analytically if a frequency response

function is found out.

In the field of ship and ocean engineering, most responses can be regarded
as linear, but some can not, of which nonlinear components become significant.
Nonlinearities of wave excitations or a motion response functions to external
forces should be considered. For floating offshore structures, it is usual that
both nonlinear phenomena happen. As an example of the former phenomenon,
wave drift forces in regular waves and slowly varying drift forces in irregular
waves must be considered, and as an example of the latter viscous damping
forces and mooring forces must be considered.

It has been considered that the slowly varying drift forces in irregular waves
occur by the following reason:

Because of the nonlinearity of the wave drift force, the existence of two waves
of different frequencies always implies the existence of wave excitations at the
sum and difference frequencies. The latter frequency may occur near the reso-
nance frequency of the floating structure moored in horizontal motions. And if
the damping is low( as it is usually in such motions), a highly tuned resonance
motion must be expected even though the low-frequency force is generally small
in magnitude. Accordingly, the motion of a floating structure moored in ir-
regular waves consists of sum of a slowly varying component and a component
oscillating at wave frequencies. The spectrum of this time history has two peaks.
The one peak occurs within the wave frequency range and the other occurs be-
low the lowest frequency (close to resonance frequency) at which there is any
significant energy in the incident waves. For the combined responses with a low
and wave frequency components (i.e. total second order response), in general,
maxima and minima are not equal, so the probabilities of them are different.
Thus in order to analyze statistically such nonlinear responses, new approach is



required.

The application of probability theory to this problem was accomplished by
Neal!®. He assumed that a nonlinear response could be represented by a two
term Volterra functional series, and he provided a closed form for a characteristic
function(c.f.) of the response by using the Kac and Siegert method!®) (K-S
method). According to K-S method, the problem of obtaining a c.f. for a
random variable, which is represented by the sum of linear and quadratic forms
of Gaussian random variables with mutual independence, can be reduced to
a problem of solving eigenvalues and eigenfunctions of an integral equation.
Since a probability density function (p.d.f.) of the response corresponds to an
inverse Fourier transform of the c.f., Neal’s method gives important information
to estimate the p.d.f. of the nonlinear response to second order. This p.d.f.,
however, cannot be generally expressed in a closed form.

Naess!5:18):17) introduced a slow drift approximation and a pure quadratic
response approximation to obtain the second order response p.d.f., and showed
that the resulting eigenvalue problem generated a set of equal double eigenval-
ues. The p.d.f. of the response can be obtained by his approximations except
when the equal double eigenvalues exist. Equal double eigenvalues may occur
because a large number of eigenvalues are needed to describe a highly tuned
response as shown by the authors et al'®. Included are many nearly zero eigen-
values, thus caution is required. The Naess’ method requires a pure quadratic
Tesponse.

Vinje'® assumed that the considered nonlinear response is weakly nonlinear
and the p.d.{. is close to a Gaussian p.d.f., and he provided the series form of
the p.d.f. from Taylor expansions of curnulants. His method is a kind of the
approximate method called the Gram-Charlier expansion(or Edgeworth expan-
sion).

Naess’ method can be applied to obtain the instantaneous p.d.f. of the
nonlinear response, but cannot be applied to get the peak p.d.f. while the
Vinje's method can. In order to get the peak p.d.f. of the nonlinear response,
a joint p.d.f. of respomse acceleration, velocity, and displacement is needed.
But it is very difficult to exactly obtain this p.d.f. and some approximation is
required. Hineno®®) applied the Vinje's method to the peak p.d.f. of nonlinear
responses and obtained a series form( Hermite polynomial series). Recently
Naess®!) developed the SRSS (Square Root form of Sum of Squares) method,
which is the method that the extreme statistical values can be represented by
the square root form of sum of squares of stochastic variables, and applied it to
get the extreme response of the nonlinear response. But theoretical background
is not clear. '

Besides these studies, Yamanouchi®® studied on nonlinear roll spectrum,
and he investigated the relationship between the degree of nonlinearity and roll
spectrum. And Roberts??):2% obtained the approximate steady p.d.f.’s by means
of Fokker-Planck equation method { or stochastic differential equation method).
This is a promising method in future, but has the defects that the external force

22)
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is limited only to. white noise and it is difficult to solve numerically because of
infinite boundary conditions.

In this way, the consistent method to get the statistics of the nonlinear
response has not yet been developed. As things are, the deterministic manner
is the main current?®)29, As indicated earlier, this deterministic manner has
many demerits, thus a new probability method may be required.

The objective of the present study is to develop a simulation model for total
second order response of floating structures moored in random seas and its
stochastic analysis method.

In Chapter 2, the study review for slow drift force(second order force) is
described, and four problems which must be solved infuture are discussed. As
the most important problem in them, the following problems are treated in this
paper.

a) Hydrodynamic forces of slow drift motion in still water are modified in waves.

b) The Newman-Pinkster’s approximation®®) for the slowly varying drift force
does not satisfy the condition of physical causality.

In Chapter 3, it is shown that the total second order force including slow drift
forces can be represented by a two term Volterra functional series. Physical
meanings of the kernel functions in the functional series are investigated from a
viewpoint of frequency response functions (or transfer functions) and a method
estimating the kernel ones from experimental data is also studied, which is the
method using the bispectrum ( a kind of higher order spectra). Furthermore
a new functional model such that the second term of the Volterra functional
series can be represented by the equivalent lnear process of instantaneous wave
power is developed. The new model is based on the Wiener filter theory??.

Several kinds of experiments have been carried out. Relation between the
kernel function and the frequency response function of the slow drift force is in-
vestigated through comparisons between the experimetal results and numerical
calculations. And the applicability of the present functional model is studied by
comparing between the experimental data and numerical simulations. Further-
more the unsolved problems a)(i.e. how much the hydrodynamic forces in still
water are modified in waves) and b) are investigated by using the new functional
model.

The main results obtained in this Chapter are as follows:

(1) The kernel functions in the Volterra series correspond to the linear and
quadratic transfer functions in frequency domain. The quadratic transfer
function expresses a frequency characteristic of slowly varying drift force.
The quadratic transfer function estimated by using the bispectral analysis
from the experimental results does not agree with the numerical result
based on the potential theory, viscous drift force exists in addition to the
drift force due to the potential theory and it becomes more significant



than the potential drift force when the wave amplitude has a finite am-
plitude. If the viscous drift force is taken into account to the quadratic
transfer function obtained from the numerical calculations even though
it is approximately evaluated, the corrected numerical result is in good
agreement with the experimental one.

(2) The hydrodynamic forces of slow drift motions are modified in waves. This
phenomenon is caused not only by the wave drift damping proposed by
Wichers et al.?®) and but also by increase of viscous damping force in
waves newly suggested by the authors®®. Recently other causes have also
been found (e.g. one of the authors and Takaiwa?).

When the slow drift motion is dominant compared with the linear motion,
the damping force at the slow drift motion increases by 1.6 times as large
as one in still water whereas the added mass force becomes smaller than
that in still water within limit of our experiment. However the problem
how much and why the hydrodynamic forces in still water are modified in
waves remains completely unsolved.

(3) Comparison between time domain simulations taking into account the vis-
cous drift force in addition to the potential drift force and measured data
is conducted. It has been confirmed that both results are in good agree-
ment if we know how much the added mass and the damping forces in still
water are modified in waves.

In Chapter 4, on the basis of the results obtained in Chapter 3 a theory of prob-
ability density functions(p.d.f.’s) is developed for an instantaneous total second
order response and its maxima, in order to predict 1/n th highest mean ampli-
tudes and extreme responses. New formulas for the total second order p.d.f.’s
which include not only quadratic but also linear responses are derived. These
new p.d.f.’s can be represented by the generalized Laguerre polynomials of which
the first term is a Gamma p.d.f. consisting of three parameters. Assuming that
the response and its time derivative processes are mutually independent, the
1/n th highest mean amplitude can be evaluated numerically from the deriva-
tive of the instantaneous response p.d.f.. This method is first applied to the
sway motion of moored floating semi-circular and rectangular two dimensional
cylinders, and the applicability of the method is studied by comparisons with
Naess’ exact solution. The variation of the 1/n th highest mean amplitude of
the total second order response is then investigated following increases in damp-
‘ing and restoring forces. And comparisons between the experimental results in
Chapter 3 and the calculated ones obtained from the present theory are carried
out. The applicability of the present theory is confirmed.
The main results obtained in this Chapter are as follows:

(1) In the case of pure second order response (slow drift response) the instanta-
neous p.d.f. and the extreme responses estimated from the present method
are in good agreement with the exact results shown by Naess.
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(2) Using the present method, an investigation to determine the statistical in-

terference between the first and second order responses was conducted for
a system with a linear damping and a linear restoring forces. The p.d.f.
of the total second order respomse differs from that of the pure second
order response. In fact it becomes a widely-banded distribution with an
increase in the damping coeflicient. Additionally it significantly deviates
from Gaussian p.d.f..

(3) As to the extreme response, comparison between the result obtained from

the present method and one from the model test during long duration
has been carried out. It is confirmed that the usual prediction method
based on the Longuet-Higgins' method significantly underestimates the
measured results while the present method estimates them very well. And
it is shown that the extreme response of the total second order response
is greater than that based on the assumption of the pure second order
response,
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Chapter 2

Review and some Problems
of Second order forces

In this section, first we shall describe the state of the art of studies of the slowly
varying second order forces. Second, we discuss some problems. The coordinates
used in this section are shown in Fig.A.1 in Appendix A.

If the static restoring force by mooring lines is very small, a highly tuned
resonance generally occurs at a very low natural frequency in horizontal plane for
a moored floating structure. It is important in practice to predict the magnitude
of the low frequency horizontal excursions of a platform and to ensure that
they are kept within acceptable bounds. This is one of the most important
hydrodynamic problems that must be solved in designing ocean platforms. This
phenomenon was first reported by Verhagen and Sluijs. They explained the
phenomenon as: ,

Because of the nonlinearity of the free-surface conditions, the existence of
two waves with different frequencies always implies the existence of waves at the
sum and difference (beat) frequencies. The latter may occur near the resonance
frequency of the moored platform in horizontal motion, i.e. sway, surge, or yaw
motions. If the incident wave system consists of a continuoﬁs spectrum of waves,
one is assured that there is always some disturbance at any very low frequency,
and, if the damping is small (as it usually is in such motions), a highly tuned
resonant motion must be expected.

On a basis of a physical investigation, Hsu and Blenkarn? suggested an
estimation method of slowly varying nonlinear forces causing the slow drift
motion as follows:

In any small time interval, consider the incident waves approximately as if
they were simple sinusoidal waves, that is, fit the time history over a very short
time interval by a sinusoidal curve with a specific amplitude and the period, and
compute the steady force as if these sinusoidal waves existed for all time. At a
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(401>



14

(402)

slightly later time, the waves will have changed, and so the process is repeated
with a new sinusoidal wave of different amplitude and period, to which there
corresponds a new value of the “steady force”. And so on. In this way, a slowly
varying second order force is predicted, its amplitude varying roughly with the
square of the wave envelope.

This argument seems reasonable if the incident waves constitute a narrow
band process.

Marthinsen®) has recently provided a mathematical ground for the method
of Hsu and Blenkarn. First, note that, if the incident wave system consists of a
single frequency wave, the steady drift force can be expressed:

F? = Fy(w)a? (2.1)

whereFy is a transfer function that depends on the frequency of the primary
wave( but not on its amplitude). and a; is a primary wave amplitude.
Now suppose that the incident waves contain many frequency components:

G(z,t) = Y ascos(wit ~ Kz + 6;) (2.2)

where a; is the real amplitude and §; is an arbitrary phase constant.
He rewrites (2.2) in the following way:

1z, t) = R{A(z, t) exp[i(wpt — kpz)]} (2.3)

where ‘
Az, t) = Z a; exp{i[(wi — wp)t — (8; — £p)z + 6]} (2.4)

and wy is some frequency at or near the peak of the wave spectrum, with Kp
the corresponding wave number. The quantity A(z, 1) is clearly slowly varying
in both space and time, if the wave spectrum is narrow banded. So by using a
slowly varying function a(z,t) can be represented as:

¢, 1) = a(z, 1) cos(wpt — Kpz + ¥(z, 1)) (2.5)

where a(z,1) is the slowly varying amplitude and % the slowly varying phase
function. They are represented as:

a(z,t) = [(Z a; cos{(w; — wp)t — (ki — Kp)z + 6;})°

+Q aisin{(w — wp)t = (5i = Kp)a + 8,12

e 1y aisin{(wi — wy )t — (ki — Kp)z + 6;}
¥(2,1) = tan [E a; cos{(w; — wl;,)t — (K — Kp)z + 6;}]



If the local frequency wy and local wave number s, are introduced as

L

WL =t g
(2.6)

oY

FL=Fr T 5

finally the following representation can be obtained.

FO@) = F® 4 FO@) = Fy(wg )a¥(zo, ) (2.7)

where zg is a fixed point, which is typically the location of the centre of gravity
of the body, or possibly just the origin of the coordinates used for a.na,lyzmg the
body motion. And F® is a slowly varying drift force.

Equation (2.7) represents essentially the method prescribed by Hsu and
Blenkarn. This method is justified only if the wave spectrum is narrow banded.
Because if the wave spectrum is of wide band, the concept of local frequency
can no longer be used.

Robert?) developed a formula like (2 7). His formula is wy, = wy, i.e. ¥y = 0.
Marthinsen shows that this method gives valid results if 1&- & 1, that is, the
transfer function of steady drift force is flat for wave frequenc1es, and invalid
results if % > 1.

Newman® followed a different formulation but derived a similar result. His
approach has been used by many subsequent investigators. His argument is as
follows: '

Let the wave elevation at some z be represented by

Q) = R a; expliwit)} | - (28)

where a; is the complex wave amplitude of frequency w;. The first order force
caused by these waves can be represented as:

FO(t) = %{Z fl;q; exp(iw;t)} (2.9)

where fi1; = fi(w;) is a first order transfer function relating force amplitude and
phase to the wave amplitude and phase.
We expect that the second order force components will depend on the square

of the wave amplitude. Thus, noting that the products of two wave components
can be written:

R{a; exp(iw;t)} x R{a; exp(iw;t)} =

1 . . .
-2-§R{a,-a,- expli(wi + w;)i] + aia} expli(wi — w;)t]}

15
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where the asterisk denotes a complex conjugate.
The second order force components should then take the form:

FO®@) = ER{E Zfé;;)a,-aj expli(w; + w;)t]}
i

AR 157 aia} expli(ws — w;)}
LI
(2.10)

The (+) and (-) notations distinguish between the second order transfer func-
tions relating to the sum frequency and the difference frequency, respectively.
We are interested only in the second order zero- and beat-frequency force, and
so we neglect the first sum and delete the subscript 2 and (—) notation. So we

have simply: , ,
F(2)(t) = %{Z zfgl,-a,‘a,; expli(w; — w;)]} (2.11)
i .

Note that fi; = fa(wi,w;). The time average of AN

FP = R(Y fijeias} (2.12)

Since F and the products a,-a,;-' are real, 'f;; is of no interest. Thus,

fii = Fa(w;)

The coeflicients, f;; with ¢ = 7, are generally complex. Since the force expression
in (2.11) does not depend on the choice of 7 and j (which are arbitrary), we

. require that

fij = I}
that is, the second order force matrix must be a Hermitian matrix. fij can be
viewed as a surface in a three dimensional space with coordinates w;, wj, and
fij. For each pair of frequencies, which define a point with coordinates (wi,wj)
in the w; — w; plane, the height of the surface is given by Rf;; or by Sf;;. The
height of the surface is known along the 45° line in the base plane: The real
part is just fi;, and the imaginary part is zero. Newman assumes that these
surfaces are smooth and that their tangent planes make small angles with the
base plane.
If this assumption is valid, then

fij = fu+ O(w;‘— w;) (2.13)



for frequency pairs lying near the 45° line.Then the off diagonal terms in fij can
be approximated, the following formula is given for the slowly varying force

FO®) = R{Z Z fiiaia; expli(w; — w;)f]}

x{1+ O(w; ~wj)} as wi—wj—0
(2.14)

Triantafylou®) has pointed out that the Newman's approximation might be valid
unless the second order waves could be considered as shallow water waves.
Pinkster” has developed the same formula as Newman’s. He indicated that
if F4 can be represented by a linear function, f;; in (2.11) can be approximated
as:
fisg = fia s

And he gave a; slow drift force spectrum in the following form:
]
Sp(w) = 2% / S ()¢ + w)F3(w + 2) du! (2.15)

where S¢ is a incident wave spectrum. All of these analyses are a.ppromma.te
solutions.

Recently Pinkster®® and OgllVlem) have shown the exact expressions for
the second order forces and moments within the potential theory, those expres-
sions were obtained based on the method of direct integration of fluid pressure
acting on the instantaneous wetted surface of a body.

Their expressions of the second order force can be represented as the sum of
the following components (see Appendxx A): -

(1) : Component caused by fluid pressure between mean and instantaneous
wave surfaces:

PP = —Eg n((ll €31 — yéar + xés1) ds (2.16)
(2) : Component due to quadratic pressure term in Bernoulli equation :
O = E/[ 7| Vo |2 dS (2.17)
2/Js,.

(3) : Component caused by variation of the acting point of fluid pressure:

=, // A{(EW + a0 x 7). Vor}ds  (218)
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(4) : Component caused by variation of direction of first order wave force with
respect to rotation of a body:

F® = g x FO (2.19)

(5) : Component due to second order potentia.ls:
s
Fs(z) = P// (o + ©3,) dS (2-20)

where (; is the first order surface elevation, and &®) = (€41, €51, &61), which is
the first order rotational motion vector, and €33 is the first order heave motion
In addition, there exists a term pgAy,(x €41 +yEs1) in the vertical second order
forces, which term is caused by the product of first order rotational motions.

If the instantaneous wave surface elevation is expressed by (2.8), the second
order forces can be represented like (2.10). The components (1) through (4)
are caused by the product of first order quantities, the component (5) is only
caused by second order potentials, that is, it can be obtained only by solving
the boundary value problem of second order potentials.

Although the Pinkster-Ogilvie theory has become popular, there are several
problems that can not be determined by the theory. They are as follows:

[1] Contribution of second order potentials to the drift force

The component (5) depends on the second order velocity potential o , which is
very difficult to compute. There are several different ways in which to approach
this problem. For example, Lighthill'!) has shown that the second order force
can be expressed wholly in terms of first order quantities by use of reciprocal
relationships. His expressions, however, require the evaluation of an integral
of second order pressures over the entire free surface, which is called a free
surface integral. The amount of numerical work required to achieve this is
likely to become vast unless some approximation will be found to represent an
asymptotic behavior of second order potential away from the body. The purpose
of evaluating this term is not to obtain an accurate prediction of slowly varying
drift force but rather than to find out if the term is important.

Pinkster”, Standing et al.!?, and Matsui'® have obtained the following
conclusion by evaluating the to’cal slowly varying dnft force without calculating
the free surface integral.

The contribution of term (5) to the total slowly varying drift force can be
negligible at high wave frequencies, at which the first order diffraction effect is
significant, but it can be of great importance at low frequencies.

Faltinsen and Lgken!'®) formulated the problem precisely to second order,
expressed the drift force in terms of first and second order potentials, and then
used Green's theorem to eliminate the explicit dependence on the second order
potentials. They obtained the same conclusion. They treated only the two



dimensional problem, but it certainly is possible that the same conclusion will
be obtained in the three dimensional case.

However there is one case in which the second order potential may be impor-
tant. It is the case that the second order waves may be shallow even though the
first order waves are still deep water waves. It is possible for this phenomenon to
occur, because the second order waves have the very low frequency component.

[2] Necessity of singular perturbation

One defect of the usual perturbation analysis (regular perturbation analysis) is
that it is based on the assumption that motions of the structure are small com-
pared with the dimensions of the structure itself. Since it is well known that the
low frequency resonance response of a moored floating structure often involves
very large horizontal excursions, then it is clear that this usual perturbation
approach becomes invalid. ‘

Triantafyllou® developed a mathematical model that involves only linear
hydrodynamic problems, even while it permits large excursions of the platform
in the horizontal plane. He used a kind of multi-scale expansion theory, and
assumed that-the motion response consists of two motions:

1) The one is the usual motion response to the incident waves; the amplitude,
velocity, and acceleration are small, and considered to be O(e), where eis
the usual perturbation parameter.

2) The other is the low frequency motion having the velocity that is O(e),
whereas its amplitude is O(1).

If t is the time variable that is normally used, he used a new time variable,
t = et, for analyzing the low frequency motion. Thus his method is a kmd of
derivative perturbation analysis, i.e. singular perturbatlon

[3] Effect of wave drift damping etc.

It is observed that the damping force on a moored floating structure during
low frequency motion in waves becomes greater than the one in still water.
Wichers et al.!®1®) explained that this phenomenon is caused by a kind of
added damping force due to the drifting of a structure in waves. They called it
wave drift damping in order to distinguish it from the linear radiation wave
damping. The authors et al.!” and Standing et al.!® examined a simple method
, which is called “drift force gradient method ”, for approximating the additional
damping due to the presence of waves, based on drift forces in regular waves
at zero forward speed, using the analytical relationship between forward speed
and wave encounter frequency together with wave frequency gradients of the
drift forces. Wichers et al.'®) proposed a different way using added resistance
gradient and Hearn et al.?®) computed by so called “added resistance method ”
that models the low frequency motion by steady forward speed of the structure
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where

in the fluid structure interaction analysis. Hearn et al. concluded that the drift
force gradient method seems to predict the correct trend but not the correct
magnitude, and that the subject of theoretically predicting wave drift damping
is not fully resolved and more research is required.

On the other hand , the authors®) showed an increase of the decay of low
frequency motion coupled with the wave induced motion due to the nonlinear
viscous damping force (nonlinear coupled viscous damping). The explana-
tion of this phenomenon is indicated in Appendix D.

Saito and Takagi®® demonstrated from comparisons between simulations
and model experiments that drift forces based on potential theory as well as
the nonlinear coupled viscous damping have an influence on the increase of low
frequency damping in sway motion. One of the authors and Takaiwa?3) showed
that the increase of the viscous damping force due to waves is sometimes much
larger than the nonlinear coupled viscous damping even taking off the wave drift
damping for a semisubmersible and it depends on the ratio between wave particle
velocity and motion velocity. They called it as drag coefficient change due
to waves. Furthermore they indicated that the low frequency added mass
in still water is also modified in waves. But theoretical backgrounds of these
phenomena are still not clear yet.

