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ABSTJRACT 

This paper deals with stochastic an叫ysisof slow drift responses(forces and 
motions) of floating structures moored in random seas and their statistical pre-
dictions. First the study review for slow drift forces causing the slow drift motion 
is described, and four problems which ・must be solved in future are discussed. 
Second it is shown that nonlinear responses (total second order responses) in-
eluding the slow drift responses can be represented by a two term Volterra 
functional series. Physical meanings of kernel functions in the functional series 
are investigated from a viewpoint of t1•ansfer functions(or frequency response 
functions). It is shown that the kernel functions can be estimated not only 
from bispectral analyses of experiment叫databut also by numerical calculations 
based on the potential theory. Furthermore on the basis of the mathematical 
fact that the second term in theVolterra,functional series can be expressed by an 
equivalent linear process of instantaneous wave power in stochastic sense, new 
functional model is developed. This is涵 edon the Wiener filter theory♦ This 

model is used to solve the problems excluded in the investigations obtained up 
to now. The problems are as folows: a) Hydrodyna1nic forces of slow drift mo-
tion in still water are modified in waves; b) Newman-Pinkster's approximation 
for slowly varying drift forces does not satisfy the condition of physical causal— 
ity. Comparisons between simulated results and experimental ones have been 
conducted in both frequency and time domains.. Main results are as follows: 1) 
Viscous drift force exists in addition to the drift force driven from the poten-
tial theory and it becomes significant compared with the potential drift force 
for large wave height. It is shown that the approximate method which takes 
in to account the viscous drift force; 2) The hydrodynamic forces of slow drift 
motions are. ified in waves and this phenomenon is caused not only by the 
wave drift damping (speed dependence of added resistance in waves) but also 
by increase of viscous damping force in waves. The ratio between the damping 
force in waves and that in still water was not more than 1.6 in the experiments 
which we carried out during this research project. But the problem why the 
hydrodynamic forces in still water are modified in waves remains completely 
unsolved; 3) It has been confirmed that tl~e experimental and simulated results 
are in good agreement with each other provided we know how much the added 
mass and the damping forces in still wa,ter are modified in waves. 
Finally a theory of probability density functions (p.d.f.'s) is developed for an 
instantaneous total second order response and its maxima, in order to predict 
1/n th highest mean amplitudes and extreme statistics of total second order 
responses. New formula for the total second order p.dふ’swhich include not 
only quadratic but also linear responses,, are derived. These p.d.f.'s can be rep-
resented by the generalized Laguerre polynomials of which the first term is a 
Gamma p.d.f. consisting of three parameters. Assuming that the response 
and its time derivative processes are mutually independent, the 1/n th highest 
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mean amplitude can be evaluated numerically from the derivative of the instan-
紐neousresponse p.d.f.. This method is:first applied to the sway motions of 
moored:floating semi-circular and rectangular two dimensional cylinders, and 
the applicability of the method is studied by comparisons with Naess'exact so-
lu tion. The variation of the 1 /n th highest mean amplitude of the total second 
order response is then investigated following increases in damping and restoring 
forces. And comparisons between the experimental results and the estimated 
ones obtained from the present theory are carried out. The applicability of the 
present theory has been con:firmed. The results are as follows: 1) It is con:firmed 
through comparisons with_ Naess'exactsolution that the present method is an 
accurate approximation for pure second order responses(slow drift responses); 
2) The p.d.f. of the total second order response differs from that of the pure 
second order response. In fact it becorr1es a widely-banded distribution with an 
increase in the damping coefficient. Additionally it signi:ficantly deviates from 
Gaussian p.d.f.; 3) It is con:firmed that the usual prediction method based on 
the Longuet-Higgns'method s油 i:ficautlyunderestimates the measured results 
while the present method estimates them very well. And it is shown that the 
extreme response of the total second order response is greater than that based 
on the assumption of the pure second order response. 
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Chapter 1 