[4] Physical causality of Newman approximation

In general, the slowly varying drift force can be represented by a Volterra system
function, which will be stated in the next sections.

FO0) = [ [ al(nm)ets = n)e(t = m) dny dr (2.21)

1 . :
a(m,m)= m/ / G’?(wl, wa) exp{i(w1m + waT)} dw; dws (2.22)
wiJwa

As stated earlier, Newma.n24) introduced the a.ppromma.tlon for the quadratic
transfer function G’2 His approximation is that G 2{w1,ws) is estimated by its’
values along the diagonal wy = —w; as follows:

Go(wy, ~w as wy we <0
Gz':(whwz):{ (w1, —w) othermrise (2.23)

then Eq.(2.22) becomes
94 (r1,72) = ki (m1)6(r2) (2.24)
where 6(7) is the Dirac’s delta function and
[ Gl(w, —w) exp(iwT) dw

=4 2 [CR{G(w, —w)}cos(wr) dw (2.25)
%f?-i‘f{Gﬁ(w, -w)} sin(wr)dw for 7 >0



Substituting (2.24) into (2.21) yields:
FO(0) = () [ M(r)ote = ir (2.26)

and since Gé(w, —w) represents the steady drift force, it must be real; i.e.
3{G§(w,—w)} = 0. Eq.(2.26) means that F®(t) is approximately written
as the product of two Gaussian random processes (which are not statistically
independent). However, from (2 25) we must note that hf(t) does not satisfy
the physical ca.usa.hty unless G’2 (w, —w) takes a constant value. It is physically
inconsistent that G 2(w, —w) is constant, i.e. the steady drift force does not de-
pend on wave frequen01es This inconsistency is caused by the lack of the phase
information of G4(w, —w).

In this way, there exist many problems which must be solved on the slow drift
phenomenon. This paper treats the slowly varying drift force from a viewpoint
of system functional theory in order to solve the problem of physical causality of
Newman's a.pproximation Then there will be a discussion along this approach
on the third problem, i.e. how the wave drift damping affects the slow drift
motion can also be investigated by this a.pproa,ch But we will not discuss on
the first and second problems in this paper since they require lots of additional
research.
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Chapter 3

Formulation of second
order forces due to
Volterra functional series
and Application of
Wiener’s filter theory

3.1 Relationship between Volterra functional
series and second order force system

Let f(t) denote the nonlinear total second order force vector of a floating struc-

ture to a random excitation {¢(¢) | ¢ € R}. Since F(¢) is the response vector

to the entire time history of ¢(t), we call F(¢) a functional vector defined on a

class of excitation ((t) as

F(t) = Fl¢(0) (3.1)

If F[¢()] is a continuous functional vector of ¢(%) in the function space sense,
then F (t) can be expanded in a functional vector power series such that

ﬁ(t) ¥F0 + /Zl(t, 4)¢(t)dty + - -

+/~--/ﬁn(t,tl,'-ﬁ,'tn)c(tl)'-((tn)dtl---dtn+-~-
(3.2)



If this series represents a causal physical system, then the kernel function vectors
satisfy

Ba(fytr, - ytn) =0 4>t (3.3)

Series satisfying this property were studied by Volterral), and series of the form
(3.1) that satisfy Eq.(3.3) are called Volterra functional vector series. -

If the nonlinear system is time invariant, then kernel function vectors in
Eq.(3.2) depend only on time difference. Thus,

F(t) =Fo+/g'1'i(1')((t-—r)dr+---

+//‘(-]';(T1,T2)C(t—Tl)C(t—tz)dTsz-l-“‘

(3.4)

where Fj is a constant vector. In general, the kernel function vectors in Eq.(3:4)
may not be symmetric for their arguments. However, a permutation of indices
in any kernel vectors only affects the order in which the integration is carried out
but does not affect the response. Thus, for the purpose of analysis, symmetric
kernel vector may be assumed without loss of generality; i.e.

™ 1
gn(ThTZ)"')Tn) - Hzgfb(ﬁl,'“,ﬁn) (3'5)
G '

If the kernels are continuous and absolutely integrable and if the input is
bounded and the contribution from terms of order n in Eq.(3.4) decreases to
zero as n — oo, then it can be proved that the functlona.l power series (3.4)
converge uniformly.

We shall limit our analysis to excitation effects through second order and
Fy = 0. Then Eq. (3.4) is truncated at n==2 and takes the fo]lowmg form:

F(t) = / f(T)((t —71)dr + //"’F(rl, 12)¢(t — 1)¢(t - Tz)dTlde (3.6)

And we will treat the vector function as the scalar function hereinafter for
simplicity. If {(¢) is a wave excitation, this series can be used to analyze the
response that is proportional to both the wave height and the squared wave
height. There exist the time and spatial dependencies in the incident wave
system. But since the wave system have a dispersivity, it is not necessary
to consider the spatial dependency as indicated by Hasselmann?® . It may
also be mentioned that the adopted formulation is consistent with second order
corrections to a linear wave field, in the sense that such corrections may be
incorporated in Eq.(3.6) where {(t) then denotes the linear part of the wave
field. Consequently, the assumption that ((¢) is a linear, Gaussian wave process
is consistent with the second order model in Eq.(3.6). If the kernels in Eq.(3.6)
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are continuous and absolutely integrable, then the kernels possess the Fourier
transform. The transform pairs are defined as follows:

al(t) = & [ Gf(w)exp(iwr)dw

G{(w) = fwg{('r) exp(—iwr)dr
(3.7)
gg('rl,'rg) = ri,—ful fw Gg(wl, wa) exp{i(w1 71 + worp)}dwidw,

Gf(w1,w2) = I fﬁgg(fl» 2) exp{—i(w1n +way)}dTidTy

In Eq.(3.7) the kernel g{ is a linear impulse response function, and its transform,
G{ ,is a linear transfer function. The kernel ng is analogous to the linear impulse
response function and is called “quadratic smpulse response function”. Its trans-
form, Gg , is called “quadratic transfer function”. Since the kernel gg (71, 72) can
be assumed to be symmetrical in its arguments; i.e.

g5 (r1,m2) = ¢f(r2,m1) (3.8)
- thus
Gg(wl, WQ) = G%(WQ, wl) (3.9)

Consequently, the quadratic transfer {function is symmetrical about the line
w1 = wq in the (w;, ws) plane.

If {(t) is a Gaussian random wave with one-sided spectrum U, Rice® has
shown that it is represented in the following stochastic integral:

) = / cos(wt — p(w))/2T(@)dw (3.10)

where p is a random phase distributed uniformly over 0° to 360°. This represen-
tation means the stochastic integral, and it converges in the sense of stochastic
quadratic mean.

Substituting (3.10) into (3.6) we have:

FO () = /cos(wt - u(w) + 01(‘w))\/2 | G{(w) |2 U(w)dw (3.11)

FOt) = [[oos{(wn +wa)t = (uler) + wa)) + Oa(ur, )}

X \/I G£ (w1, wa) |2 U(w1)U(ws)dwydws

+ [ [eos{n = wa)t = (u(er) = w(@a)) + s, =)}

x\/1 6 (w1, ~wz) |2 U(w1 U (ws)dwr dus (3.12)



where v

G{(w) =| G{(w) | exp(if1(w))

G (w1, w2) =| Gf(wr,w2) | exp{ib(wr, ws)}
It is clear that the first term on right hand side of (3.12) shows the sum com-
ponent of second order force and the second term indicates the difference com-

ponent. Taking the ensemble average of Eq.(3.12), and taking into account a
statistical independence of the random phases, we get:

E[F®] = / G (w, —w)U (w)dw (3.13)

While the time average of 7 () is represented in the following form:
FO =Y Fa(wi) | ai (3.14)

By using the relationship as;

a; = /20(w)dw;
Eq.(3.14) can be expressed in the following integral:
7P = / 2Fy(w)U(w)dw (3.15)
If (3.13) is equal to (8.15), the following relationship holds:
61w, ~w) = 2Fs(w) (3.16)

Similarly, from comparison between (3.12) and (2.11) the system function Gé
can be related to the transier function of slowly varying drift force like:

Gé(w}’ —w2) B :2f2(w11 "‘WZ) . (3.17)

3.2 Application of Wiener’s filter theory to
slowly varying drift force

It is clear from (3.12) that the slowly varying drift force can be expressed by a
quadratic form of random processes. So we expect that the quadratic impulse
response function may reveal a kind of filter function in the field of communi-
cation engineering. Thus if the system considered is Ergodic, it is possible from
the Wiener’s theory to replace g{ by a optimum linear filter, i.e.:

F@(t) = / wa(r)C2(t - 7)dr (3.18)

where wo is an optimum linear impulse response function.
The Wiener's theory? provides an optimum filter function ws under the
following three conditions:
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(1) The input process must be an Ergodic process and its spectral density can
be resolved into factors.

(2) A criterion of error minimizes the least mean square of error.

(3) A filter function is linear and causal.

The criterion of error between the second term of Eq.(3.6) and Eq.(3.18),
that is, J can be obtained from the conditions (1) and (3) as follows:

J= E[{//Q;{(Tl, 12)¢(t — 1 ){(t = 72)dmidTs — /w2(T)C2(t —7)dt}?] (3.19)

The problem minimizes J in (3.19) with respect to an arbitrary function ws,
i.e. a kind of stationary value problems in calculus of variation.

Let J[wq] be a functional.

Now, assuming that w} is a function minimizing J, then the necessary con-
dition for w3 to be a optimum Wiener filter is given by:

0
i aJ [w2,3+ sws) =0 (3.20)
£—+00 €

This representation is equivalent to the following equation:

| [IBe@Rc(ra = 1)+ 2Re(r = m)Re(r =)

x{gf(r1,72) — wa(m)é(m2 — 1) }dridry = 0 (3.21)

where R is the auto correlation function of ((t).
Thus we have:

9 (1, 72) = wa(r1)8(rs — 11) (3.22)

If the Fourier transform of w; is given by W, the following relation is satisfied.
G (w1, wz) = Wy(w1 + wp) (3.23)

Multiplying the incident wave spectrum in both sides of (3.23) and integrating
in frequency domain, a concrete form of W, is given by:

Walw) = — / Gl(w = ', w')S¢ (')’ (3.24)
¢

Now, we assume that GJ(w;, —wj) is smooth with respect to w; and w; and that

f
% = UG:{ (wi, —wj),t # j and v is any small quantity; that is, the tangent
y ,

planes of Gg(w,-, —wj) makes small angles with G%(wg, —wj).



Triantafylou® has pointed out that this assumption is valid only for the case

that the second order waves need not be considered as shallow water waves. If

this is valid, then from Taylor expansion we get:

Gi(w - w',0') — Gf(v', ') Zv"

—w"  [w— 0]

GI (wl wl) n!
From definition of asymptotic series
Gi(w —v',w') ~ G (W', ~0") - (W) [w — oo] (3.25)

where 9(w) is a response function, of which amplitude exponentially decreases
with an increase of w. This expression is equivalent to the approximation sug-
gested by Newman(see Eq.(2.13)).

Substituting (3.25) into (3.24) we get:

2) :
Wi(w) = — Hw) (3.26)

¢

where F® is the steady-drift force in irregular waves (see Eq.(3.13)). Thus, the
impulse response function can be expressed as:

wa(T) = 5 102 F? /ﬁ(w) exp(iwT)dr (3.27)

Taking into account that ¥(w) is a exponential decaying function , it means
that wy represents a low pass filter functlon That is, we can generate the

slowly varying drift force by passing —r - ¢2(t) through a low pass filter.

3.3 Estimation of transfer functions of' first
and second order forces

This section shows the method to estimate transfer functions of first and second
order responses from experiments.

If a surface elevation ((t) is expressed by a Gaussian random process with
zero mean, the cross correlation function between second order force F' and ¢
can be represented in the following form:

Rpe(t) = EI(F(t) - F)((t — 7)]

= / gl (11)Re (11 - t)dta ‘ (3.28)

* And from Wiener-Khintchine relationship the cross spectrum is given by:

Spe(w) = G (w)S @) (3.29)
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where S¢ is a two sided wave spectrum.

This result means that the cross spectrum mvolves only the first. term of
the functional polynomials, and the linear transfer function G{ is derived by
standard cross spectral technique.

Next, we consider a third order moment function as follows:

Reep(my, 1) = E[(t+ 1 )((t = n){F(t = 72) = F}] (3-30)
Substituting (3.6) and taking jnto account of the symmetry of the quadratic
impulse response function g{ » Eq.(3.30) becomes:

Reer(rym) =2 / / ot t)Re(ty + 71+ 72)Re(ta — 11 + 72)dtydty  (3.31)

And utilizing Parseval’s formula, the representation in frequency domain is ob-
tained in the following form:

Beep(m,m2) =2 /f‘gf(whwz)sc(wl)sc(wz)

x exp[i{(w) — w2)7y) + (w1 + wa)m2}dwy dws
(3.32)

Tick®) has defined a cross bispectrum C¢¢r as a two dimensional Fourier
transform of a third order moment function Re¢r as follows:

Reep(mi,m2) = / / exp{i(Qm1 + Q2m)}Crer(fh, 02)dR dQy (3.33)

1 .

C«p(ﬂl,ﬂg) = e //exp{—z(ﬂyl‘l + QQTg)}R{(F(Tl,Tg)dTldTg (334)
From (3.32) and (3. 34) we can find the relationship between the cross blspectrum
and the quadratic transfer function in the following form:
Ce¢r™ (w1 — wg, w1 + wy)

S¢(w1)S¢(w2)

The method for estimating the cross bispectrum by using experimental data is
indicated in Appendix B.

Gf (w1, ws) =

(3.35)

3.4 Comparisons between experimental results
and numerical simulations

3.4.1 Model tests
(1) Model

In the experiments an offshore floating structure model supported by twelve
legs with footing was used. The configuration of the model and the direction



-of incident waves are shown in Fig.3.1. The principal dimensions are indicated
in Table 3.1. This is the 1/14.3 scale model of the structure used in the at-sea
experiment being carried out in Yura port of Yamagata prefecture.

(2) Test set-up and Measuring items

The model experiments were carried out at the Mitaka No.2 Tank (Length is
400m, the breadth 18m, and the depth 8m) in Ship Research Institute. The
model set-up is shown in Fig.3.2. As shown in this figure, the model was re-
strained by two soft springs through the device which restricted the yaw motion.
The spring constant of them was 1.683 kg/m, (0.663 ton/m for the actual struc-
ture.).

The measured items are as follows:

(i) Surge and heave motion measured by a non-contact optical motion measur-

ing system;
(ii) Pitch motion measured by a vertical gyroscope;

(iii) Surface elevation measured by a servo needie wave probe fixed at a position,
the z coordinate of which is equal to that of the centre of gravity of the
model in still water.

(3) Kinds and methods of model tests

(a) Free oscillation test in still water

The natural periods and equivalent damping coeflicients in surge motion was
obtained from this test. Two kinds of spring coeﬁiments were used. The one
was 1.683 kg/m, and the other 5.09 kg/m.

(b) Forced surge sinusoidal or random oscillation tests in still water

Forced surge sinusoidal oscillation tests were carried out at the range of 3.75 to

15 cm in amplitude, and the oscillation period of 17sec. The range corresponds -

to Keulegan-Carpenter numbers(K, number) of 1.6 to 6.2. This test was done
to study the dependence of the drag force to K, numbers.

Irregular forced oscillation tests were made to compare with the results of
the sinusoidal forced oscillation. Irregular signals for the forced oscillation tests
were the surge response data recorded in the following test {d).

(c) Test for measuring steady drift force

Four kinds of tests in regular waves were carried out. Encounter angles of the
tests are 0, 30, 60, and 90 degrees. The frequency range of the regular waves
was from 3.0 to 9.8 rad/sec.
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(d) Test for measuring a quadratic transfer function of surge motion

In order to experimentally obtain the quadratic transfer function of a moored
floating structure, the estimation of the cross bispectrum between waves and
responses is required as mentioned in the Chapter 2.2. Therefore, in order to
generate irregular waves over long duration, the filtered signals were used, which
we obtained by means of passing the white noise signals generated from a noise
generator into band pass filters. The rolloff( cuttoff characteristics) of the band
pass filters was 24db/oct.. Four kinds of irregular waves were generated. The
central frequencies f of the band pass filter were 0.4, 0.5, 0.6 and 0.7 Hz. In the
case of { equal to 0.7 Hz, the duration time of irregular waves was 90 minutes,
and for the other cases it was 45 minutes. The encounter angle of these tests is
only head sea.

3.4.2 Numerical calculation
(1) Method

Computation of the first order hydrodynamic forces was made by a program
based on the three dimensional potential theory. In the computation the mean
wetted surface of the body is approximated by 480 facets. The cpu time con-
sumed to calculate the first order forces was about one hour on the FACOM
M180 IT AD computer. The steady and slowly varying drift forces were calcu-
lated by integrating pressure distributions over the wetted surface. The compo-
nent due to second order potentials was not taken into account. The cpu time
for calculation of drift forces was 10 minutes for the same computer.

(2) Check of numerical accuracy

In order to check the numerical accuracy of drift forces, computed results were
compared with the Pinkster’s. All of calculations were executed in double pre-
cisions. Comparisons between ours and Pinkster's are shown in Fig.3.3. In
this figure black circles show the present results and broken and solid lines
show Pinkster's results. The legends ( 1), 2), 3), 4) ) denote components of
steady drift force in Eqs.(2.16) through (2.19) and "total” means a sum of these
components. There are a important points to note in this figure. The present
calculations for the component 1) in the horizontal mean drift force are less than
Pinkster’s results. The other three terms and results of the vertical mean drift

~ force agree very well. The component 1) is the largest and is opposite in sign

to the components 2),3) and 4), whose sum is comparable in magnitude with
the component 1). Thus, small percentage errors in term I give rise to larger
percentage errors in the total drift force. The differences in the component 1)
are also certainly due to the difference of the way modelling the waterline.



3.4.3 Hydrodynamic force characteristics of surge motion
(a) Free oscillation test in still water

An example of experimental results is shown in Fig.4. By using this data, a
virtual mass and equivalent damping coefficient were obtained as follows:

Let z, be sequential peak values(amplitudes) of damping curve. . And It is
assumed that the decaying motion can be represented by:

z = Xo exp[—

in + v 3.36
i ol +9) (3.36)
where Tp is the natural period, (M) + mi;1) the virtwal mass, and N§; the
equivalent linearized damping coefficient. Then if we plot | Zp42 — Zp41 |as a
function | &p41 — &, | and the damping is constant, from Eq.(3.36) we get:
€

| a2 — Tng1 l— exp[— 4(—ml | #ni1 — zn | | (3.37)

Thus by the least square method, the minimum error estimate of the inclination
® can be obtained. The natural period Ty is obtaired from the mean of zero-
upcrossing periods and zero-downcrossing periods. Then the virtual mass and
equivalent damping coefficient are given by:

120
M, + myy = % (3.38)
Ny = —g———————DOHTIQOg(@) (3.39)

where C; is a restoring force coefficient.

The results obtained in this way are shown in Table 3.2. In order to apply this
method, a large number of peak values is required and the motion equation must
be linear. If the number of peak values is small, the accuracy of hydrodynamic
force coeflicients will become poor. So we must study whether the hydrodynamic
coefficients obtained from Eqs.(3.38) and (3.39) have a good accuracy.

(b) Forced irregular oscillation test in still water

The forced irregular oscillation tests were carried out in still water by using the
surge motion signals (including the slow drift motion) obtained from the motion
measurement experiments in waves. This test was done to study the accuracy
of the hydrodynamic force coefficients obtained from the free oscillation test.
The hydrodynamic force coefficients by this test are given as follows:

Let S;r be a cross-spectrum between the forced surge displacement z and
the hydrodynamic reaction force F and 5, be a auto-spectrum of z. Then the
hydrodynamic force coeflicients can be obtained from the following equation.

Ci1 — (M1 +ma1) = R{ ;F(E:}))} (3.40)
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This method can be applied only to the case of linear motion equation. If
the hydrodynamic forces in the motion equation are nonlinear, note that those
coefficients obtained by this method express nothing but equivalent linearized
coefficients. Comparison between the surge hydrodynamic coefficients obtained
from the free oscillation test and ones from the irregular forced oscillation test is
shown in Fig.3.6. The horizontal axis indicates the non-dimensional frequency

W= w\/%, where D is the diameter of one column and w is the surge motion

frequency. In this figure white circles show the hydrodynamic coefficients ob-
tained from the irregular forced oscillation test while black circle show those
from the free oscillation test. The broken line indicates the numerical results
calculated by the three dimensional source distribution method. The damping
force coefficient is nondimensionalized by pV\/:bf.

The inertia coefficients obtained from the forced irregular oscillation test
are distributed around the numerical values calculated by the three dimensional
source distribution method while those from the free osciilation test agree well
with the numerical values. The equivalent damping coefficients from the ir-
regular forced oscillation test take negative value in some frequency range and
distribute in the wide region from -0.1 to 0.2. Both results from the forced irreg-
ular oscillation test and the free oscillation test are in rough agreement. From
this figure it is found that the inertia force in low frequencies can roughly be pre-
dicted from the three dimensional potential theory and the damping force can
be obtained from the free oscillation test in still water. But in general, it is well
known that the hydrodynamic forces depend on the magnitude of motion dis-
placement. Thus in order to investigate the motion displacement dependency of
hydrodynamic forces, the sinusoidal forced oscillation test was carried out. The
motion amplitudes in this test were changed from 3.75 to 15cm, and the motion
period was a constant period (17.5 sec., i.e. w=0.0429). Results are shown in
Fig.3.7. The horizontal axis is the Keulegan-Carpenter number (K, number),
which is defined by 27 Xo/D (where Xj is the motion amplitude and D is the
column diameter). The solid line indicates the results obtained from the free
oscillation test, and the broken line shows the results calculated by using the
three dimensional source distribution method. From this figure it is seen that
the hydrodynamic forces acting on this structure do not depend much on the
K. number against our expectation. However one of the authors and Takaiwa”
have conducted the forced and free damping tests for a tanker, a box-shape
barge, and a semisubmersible, and they obtained the K, number dependency
of drag coeflicients for theses structures. According to their results, the drag
coeflicients appear to be inverse proportional to K, number in the range of small
K. number. This means that the equivalent damping coefficients do not depend
on K. number in this range of K, number, but the further researches will be



required to examine this problem.

Within this experiment, inertia force coefficient (1 + my1/M;) in low fre-
quencies can roughly be estimated at 2.0, and the equivalent damping coefficient
(IV§,) is about 4.6 kg - sec/m ( 3.56 ton - sec/m in the prototype structure).

3.4.4 Frequency response functions of surge motion

The spectra of irregular waves generated in the experiments are shown in Fig.3.8.
And the statistical values are indicated in Table 3.3. The Blackman-Tukey
method was used in the spectral analysis. The number of lags was 256 and the
Hamming window was used. The number of data taken for the analysis was
about 35500 in the case of wave condition 4 and it was about 23000 in the other
cases. The sampling interval was 120msec for the analysis and it was 60msec
when the data were measured. . _

In order to get the quadratic transfer functions we need the cross bispec-
trum estimates as mentioned in Appendix B. The utilization of the Fast Fourier
Transform have significant advantage to compute the full components of the
cross bispectum. For present purpose however the full computation is not re-
quired, only results on or near the line wy = ws in bi-frequency plane are needed
because our discussion concentrates upon slowly varying forces. Thus, we used
the method developed by Dalzell®) to estimate the cross bispectrum. The win-
dow function used in the computation of cross bispectrum was the Hamming
type extended to two dimensions. The coefficients of the window function, i.e.
e; and ey were 0.54 and 0.46 respectively.

For the spectral analysis based on the Blackman-Tukey method the maxi-
mum lag number must be less than 1/10 of sampling data. And Dalzell® showed
that in order to get a stable cross bispectrum, the maximum lag number must be
less than 1/200 or 1/250 of sampling data. Futhermore, as shown by Appendix
B, if the lag number of the spectrum analysis is m, one of cross bispectrum
analysis becomes m/2. In this case we decided that m was 256. '

The auto spectra of surge motion are shown in Fig.3.9. The surge response
in the case of wave condition 4 is the largest in the four wave conditions and low
frequency motions are most dominant in the surge responses. The first order
frequency response function, which is obtained from the cross spectra between
the surge motion and waves, is shown in Fig.3.10. In the figure, the white
circles indicate the experimental results. The solid line shows the theoretical
value due to the usual linear motion prediction method which takes into account
the viscous damping force obtained from the experiments(see Chapter 3.4.3).
The experimental results and the linear theoretical curve are in good agreement.

3.4.5 Characteristics of steady drift force

The steady wave drift forces in wave direction are shown in Figs.3.11 through
3.14. In these figures, x means a encounter angle to waves and circles indicate
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the experimental results, where black circles are for the experimental results
with the wave height higher than 7 cm and white circles are for ones with the
wave height lower than that. The solid line shows the theoretical curve based
on the potential theory and the dotted line shows the modified theoretical curve
obtained by taking into account of the viscous drift force (this will be mentioned
later) in addition to the potential theory. Fine lines indicate the results obtained
from the experiment in irregular waves as follows:

As indicated in the previous section or Appendix B, if the cross blspectrum
estimates between waves and second order forces can be directly obtained from
the experiment in irregular waves, the frequency response characteristics of drift
forces can be estimated with good accuracy. But it is difficult to measure the
wave forces including the second order forces when the body is oscillating. Thus
we adopted the indirect method instead of the direct measuring method of
wave forces. First, we estimated the quadratic transfer function G from the
cross bispectrum between the surge motion and waves. Second, we determined
the frequency characteristics of the steady drift force in irregular waves by the
product between the diagonal components of Gz and the spring constant. In
these figures, the abscissa expresses the non-dimensional wave frequency @, the
vertical axis means the mean (steady) drift force coefficients in wave direction,
those are normalized by %—pg({;’L (where L is the total length of the floating
body and (o is the incident wave amplitude). And H/D is the ratio between
the wave height and the diameter of column. When H/D < 0.5, that is, the
wave height is less than half of the column diameter, the experimental results
agree well with the theoretical line based on the potential theory. But, when
H/D becomes larger than 0.5, both results are different considerably. As the
cause of the difference, the following physical factors may be considered:

(a) Viscous drift force(surface force):

This occurs from the product of a wave force term, which is in proportion
to a squared fluid velocity in the Morison equation, and a wave surface
elevation. Chakravarti® and Standing'® has reported that this force ex-
ists.

(b) Steady force due to other viscous drag force:

A vertical viscous drag force changes by angle of pitch motion. And its
force produces the horizontal viscous force. Huse!!) expressed the hori-
zontal steady viscous force as:

Fyiy == < Caz v, | v; | €1 > (3.42)

where < - > denotes time mean value, v, is a relative vertical velocity
between a vertical wave particle velocity and a heaving velocity and £s; is
the pitch motion and Cyz is the vertical drag coefficient.

(c) Steady force due to mass transfer velocity of waves:



Stokes'? has shown that the horizontal mean velocity in the direction
of wave propagation occurs in the vicinity of wave surface and this phe-
nomenon is caused by the nonlinearity of free surface condition. This ve-
locity is in proportion to the squared wave height. If a steady drag force
can be produced by the mass transfer velocity, it may be proportional to
the fourth power of wave height.

(d) Drift force due to the second order potentials:

Standing and the others'!® has shown that the second order potential
makes no contribution to the horizontal steady force or the steady turning
moment. The absence of a steady drift force due to the second order wave
can also be explained in physical terms. A steady force would imply the
presence of a mean pressure gradient, which would in turn imply a steady
acceleration throuout the fluid. This is not possible in the horizontal
steady state situation.

In the four factors, we need not consider (d) because the drift force due
to the second order potential does not produce a steady force.

Figure 3.15 a) shows the variation of steady drift force coefficient vs. the
wave height at the wave frequency w equal to 4.387 rad/sec( 1.16 rad/sec in
actual structure, and 0.5254 in the non-dimensional frequency). And Fig. 3.15
b) shows it for each wave frequencies. It is clear from these figures that the
" steady drift force coefficient linearly increases with an increase of the wave
height when H/D is greater than 0.5. This means that the steady drift force
is proportional to the third power of wave height when H/D > 0.5. Thus the
factor (c) is not considered. If the factor (b) is significant, the steady drift force
component (4) represented by Eq.(2.19) must also be significant. Because since
the first order wave force in the vertical direction includes the force component
proportional to the vertical velocity vy, the-component (4), in natural, becomes
large when the factor (b) is dominant compared with other factors. Thus, we
studied the contribution ratio of each steady drift force components ((1) to (4))
to the total steady drift force by numerical calculations. Figure 3.16 shows the
results.

As found from the figure, for this structure, the force components (1) and
(2) are dominant compared with other components, that is, the contribution
of the force components (3) and (4) to the total force is very small compared
with the force components (1) and (2). Accordingly, also the factor (b) is not
dominant. Finally the phenomenon, which the steady drift force is proportional
to the third power of wave height in some frequency range, is caused by the
viscous drift force or surface (drift) force.

Since it is very difficult to strictly evaluate this force, we shall study the
force on a simple vertical circular cylinder within the linear wave theory. This
investigation is referred to Appendix C. This viscous drift force has the following
characteristics.
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{1) The viscous drift force is in proportion to the third power of wave height and
it is expressed by the product of the horizontal drag force in the Morison
equation and the instantaneous wave surface elevation. And if the drag
force can equivalently be linearized, the viscous drift force can also be
represented by the second term in the Volterra functional power series.

(2) The slowly varying viscous drift force increases with increasing the mean
wave frequency of two different wave components.

(3) The viscous drift force does not depend on the draft but the ratio between
the wave height and the diameter of the cylinder.

The second resuit shows that the slowly varying drift force including the vis-
cous drift force can be expressed by the second term of the Volterra functional
series. But in order to strictly deal with the viscous drift force, it is necessary
to take into account the interaction between viscous and potential flows, fur-
thermore we must consider the problems of diffraction and memory effects in
the Morison equation.

For simplicity, we applied the Standing’s method to estimate the viscous
drift force acting on the structure considered.

Standing® has shown the relation between the steady viscous drift force
and the potential drift force on a fixed vertical circular cylinder, resting on the
sea-bed and piercing the free surface as follows:

i
R=<{ — 3.43)
{ 2%’3 %204 } (

where D is a diameter of the cylinder, H the wave height, A the wave length
and Cy the drag coeflicient.

Figure 3.17 shows the contribution rate of viscous and potential components
to the steady drift force. The dotted line indicates a wave breaking limit. White
circles are the experimental results and the solid line shows the curve of R equal
to 1, i.e., the viscous steady drift force is equal to the potential steady drift
force, when Cg = 1. It is clear that the viscous steady drift force is larger than
the potential one when H/D > 0.5. Thus if the ratio of the viscous drift force
to the potential one is high, we must take into account the viscous drift force
as follows:

Fy=(1+ R)F, (3.44)
where Fy is the potential steady drift force and Fj is the steady drift force
corrected by viscous effect, i.e., the steady drift force including both the viscous
and potential drift forces.

In the case of experiments in irregular waves, H is replaced by half of the
significant wave height and Cy is 0.5. The drag coefficient was obtained from a
result of the towing test. Fy is shown by the thick dotted line in Fig.3.17. From
this figure it is found that the estimate of the steady drift force corrected by
viscous effect agrees with the experimental results.



3.4.6 Characteristics of slowly varying drift force

Numerical contours of real and imaginary parts of slowly varying drift force f;;
are shown as a function of two variables w; and w; in Fig.3.18. The variables @;
and f.-,- are normalized by:

Wi = w; D (3.45)
g
R (B
309 ailla;| L
where a; and a; are amplitudes of two different waves respectively.

It is found from this figure that the real part of f,'j has the peak in the
vicinity of (u”;., @;) = (0.806,0.806), but it is flat except in the the vicinity, and
that the imaginary part is also flat along the line @; = @;. This result may 1nfer
that the Newman approximation can be applied to this model.

Comparison between the numerical and experimental results with respect
to the slowly varying drift force is shown in Fig.3.19. The left side indicates
the amplitude of quadratic transfer function of slowly varying drift force and
the right side does the phase of it. The thin dotted lines are the experimental
results in irregular waves(those results are obtained from the cross bispectrum
analysis), the solid line is the numerical results based on the potential theory,
the dash-dotted line obtained from applying the Newman approximation to the
numerical results, and the broken line the results obtained from the applying
the Newman approximation to the numerical values corrected by the viscous
effect; i.e. the values estimated by Eq.(3.44). And Aw indicates the difference
of two different wave frequencies and the horizontal axis is the mean frequency
of them.

Although the slowly varying drift force may dlrectly be obtained from the
experiment, we indirectly obtained the force in the following way.

fis = (3.46)

Using the quadratic transfer function of surge motion, Go ( which is ob-

tained from cross bispectral analysis of the experimental data) and the transfer
function of surge motion to the external force, Hz ( which is obtained from the
free oscillation test in still water), the quadratic transfer function of the slowly
varying drift force sz, can indirectly be obtained by the following relation:

Ga(w1, —w2)
f —wo) = 21 Tw2) .
G3 (w1, —w2) Ho(or =) (3.47)
where .
Hy(w) = (3.48)

Cy — (M =+ mu)wz + iNflw

and we assume that the hydrodynamic force coefficients of Eq.(3.48) do not
change in waves.
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From this figure the numerical value based on the potential theory is much
lower than the experimental results, but the former has the same tendency
as the latter. Comparisons of the solid and dash-dotted lines reveal that the
Newman approximation can be applied in this case. And the broken line, i.e. the

‘numerical results corrected by taking into account the viscous effect, agrees with

the experimental results. This means that in order to estimate the slow drift
motion of the floating structure supported by many legs with small diameter, we
should take into account not only the potential drift force but also the viscous
one.

3.4.7 Variation of hydrodynamic force coefficients of slow
drift motion in waves

In the section 2.1, we state that the damping coefficient of slow drift motion in
waves is different from one in still water. In this section we shall investigate if
such phenomenon occurs in the following way.

First, let G, G{ and Hy, be the quadratic transfer function of surge motion,
the quadratic transfer function of slowly varying drift force and the transfer
function of surge motion to external force, respectively. Let them hold the
relationship of Eq.(3.47). And we shall introduce the transfer function of slow
drift motion to instantaneous wave power, Z(w), given by :

= Sz(’

._.(W) - S(Z (W)
_ JurSe(w = 0)Se(w)Ga(w = o, ! )
ST L Selw - oS @

(3.49)

where S;¢2 is the cross spectrum between the surge motion z and instantaneous
wave power (2, and S;2 the auto spectrum of ¢2. Then from Eqgs.(3.23) and
{3.47), the following relation is satisfied:

| E*(w) = Hp(w)Wa(w) (3.50)

Thus, if the Newman approximation can be applied, the non-dimensional trans-
fer function of surge motion to external force, Hy can be obtained by:

E*(w)
E(0)
Comparison between H, obtained from Eq.(3.51) and hig (= C11-HL) obtained

from Eq.(3.48) is shown in Fig.3.20. In the figure the thin lines are the results of
Hp and the solid line is the result of Hy,, where the value Z(0)(= Hy,(0)- W(0))

Hi(w) =

(3.51)



in Eq.(3.51) is estimated from (3.26) as follows:
' 72)
F
2(0) = o—5 .
0= 5 (352)

From this figure, Hy, is in good agreement with Hy, in case of wave condition -

1, but in other cases, the peak frequency of Hy moves towards the low fre-
quency side and the peak value becomes small when the peak frequency of wave
spectrum becomes high, as compared with Hy. Namely, this means that when
the peak frequency of wave spectrum becomes high, the damping coefficient of
slow drift motion in waves becomes bigger than one in still water. In order to
examine an increase rate in the damping coefficient, we got the hydrodynamic
coefficients by means of the least square method from Eq.(3.52), under the as-
sumption that Hy is equivalent to Eq.(3.48). These results are shown in Table
3.5. Obviously, the phenomenon that the damping force in waves becomes larger
than one in still water occurs. The amount is 1.6 ~ 1.7 times the damping force
in still water. Furthermore the virtual mass in waves decreases 10 % of one in
still water. '

3.4.8 Time domain simulation
(1) Surge motion equation in time domain and its solution

If the added mass and the damping forces of slow drift motion in still water
do not change in waves and the coupling terms are neglected, a surge motion
equation of the floating body moored by linear springs may be represented in
time domain as follows:

, .
(Ml + mu(OO))X]_ + / Ku(t - T).deT + an(X;, ¢; t) + Cin1 X,
—00 R .

= FO(1) + FO(1) (3.53)

where
M, ; mass

my1(00) ; added mass at w = 0o
a1 ; viscous damping force

C11 ; restoring force coefficient
K3, ; memory effect function
FO) ; first order force

F® ; second order force

‘Moving all terms in Eq.(3.53) except for inertia terms to the right hand side,
Eq.(3.53) becomes equivalent to the Newton equation as:

1
MiX) =-mu(o0)X; — / Ky (t— 1) Xadr — a11(X1,¢5t) ~ Cn X
oo _
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+FO (1) + FO(1) (3.54)

Then we can numerically solve the above equation in time domain if the viscous
damping force is known. In order to solve Eq.(3.54) in time domain, we used
the Newmark- 3 method!®. According to the Newmark-8 method, when a surge
motion at a time ?, is expressed by X}, X{"H at ty41 = t, + At can be
represented as follows:

2 - .
XM = XP 4 AXT + -é—X1 + ﬁAtZ(X,’:“ - X7 (3.55)

Xpt= _(X,.+1 +X7) (3.56)

After iterations, the motion equation, that is, Eq.(3.54) can be solved in time
domain, where we use 1/4 as a value of 3. When this value is used, it is
mathematically proven that the solution is absolutely stable.

The judgement of convergence was conducted under the following condition:

CY o
Xl,m - ‘Ll,m
v r+1
Xl,m

1
< 3.57
< 760 (3.57)

where the subscript m denotes the iteration number.

>(2) Hydrodynamic force in time demain

From the Fourier transform to the first two terms in the left hand side of
Eq.(3.53), the following relations are given;

mu(w) = mn(oo) - 5—}-/ .Ku(‘t) sin widt (3.58)
0

NO() = / K (f) cos wtdt (3.59)
where

my1(w) ; added mass in frequency domain
Nﬂ)(w) ; radiation wave damping in frequency domain

Then if the added mass and the radiation wave damping force over infinite
range are given, the hydrodynamic forces in time domain, i.e. mj1(00) and
K;1(t), can be obtained from the relations (3.58) and (3.59). But this procedure
is not easy, because it is impossible to get the frequency-domain hydrodynamic
force numerically over infinite range. Thus we extrapolate Nﬁ)(w), which is
obtained in some frequency range, by using the spline function, get the frequency



point wg that the extra.polafed value becomes zero, and calculate the following
integral over wp > w > 0.

I |
Ku(t) = -;/ NS (w) coswidw © (3.60)
0
We will check the accuracy of the above numerical approximation later.

(3) Viscous hydrodynamic force

In order to get the viscous hydrodynamic damping forces, one divides wetted
surfaces of a floating body into several blocks, and obtaines the viscous damping

force from integrating the viscous drag acting on the centre of projection area
of all blocks: That is

aijl = Nl(f)Xl | Xl | ‘ . (361)
N® = -;—p / / n1CydS ' (3.62)
s ,

In this paper, for simplicity, the viscous drag force was determined by the
following equivalent linearized form:

an = Ni X, (3.63)

where the experimental value shown in the section 3.4.3 was used as the value
of Ni, in this case.

(4) Wave force
(a) First order force

According to the linear system theory in the field of (_ibmmunication theory, the
first order wave excitation acting on a floating body can be represented as;

F(l)(t) = /g{(t)((t - T1)dT (3.64)

where g{ is a impulse response function of first order wave excitation, and its

Fourier transform , i.e. frequency response function, becomes as:
! L far ~
gl(r) = o Gy (w) exp(iwt)dw (3.65)

If the wave spectrum shape U(w) is known, Rice has shown that the first order
wave excitation can be represented by the following stochastic integral form:

FO®@) = /I G (w) | cos(wt + p(w) — arg(GY (w)))/2U (w)dw (3.66)

Note that the Rice’s representation does not depend on the initial value, i.e. it
is a stochastic integral representation, and it is not a physical causal system.
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(b) Steady and slowly varying drift forces

Using the system function wy defined in Eq.(3.18), the slowly varying drift force
including the steady drift force can be represented as:

FO0) = [ua(r)(e-rar (3.67)
where )
wa(r) = P /W’g(w) exp(iwT)dw (3.68)
and ‘
Wow) = ;]52— /Gé(w - ', w')S¢ (w')dw' (3.69)
¢ :

. aG{ aG{
It Gg (wi,w;) is smooth enough for w; and w; and Zo— and —5—‘;?- are small, we

=2)
can generate the slowly varying drift force by passing %;— -¢2(¢) into a low pass
¢

filter, as shown in the section 3.2.

' (5) Comparison between simulation results and experimental ones

Before doing the simulation we investigated that the assumption (3.60) can be
applied. Takagi and Saito'® has shown theoretically an asymptotic behaviour of
the memory effect functions for a half submerged sphere. Comparisons between
their results and the calculated results due to Eq.(3.60) are shown in Fig.3.21.
It is found from this figure that both results are in agreement although a slight
deformation is observed to the calculated memory effect function. It is consid-
ered from practical point of view that the present calculation method is accurate
enough to get memory effect functions since in general radiation damping forces
exponentially decrease with increasing wave frequency. However we should note
that the added mass m;;(00) is slightly modified by the truncation effect.( see
e.g. Fig.3.22). In this paper calculations were carried out untill the frequency
range such that a stable added mass, m;;{00) is given.

Comparisons between simulation results due to Eq.(3.53) and experimental
results of slow drift surge motion for each wave conditions are shown in Figs.3.23
and 3.24, and the surge motion spectra of each results are indicated in Fig.3.25.
The slowly varying drift forces are simulated by using both Eqs.(3.18) and (3.27).
As an amplitude of ¥(w), which expresses the frequency characteristics of a low
pass filter in Eq.(3.27), a squared cosine type such that 9(w) = 1 for w = 0 and
d(w) = 0 for w equal to the peak frequency of wave spectrum is used. A time
interval for simulation is 60msec. From this figure it is found that both results
are in good agreement in the case that the first order motion is dominant, but
that the simulation results become larger than the experimental results when
the slow drift motion is dominant. It is considered that this is caused by a wave
drift damping force.
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Chapter 4

Stochastic analysis of
second order responses

This section develops a theory of two probabilistic subjects associated with ob-
taining the second order response of a moored floating structure in the horizontal
plane. The first method utilized to obtain the total second order response p.d.f.
assumes neither a weakly nonlinear response nor a pure quadratic response.
This theory is based on the “approzimate theory” of continuous distribution in
mathematical statistics where the p.d.f. of the total second order response can
be represented by the Laguerre expansion which express the first term by a
Gamma p.d.f. This is similar to the Vinje's method which is comparable to the
Gram-Charlier expansion which expresses the first term by a Gaussian p.d.f.,
although the Gram-Charlier expansion does not uniformly converge and nega-
tive probabilities may occur. The use of the Laguerre expansion/Gamma p.d.{.
method to obtain the total second order response p.d.f. can be applied to solve
the above problems, furthermore it can also treat the case of equal double eigen-
values that the Naess’ method cannot. The second method utilized obtains the
highest mean amplitude of the total second order response of a moored floating
structure. By introducing an assumption that a response and its time derivative
processes are mutually independent, it is shown that the p.d.f. of the positive
maxima or the negative minima can be expressed by the derivative of the p.d.i.
of the instantaneous response.

As a basic study, the applicability of the present method is first discussed
by comparisons between the Naess’ exact p.d.f. solution for pure second or-
der responses of moored floating semi-circular and rectangular 2- D structures.
Next, the statistical interferences of the linear and quadratic responses on the
p.d.f. and the 1/n th highest mean amplitude are investigated by changing the
damping and restoration coefficients of the response system. Finally we investi-
gate the practicability of the present method through comparisons between the



measured results and the estimates obtained from the present method.

4.1 Probabilistic Approach to The Total Sec-
ond Order Response of a Moored Floating
Structure

4.1.1 Instantaneous p.d.f.
(1) Exact Theory

The total second order response of a moored floating structure that is being
subjected to a Gaussian random ex01ta.t10n at some fixed time may be expressed
as:

X(t)= X“) +X@ (4.1)

where the linear term is given by:

X0 = / o (F)C(t = 7)dr (4.2)
T
and the nonlinear second order term as:

X = / / a2(r1, 72)C( = 7)C(t = 7)dydrs (4.3)

In equations (4.2) and (4.3), ((¢) denotes the surface elevation which is a sta-
tionary Gaussian random variable with a zero mean. The kernel g; is a linear
impulse response function. The kernel g, is analogous to the linear impulse re-
sponse function and is called the quadratic impulse response function (see 3.1).
And we assume that they are continuous and absolutely integrable, then they
possess a Fourier transform as shown prev1ously(Eq (3.7)).

In order to represent the quadratic process X by a sum of random vari-
ables, yielding the same probability distribution, the Kac & Siegert theory(K—
method) is used. This leads to the following representation:

X(t) = i cj W,(”t) + i Aj VVJ?(t) (4.4)

where W; is a set of independent Gaussian random variables of zero mean value
and unit variance. The A; are eigenvalues which satisfy:

/ K (w1, w02) ¥ (wg)duwn = A ¥;(wr) (4.5)
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The parameters c;, which represent the linear response, can be determined by:

o= [ aw/sene (45)

where * indicates a complex conjugate and S¢ is a two-sided wave spectrum. In
equation (4.5) is a set of orthogonal eigenfunctions which satisfies:

/ :w,-(w)w:(w)dw ={ (1) ;;’]z (4.7)

and kernel function K(w;,ws) is a Hermite kernel defined by:

K(w,wz) = [ S¢(w1)S¢ (w3)Ga(wr, wa) (4.8)

When the eigenvalues A; and the parameters c; are known, the p.d.f. is given
by: '

1 o .
px(z) = 2—-/ exp(—izs)¢x (s)ds (4.9)
x -0
where the characteristic function is
o0 1 0?32
= - 4.10
¢x(2) E /1= 2k exp| /20 - 2iAjs)] (#10)
The mean, the variance and the higher order cumulants are given by:
k= X =E[X(t)] =Y
(4.11)

ko= 0‘2,(:2(:?-{-22,\?:0%+a§
k= 227 Y m -1 + 30 m!)\;-"’_zcjz- form >3

Kac and Siegert!) and Neal? concluded that the p.d.f. expressed in Eq.(4.9)
cannot be determined in a closed form and therefore must be computed numer-
ically. Although this is true in most cases, it can be written in a closed form in
some special cases which will be discussed next.

(2) NAESS’ APPROACH

Naess®#% introduced a slow drift approximation such that Ga(wi,wz) = 0
when w; - we > 0. This indicates that -the high frequency component which
corresponds to sum of w; and ws is negligible. This is a physically acceptable
fact, and it is a convenient approximation for our purpose. Naess determined



that the Eq.( 4.5) eigenvalue problem generated a set of double eigenvalues as
follows:

K(wy,w2) =0 forwj-wp <0

) |
/ K(wn,w2)¥(ws)dwn = 4;¥;(w1) forws >0  (412)
0

Aaj-1 = dgj =

where

(4.13)

: . _ﬁ’@J (w) ,w>0
Poj(w)=4 0 ,w=0
V‘E‘Iﬂ;‘(w) ,w<0
and also that the linear response is negligibly small when compared to the second

order response, i.e., c; = 0. The p.d.f. of the pure second order response can be
shown in the closed form as follows:

I\
3 E-f;exp(—-;:f\; ,x >0
px(z) = 1 , (4.14)
—— =z
gy 2o <0
where
N
l; = —— (4.15)
_ - 2k
vy ( AJ’),

and the set of eigenvalues g are divided into two groups, Aj,7 = 1,---, M, for
Aj >0and Aj,5 =M+1,---,N, for A; < 0. The above results are then valid
unless equal double eigenvalues exist. :

(3) APPROXIMATE THEORY

(i) Gram-Charlier expansion method

The authors® showed that if the nonlinear response considered here is weakly
nonlinear the instantaneous p.d.f. can be represented by the Gram- Charlier
expansion. The expansion is the Hermite expansion, the first approximation of
which is the Gaussian p.d.f.. We shall indicate their method in brief.
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If the eigenvalues A; are very small compared with ¢;, X may approach

Gaussian. So we replace X — E[X] by Z and introduce the error function p(z)
defined by

pe(2) = px(z) - N(0,0%) (4.16)
where N(0,0%) is the zero mean Gauss p.d.f. with variance equal to 0%. If p.

can be represented by a family of orthogonal functions with weighting function
{w(z)ha(2)}, it can be expanded in the following form:

pe(z) = Z D-’u-hn.(‘?")'w(z) (4.17)

n=l

where oo
Qg =/ by (2)pe(2)dz (4.18)

If w(z) is the Gaussian p.d.f, it is well-known that h,(2) are given by the
Hermite polynomials. From the properties of the Hermite polynomials the p.d.f.
can be approximated by the Gram-Charlier expansion:

YR T SR SUSE S, SR 2 O PR
pxi®) = 2rox i nloy "L ox exP 20% )

where H, are the Hermite polynomials and b, represent the higher moments
defined by

by = E[(x—X)"] forn>3 (4.20)
And the moments functions can be obtained from frequency domair integrals
of transfer functions and wave spectrum as shown in Appendix F.

This method has a sigrificant advantage in the point of obtaining the ap-
proximate solution from numerical integral procedures. However, we should
note that the Gram-Charlier expansion does not always converge uniformly and
that the negative probabilities occur if the expansion is truncated at finite order.
The occurrence of negative probabilities is physically inconsistent.

Edgeworth” investigated the convergence of the Gram-Charlier series and
he has shown that if only a few terms are computed, the best grouping of terms
in Eq.(4.19) is not that associated with taking terms in their natural order(i.e.
0,3,4,5,-+-). And he proposed regrouped series. The grouping is

0
0,3 .... 1st approximation
0,3,4,6 .... 2nd

0,3,4,6,5,7,9 .. 3rd

This list implies that if the 0 and 3 terms are used as the first approximation,
the addition of terms 4 and 6 gives the next order approximation, and so forth.
This regrouped series is called “Edgeworth series”. The Gram-Charlier series
up to third order is equal to the Edgeworth series.



(ii) Asymptotic solution method

Naess? found an exact series form solution for the instantaneous p.d.i. of total
second order response. His argument is as follows:

From equation (4.10) and the slow drift approximation, the c.f., ¢x (s) is
given by

éx(s) = ]['I $i(s (4.21)

- (025—1 + ng)

\8) = ————m = . 4.22
#3(e) = 2 2%\js 21 - 2i,\~s)] (+.22)
It is seen that ¢ x(s) has 1sola,ted essential singularities at s = —-;-— Rewriting
45(s) as 2
: i ibjs® .
i(5) = —= exp|— 4.23

46 = gy Pl (4.39)

where b; = (cgj_l + c§,)47\,~ and s; = -—;ﬁf, it can be shown that
2A;j

idj(s)

br(em(cias) = L0

exp{—i(sjz + 2b;s;)}

2.2

T} ()
J

x exp{—i[(b; + z)(s — s;) + .

where the function q;j = %f))- Hence qgj(s) is analytic in a neighborhood of s;,
which implies that

oo
$;(s) = E a{)(s — s;)* for |s| < ¢j (e; are any constants) (4.25)

n=0

The p.d.{. can be obtained from integrating (4.24) from —oo to co with respect
to s. Invoking the residue theorem, consequently we get:

{; b
Z sk em(=55 - £)Qi(=) =20
Px() = l » (4.26)
e —=__biyo.
z 21251 exP(z[Ajl X )Qi(z) =<0

where the function Q,(x) are defined by

)m/2 (____\W) (4.27)

. o) o
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and Ip,(z) denotes the modified Bessel function of integer order m. The expan-
() can be derived from the Taylor expansion of the function

$i(s) =[] #els)

kT

sion coeflicients am

around s = s;. When b; = 0,5 = 1,--+, N, i.e. when the first order response is
neglected, it is easily seen that since Ip(0) =1 and

= IT ¢ (e)
K77

,equation (4 26) reduces to equation (4.14).

Since it is very difficult to numerically evaluate equation (4. 26), Naess ob-
tained the aymptotic solution for # — oo from ( 4.26) when A; is dominant
compared with the other eigenvalues, i.e. when the following approximation is
adopted.

$1(s) = d1(s1) = 4((31) H ¢k(81) (4.28)
From Eq.(4.22) it is found that
N -
a‘()l) = H 1 = exp[= :\’b’ =] - (4.29)

(-3 Mh—ay)

Using the following asymptotic relation:

Ip(z) ~ \/217;exp(a:) as & — 00 (4.30)

it can now be shown that

a'g) (m)—lﬂ [ (\/b—lﬂ‘i' \/—)2

2TA1 1

] asz — oo

- px(z) ~

(4.31)
This 1mphes that px behaves like O(exp(—:z:)) for 2 — oo when X; > A
Vinje® also found the same expression as (4.31). But his result is in error
as noted by Naess.

(iii) New approximate theory

An alternative approach to Naess’ exact solution will now be developed. If the
number of the eigenvalues are finite, then from Eq.(4.4) the total response X (t)
may be decomposed into the following form:

X(t) =721+ 75 (4.32)



where
M
Zy =) (c;W; + \W?) ' (4.33)
=1
N
Za= Y (c;W;+)\W2) (4.34)
J=M+1

It can be mathematically proven that Z; and Z5 are mutually independent in a
statistical sense(e.g. Papoulis!®). I the time is fixed and ¢; = 0, Z; becomes a
random variable which is always positive while Z, is always negative. In this case
it can be proven from the approximate theory of continuous random distribution
in mathematical statistics that the p.d.f. of Z; and -Z; can be expanded to a
series of the generalized Laguerre polynomials!?. The first term of the series
is the two pa.ra.meter Gamma p.d.f. For example, f Y = \;WZ +--: + A, W2
and A; > 0(i =1,---,n), then the p.d.f of Y can be expanded by the fo]lowmg
series Wlth umform convergence:

py (z) = py(z, 26; )[1L+zj15ek1;‘fr 1)( ) - (a35)

k=1

where p, is the Gamma p.d.f. with two parameters § and v, LS{_) is the general-
ized Laguerre polynomials, and Bj represents the coefficients determined from
the orthogonal property of the Laguerre polynomials. Since the parameters ¢
and v are unknown, they can be determined by eliminating B; and Bs. Then
py becomes a second order approximation for py, and the first and second order
moments of py agree with those of p,. The same approximation can be also
applied in the case of ¢j # 0 by transforming Z; in Eq.(4. 33) into the followmg

form:
Y, ~ Cj 2
1 1+ 244,\j Z’\J J

W, | |
Vi=Wi+3 y (4.36)
Eq.(4.36) is the same quadratic form of Gaussian random variables as the case
for c; = 0, except that E[Vj(#)] = 5 # 0. Since the p.d.f. of V(t) becomes a

non-central x% p.d.f. and V; are mutuallly independent, the p.d.f. of ¥ can be
represented by a series form of the non-central x2 p.d.f. Using the fact that a
non-central x? p.d.f. can be expanded by the generalized Laguerre polynomials,
the p.d.f. of Y can also be represented by a series form using a Gamma p.d.f.
and a generalized Laguerre polynomials like Eq.(4.35). There is, however, sta-
tistical interference between the linear and the quadratic responses at the higher
order moments greater than third order(e.g. Eq.(4.11)), thus it is insufficient
to adequately describe this statistical interference approximation by using only
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the leading two terms. Therefore we must extend the two term approximation
to at least a three term approximation, i.e. approximate the response by means
of a Gamma p.d.f. is defined with three parameters(f, v, andé) in the following
form:

v 1
Pt 3) = GG ©

where U(z — 6) is the step function defined as:

.U(x_s)z{(l) zig (4.38)

0 is the generating number of Gamma p.d.f., and v the degrees of freedom.
The corresponding c.f. becomes: :

by (u, 6,20, v/2) = exp(i6u) (4.39)

1
(1 = 2i0u)y/2

Taking the difference between the cumulant-generating function of Z; and that
of a random variable which yields a three parameter (4, v, §) Gamma p.d.f. we
obtain,

A =log ¢z, —loge,

02u2

— _..Zlog(l ~ 2i)ju) + ~—10g(1 - 2i01u) - Z m

=1
—i&l U ) (4.40)

Substituting tu = T-F%E into equation (4.40) we get:

1 & M-y
A = —§Elog[1 =2(2; - 61)6] + : log(1 + 26,4)
ot

J f, _ 516
+Z P erTer -—01)]£1}(1+201£1)] T+ 20:6)

(4.41)

If 6, is taken such as 26; > mazd;(j = 1,---, M), |2(}; — 61)&1)| < |26:&64] < 1
for all £;. Thus A can be expanded into a uniform convergence power series.
Consequently the expansion form of A is given by:

2
ce
A =N -nh-8)a+ (A =22 Nk +nbl+ Y, L+ 26

_ gyl exp(—%;—ts)U(w _5)  (437)
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3
+[Z(Z A =3 A20 4307 — 01 63) — 4625, + Y Xjc?

~2) " Z01]e} + 0({260:41}*) (442)
The first, second and third terms of the right hand side of equation (4.42) may
be eliminated if the unknown variables #,,1, and §; are determined as follows:
4 Z A? +3 z /\jcjz-
40 +23 ¢
o Tt Ty
- T4 E )\? +3 Z: ’\j C?

by = 22 A2+ 2P
(42 A2 +33 )2y
If the slow drift approximation obtained by Naess is applied, the parameters in

Eq.(4.43) should be replaced by 8, = 261, i = 211, and 6, = ;. Thus the
p.d.f. of Z; can be approximately evaluated in the following form:

p2,(7) 2 py(, 81, 261; 51 /2) (4.44)

This becomes the third order approximation of pz, because the first, second,

and third order moments completely agree with the actual ones. Equation (4.44)

can be exactly expanded by the genera.hzed Laguerre polynomials as follows:
From Eq.(4.42) the ci. of Z; is given by the expansion form as:

01:

(4.43)

bz, = ¢y (u, 61, 201551 /2) eXP[Z A €7

n=4
o0
= ¢, Butt (4.45)
k=0
where By = 1, By = B, = B3 = 0.
Using the following relation
a . .
o7 ——=¢, = in(in +2)---(in + 2k - 2)EX 9, A (4.46)
results in
o By o*

¢Z1 =’§—_(:)171(i}1 +2)...(1'}1+2k__2)'a—5'§¢1 . (4.47)

The partial derivative of ¢,, with respect to 6, can also be represented in another
form by:
ak _ (_l)kewl‘ * 2iué1z

—— = = e T 7 f2+k-1 dz 4.48
86" — 6*r(5,/2) Jo oz ’°( ) (4.48)
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Using the generalized Laguerre polynomials,

(e~%a"+*) (4.49)
where a > -1, » = 0, 1, 2,---, Eq.(4.48) can be rewritten as follows:

(—l)k had 61 § — 61

)u1/2— (”1/2-1)( ) LY Bl
B T(5,/2) J;, 01 26,

4’1

30" d01
(4.50)
Finally we obtain the complete form of the p.d.{f. of Z; in the following series

form

Zooi - o~ o (=1)FEIT(5,/2)
P = py(, 61,260,501 [2)[1 + Bf—-—-
Z1 'Y( 1 1 1/ )[ ; k 9{']:‘(1/1/2 n k)
x LA (IS L =4 ) (4.51)
20,
where - i
4 1),z =6
By = —1 —_— 4.52
T EE ( A ) (4.52)

This final expansion form is not used except in the cases where the moments
higher than third order are of importance.

The p.d.f. of —Z5, as well as that of Z;, can be also approximated by a three
parameter Gamma p.d.f.(f3, i3, and 83) as follows:

p2,(2) = py(2, &3, 202 72 /2) (4.53)

The results of Eqs.(4.44) and (4.53) indicate that the total second order response
process X(t) can be approximated by the difference of the two independent
random variables which yield a Gamma distribution with three parameters.
From the convolution integrals of the Gamma p.d.f.’s the p.d.f. of the total
second order response can be obtained by:

f f(él,ég; 31, 52)f:°(z +z— 51 + 32)'71/2‘12‘77/2'16““"«1.3

x exp(— —;64'—"-52-) z > 6 = bg

px(z) = ¢ o ) o ) .
F(01,02;61,62) [ (2 — z + b6y — 6)72/2=11/2~1¢mez g,

.

X exp("—'—gf—gz) T <8 — b
(4.54)



where
1

T b0, ba) = o G AT or J)T G T2)'

1 1
a= 2 41 4.55
201 209 ( )

and the multiple-valued integrants take a principal value.

(iv) Convergence to Gaussian p.d.f

When the eigenvalues A; are very small compared with c;, i.e. when }; are

neglected, the total second order response process, X(t) certainly approaches

Gaussian. In this section we shall show this fact from the present theory.
From Eq.(4.43) it is found that

b= 2=
.Y (4.56)
b= X -/ —21-0X :

Namely the parameters of the Gamma p.d.f. are not mutually independent, two
parameters in the three can be represented by the rest if ox and X are fixed.
Taking 71, which represents the degree of freedom of the Gamma p.d.f.,, as an
independent parameter, replacing the variable by z like

X

z= -

oX
and setting » = 7, /2, the Gamma p.d.f. can be rewritten from Eq.(4.37) as

py(2) = { 725 (Vo2 + n)*~t exp(~/az — n) iz;j 2 ::{g (4.57)

When ); € 1,i.e. » 3> 1, we shall consider the asymptotic behavior of Eq.(4.57)
as n — oo, »
Noting that the first term of asymptotic expansion of Gamma function I'(z)
is given by
Tz +1) = V2rz* %™ a5 2 -

and the Taylor expansion of log(1 + u) for |u| < 1 is represented as:
1 2
log(l+u)=u-— 5;‘—2-+o(u )

then we have:

22 23

logp, =—1og\/27r+{— — t- }—'—+ WS

+ + <)+ 0o(1) (4.58)

_(\/_
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If n — oo, from equation (4.58) it is found that
—  z° z
].ng.y ~ -—log 2% — ?+O(ﬁ)

that is

L exp( zz) as n — 0o (4.59)
~ € _— n — .
Py fom Xp 2

This implies that p, can be approximated by the Gaussian p.d.f. when = is
sufficiently large. But we should note that the the range which the Gamma
p.d.f can be regarded as the Ga.ussm.m p-d.f. is limitted to the variable range of

z <+/n.
4.1.2 Maxima p.d.f.

Statistical prediction of the maxima of a random process is usually performed
using the Rayleigh distribution under the condition that a random process is
a stationary, narrow banded, Gaussian process with zero mean. But in the
case of a second order response for a moored floating structure, this condition
may no longer be satisfied. In order to exactly obtain the maxima p.d.f. of
a nonlinear response, the expected number of maxima greater than a specified

level is required as shown by Linl?.

First, according to Lin, we shall show the exact theory.

Figure 4.1 is an explanatory sketch of a random process X (¢) for which the
maxima(or minima) could be anywhere in the range of (—o0,00) and several
ma.x1ma(or minima) could occur during one cycle as defined by mean crossings.
Here, maxima are defined as peaks which satisfy the condition X (ty=o0 and
X (t) < 0. Whereas minima are defined as troughs satlsfymg the condition X =
0 and X > 0. As shown in Fig.4.1 maxima and minima can take both negative
and positive values. The ma.gmtude of the maxima with positive values {X(¢) >
0,X =0,X < 0} or the minima with negative values {X(t) < 0,X =0,X > 0}
would be critical if they exceed a certain value, and hence the statistical extreme
values of these maxima and the minima provide valuable information for the
engineering design purpose.

For the problem of a mooring system the positive maxima are the most
important, if the direction drifted by waves is positive. Since the statistical
properties of negative minima can be estimated from those of positive max-
ima by means of the transform of random variables, the positive maxima are
considered in the following analysis.

It can be assumed that X(t) is stationary and zero mean without loss of
generality. Then the expected number of maxima above a specified level X () =
¢, denoted as E[M(£)], is obtained by:

o0 0
E[M(¢)] = /g / lélpx % 3 (2,0, 5)di (4.60)



The total expected number of maxima with positive values, denoted as E[M (—o0)],

becomes - .
E[M(~o0)] = / dz / #lpy 5 £ (2, 0, 5)di (4.61)

where py 5 3 is the joint p.d.f.

Huston & Skopinski!® has assumed that the ratio of their two expected
numbers is approximately equivalent to the probability in which the maximum
values exceed a level y, i.e. E[M(y)/M(~o0)] ~ E[M(y)]/E[M(-c0)] . Under
this assumption the probability in which the maximum positive values exceed
a level y becomes

Fp =1~ E[M(y)/M(-o0)] = 1 — E[M(y)]/E[M(~o0)] (4.62)

Then maxima p.d.f. is given by:

1 - e
B() = - g | EPeee (0.8 (4.63)
In the case that X(t) is the Gaussian process, p, has already been obtained
by Cartwright & Longuet-Higgins'®). It can be prescribed by two parameters,
i.e. spectrum band width parameter and variance. As well known, when the
band width parameter is close to 1, i.e. wide banded process, Pp approaches the
Gaussian p.d.f., and when the parameter close to 0, p, approaches the Rayleigh
p.d.1l ’ ‘

But statistical characteristics and maxima p.d.f. of nonlinear responses has
not been found out yet. So we must introduce some approximations to obtain
pp for the nonlinear response. '

For this purpose the following assumptions are introduced.

(1) The response is narrow banded, i.e. the negative maxima and positive
minima are negligible.

(2) The response is stationary.

(3) The expected number of crossings at a specified level with a positive gradient
is equal to that of maxima over it, i.e. one-to-one correspondence between
zero-upcrossings and maxima.

Assumption (1) imposes considerable limitations to our objective. However
the condition is usually satisfied, except for fatigue analysis, because if the
specified level is sufficiently high, the negative maxima or positive minima that
exist over this level are infrequent. In general, using these assumptions, the
maxima (or minima) probability is overestimated as compared with exact one
because the expected number of maxima over a specified level is always greater
than those crossing that level. Since statistical properties of the minima can be
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obtained from those of the maxima, by means of a variable transform, only the
maxima will be considered in the following analysis.
Using the above assumptions, then

M(y) ~ N*(y) (4.64)

where Nt is a random number crossmg a specified level y at positive gradient
and its expectation per unit time is given by:

BN = 5 [ elpxx(, )i )

Thus a p.d.f. for an event where the maxima are greater than a level y + X is
given by:

Pp(y)= {fo pXX(y+Yx)xdx}

fcs pXX('X x)xdx
where py 5 is a joint proba.bilxty densxt}y function of the response X and its time
derivative X.

In this way, under narrow band assumption the problem obtaining the max-
ima p.d.f. of nonlinear response can be transformed to the problem obtaining
the joint p.d.f. py 3.

(4.66)

(i) Series approximate solution

Obviously if instantaneous p.d.f.’s can be expanded into useful series represen-
tations, one would expect that similar useful generalized expansions would also
exist for higher dimension p.d.f.’s.

A particularly useful expansion for our purpose was introduced by the autors®.
The following development closely follows their original works.

Let p(z1,%2) be a joint p.d.f. for the variables z; and z5. The corresponding
instantaneous p.d.f.’s are then

P1($‘1) = /p(ml,xz)dxz
(4.67)

pa(z2) = /P(wh zq9)dzy

Using the instantaneous p.d.f.’s as weilghtihg functions, we can construct two
sets of orthonormal polynomials {A14(z1)} and {Az,(22)} from the integral
relation

/Pl(xl)Alm(-’t'l)Am(wl)dl'l = bmn
(4.68)
/ P2(22)Aom (22) Ao (22)dT2 = 6ipn



If we assume that it is permissible to expand p(z1,z2) in terms of those two
sets of orthonormal functions, then : :

p(z1,22) = P1(?1)p2($2) > amnAim (1) Azn(2) (4.69)

m,n

By employing Eq.(4.68) in Eq.(4.69), we can evaluate the expansion coefficients,

App = /‘/}.)(.’Bl,.’llz)Alm(.’L‘l)Azn ((L’g)d(l)ld.’t’z (4.70)
If the matrix (amy ) is diagonal, i.e. @y = @nbmn,

(@1,22) = p1(21)p2(22) ) anA1n(@1)A2n(22) (4.71)

This is equivalent to the Mercer expansion® of the kernel function in the inte-
gral equation (see Appendix E).

The validity of Eq.(4.71) can be illustrated as follows:

Let p(z1,z2) be the joint Gaussian p.d.f. as

1 (23 + 23 — 203135)
v = ‘ 4.72
p(z1, z2) PNy exP{ 27(1 = ) } (4.72)
with corresponding p.d.f.
, z2
p(z) = \/— exp(~ 202) (4.73)

Using the Mehler’s expansion'®) given by

{w?(z? + z2) - 2u:z:1a:2}]
2(1 — u?)

— exp[—

= Z -——H (z1)Hy(z2) (4.74)
n—O

where Hy () is the Hermite polynomials of order n, and inserting Eq.(4.74) into
(4.72),we get

Hene) = oA S L @y B )

n=0

Since the matrix apy, in Eq.(4.70) is not always diagonal in general cases, the
joint p.d.f. py %, the first approximation of which is the joint Gaussian p.d.f.,

61

(449)



62

(450)

may be expressed as:

. 1 (z-X)2 X2
Pxx (a:, %) T rox a‘; exp{~ 20% B 20%
% 3 buon H (=X, (1) (4.76)
= ox oy

where X is the mean of X and b,,, is a function of the higher moments of X
and X.

Vinje'? has found the same equation as (4.76) by using the Taylor expan-
sion of cumulants. Hineno'® and Dalzell!?) extended the above method to the
method obtaining three dimensional joint p.d.f.’s, i.e. p X X%

(ii) Independence approximation

- Although X and X are not generally mutually independent, let their indepen-

dence be assumed. Then a p.d.f. of maxima that are greater than y+ X is given
by:
d px(y+X)
Poly) = ——1————=—="
This means that the maxima p.d.f. can be represented in terms of the derivative
of the p.d.i. of the instantaneous response.

,y>0 (4.77)

4.1.3 1/n th highest mean amplitude and extreme value

From the maxima p.d.{f., 1/n th highest mean value can be represented as:

-X-* = /;: zpy(z)dz . (4.78)
1/n=1-PFy(Xy) | (4.79)

where P, is the peak probability distribution function.
An extreme value will be derived by applying the order statistics. The
extreme value is defined here as the largest maxima that occurin NV observations.
Let (1,72, +,7n) be an ordered sample of size N , where 7; have the same
p.d.f. given by Eq.(4.66). If #; is recorded as 71,72, ,ny, 7; can be regarded
as the output of an independent random variable z;. Thus the random variable
zN, which is the largest 7y in the ordered sample, has the following p.d.f.:

f(zw; N) = Npp(an)[1 — Py(an)I¥ ! - (4.80)

Then the estimation of an extreme response is obtained as:

Efen] = /0 T 2.5z, N)iz (4.81)



Approximation based on Poisson distribution law

Naess® has introduced an alternative approximation based on Poisson distribu-
tion law to obtain the extreme statistics. His approximation is as follows:

The statistics of high level excursions and extreme values of the total second
order response are largely determined by the mean upcrossing frequency zx} =
E[N*(z)] for large z. If extreme values are associated with very high levels and
upcrossings of such levels are rare events, then the probability such that the
extreme values, i.e. Z(T) = maz{X (#) : T >t > 0}, is less than any level z is
given by:

Poa{Z(T) < 2} = exp(—viT) asz— oo (4.82)
where T is an observation time. This leads to the assumption that these UPCross-
ings are statistically independent, which in term implies the Poisson probability
law. Except in the case of narrow banded process, this would be a reasonable

approximation. Now considering the expected value as a statistical measure of
the extreme value, its expectation is given as:

E[Z(T)] = /0 ~ 2dP,(2) (4.83)

where P;(z) = P,ob{Z(T) <z}
Since the number of observations N can be replaced by N = vy T, we get:

log[(1 - Pp(2))Y] = Nlog(1~ UJZ;T)
- _U;T+O(V%VT) (4.84)

This implies that (1 — P,)N approaches exp(—v3T) as N — oo. That is,
Eq.(4.81) tends to Eq.(4.83) when N — co. Thus it is expected that both
Eq.(4.81) and Eq.(4.83) lead to a same extreme value estimate for a large N.

4.2 Numerical Examples

From this point forward it will be assumed that the rapidly varying part of the
pure second order response is negligible. In this case, the Naess’ method does
then yield a complete analytical solution for the pure second order response,
but it can not be applied to the problem of obtaining the total second order
response p.d.f. unless the linear response is negligibly small. Unfortunately an
exact closed form or numerical solution for this case has not yet been found.
The direct approach to the problem by approximating the p.d.f. using a power
series would. probably theoretically work, but the effort involved is considered
too great. The logical and most conservative approach is to attempt to utilize
only a few terms of series expansion. Experience dictates that an important
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step in series solution techniques lies in the choice of an expansion function
which closely represents the desired nonlinearity characteristics with a minimum
number of terms. The present method, “new approzimate theory ” is a series
expansion approach that approximates the total second order response p.d.f. by
three terms of the generalized Laguerre expansion. This method also gives an
approximate solution for the pure second order response. So exactly speaking,
the method is a third order approximation because the first, second, and third
order statistical moments completely agree with the exact ones. Additionally a
convolution integral has to be conducted in the present method which is not the
case for the exact Naess’ solution. Thus it should not be inferred that the present
method is more efficient than the exact Naess’ solution. The present method
will however be effective in evaluating the effect of the statistical interference
between first and second order responses for the extreme response.

(1) Inveétigation to the pure second order forces and responses

In this section, the present method will be compared to the exact Naess’ solution
for pure second order forces and sway motion responses in order to show that
the present method is an accurate enough approximation. The moored floating
structures that will be used for comparisons are two dimensional, lie in the
horizontal plane, and have linear restoring forces. The half submerged circular
structure has a diameter of 20m, and the half submerged rectangular structure
has beam to draft ratio of 2. The principal dimensions are given in Table 4.1.
In order to compare the present method for pure second order forces with the
Naess’ method, the quadratic transfer fanction G2 (w1, —w2) of slow drift forces
is required. Thus the same numerical estimates used by Naess were utilized (
Faltinsen and Lgken??).

Tables 4.2 and 4.3 indicate the numerical estimates of the quadratic transfer
functions that were obtained by Faltinsen and Lgken. To specify the sea state
an International Ship Structure Congress (ISSC) spectrum with a significant
wave height H, = 2m and an average period T} = 5.5sec is used and is given
by: )

173H; 691
SC(w) T4 5 eXp( T4w4) (4.85)

Using this data as a basis, the eigenvalue problem was numerically solved by
Naess®).

Figure 4.2 (a.) compares the p.d.f. obtained from the present method and
the exact one for the half circular structure, and Fig.4.2 (b) indicates the same
comparison for the rectangular cylinder. The results of the present method
closely agree with the exact ones except in the peaked area. The difference in
the vicinity of the peak may be atiributed to the difference between the exact
higher order moments greater than the third order, and the ones obtained from
the present method.



A comparison of both methods for the pure second order motions will be
presented next. :
_First consider the linear dynamic system as:

FO(1)

Xg +2KWOX2+I‘.4)3.X2 = %

(4.86)
where F)(t) is the slowly varying drifting force, X5(t) the corresponding slow
drift sway response,  a relative damping coefficient , wp the undamped natural
frequency, and M the total mass including an added mass per unit length of the
cylinders. Parameter values for &, wp, and M are given in Table 4.1. The linear
transfer function Hy (w), which corresponds to equation (4.68), is given by:

1

Hu(w) = (Wi — w?) + 2 Kwow

(4.87)

Thus, the quadratic transfer function of the slow drift sway response can be -

represented by:

Hi(w; — w)G (w1, —wa)
M

The same input wave spectrum given in Eq.(4.85) was used for calculating the
eigenvalues for the sway response. Naess calculated only eight eigenvalues. This
is equivalent to assuming that a random seastate has only eight frequency com-
ponents. This number is insufficient if a practical seastate situation is con-
sidered. Furthermore Naess’ results appear tc be too inaccurate to estimate
eigenvalues for a lightly damped oscillator since the amplitude of Hr changes
suddenly at |w; — wa| 2 wp. As a result, the authors??) extended the quadratic
transfer functions given in Tables 4.2 and 4.3 to higher dimensional matrices by

G2 (wl, —wz) = (488)

interpolation, then solved the eigenvalue problems, and investigated the rela-

tionship between the variances between the pure second order responses and the

dimension of the quadratic transfer matrices. From this it was determined tlat

the variances of pure second order response change largely with a decrease of the

dimension, and that at least a dimension greater than 200 is required for getting -

stable variances. Thus based on the above determination 200 dimensions of the
quadratic transfer matrices were used.

Figures 4.3 (a), (b), (c) show respectively the p.d.f.’s of pure second order
sway motion responses, their tail behavior, and their 1/n th highest mean values
for case 1 of Table 4.1. Figures 4.4 (a), (b), (c) show the same parameters for
case 2, and Figs. 4.5 (a), (b), (c) case 3. These figures indicate that the p.d.f.
calculated by the present method is in good agreement with Naess’ exact p.d.f.
in contrast to the differences in the pure second order force responses of Fig.4.2
which were discussed previously. There is however a noticeable difference in
the tail of the p.d.f. shown in Figs. 4.3 (b), 4.4 (b), and 4.5 (b). The effect
of this difference is small because the difference in the 1/n th highest mean
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amplitude by the present method shown in Figs. 4.3 (c), 4.4 (c), and 4.5 (c) is

" only slightly lower than the exact one, i.e. a difference of less than 3%. This

difference becomes small as the damping coeflicient decreases, i.e. the difference
between the Naess’ and the present methods in Fig.4.3 (c) is smaller than 1%.
Therefore it is considered from practical point of view that the present method
is a good approximation with a high degree of accuracy.

The difference between the p.d.f. of pure second order responses and the
Gaussian p.d.f. with equal mean and variance will briefly be discussed next.
Before doing this it should be noted that the Rayleigh method in figures 4.3 (c),
4.4 (c), and 4.5 (c) is an approximation to predict the 1/n th highest mean am-
plitude under the assumptions that responses are Gaussian and narrow banded,
i.e. the maxima p.d.f. is a Rayleigh p.d.f. When the damping coefficient & is
significantly reduced to a value of 3 x 1075, it can be seen by comparing Fig.4.3
(a) to Figs.4.4 (a) and 4.5 (a) that the mean value, which is the mean drift
displacement, is small. Similarly the asymmetry of the p.d.f. about the mean
value is small, indicating that the pure second order response p.d.f. approaches
the Gaussian p.d.f. However the difference becomes much more significant in
the tail response as well as the 1/n th highest mean amplitude. This is as
expected because the tail of the pure second order response p.d.f. behaves
like O(exp(—x))(e.g. Eq.(4.14)), while that of a Gaussian p.d.f. behaves like
O(exp(—z?)). When & is increased there is an increase in the mean value and
the asymmetry of the p.d.f. around the mean value. Thus as the damping
coefficient is increased there is a greater deviation between the p.d.f. of the
pure second order response and the Gaussian p.d.f. This results in Gaussian
approximation that will significantly underestimate high level excursions and
extreme responses. The use of moored circular or rectangular structures shows
no differences and thus do not influence this conclusion.

(2) Statistical interference between first and second order responses

In general the first and second order responses are not mutually independent so

it is important to study the statistical interference of both responses. Thus we

shall consider the following system:

FDO() + FO@))
M

where F(1) ig a linear wave exciting force, M = 3.21 x 10® kg/m, wp =0.1

X +2rwoX + WX = (4.89)

" rad/sec, and the damping coeflicient « being equal to 0.1,0.006, and 0.0001.

Calculations were conducted only for the half circular cylinder. The wave
exciting forces were calculated based on two dimensional potential theory(see
Table 4.4). The ratio of the standard deviation of the second order exciting
force response to the first order response (02/01) is 3.31 x 10™%, and the ratios
for the sway motion response are 1.36, 2.9, and 4.96 for k=0.1, k=0.006 and
#£=0.0001, respectively. The numerical results are shown in Figs.4.6 through



4.8, and are compared to the Gaussian p.d.f. and the p.d.f. for pure second
order responses. Based on these figures, it was determined that the p.d.f. of
the total second order response was widely distributed, while that of the pure
second order response was narrowly distributed, with the Gaussian p.d.f. being
located between these two distributions. The width of the p.d.f. of the total
second order response is strongly dependent on the damping coefficient. When
the damping coefficient is decreased, the width of the p.d.f. of the total second
order response becomes narrow and approaches that of the pure second order
response. The difference between the p.d.f.’s. of the pure and total second order
responses in the tail region may be caused by the following reasons:

Since maximum double amplitudes of a pure first order response
can possibly occur at the pure second order response peaks, the
probability density of the total second order response increases as
compared to the pure second order tail response. ‘

Furthermore it should be noted that the p.d.f. of total second order re-
sponse differs from the Gaussian p.d.f. in the tail region even though both
p.d.1.’s are, on the whole, in good agreement as the damping force decreases to
zero. With respect to the 1/n th highest mean amplitude, the results shown

in the total second order response are the largest of the three responses and
~ significantly deviate from the well-known expected value that is estimated us-
ing the assumption that the peak p.d.f. is a Rayleigh p.d.f. when the damping
coeflicient is increased . Thus, if the pure second order approximation is used
to predict the highest mean values of the total second order responses or if the
assumption that the peak p.d.f is a Rayleigh p.d.f. are applied, this will cause
a large underestimation of high level excursions and extreme values. This fact
was experimentally confirmed by the authors®.

The statistical interference between the first and second order responses can
be significantly large as shown by the use of these examples, and so it must be
taken into account for the motion prediction of moored vessels in random seas.

(3) Relationship between the damping and restoring force coefficients
and 1/10 th highest mean amplitude

In this section the variation of the 1/10 th highest mean amplitudes is investi-
gated following changes in damping and restoring force coefficients. Fig.4.9 (a)
shows the relationship between the damping coefficient and the 1/10 th highest
mean amplitude. In this figure all the lines approach the well -known expected
value for the Rayleigh p.d.f. as the damping coefficient is decreased, but the re-
sults of the total second order response deviate considerably from the estimated
one with an increase in the damping coefficient.

The relation between the restoring force coefficient and the 1/10 th highest
mean amplitude is shown in Fig.4.9 (b). In this figure the X axis indicates the
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undamped natural frequency because the restoring force coefficient is propor-
tional to the square of the natural frequency if the total mass is held constant.
When the restoring force is increased the 1/10 th highest mean amplitude of the
pure second order response’ approaches the well-known expected value for the
Rayleigh p.d.f., while the 1/10 th highest mean amplitude of the total second
order response deviates from its expected value for Rayleigh p.d.f. by becoming
larger.

4.3 Comparisons between estimates and ex-
perimental results

In order to investigate the applicability of the present method to the measured
slow drift motion, we shall compare the results estimated by the present method
with the statistics obtained from the model test( see 3.4.1).

(1) Instantaneous p.d.f.

First of all, we must solve the eigenvalue problem (4.5) for obtaining the in-
stantaneous p.d.f. Utilizing the quadratic transfer function with viscous effect
shown in 3.4.5, the integral equation leads to the linear algebraic equations with
512 dimensions since the lag aumber of the wave spectrum was 256. However
if we adopt the slow drift approximation indicated by Naess, the integral equa-
tion generates a set of double eigenvalues. Thus the algebraic equations can
be reduced to a set of 256 frequencies in the positive frequency range. In the
256 frequencies we use only the 32 frequency components which are within a
frequency range where the wave spectral densities are more than 10 % to the
peak.

Table 4.5 shows the examples of eigenvalues obtained by solving the 32
dimensional algebraic equations.

Comparisons between the statistical values estimated from the relation (
4.11) and the sample ones obtained from the time average of the measured data
are shown in Table 4.6, where §; and #; are parameters of Gamma p.d.{f. and
“wave conditior No.” indicated in the tables corresponds to the number shown
in Table 3.3. From both tables it is seen that the estimated statistical values
agree with the sample ones even though the number of eigenvalues used for
calculation is a few. '

The instantaneous p.d.f.’s of slowly varying second order surge response are
indicated in Figs.4.10 and 4.11. In these figures the solid line shows the line
due to the present method, the dash-dotted line expresses the Gaussian distri-
bution furction and the broken line the result of the third order Gram-Charlier
expansion. The probability distribution is asymmetry with respect to the mean
value even if the restoring force is linéar, and it has the tendency that the tail
spreads towards the direction drifted by waves. And the difference between the



probability distribution due to the present method and the Gaussian distribu-
tion is certainly significant at the tail and the agreement of the present method

and the third order Gram-Charlier series method with the observed histograms .

is still good.

(2) Maxima p.d.f.

For mooring design purpose, positive maxima is the most important of all max-
ima. Figure 4.12 compares the observed positive maxima and the estimated
maxima p.d.f.’s. The dash-dotted line is the Rayleigh p.d.f., the solid line is the
curve due to the present method, and the broken line is the result due to the
third order Gram-Charlier series method, where an assumption of the indepen-
dence between the response process and its time derivative process was used for
comparison. From this figure, it is found that the observed positive maxima
histograms exponentially spread towards the tail and that the estimated p.d.f.’s
due to the present method are in rough agreement with the observed ones.

(3) Extreme response

Comparisons between the extreme responses due to the present method and the
maximum excursions in N, observations in the total measured data are shown
in Figs.4.13 and 4.14. In these figures the dash-dotted line indicates the esti-
mation results by Longuet-Higgins’ method'?, which uses the assumption that
the maxima p.d.f. yields the Rayleigh p.d.f., and the black circles represent the
largest values in each observations of maxima in the long measured data, the
broken line is the result due to the third order Gram-Charlier series method,
and the solid line is the estimate due to the present method. The extreme values
are normalized by the standard deviation of the response. From these figures
it is found that the results from the Longuet-Higgins' method significantly un-

derestimate the extreme values whereas those from the present method show

fairly good agreement with the largest excursions in the measured data, which
are samples of the extreme values. .
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Chapter 5

Conclusions

This paper describes the researches about the slowly varying second order re-
sponse simulations of moored floating structures in random seas and its stochas-
tic analysis.

First, we reviewed the study on the slowly varying drift forces causing the
slowly varying response and discussed four problems excluded in the investi-
gations obtained up to now. As the most important problems in them, the
following problems are treated in this paper.

a) Hydrodynamic forces of slow drift motion in still water are modified in waves.

b) The Newman-Pinkster's approximation for the slowly varying drift force does
not satisfy the condition of physical causality.

Second, it is shown that the total second order force including slow drift forces
can be represented by a two term Volterra functional series. Physical meanings
of the kernel functions in the functional series are investigated from a viewpoint
of frequency response functions (or transfer functions) and a method estimating
the kernel ones from experimental data is also studied, which is the method
using the bispectrum ( a kind of higher order spectra). Furthermore a new
functional model such that the second term of the Volterra functional series can
be represented by the equivalent linear process of instantaneous wave power is
developed. The new function model is based on the Wiener filter theory.

Several kinds of experiments have been carried out. Relation between the
kernel function and the frequency response function of the slow drift force is
investigated through comparisons between the experimetal results and numeri-
cal calculations. And the applicability of the newly developed functional model
is studied by comparing between the experimental data and numerical simula-
tions. And the unsolved problems a)(i.e. how much the hydrodynamic forces
in still water are modified in waves) and b) are investigated by using the new
functional model.



Finally, on the basis of the obtained results a theory of probability density
functions(p.d.f.’s) is developed for an instantaneous total second order response
and its maxima, in order to predict 1/n th highest mean amplitudes and ex-
treme responses. New formulas for the total second order p.d.f.’s which include
not only quadratic but also linear responses are derived. These new p.d.i.’s
can be represented by the generalized Laguerre polynomials of which the first
term is a Gamma p.d.f. consisting of three parameters. Assuming that the
response and its time derivative processes are mutually independent, the 1/n th
highest mean amplitude can be evaluated numerically from the derivative of the
instantaneous response p.d.f.. This method is first applied to the sway motion
of moored floating semi-circular and rectangular two dimensional cylinders, and
the applicability of the method is studied by comparisons with Naess’ exact so-

lution. The variation of the 1/n th highest mean amplitude of the total second

order response is then investigated following increases in damping and restoring
forces. And comparisons between the experimental results and the calculated
ones obtained from the present theory are carried out. The applicability of the
present theory is confirmed.

The summary of the results obtained in this paper are as follows:

(1) The total second order responses(forces and motions) can be represented by
a two term Volterra functional series and the quadratic transfer function
in the second term of the functional series physically correspond to a
frequency characteristic of the mean and slowly varying drift responses.

On the basis of the mathematical fact that by using the Wiener filter’

theory, the second term of the Volterra functional series can be expressed
by an equivalent linear process of instantaneous wave power in stochastic
sense, a new functional model is developed. This model can be used
not only to simulate mean and slowly varying drift responses of moored
floating structures but also to solve the problems a) and b) mentioned
previously.

~ (2) The quadratic transfer function in the Volterra functional series (or present
functional model) can not only be estimated from the bispectral analysis
of experimental data, but also be calculated from pressure integrals ovei'
the instantaneous wetted surface of a floating body within the potential
theory. As to the quadratic transfer function, comparison between the
result obtained through the cross bispectral analysis of experimental data
and the numerical ones is conducted. As the result, it is found that the
numerical result based on the potential theory is remarkably lower than
the experimental ones and the difference of both results can be accounted
for by viscous drift force, which occurs by the finiteness of incident wave
amplitude and is proportional to the third power of wave amplitude. If
the viscous drift force is taken into account to the qua.dra.tlc transfer func-
tion obtained from numerical calculations even though it is approximately
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‘evaluated, the corrected numerical result is in good agreement with the
experimental one. And the linear frequency response function can roughly
be estimated from the ususal linear motion prediction method con31der1ng

. the viscous damping force. But when the slow drift motion response is
dominant compared with the linear motion response, the damping force
at the slow drift motion increases by 1.6 times as large as one in still water
whereas the added mass force at the slow drift motion becomes smaller
than that in still water. It may be considered that for semi-submersibles
this phenomenon is attributed to not only the nonlinear coupled viscous
damping but also the wave drift damping and others.

(3) Comparisons between. the simulated results due to the present functional
model and the experimental ones have been conducted in time domain,
and it has confirmed that both results are in good agreement, however it
remains unsolved how much and why the added mass and the damping
forces in still water are modified in waves.

(4) An approximate solution is presented for calculating the p.d.f.’s (instanta-
neous p.d.f. and maxima p.d.f.) of total second order responses including
first order as well as second order motions. It is confirmed through com-
parisons with Naess’ exact solution that the present method is an accurate
approximation for pure second order forces and responses.

(5) Using the present method, an investigation to determine the statistical in-
terference between the first and second order responses was conducted for
a system with a linear damping and a linear restoring forces. The p.d.f.
of the total second order response differs from that of the pure second
order response. In fact it becomes a widely-banded distribution with an
increase in the damping coefficient. Additionally it significantly deviates
from the Gaussian p.d.f.

(6) The 1/10 th highest mean amplitude of the total second order response is
greater than that obtained using the pure second order approximation or
by using the conventional method which is estimated under the assumption

" that the peak p.d.f. is a Rayleigh p.d.f.. Thus the statistical interference
between the first order and second order responses must be taken into
account for prediction of extreme responses and high level excursions.
The statistical interference changes with variations in the damping and
restoring forces.

(7) As to the extreme response, comparison between the result obtained from
the present method and one from the model test during long duration
has been carried out. It is confirmed that the usual prediction method
based on the Longuet-Higgins’ method significantly underestimates the
measured results while the present method estimates them very well. And



it is shown that the extreme response of the total second order response
is greater than that based on the assumption of the pure second order
response.

Moreover, some subjects excluded in this paper, for example, mooring forces,
compa,nsons between estimated results and at-sea experimental results etc., are
going to be completed in future. »
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Appendix A

Theory of wave drift forces
based on the potential
theory

The wave drift force based on the potential theory is the low frequency com-
ponent of the second order force caused by nonlinear interaction between first
order phenomena at multiple frequency. In order to exactly evaluate the force
it is necessary to formulae the second order problem in a sophisticated manner.

In this section we introduce the regular perturbation technique formulated
by Ogilviel.

A.1 Coordinate system -

we define two sets of axes:

Ozyz = Oz 2323 : inertial( space fixed) axes;
O'z'y'z = O'z}zhzl: body fixed axes.

The Ozyz axes have their origin in the plane of the undisturbed free surface
with z axis pointing upwards. The two sets of axes coincide when the body is
at rest.(see Fig.A.1)

A.2 Boundary value problem

We consider hydrodynamic forces acting on the floating body oscillating in waves
under the coordinate system shown in Fig.A.1. The theory is based on the
assumption that the fluid surrounding the body is inviscid, irrotational, homo-
geneous, and incompressible. The fluid motions may then be described by a
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velocity potential from which the velocity field can be derived by taking the
gradient:
V=vd (A1)

where ®(&, ) is a velocity potential and it satisfies the Laplace equation:
[L}: A® =0 » (A.2)

I the potential ® is known, the pressure in a point in the fluid may be deter-
mined using the Bernoulli equation:

- p(2,9,2,1) - 5, - (Ve)? _

. 5 92 (A.3)

where p is the fluid density, g is the gravitational acceleration. If the elevation
of the free surface is given by ((z, ¥, t), the following two conditions must be

satisfied: D( 0
z —
T:@,—Q—@,,(,,—@,,Q:O 0]12:( (A.4)
?;0 =—® —(V®)?—-gz onz=¢ (A.5)

The first shows the kinematic condition of free surface and the second does that

‘the pressure is constant on the free surface. These free surface conditions are

exact under the assumption that viscosity and surface tension are negligible.
Eliminating ¢ from the conditions, the free surface conditions can be rewrit-
ten as:

[F]: q)tt + géz + 2(‘Dz®.ﬂ + QyQyt + Qzta) + QZ@,, + Qzéyy + q’zézz
+2(2. 0, Py + 2,2, 2y, + 9.9,P,,) =0 onz=¢( (A.6)

Let the body surface, S, be given by an equation of the form:
S(z,y,2,t)=0

and let # be a unit vector normal to the body surface, pointing outward from
the fluid, thus into the body. A body condition given by:

od
[H]: I = TeVP =, (A7)
where v, is the normal component of velocity of the body itself.

If a bottom surface is given by z = h(z, y), the bottom condition becomes:

0P

an

[B]: 0 onz=h{z,y) (A.8)

In addition, an outgoing wave radiation condition must be satisfied.



In general, it is difficult to directly solve the above boundary value prob-
lem in time domain because the free and body surfaces moves with time, and
the boundary value problem must have already been solved to determine the
movements of free and body surfaces. These problems can usually be solved
by making a linearization by means of a perturbation technique. In order to
carry out a perturbation analysis, we assume that there exists a small parame-
ter that provides a basis for ordering all quantities that arise. We can think of
this parameter as the maximum wave slope, for example, although its precise
definition does not really matter. We assume further that quantities such as
and can be expressed as power series in:

O(z,y,2,t) ~ Z ¢ i(z, 9, 2,t) + O(eN*1) (A.9)

C(x7 y’t) ~ Z ejCj(a% Y, t) + 0(5N+1) (AIO)

Substituting these expansions into the free surface conditions, and assuming
that all quantities that are supposed to be evaluated on 2 = ¢ can be evaluated
alternatively by expansions with respect to z = 0, then we get the following pairs
of free surface boundary conditions for the first and second order problems:

O(e): Y1t + 991, =0 onz=10 k o (A.11)
G= —‘-’ig-ll 2=0 (A.12)

O():  2u+g¢2 = —-%(cph +oly +ol)+ %lig—z(wm tg¢10)on 2 =0
: (A.13)

(2= [—%gi - %y(aofx + o}, +9)+ —(p-ligﬁll] |z=0 (A.14)

In addition, we need a bottom condition and a radiation condition for each
problem.

A.3 Body surface condition

Before considering the body surface condition, we shall define the transformation
of coordinates. : '

Let the position of O’ with respect to O be denoted by the vector ="

(é1,&2,&3) and let the position vector to a point in space be denoted by

X = (3"’ Y, z) = (xlery -7"3) (A.15)
X, = (xl’ y',z') = (a";’ wt‘z;-’”f’-}) (A.16)
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respectively, in the two coordinate systems. The position vectors are related by
a linear transformation

=D(X -§) (A.17)
X=D1%+¢ (A.18)

where D is a matrix presenting the rotation of body and D! is its transpose.
For such matrices, we note that the product D e D! is the unit matrix.

In order to consider the rotations, we may use the concept of Euler angles
(or an eqmva.lent) to specify the instantaneous orientation of the body, and the
resulting expression for D depends on the order in which the three rotations
are taken. The order is, of course, arbitrary, since any displacement of a rigid
body can be described as the sum of a translation and a single rotation about
some axis. But that axis constantly changing in time, and so we must use a
systematic method of describing the kinematics of the body. Our choicé is to
take roll, pitch, and yaw, in that order. These are not the Euler angles described
in a textbook, but they are more useful for our present problem.

First, neglect the translations and consider only rotations (thus O and O’
comcxde) Define a new coordinate system O%§Z that is identical to the Oxyz
system except for a posmve rotation &4 about the z axis. Thus # = z. The

transformation from X to X is simple:

}% =AX
1 0 (0] .
=0 cos& singy | X (A.19)

0 —sinéy coséy

Then we make a second rotation, this time through an angle {5 about the §
axis. Let the new axes be denoted by O#j3.

X =BX
cosfs 0 ~—sinés\
=l o 1 0 X (A.20)
sinés 0 cosés

Finally, the third rotation, through the angle £ about the Z axis, brings the

axes into coincidence with the Oz'y'z' axes:

X =CX
Ccos ﬁs sin 66 0 -+ -
= | —sinég cosés 0| X (A.21)
0 0 1

The complete transformation is obtained by applying these in order, according

Lo



to the usual rules of matrix multiplication:
C5C6  CaS¢ -+ 5455C6 S48¢ — C455Ce
D= —css¢ cqc6+ 84C58¢ S$4Cg + C454S¢ (A.22)
S5 —84Cy C4Cs

where s, = siné,,c, = cosén,n = 4,5,6 and D! is equal to the transpose
ma.tnx of D.

If{ (é1,€2,¢83) a.nd & = (4, €5, €6) can be expanded in the following form;

£=efW 4+ 289 4 0(&) (A.23)
&= @M + 23 0(63) (A.24)
then this becomes:
D =D + DWW + ED? + 0(63)
100 0 & &
={0 1 0]+t 0 &
0 01 & —& 0
L [E+E 2% 26466
-5 0 &+8 26 | +0(P) (A.25)
0 0 g+¢& A

Thus, from Eq.(A.18) X can be expressed as:
X=X +f® 430 x X+ 2D + 3@ x X'+ SHI' + 0(e%) (A.26)

where
€?H = Z[D@]! (A.27)

If X’ is a fixed point vector, the velocity is

k4

L O .
g=X=cf +&V xRN+ +&? x X+ SHX +0(S) (A28)

where the dot e denotes time derivative. )

Let % be a unit vector normal to the body, directed into the body In the
O'z'y'2" axes, the same vector is denoted by # #!. Since # does not depend on
the translation vector £, from (A.19) to (A.24) it is represented by

=7 + @ x @'+ 2[@@ x @] + EHR' + 0(°) (A.29)

while a rotational normal vector is obtained from vector products of (A.26) and

(A.29) as

Xxit = X'xid' +Ex @ +@x (X' x ") +Ex (@ x 7))+ 2H(X' x ') +0(e®) (A.30)
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since the following vector relation holds:

Ax(BxN+Bx(CxA)+0x(AxB)=0

Next we shall consider a kinematic condition on the body itself. We as-
sume that the body surface can be described in O'z'y'z' axes (the body fixed
coordinate system) by an equation of the form

'S'(a:', y,Z)=0 (A.31)
or in Ozyz axes (space fixed coordinate system)
S(z,y,2,t)=0 (A.32)

The hydrodynamic problem forces us to use the Ozyz coordinates, in which the
unit normal on § = 0 is a function of time. So we reinterpret (A.31):

§'(2,y, 2) = 0 specified the body surface in its equilibrium position,
and we use the transformation of coordinates to express 7 in terms of
#', the unit normal vector to the body surface in its mean position.

As noted earlier,(A.29) provides this relationship. In order to avoid any possible
ambiguity, we shall use the following notations:

S : exact wetted surface, described with respect to Ozyz axes (S(z, v, 2,t) = 0);

S’ : exact wetted surface, described with respect to O'z'y’z' axes (S'(z', ', 2’ ) =
0); : . :

Sm : wetted surface of the body in its equilibrium condition {(S'(z, y,2) = 0).
The boundary condition is
AV® =Zed onS - . (A:33)

where @ is the velocity of the surface §. Equation (A.28) gives % in terms of
the vector X' of a body point in the body fixed coordinate system, but we
reinterpret X' as the position vector in the Ozyz axes of that body point when
the body is at rest. So, if we replace X’ by X in (A.28) and consider X as a
point on the surface S,,, then (A.28) gives the actual velocity of that point on
the body, but referred to the location of the point on S,,. Similarly, we use
(A.29) to give the actual normal vector, but referred to the corresponding point
on Sg. : '

In (A.33) V® has to be evaluated. We assume that the velocity potential and
its derivatives can be evaluated on the exact surface through Taylor expansions
with respect to points on the mean surface:

-V® = eV +2Vpy + O(e®) - (A.34)



and o Do
Vo, = Vol +[(X = X')V]Ve™ +--+ on Sp,  (A.35)
where (X — X') is given by (A.26)."

Substituting (A.35) into (A.34), and using Eqs.(A.23) and (A.24), Eq (A.34)
can be expanded by the quantities of the body surface S,, as:

V& = Vol + (Ve +[(ED + 3D x X")V]w;"}+ O()  (A.36)

Now, when all of the terms are organized according to powers:of ¢, we have the
pairs of conditions: :

' o O BT C T ' o o
O(e) :@'Vol'=# [£ + ¢ x X'l onSm (A.37)
o) @Vl = n'[g + 3P x X+ HE - (8D + 5D x X)V]Ver
+(@® x )@ +3Y X’) Vo] ; (A.38)

where all qua.ntltles on the nght hand sides are to be evaluated on Sy,
Condition (A.37) is familiar from ship motion theory. In (A.38), the left hand
side and the first term on the right.hand side are identical to (A.37) except that
the index 1 is replaced by 2. With respect to the other terms on the right hand
side, it is observed that. the second term accounts for nonlinear effects included
in the velocity @, the third term corrects for the fact that #'Ve]* in (A.37) is
figured on the mean position of the body instead of on its instantaneous position,
and that the last term accounts for the difference in direction between # and 7.

A.4 Force and ;mom‘ent

The three components of force and three components of moment on the body
can also be expressed initially as follows:

F}(t):/Ln;pdS (i:l,.;,G) | (A‘39>,

where S is the exact wetted surface of the body, and - p = p(z,¥y,2,1) is the

fluid pressure on the body surface. The six quantities n;, defined in (A.29) and
(A.30), must be evaluated instantaneously as functions of time.

In order to proceed further analytically, we transform the mtegra.l over S into
an integral over S,, the wetted surface of the body in its equilibrium position
in calm water. This requires two kinds of adjustments.

The first is that since S is displaced and Totated with respect to Sy, we
must express p and n; in terms of their values on Sy, . For the latter, we use
(A.29) and (A.30), the primes now denoting qua.ntltles evaluated on .S,,. For
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P, we assume that values on S can be obtained in terms of a Taylor expansion
with respect to Sy,

pls=pls. +(X - X')Vp) s, +--- (A.40)

Since p contains a hydrostatic pressure term, —pgz, the first term on the right
hand side is O(1) and the second term is O(¢). But the hydrostatic pressure
has no effect after the second term of the expansion, and so the first unwritten
term is actually O(e3).

The other is that the integration over § is to be cairied right up to the
water surface, z = (, but the integration over S,, goes up only to z = 0 which
is equivalent to z = £3 + y€4 — z¢5 on S ( as shown in Fig.A-2). Let AS be the
part of § between z = £3 + yé4 — x€5 and z = ¢. Then, to second order,

€[( €31 —yEa1+als1 ]+
// n;pdS = ._p/ dl/ s
AS » o

x(n} + -+ Mgz + eloTs + g(€a1 + véar — v€s1)] + -}
(A.41)

where C,, is the intersection of §,, and the plane z = 0, and in the double
indices, i.e. &, the first, 1, denotes the orientation of the axis, and the second,
Jj, shows the term in the perturbation expansions. On the right hand side, we
can now drop the prime on n!, since the indicated domain of integration makes
it clear that n; is being evaluated on the mean position of the body. Two further
simplifications can be made consistently:

(2,9, 2) = ni(x, 9,0) + O(e)

¢1:(2, 9,2, 1) = oT(2, 9,0, 1) + O(e) = —g(i(=, 3, 1)

So Eq.(A.41) can be evaluated as:

[ mivas=-2e§ amic o -sta+atal  (ra2)
AS Cm '

Now let us consider the force. We have divided S into two parts, i.e. the main
integral over S, and the integral given by (A.41). Organizing the results by
order of magnitude, we obtain

F = —p_qu'c’
—fl’{//s RpdS + gAwp (€1 + ypéa — 11»';{51)75}

- V ? | ! -], m
= [ [ e+ oL 4 @0 4 500w Ryvop + 1w epas



-—%62 fc dIR[(E — 201 (€31 + yéar — zés1))]

+g€® Awp{(¢32 + y;&z ~ z7€51) + o1 (2 €01 + ypés1)}E + O(€%)  (A.43)
where
F = unit vector in 2 direction
L, X = normal and point vectors in the body-fixed coordinate system

V = volume of displaced water at equilibrinm

V:// zdxdy:// xdydz:// ydzdz
: Som Sum Sm

Awp = area of water plane at equilibrium
zy = position of longitudinal centre of flotation

ys = position of transverse centre of flotation

' 1
zfAwp = // zdzdy = —fa,jdy
; s, 2
1
yrAwp = // ydzdy = —fyzd:z
Som 2

Next we divide the first and second order potentials into three parts in the
following forms:
I d 4 .7
1 =t erter A
44
OF =l + o+ ¢} | (A4)
where the indices I,d, and r denotes the incident wave potential, diffraction
potential, and radiation potential respectively. Furthermore, we decompose

Eq.(A.43) as :
F= PO (PO 1 D 4 FOy _ 2(1353)4@(;21)) D) +0() (A45)

where the indices, W, HD, and HS denote the wave {force, the hydrostatic force,
and the hydrodynamic force respectively. Then, organizing the results by order
of magnitude, we get:

o(1): FQ =,p4VE (A.46)
o@: B = [[ weli+atyis (A47)
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FQ) =p / / w7, dS (A.48)
Sm
F}}; = pgAwp(éa1 + y5éar — 3»'/651)75 - (A.49)
o): FP =24 @it - (€ +én - st

] o + oo+ L 4 (@0 4 50 ¢ Ryvomias

+a® x _13(1) + pgAwper(zséar + ypési)E (A.50)
F& = / / AL, dS (A.51)
F}% = pgAwp (€32 + yséaa — fb‘f{sz)iﬂ._ (A.52)

where in order to lead (A.50) the following relation is used.

/ i (@M x R)p1,dS — —f dii[¢? — 2(1(531 + yéa1 — x€s51)]

=g x FO _ Efc dli[¢y — (€31 + véar — z51)] (A.53)
where . :
FO = FD 4 FG) + F§) (A.54)

' From (A.50) it is found that the second order force, i.e. Fg), consists of the

following five terms:

(1) The first term is the component caused by fluid pressure between mean and
instantaneous wave surfaces

B2 =24 aimo - (ntota-agl?  (A)
Cm

(2) The second term comes from the quadratic pressure term in the Bernoulli
equation.

F® = / f #|Ver|2dS | (A.se)

(3) The third arises from the variation of the acting point of fluid pressure.



oo, / / F{(E® + 80 x XYV }ds (A.57)
Sm

(4) The fourth comes from the variation of direction of first order wave force
with respect to rotation of a body.

F® =g x pO) | (A.58)
(5) The last term is the component due to second order potentials
=, / /S (ol + ¢3)dS - (A59)
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Appendix B

Estimation of Cross
Bispectrum

FFT, BT and MEM method have been used as the estimation of auto and cross
spectra. But the general estimation of bispectra has not been developed so far.
In this section, we shall introduce the Dalzell’s method?) as one example of the
estimations of cross bispectrum.

Since the sample(one record obtained by experifnents) is necessarily finite, it
is possible only to estimate cross bispectral averages rather than actual densities:

G0, ) = / H(3,2)C( + D3, Qg + Q4)dadS2y (B.1)

where the average H(f3, (Q4) is weighted by the kernel function, which is called
“eross bispectral window”. The window by analogy with scalar spectrum analysis
must take a peak at a bi-frequency (0.0,0.0), fall off rapidly elsewhere, and
remain near zero away from the peak. As for a usual scalar spectrum analysis,
a too-broad window makes the estimates bad and a too- narrow window with
respect to sample length increases the variance of the estimate. It is clear that
since the window is for averaging over frequency, its integral should be unity;

/ / H(Q,04)dQad0y = 1 (B.2)

Because the data is sequentially sampled at time interval At, bi-frequencies
outside the principal range:

<<%
—F << £

are aliased with those inside. It is assumed that the data is sampled at a
sufficiently short time interval so that the cross bispectrum is negligible outside



the principal range. According to Dalzell’'s work?, the time interval should
- be about half the interval for a scalar spectrum analysis. Because the data is
sampled sequentially, a lag window of the form:

W, m) =YY ajbed(n — jAL)S(r, — kAL) (B.3)
F N

is chosen, where the a; and b; are real, and §(¢) is the Dirac’s delta function.
Then the cross bispectrum estimate is given by:

m n
C(, )= > Y. Rypx(—iAt,—kAt)abe exp{iAt(iQ + kQ2)} (BA4)
j=—mk=—n )

This estimator involves the third order correlation function. Setting time, that
is, £ = nAf, the correlation function can be expressed by the form readily
available with the sequentially sampled data as:

Rypx(~jAt, —kAl) = E[fi(nAt+jAt)i(nAt—jAL){ X (nAt+kAt)-X}] (B.5)

The expected value is conventionally estimated by a summation over the avail-
able sample divided by the sample length and this interpretation is followed so
that

BGR) = o7 (n+ i)' (a = )X (n+ )

= Ry, x(—jAt, —kAY) (B.6)
where:
N' = number of products summed
7'(n) = wave elevation time series corrected to zero sample mean

X'(n) = nonlinear response time series corrected to zero sample mean

Next, the main problem is to construct the cross bispectral window H (23, 24).

Considering m and n as maximum lags, Eq.(B.4) becomes:

5 ey . .h I
S(, ) = j_Z_jm ,Z_:,, R(j, Kasbe explin(i > + 5=} (B.7)
where ; = ;n’%;,ﬂz = ﬁ%.
In choosing the cross bispectral window, it was assumed that the natural
choice would be a two-dimensional analogy with the spectral windows to be
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used in the estimation of the wave spectrum. The continuous lag wmdow cor-
responding to the scalar spectrum window is of the form: ‘

A(7) = gler + eo cos(ntzt i ' (B.8)

where e; and ey are coefficients of window function.

Since optimum window function for cross bispectrum estimate has not been
known yet, we détermined the coefficients as e; = 0.54 and ez = 0.46. These
coefficients are equal to ones of the Hamming type window function. In Eq. (B.3)
the lag window is a product, one factor for each lag variable. The factors may
be different. This would result in spectral windows differently shaped in the
sum and difference frequencies, as well as having different bandwidths. There
appeared no justification for a difference in normalized shape of the window. It
was assumed that a discrete version of the scalar spectrum lag window would
be appropriate for each of the factors, so that in Eq. (B.3) let:

a;(7) = gj[e1 + ez cos(ZL)}
L (B.9)
be(7) = qiler + > cos(-ﬂ‘-)]

where ¢; and ¢; are constants independent j and k and they are determined by
normalization condition, that is, Eq.(B.2). Since the cross bispectral window
H(23,84) and the lag window are a transform pair and thus:

H(Q,0) = (‘-'2"-’;3[ E (e1 + e cos(—))cos(At]Q3)]

j=-m

x[ Z (e1+e2 cos(——)) cos(AtkS2y)] (B.10)

k=-n

This result shows that the cross blspectra.l window is real and symmetric

in 7 and k, and is continuous in ; and 92 The window also has a period of

_ 2=
1= At”

Unknown consta.nts g5 a.nd 2 can be determmed from normahza.tlon COIldl-

tion, Eq.(B:2) as \
L= {(elél-tez)}2 ' (B.11)

Then the estimate of the cross bispectral a,vera.ges'becomes:

C($h, Q) = {—-—At—-}2 Z E (e1+e2 cos(—-))(el + e cos(—))
,21(61 +e2)

J_ —m k=—n
xexp{in(2 + 2oy S i 4 (o - j)X'(n‘+ H B12)



Multiplying AQ; @ A2, in the above equation and summing over all values of I,
and Iy, the integration of the cross bispectrum approaches the following form:

1 1
yr——— 0((nm)2 )

(0 0) — a0, 0+ L s L
A AQ, IIZ,, C(u, Q) = 4% R(0,0)[1 + st oot

(B.13)

Thus the estimate of the cross bispectrum has a error. But the error is small
compared with the true value and is negligible for practical values of m and n.
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Appendix C

Viscous drift force acting
on a vertical circular
cylinder with small
diameter

The forces on a small vertical cylinder due to waves is represented by the Morison
equation. For a unit length of the submerged portion of the cylinder, the force
is given by:

CmprD?.  pDCy

fo= =i+

Jul (C1)

~ where u is a horizontal component of wave particle velocities, D is a diameter

of the cylinder, and C,, and Cy are inertia and drag coefficients.

If current is not included and the linear wave theory can be applied, a sur-
face elevation ((t) and the horizontal component of wave particle velocities are
represented in the following form:

¢(t) = % cos wt (C.2)
u(t) = H;,w exp(xz) coswt (C.3)

where H, is a wave height, x is a wave number, and w is a circular wave
{frequency.

Substituting the equations (C.2) and (C.3) into (C.1), the horizontal force
acting on the vertical cylinder can be expressed as:

¢
F, = / fodz
-h



CypDH2w?

O D?
=[- CmxpD"Hwrg sin wt +

8
exp(k() — exp(—kh
(E2e0) (o),
Thus if it is assumed that k( < 1, F, can be divided into the following two
parts( Fél) and Féz)):

cos wt| cos wi|]

(C.4)

2 2 2
FY = [—gﬂﬁpg—}{ﬂsm wt + -—qd—/%l-“i—ui—cos wt| cos wif]
1 —exp(—kh),
x{_.__m(___).} (C.5)
2 2,2
F® = [-—-C—'mwst——————Msin wt + C—de—?-s—q’”—u—)—cos wt|coswt|]¢ (C.6)

where %;-)- is the force per section area integrated over —h to 0.0 with respect to
z. It expresses a first order force when s¢ = O(e). And Féz) indicates a higher
order force and it does not depend on the draft. In Fj, the most important
term for the drift force is Fz(z), which can also be represented by the alternative
form like: ’ ,
Féz) =fs !z=0 x(¢ (07)

Namely this is the product of the wave elevation ¢ and the horizontal force per
unit length at the still water surface, that is, it is the wave force integrated over
the range from the still water surface to the instantaneous wave surface when
the horizontal wave particle velocity is distributed as shown by Fig.(C-1). Thus
the force expressed by Eq.(C.7) is called a “free surface force”.

Since the linear wave theory is applicable only for infinitesimal wave ampli-
tudes and it is valid up to the still water level, extension of expression for the
water particle kinematics up to the free surface of a finite amplitude wave is
questionable. Therefore in order to exactly discuss, it is necessary to use the
finite wave amplitude theory. But since our interest is to study fundamental
characteristics of a viscous drift force, we dare to use the linear wave theory.

By using the Hilbert transform, an out-of-phase component of the surface
elevation ( can be expressed by:

n(t) = -% /~ : (f-%df | (C.8)

Then the horizontal velocity Componeht ug on z = 0 is given by the derivative
of » as follows:

up = n(t) = %/_Z -(-Eg_(—-r%i-dr ' (C.9)

And similarly the horizontal acceleration becomes:

Up = 'r)('t) = —-% /°° —-—g—(z))—ad’r (C.IO)‘

oo (E—T
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From the characteristics of the Hilbert transform, it is easily found that ug is in
phase with (, and 4o out of phase with it.

It is well known that Cyq and C, in the Morison equation are the functions
of the Keulegan-Carpenter number and the Reynolds number. In addition, we
may assume that these hydrodynamic force coeflicients can also be represented
by a function of wave frequency.

f() = / g1(r)io(t — T)dr + / ga(rYuo(t = Dluo(t — T)ldr  (C.11)
Similarly applying this system representation for Eq.(C.7), F<? has:
F20) = [a(ryio(t -7 - ryir
+ / aa(uolt = Dluo(t = De(t = T)dr  (C.12)

Now, by using the equivalent linearization technique, ugluo| can be approxi-
mated in the following forms:

i) in the case that ¢ is a regular wave process,

4rH,w
3

ii) in the case that { is a Gaussian random process,

/8
u0|u0| = QUg = ;_'O',O‘uo (0.14)

where o,, is the standard deviation of u,.
Since « is afunction of wave frequency, it can be included in the system
function hy. Thus Eq.(C.12) can be rewritten as:

upl|uo| = aup =

Ug (0.13)

Ff)(t) = /;gl('r)'&o(t —7)(t—T1)dT + /hQ(T)U()(t -7)(t—-7)dr (C.15)

From the relationship between ug and {, the second term on right hand side
of the above equation includes a slowly varying drift force but-the first term
does not. Hereafter we shall consider only the second term in Eq.(C.15). From
Eq.(C.9),then, the second term can be represented in the following form:

FO@) == / r (hz(:l_))z((t—Tl)((t-—'rg)dndrz (C.16)

If we define the new function g9 by

hz(’l‘l) hg(’rg)
Tz+7'1) (’l'2+’7'1)2

92(7'1,7'2) [( ] ) (0.17)



F{? indicates the second term in Volterra functional series, that is, g9 is equiv-
alent to the quadratic impulse response function. Using the Fourier transform
of generalized function® as

/‘—00 zT™eT Yy = % sgn(y), (C.18)

the Fourier transform of Eq.(C.17) becomes:

G2(w11 wz) = -[Iwle(wl - wz) + lelQ(wl - “’2)] (0-19)

where @ is: ‘the Founer tra.nsform of ho. : : :
Finally, the quadratic transfer function of slowly varymg dnft force due to
viscous effect can be represented by: - ' ¢

Gz(wl,—wg),=,—}['lwgl,'@(wlxwz)+,,|w1|Q(w1+£uz.)1 ()

If the drag coeflicients Cy does not depend on the wave frequency and the waves
are the combined regular waves with two frequencies, the quadratic transfer
function G4 is proportional to the square of mean frequency of two wave compo-
nents. And if the wave system consists of a single-;frquex}cy wave, G2 becomes:

3
H Cdperw (C.21)

H,
Ga(w, —w)(—-)* =
This result agree with the result obtained by Standing and the others®), that is,

the viscous steady drift force is proportxonal to the wave a.mphtude to the third
power..
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Appendix D

'On the effect of exciting

short period disturbances
on the free and forced
oscillations for the system
with nonlinear damping

Free oscillation tests have been used for measuring the damping coefficient of a
ship or a floating offshore structure. Especially, since moored offshore structures
have a long natural period in surge motion in general and the damping force
is very small at this period, the experiment is one of the best ways to get the
damping force.

This appendix shows the analytical results on the influence of exciting high
frequency disturbances on free and forced oscillations for the system, the damp-
ing force of which is assumed proportional to the square of velocity, and it
concludes that the damping force coefficients increase by the exciting high fre-
quency disturbances.

D.1  Free osc1llatlon in regular high frequency
exciting disturbance

The free oscillation equation including exciting disturbance E(t) is described in
the fo]lowmg equation:

MX 4+ NX|X|+ KX = E(2) (D.1)



where M is the total mass coeflicient, N is the damping force coefficient, K the
spring constant, and the dots represent the derivatives with respect to time.
Considering Eq.(D.1) in the time when X becomes a negative value, replac-
ing E by BM cos(n.t) and dividing the both side of Eq.(D.1) by M, Eq.(D.1)
becomes as follows:
X -aX?4n?X = B cos(n.t) (D.2)

where a = ﬁ,’rﬂ = 111{4’ and n and n. are unequa.l

o 1s small, the solution of Eq.(D.2) and n? can be expanded by c. Na.mely,
X and n? are expressed in the following form:

X=Xo+oXi+a?Xy+---

(D.3) .
n? :n%-}-anf-}-oﬁng-}-n-
Substituting Eq.(D.3) into Eq.(D.2) and ordering Eq.(D.2) in term o.
O(1): Xo+n3Xo = Bcos(net) (D.4)
O(e): Xi+n2Xi=X2-22X, (D.5)
O0(a?): Xp+n2X;=-n2X; —n2X, +2XoX; (D.s)

If the initial conditions of Eq.(D.2) are X =0and X = a, the initial conditions
corresponding to Eq.(D.4), (D.5), and (D.6) are as follows:

X0=G,X0=0 ‘
X = O,Xl =0 (D.7)
Xg:O,Xz:O : :

Accordingly, if the resonance phenomena do not occur -and the ratio between
the natural frequency no and the frequency of exciting disturbance n, is large

enough, the period of one cycle and the decaying ratio of amplitude a, are

obtained approximately by:

Qp41 4a 2182
el =
ap +of 3 3ak2)

where § = -’?2- and k = %2, From Eq.(D.8) it is found that the exciting distur-
bance exerts an influence on the decaying ratio of amplitude and the period of
one cycle. Thus, in the case of measuring the damping coeflicient from the result
- of free oscillation test, we must use the amplitude which satisfies the following
relation:

B
>
\/:?:nlne

(D.9)

(’D.é)"
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Let us confirm the above result by the numerical calculation. As a free oscﬂla.tmn
equation, we con:«uder the following equation: ‘

X+ X|X|+9X =Bsin(308) . (D.10)

The numerical results calculated for both 8 = 0 and 8 = 10 by use of Runge-
Kutta-Gill method when the initial conditions are X = 0 and X = 1 are shown
in Fig.D.1. From this figure it is found that the decay of a.mphtude in exciting
disturbance is-larger than that in still water. Furthermore it is'confirmed that
the effect of exciting disturbance occurs within - '

an < 0.08 ; (D.11)
calculated by Eq.(D.9).

D.2 Forced oscillation in exciting disturbance

When the regular and irregular exciting disturbances are added into the oscilla-
tion system with nonlinear damping force, the differential equation of oscillation
can be expressed in the following form:

- MX + f(X)+ KX = Ei(t) + Ex(%) - (D.a12)

where M, N and K are the same coefficients in the previous section, f(X) is the
nonlinear damping force and E; and E, are the regular and irregular exciting
disturbances, respectively.

If the nonlinearity of Eq.(D.12) is not so strong, it is considered that the
response of Eq.(D.12) can be represented in sum of the linear responses due to
E, and E2. Namely, if z; and z; are the linear velocity responses due to F1
and E2 respectively, the nonlinear velocity response may be expressed in the
following representa.tlon ‘

f(zl + z2) ~ K121 + K229 (D.13)
So, we consider the following functional
J= E[(Nf(zl + 2‘2) - K121 — K222)2] (D.14)

and determine k; and k2 such that minimize J, that is, we shall apply the so-
called equivalent linearization method. Then the Equivalent Linearized Damp-
ing (E.L.D.) coefficients x; and &2 are given as follows:

_ Elznf (a1 + 22)]
B2

= o.i%./_w/_oozlf(zl + 22)p1(21)p2(22)d21d2g (D.15)

K1



ke = Elzaf (21 + 22)]
ke = --—-———-————-E[z ]

/ / zgf(zl + 22)}71 (zl)pg(zz)dzld22 | (D.16)

where Efe] denotes the expectation, p;(i = 1,2) are the probability density
functions of 2;(i = 1,2) and ¢%(: = 1,2) are the mean square of z;(: = 1,2).
By use of the characteristic function ¢; for 2; and the Fourier transform F' for
f(z), Eqs.(D.15) and (D.16) can be rewritten in the form:

i

Kj = — = [.ooF(z'g)ztﬁk d—‘i-dw (5, k=1,2,7 #£k) (D.17)

2'xaj

where

$i(w) = / exp(iwz;)p;(z;)dz  forj =1,2

-—00

F(iw) = / ” exﬁ(iiwaa) f(d:)d&:

Let us now apply for the osc1lla.txon system with nonlinear da.mpmg force f (X ) =

X|X). I 2 is Asin(wt) and’ 2, is the, zero-mean statxona.ry Gaussian process,

the E.L.D. coefficients k; and ko are glven by:

— / JI(A“’) xp(— "{:’ Ydw (D.18)

/ J"(A“’) p "2“' Ydw (D.19)

where Jy and J; are the Bessel functions of the fist kind.
Considering the following relation

_F(%—%+1) a?

0 _pey-lg = a3t e
o () exp(=b22)rdt = e s exp(~ )

2
(v (LB LA
3(26) 1F1(2 5 TLv+ligs )(D.20)
Egs.(D.18) and (D.19) can be expressed in the form:
8 A? - A2
Ky = \/;'0'2 exp ———')1F1(2.5; 2; 5—-—5) (D.21)
L 8 o .
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where I is the Gamma function and ; F} is the confluent hypergeometric function®.
From Eqgs.(D.21) and (D.22) it is found that the E.L.D. coefficients change with
the energy ratio between z; and z,.

When o > «, the asymptotic expansion of 1 F} (03; 2) for the large value of
|2} is as follows: '

F . ’
1Fi(a;932) ~ I‘éz; exp(z)z®™" | (D.23)
Accordingly, when 5‘%— >1,
84
~ — .24
K 3r - (D.24)
44
~ —_— .25
et ©.29)

The result of Eq.(D.24) is identical with that of only Ej.

A2 :
When 267 <1, .
Ky =Ko~ \’-78?72 (D.26)

This result coincides with the result for pure Gaussian input E,. F igures D.2
and D.3 show the calculated results of x; and x5. From these figures it is
found that the interaction effect due to two exciting disturbances on the E.L.D.
coeflicients is large. The energy dissipation consumed by nonlinear damping
can be expressed as follows: ‘ ‘ '

2
E = nl%- 4+ Kgﬂg

[8 5. A? A?
=4/= —_— 2.5;1; — 27
72 exp( 20%)1F1( 5 1; 20,%) (D.27)
When 24% >1, :
— 4 3
E~ ;;A , (D.28)

In this case, the energy dissipation consumed by nonlinear damping is identical
. . . - . 2
with that due to the sinusoidal exciting disturbance. When -2‘-“;;- <1,
2

E~ \/-itag _ (D.29)

This result coincides with the energy dissipation due to random exciting dis-
turbance. The calculated result of Eq.(D.27) is shown in Fig.D.4. From this
figure it is found that the energy dissipation due to two exciting disturbances
is larger than that due to pure regular exciting disturbance, further than the
sum of the energy dissipations due to regular and irregular exciting disturbances
respectively.



Appendix E

Instantaneous p.d.f.‘ of

total second order response

based on the Kac & Siegert
theory

We shall consider a second order functional series as:

X(t) = / a(r)e(e = 7)ir + / ! / () = ) = )i

(E.1)
=XW 4 x® (E.2)

Now considering ((¢) as transformed “white noise” process, and denoting by
g(t) the appropriate impulse response function of the linear filter giving ¢(¢)
from white noise process W(t), it follows that

o= [ amwi=ryr (E:3)
~00
where ¢(7) is a weighting function and W(t) is a unit white noise which satisfies:

EW@W(t - 7)] = 6(r) (E.4)

Substituting ((¢) as given by Eq.(E.3) into Eq.(E.1), we get the following rela-
tions:

XO(3) = / T bWt = 7)dr (E.5)

103

491)



104

(492)

where o
ki(7) = L 91(8)g(r — s)ds (E.6)
and
X(z)(t) = A /(; kz(Tl, T2)W(t - Tl)‘W(t - Tg)d’TldTg (E.7)
where

ko(m,72) = /0 ” /(; wgg(u,v)q(ﬁ - u)q(ﬁ - v)duc‘lv' ‘ (E.8)

Since ¢, g1, and g should be filter functions with physical causality, they must
vanish at mﬁmty, and for practical purpose they may be considered zero outside
a bounded region. Thus we shall consider T, which is sufficiently large, as the
integral upper limit of the above equations.

. Now, we shall consider the following integral equation :

/0 " (o, DA@)dy = MA() | (£.9)

Then this integral equation becomes the Fredholm type integral equation. Since
ka(z,y) is symmetric kernels, it can be shown from the Fredholm type integral
equation theory® that

1) the eigenvalues and the corresponding eigenfunctions exist,
2) the eigenfunctions are mutually orthonormal,
3) the elgenva.lues are all rea.l

4) the Mercer’s theorem can be applied to express the posmve semi -definite
kernel as

) = TAM@AG) (E10)

. - 1=t
Substltutlng the above rela.tlon into the Eq. (E 7), we have

X0 = Al / M)W (= i (E.11)

ci=1

If the stochastic process W;(t),i = 1, 2,..., are defined as

. ..
Wi(t) = /0 W(t - r)Ai(r)dr (E.12)
Eq.(E.11) becomes | : :
XO3) = AW (E.13)
=1



Furthermore from the relation (E.3) and the orthonormality of A; , it can be
seen that

EW,()W;(t)] =0  fori#j  (B14)

Tlus means that W;(t) and W;(t) are uncorrelated random variables and there-

fore independent, since they are Gaussian, and that E[W?(t)] = 1,{W;} is the
family of the standard Gaussian random variables.
Similarly we expand- the kernel k; in terms of the eigenfunctions {A } as

kl('r) = Z c,'A,-('r) . . . . : (E.15)

i=1
where ‘ SEVIRE C
T (

6 = / ky(r)As(r)dr (E.16)
0 , ,

Then substituting Eq.(E.15) into Eq.(E.5) we have:

(o <] .

XD(y=3Y" eWi(t) : - (B17)
izl )

This leads to the following decomposition of the total second order response
process:

X(t) = Z(C,W(t) FNWEE) (B18)

The instantaneous p.d.f. can be obta.ined from the inverse Fourier transform of
its cha.ra.cterjstic function. The chara.cteristic function is deﬁned by

¢X(o) . Elexp(iX)] = HE[exp{w(c,W WO (B19)

J=1

Since W; have the p.d.f as

ow,(2) = \/%exp(i;) (E.20)

by using the following identity:

[ 2 " : ‘ t2 .
/;oo exp(itz — '%)dx = \/%}exp(—ﬂ) ff)r a>0 o (E21)

the characteristic fanction can be rewritten as
2 92

¢x(0) = H\/T 2-(1 23,0))

(E.22)
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By the inverse Fourier transform of the characteristic function the instantaneous
p-d.f. becomes:

o0

px(z) = 2—1,‘_— ¢x(0) exp(—ibz)do (E.23)

-0

Next we shall consider the integral equation (E9) It can be simplified by
defining :

T .
¥i(t) = / g(u —t)A;(v)du, O0<Lt<LT (E.24)
0

Then the integral equation (E.9) can be rewritten as

T
/0 Fa(t, w)s (w)du = At (t) (E.25)

where T ‘
Falt,u) = /0 Re(t - r)ga(r, u)dr (E.26)

The new set of eigenfunctions {¢;} will satisfy the following normalization re-
lation

T T
/ / gg(Tl,Tg)iﬁ,‘(Tl)’l/Jj(Tg)dTldTg = )\,‘6,‘j (E.27)
o Jo
where 6;; is the Kronecker delta and the parameters ¢; are determined by
' T
6 = / g1(TWi(r)dr (E.28)
0 .
If the time domain kernel go(m1,72) is known, the integral equation may be
solved to obtain eigenvalues and eigenfunctions. However, it seems to be more

common to obtain these values and functions in frequency domain than to do
in time domain. For this purpose we define the Fourier transform of ;(t) as

e o]
Bi(w) = — / i) exp(—iwt)dt (E-29)
27 Jo oo
Then we obtain the frequency" domain integral equation as follows:
o0
/ Se(w)Ga(w, =) (1)dv = A ¥ () (E.30)
- 00 .

where S¢(w) is the two-side wave spectrum.
Equation (E.30) may be rewrittén as

* K(w, V)‘If;(u)du = XV (w) (E.31)

-00



where the kernel K(w,v) is defined by

K(w,v) = /8¢ (w)S¢(v)Ga(w, —v) (E.32)

and the eigenfunctions ¥;(w) by

W, (w) = 4 / S( (w)\il;(w) (E.’33)

~ Since Gy is symmetric, it follows that K(w, v) = K(v,w), that is, K(w,v) is the
Hermitian. Since the eigenfunctions A; are all real, ¥;(—w) = ¥¥(w) and the
normalization condition is o ' : ' :

/ " () (w)do = 6 (E.34)

—00

Equation (E.28) for ¢; becomes

= [_: G (w)y/Se (@) (w)dw (E.35)
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Appendix F

Statistical moments of
total second order response

The total second order response can be_representéd in the following two forms:

X(@#) = /gl('r)C(t —7)dr + / / g2(m1, 72)(t — 1 )(t — m2)dmidn
(F.1)

or

= i(c; + /\gW;)W; (F'2)

i=1
From Eq.(F.2) the expected values up to third order are given as follows:

E[X] =) MEW?+) «E[W)] (F.3)
E[X? =Y aEW:W;+ Y ) EW; W] (F.4)
E[X%] = Z cici BIW; Wi Wil + ) cidjex E[W, W7 W]

+ 3 X EIWEW; Wil + ) Aidjer E[WZWEW,]

+ > e M EW,W;WE + > cidj M E[W, WIWE)

+ ) N MEWIW;WE + ) MMM E[WPWEWE]  (F.5)

Since Wi(i = 1,...,00) are the standard Gaussian variables with mutual inde-
pendence, the following relations™ are satisfied:

E[Wi] =0 (F.6)
E[W;W;] =6 (F.7)
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E[W,‘VVjWk] =0 . : (FS)

EW; W, W, W] = 8ibu + S bju + buabjn (F.9)
E[VV,‘WjWkVWWm] =0 o (F.IO)

EWW,WeWiWoW,] = 6ij6ki6mn + 6ij6kmbin + 6ij6knbim
+6ik6516mn + 5ek5jm5m + 6ik8inbtm
+618;16mn + 518;m Okn + 6i18;nbkm
+6imBikbin + 8im0j10kn + Oim 6jn it
A0inbik0tm + 6inb510km + Oinbjmbpt

for 4,4,k l,mn=1,---,00 (F.11)
where §;; is the Kronecker delta. o .

Using the above relations, the mean value X or E[X], the variance 0% or
Var[X], and the skewness (/f;) are obtained as

X =EX=)x | " (F.12)
% = Var[X] = E[X?] - X? =Zc?+22)\i2 -(F.13)

VPBiock = E[X°] - 3E[X?|E[X] + 2(B[X])® =8) A} +6) cIX |
(F.14)

While from Eq.(F.1) the expected values are written as:
E[X] = ]dn /drzgg(rl,Tz)R¢(7‘2 - 71) (F.15)
E[X?] =/d7'1/d7'291(7'1)91(7’2)3;((7'2—Tl)

-F'/'d71"°'/df492(71,72)92(7'3,”'4)

X[R¢(r2 = 11)Re(7s — 73) + R¢(12 — 73)Re (11 — T4)
+R¢(m2 — ma)Re(7s = 1)l

E[X3] /dTl /dT«igz(’fl, 7'2)91(7'3)91(7'4)
' X[GR((TS — 11 )Re(m1— 1) + 3R<(7'2 — 11)Re (T4 — 1-3)]
+[/ dn /drggz('rl,rg)R((Tg -n)P?

+/d71"'/dTeyz(leTz)gz(Tsy 74)92(75, 76)

x[6R<(T2 - TI)RC (Te, bl -T3)R4(T5 - T4)

+SR((T3 - Tl)R((T.S - 7'2)R((TS - 7'4)]
(F.17)

(F.16) |
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Transforming Eqs.(F.15), (F.16) and (F.17) to frequency domain we get:

X = /de'g(w, —w)Se(w) (F.18)
% = [ale@Psw
+ / dun / dun| (w1, w)2Se (w1)Se(wa) (F.19)

N/ / dun / dun G (—w1)G1 (w2)Ga(wn, wa) S (1) (wa)
+8/dw1 /dw2/dw3'G2(w1,w2)G;(w2,wa)G’g(wg,,—wl)
 S¢(w1) S (ws) S (ws) | (F.20)
where * denotes the complex conjugate.

Cross and Auto spectra

Take the cross correlation function between the nonlinear response process X ()
and the Gaussian wave process {(t) as follows:

E[(X() - X)(t-7)] = / drg1 () BIC(t = m)C(t = 7]
+ / dny / draga(rym)EIC(t = 11)a(t — 7)C(t = 7)]

~XE[((t - 7)] | (F.21)

Since the wave process is defined to be zero-mean, the last two terms are zero.
Thus:

E[(X(1) - X)((t—7)] = / drygy (n)E[C(t - 1)C(t = )] (F.22)

This means that the cross spectrum involves only the first term in the func-
tional series (F.1), and thus that the linear transfer function G, is derivable by
standard cross spectrum technique by Fourier transform Denoting the cross
spectrum as Sx¢(w); then we get

Sx¢(w) = Ga(w) - S¢(w) (F.23)
Next, taking the auto correlation function of X(¢):
E[(X (1) - X)(X(t+7) - X)]
= /dv‘l /d‘T‘ggl(Tl)gl(Tg)E[C(t - )(t+ 7~ 7))
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+/d7'1"'/47492(71,T2)92(73,T4)

xE[{(t = 1)t - )+ T = 73)((t+7 — 74)) _
-X? (F.24)

and using the factorization relation” for higher order moments of Gaussian
processes as:

E[X1X2X3X4) = E[X1X2]E[X3X4] + E[X1 Xs)E[X2X4] + E[X1 X4 E[X2X3]

(F.25)
we obtain
Rxx(r) = /d’rl /d7291(71)91(7'2)R((T'+ T — Tg)
+ /dTl e / d’f492(7‘1,>’rz)92(7'3,7"4)
X[Re(T+ 11 — m3)Re(7 + 72 — 74) )
+Re (T4 71 — 1a)Re(7 + 12 — 73)] (F.26)

The auto power spectrum is the Fourier transform of Rxx and is computed
from the Wiener-Khintchine relations as

Sx(@) = [G1(w)PSc(w) +2 / |Ga(w — v, 1) Se(w - v)Se(v)  (F.27)
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Table 3.1 Principal dimensions

YTEMS ACTUAL MODEL
Length(m) 30.0 2.10
Breadth(m) 200 1.40
Displacement(t) 527.5 0.168
in sea water in water
Draft(m) 5.5 0.385 .
KG(m) 6.8 033
Ty 437%L 44.0%L
GMi(m) 13 0.269
{ Scale ratio 1.0 ey
Mooring system | Chain catenary | Linear spring |

189

Table 3.2 Experimental results of free
damping oscillation tests

Spring Coefficient(kg/m) 1.683x2 | 5.09%2
Natural Period(sec.) 21.0 10.6
Virtual Mass(kg-sec?/m) 37.6° | 28.97
Equivalent damping force(kgsec/m) | . 4.6 8.325

Table 3.3 Statistical values of irregular waves

“WAVE STATISTICAL SPECTRAL DURATION

COND. | Variance Hys Ticr me 4,/mo Tor - TIME
No. (m?) {m) (sec) (m?) {m) (sec) (hour)
1 0.2527 1.954 7.888 0.2396 1.958 8.038 2.84
(0.00124) | (0.1366) | (2.086) | (0.00172) | (0.1369) | (2.126) |  (0.75)

2 0.2311 1.869 6.562 | 0.238 1.952 6.628 2.34
(0.00113) | (0.1307) | (1.735) | (0.00116) | (0.1365) | (1.753) |  (0.75)
3 0.2502 1.957 - | .5.477 0.2568 2.027 5.606 2.84¢

| (0.00122) | (0.1368) | (1.448) | (0.00126) | (0.1417) | (1.482) |  (0.75)

4  0.3047 2.219 5.006 0.3104 2.229 5.045 5.67
(0.00149) | (0.1552) | (1.324) | (0.00152) | (0.1559) | (1.334) (1.5)

() in Model Scale

(527
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Table 3.4 Numerical tables of the qua,dra,tic’ transfer function of slowly varying

drift force where @ = w

- R{GJ(wi, ~w;)}

D/g and D is the diameter of a column

(528)

Table 3.5 Comparisons with hydrodynamic
coefficients in still water and in

slow drift oscillations

Wave cond. | My + m11/M1 + m1 Nfl/Nfl
2 1.0 1.39
3 0.89 1.67
4 0.87 1.65

5 - - - & - —— —
T0.2199 | .2687 3176 23665 4154 | 4543 | 5131 | .5620 | 6109 | .6587 | .7086 | .7575 | 8064 | 8553 | 904l
2199 | - 000293 | -.000633 | -.002154 | -.00465 | 00988 | _.01787 | -.024 | -.0246 | -.0154 | .00238 | .02738 | .080 | 0464 | 021l | 0362
2687 | -.000633 | -.000266 | -.000565 | -.001045 | -.00224 | -.00426 | -.00636 | -.00625 | -.00214 | 00357 | 01018 | 0178 | .01684 | 00456 | 01048
3176 | -.002154 | -.000565 | -.000509 | -.000801 | -.001504 | -.00278 | -.00416 | -.00471 | -.00441 | -.00237 | 0065 | .01941 | 01547 | -.003691 | —01318
-3665. | -.00465 | -.001045 | -.000801-} -.00167 | -.002967 | -.004986 | -.00702 | -.00742 | -.00578 | -.00279 | .00626 | 021 | .01995 | 00395 | 06101
-A154 | -.00088 | -00224 |-001504 | -002967 | -00475 | - 007324 | -.0098 | -.01046 | -.00928 | -.00646 | .0045 | .02237 | 0312 | -.00558 | L0107
-4643 | -.01737 | -.00426 | -.00278 | -.004986 | -.007324 | -.0106 | -.01341 | -.0i44 | -.0138. ] -.01102 | 00184 | 02086 | 01783 | 00356 | 01518
5131 | -.024 | -.00636 | -.00416 | -00702 | -.0098 | -.01341 | -.01667 | -.01826 | -.01878 | -.0165 | ~.00328 | .013 | 00625 | -.00375 | 02668
-562 | -0246 | -.00625 | -.00471 | -.00742 | -.01046 | -.0144 | -.01826 | -.09142 | -.02443 | -.0239 | -.01319 | -.00455 | -.01516 | 01995 | 03931
| 0109 | 0154 | ..00214 | -.00441 | -.00578 | -00928 | -.0138 | 01878 | -.02442 | -.0305 | -.03184 | -.0357 | ~0288 | -.4171 | -.01964 | .05657
6597 | 00238 | 00367 | -.00237 | -00279 | -.00646 | -.01162 | -.01649 | -.0239 | -.03184 | -.03461 | 05711 | 0894 | ~07921 | -.0408 | 0504
-7086 | 02738 | .01016 | 0065 | 00626 | .0045 | 00184 | -.00328 | -.01319 | -.0257 | -.03711 | -.06273 | =.i191 ] -1559 | =111 -0111_|
7675 | 049 0178 | 01941 021 -02227 | 02086 | 013 | -.00455 | -.0288 | -.0594 | -.1101 | -.20833 | -.2479 | 1881 | -.07609
8064 | 0464 | .01684 | 01547 | 01995 | 0212 | 01793 | .00625 | -.01516 | <.04171 | -.07921 | -.1550 | -.2475 | -96064 | —.181 | 08084
-8553 ) .0211- | .00456 | -003691 | .00399 | .00558 | .00356 | -.00875 | -.01295 | -.01964 | ~.0408 | —111 | -.i881 | -181 | —12043 | - 0755
9041 | -.0362 | -.01048 | -.01318 | .00101 | .0107 .1918 102668 | .03931 | .05657 | .0504 | -.0111 | -.07609 | -.08084 | -.0795 | -.1059
S‘{G{(w;, "wi)}
= A
0.2199 | 2687 | 3176 | 3665 | 4154 | 4643 | L5131 | 5620 | 6109 | 6587 | 7086 | 7575 | 8061 | 8555 T 9041
22199 | .0 [ -.01886 | -.00080 | -.03595 | -.05041 | -.05470 | -.0444 | -.02034 | ,00966 | .03532 | .04695 | L0399, 1-.00137 | -.04963 | -.0015
"2687 | .01886 0 .00782 | -.0112 | -.02149 | -.0274 | -.0244 | -.00965 | .01334 | .036a8 | .05063 | .04024 | .00129 | -.05029 | -.07833
-3176 | 00080 | -.00782 | .00 |-.00771 | -.00946 | -.01153 | -.01430 | -.01685 | -.01596 | -.00576 | .01377 | 02379 | 01342 | -.01031 | -.04345
-3665 | 03595 | .0112 | .00771 | .00 | -.00656 | -.01214 | -.01468 | -.01261 | -.00572 | .00718 | .02416 | .02634 | .00751 | ~.01437 | -.03581
-4164 | 05041 | .02149 | .00946 | 00656 | .00 ' | -.00626 | -.01014 | -.01083 | -,00801 | 00104 | .01575 | .01727 | 00365 | -.00250 | -.01466
4643 | 05420 | .02740 | .01153 | .01214 | .00626 | .00 | -.00497 | -.00845 | ~.01006 | ~00552 | .00525 | 00477 | -.00229 | ;01013 | 0075
5131 | 0444 "| 0244 | .0143 | .01468 | .0I014 | .00487 | .00 | -.00523 | -.01011 | -.00980 | -.00492 |-.00964 | -.01034 | .01973 | 02361
-562 | -.02034 | .00965 | .01685 | .01261 | .01083 | .00845 | .00523 | .00 | -.00648 | -.0104 | -.01454 | -.02629 | -.02103 | 02381 | .03055
.6109 | -.00066 | -.01334 | ,01596 | 00572 | .00801 | .01006 | .01011 | .00648 | .00 | -.00807 | -.02354 | -.04198 | -.02724 | 03394 | .04023
-6597 | -.03532 | -.03638 | .00576 | -.00718 | -.00104 | .00552 | .00980 | .0104 - |.00807 | .00 | -.02236 | ~.03937 | -.00892 | .06155 | .06197
7086 | -.04695 | -.05063 | -.01377 | -.02416 | -.01575 | -.00525 | .00492 | 01454 | .02354 | 0226 {00 | -.00971 | .02979 | .08913 | .06230
-7575 | -.03220 | -.04024 | -.02379 | -.0263¢ | -.01727 | -.00477 | .00964 | .02628 | .04198 | .03937 | .00871 | .00 | 02936 | .0500 | -.00436
-8064 | .00137 | -.00129 |-.01342 | -.00751 | -.00365 | 00229 | .01031 | .02103 | .02724 || .00892 | -.02870 | -.02936 | .00 | -.00417 | -.0589
8553 | .04963 | 05029 | .01031 | .01437 | 00250 | -.01013 | -.01973 | -.02381. | -.03224 | -.06155 | -.08913 | -.0600 | 00417 | .00 | -.0399
-9041 | 09150 | .07833 | .04245 | (03581 | .01466 | -.0075 | -.02361 | -.03055 | -.04023 | -.06197 | ~06230 | .00436 | 0580 | .0399 .00




Table 4.1 Prm(npal dimensions of 2-D structures

Ttems Case No.
No.1 No.2 No.3
Structure type Circular Circular Rectangular
Beam or Diameter 20m 20m 20m
Draft (d) 10m - 10m 10m

Total Mass (M; + myy)

3.21 x 10° kg/m

3.21 x 10% kg/m

3.21 x 10° kg/m

Undamped natural freq. (wo)

0.06 rad/sec

0.06 rad/sec

0.06 rad/sec

Relative damping coel. ()

3.0x 10™°

0.1

0.1

Table 4.2 Quadratic transfer function for circular cylinder in

beam sea where .
d/g and dis the draft

w=w
Numerical Ca.lculatxon of R{< ("'""“ )}
(" . @y
1.25 1.18 1.12 1.06 0.95 0.39 0.84 | 0.65
1.25 | 0.308 | 0.285 | 0.259 | 0.25 | 0.24 | 0.24 | 0.233 | 0.256
1.18 | 0.285 | 0.314 | 0.308 | 0.292 | 0.277 | 0.246 | 0.234 | 0.254
1.12 | 0.239 | 0.308 | 0.338 | 0.34 | 0.324 | 0.267 | 0.234 | 0.247
1.06 | 0.25 | 0.292 | 0.34 | 0.368 | 0.367 | 0.301 | 0.245 | 0.243
0.95 | 0.25 | 0.277 | 0.324 | 0.367 | 0.383 | 0.329 | 0.257 | 0.241
0.89 | 0.24 | 0.246 | 0.267 | 0.301 | 0.329 | 0.303 | 0.227 | 0.195
0.84 | 0.233 | 0.234 | 0.234 | 0.245 | 0.257 | 0.277 | 0.147 | 0.105
0.65 | 0.256 | 0.234 | 0.247 | 0.243 | 0.241 | 0.195 | 0.105 | 0.051
Numerical Calculation of 9\‘{ (;',;;-” )}
w; Wy
1.25 1.18 1.12 1.06 0.95 0.89 0.84 | 0.65
1.25 0.0 0.043 | 0.059 | 0.061 | 0.059 | 0.069 | 0.112 | 0.16
1.18 | -0.043 0.0 0.030 | 0.038 | 0.032 | 0.028 | 0.066 | 0.112
1.12 | -0.059 | -0.030 0.0 0.015 | 0.013 | 0.004 | 0.041 | 0.087-
1.06 | -0.061 | -0.038 | -0.015 0.0 0.0 |-0.006 | 0.033 | 0.082
0.95 | -0.059 | -0.032 | -0.013 0.0 | 0.0 -0.004 | 0.04 | 0.094
| 0.89 | -0.069 | -0.028 | -0.004 | 0.006 | 0.004 0.0 0.056 | 0.129
0.84 | -0.11 | -0.066 | -0.041 | -0.033 { -0.04 | -0.056 | 0.0 0.09
0.65 ; -0.16 | -0.112 | -0.087 | -0.082 | -0.094 | -0.129 | -0.09 [ 0.0
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Table 4.3 Quadratic transfer function for rectangular
cylinder in beam sea

where @ = wy/d/g and d is the draft

(530)

Table 4.4 Linear transfer function for
circular structure in beam sea where

@ = wy/d/g and d is the draft
B T lw:
o | R(% | (%)
1.25 0.0495 0.0
1.18 0.0543 0.0085
1.12 0.0570 0.0168
0.89 0.0621 0.0432
0.84 0.0631 0.0463
0.79 0.0645 0.0490
0.76 0.0662 0.0498
0.69 0.0705 0.0459

Numerical Calculation of %{Qé':_%'_;::.‘ﬁl
Wi w; )

1.25 1.18 | 1.12 089 | 084 | 0.79 | 0.76 | 0.69

1.25 | 0.363 | 0.317 | 0.272 | 0.270 | 0.286 | 0.302 | 0.330 | 0.406

1.18 | 0.317 | 0.336 | 0.305 | 0.260 | 0.269 | 0.264 | 0.261 | 0.321

1.12 | 0.272 | 0.305 -| 0.315 | 0.245 | 0.255 | 0.248 | 0.228 | 0.258

0.89 | 0.270 | 0.260 | 0.245 | 0.326 | 0.339 | 0.313 | 0.236 | 0.172

0.84 | 0.286 | 0.269 | 0.355 | 0.339 | 0.384 | 0.380 | 0.300 | 0.208

0.79 [.0.302 | 0.264 | 0.248 | 0.313 | 0.380 | 0.405 | 0.337 | 0.234

0.76 } 0.330 | 0.261 | 0.228 | 0.236 | 0.300 | 0.337 | 0.280 | 0.175

0.69 | 0.406 | 0.321 | 0.258 | 0.172 | 0.208 | 0.234 | 0.175 | 0.059

Numerical Calculation of & S-{imsil)
2 o
1.25 1.18 1.12 0.89 0.34 0.79 0.76 0.69
1.25 0.0 0.045 | 0.059 | 0.050 | 0.034 | 0.031 | 0.049 | 0.075
1.18 | -0.045 0.0 0.034 | 0.024 | 0.002 | -0.021 | -0.014 | 0.009
1.12 | -0.059 | -0.034 0.0 0.009 | -0.017 | -0.047 | -0.048 | -0.021
0.89 | -0.050 | -0.024 |-0.009 0.0 |-0.026 | -0.086 | -0.115 | -0.067
0.84 | -0.034 | -0.001 | 0.017 | 0.026 0.0 -0.068 | -0.111 | -0.052
0.79 | -0.031 | 0.021 | 0.047 | 0.086 | 0.068 0.0 -0.053 | 0.008
' 0.76 | -0.049 | 0.014 | 0.048 | 0.113 | 0.111 | 0.053 0.0 0.063
0.69 | -0.075 | -0.009 | 0.021 | 0.067 | 0.052 | -0.008 | -0.068 0.0




Table 4.6 Comparisons of statistical

Table 4.5 Eigenvalues

Eigenvalues Wave condition No.
No. 1 2 3 4
(@) | (m | (m | (m)
1 -0.117 | -0.2068 | -0.3028 | -0.3751
2 0.0455 | -0.1391 | -0.1749 | -0.2494 .
3 -0.0636 | -0.0810 | -0.1409 } -0.2273
4 0.0253 | 0.0796 | -0.0963 | -0.1251
5 -0.0319 | -0.0528 | 0.1137 | 0.1379
6 0.0127 | 0.0373 | 0.0657 | 0.0978
7 -0,0184 | -0.0323 | 0.0558 | 0.0853
3 -0.017 | -0.0254 | -0.0576 | -0.0816
9 -0.0142 | -0.0249 | 0.0368 | 0.0456.
10 -0.0105 | 0.0218 | -0.0379 | 0.0313
11 0.0072 | 0.0206 | -0.0341 | -0.0483
12 0.0067 | 0.0114 | 0.0214 | -0.042
13 0.0061 0.009 0.014 | -0.0307
14 0.0042 0.007 0.0117 | -0.0279
-15 -0.0075 | -0.0115 | -0.0218 | -0.0243
16 -0.0063 | -0.0104 | -0.0193 | 0.0188
17 0.0026 | 0.0043 | -0.0166 | 0.0152
18 -0.0041 | -0.0063 | 0.0069 | 0.0094
19 -0.0036 | -0.0059 | -0.0114 | -0.016
20 -0.0024 | -0.0054 | -0.0109 | -0.0147
21 -0.0021 | -0.0032 | -0:.0072 | 0.0058
22 -0.0019 | -0.0027 | -0.0059 | -0.0102
23 0.0016 | 0.0021 | 0.0043 [ -0,0064
24 0.0008 | 0.0019 | 0.0028 | 0.0027

mental results

values between

143

estimations and experi-

WAVE Sample estimated Parameters of Gamma p.d.f.
COND. |EX]| VIX] - |1 ko 6 b2 n %)
No. m @) | ) | @) | @ | @ |
1 0.291~0.477 { 0.162~0.198 | 0.380 | 0.1831 0.03 0.061 8.554 9.307
2 0.409~0.57 | 0.173~0.275 | 0.746 | 0.2919 | 0.0472 | 0.1132 | 8.655 | 10.112
3 0.607~0.844 | 0.269~0.719 | 1.220 | 0.7254<{ 0.0672 | 0.1627 | 10.012 | 11.276 .
4 1.183~1.327 | 1.173~1.558 | 1.675 | 1.294 0.09 0.215 10.3 11.71
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