Introduction 

A floating city and a floating airport interest people more than before, and 
floating drilling rigs are forced to operate under severe environmental conditions. 
The accurate estimation of motions and wave forces acting on these structures 
is important for economical and safety design of these structures1),2),3),4). For 
instance, an accurate motion prediction its required to evaluate the workability 
of the structure and the predictions of mooring forces and horizontal excursions 
are needed to design the safety mooriug system. Since all of these responses 
are random variables, these evaluations must be conducted by extreme values 
of the responses. In order to obtain the extreme statistics of these random 
responses, instantaneous and peak probability density functions are required. 
If the probability density functions (p.d.f.'s) are obtained, short term and long 
term predictions of the responses of the structure become possible5). 
There are two methods for obtaining peak p.d.f.'s6). The one is deterministic, 
and the other is nondeterministic. For both methods, frequency response func-
tions of exciting forces to incident waves and hydrodynamic forces (i.e. added 
mass and damping force coefficients) ilLre required. In the case of ships, many 
studies have already been reported for t}:lese hydrodynamic problems. For ex-
ample, there is the strip method7),B) as a popular calculation method, and detail 
investigations9),l0) for the accuracy of the strip method have sufficiently been 
made. There is the three dimensional source distribution method ll) to get an 
exact solution for ideal fluid flow. (But th~ validation is still required) 
The deterministic manner is summarized as follows: 
The wave force time history in random seas is obtained from the wave force 
frequency response function and the random wave time history and the mo-
tion time series is numerically calculated by solving a motion equation in time 
domain. By the statistical analysis of the motion time history, a histogram cor-
responding to a peak p.d.f. is obtained. The merits of this manner are that the 
motion time history can be obtained even if the motion equation is nonlinear 
and that the peak p.d.f. can be found out without calculating the motion fre-
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quency response function. However since the statistical values obtained in this 

way are nothing but one sample in statistical sense, numerous calculations are 

required to get stable statistical values:. Namely, in order to reduce a scatter 

of statistical values, it is necessary to get ensemble of sample statistical values 

obtained from many calculations of motion time histories. Even if the Ergod-

icity is assumed, statistical analysis of a motion time history with an infinite 

duration is required to get ensemble statistical values.. Thus it is remarkably 

difficult to get ensemble statistical values by using the deterministic manner. 

Another problem in the deterministic manner is a frequency dependency 

of hydrodynamic coefficients in the motion equation. Since the hydrodynamic 

coefficients of the motion ・equation is a function of wave frequencies in general, 

exactly speaking, the motion equation becomes a differential-integral equation. 

It is very difficult to solve the equation in time domain since the hydrodynamic 

coefficient in an infinite frequency is required. 
While, on the nondeterministic manner, Cartwright and Longuet-Higgins12) 

have shown that the peak p.d.f. fo:r linear responses can be represented by 

a response variance and a band width parameter. Thus in the case of linear 

responses, the peak p.d.f. can be obtained analytically if a frequency response 

function is found out. 
In the field of ship and ocean engineering, most responses can be regarded 

as linear, but some can not, of which nonlinear components become significant. 

Nonline匹itiesof wave excitations or a, motion response functions to external 

forces should be considered. For floating offshore structures, it is usual that 

both nonlinear phenomena happen. As an example of the former phenomenon, 

wave drift forces in regular waves and slowly varying drift forces in irregular 

waves must be considered1 and as an example of the latter viscous damping 

forces and mooring forces must be considered. 

It ha~ been considered that the slowly varying drift forces in irregular waves 
occur by ・the following reason: 
Because of the nonlinearity of the wave drift force, the existence of two waves 

of different frequencies always implies the existence of wave excitations at the 

sum and difference frequencies. The latter frequency may occur near the reso-

nance frequency of the floating structu:re moored in horizontal motions. And if 

the damping is low(as it is usually in such motions), a highly tuned resonance 

motion must be expected even though 1;he low-frequency force is generally small 

in magnitude. Accordingly, the motion of a floating structure moored in ir-

regular waves consists of sum of a slowly varying component and a component 

oscillating at wave frequencies. The spectrum of this time history has two peaks. 

The one peak occurs within the wave: frequency range and the other occurs be-

low the lowest frequency (close to resonance frequency) at which there is any 

significant energy in the incident waves. For the combined responses with a low 

and wave frequency components (i.e. total second order response), in general, 

maxima and minima are not equal, so the probabilities of them are different. 

Thus in order to analyze statistically such nonlinear responses, new approach is 

(394) 



7
 

required. 

The application of probability theory to this problem was accomplished by 

Neal13). He assumed that a nonlinear response could be represented by a two 

term Volterra functional series, and he provided a closed form for a characteristic 

function(c.f.) of the response by using the Kac and Siegert method 14) (K-S 

method). According to K-S method, the problem of obtaining a c.f. for a 
random variable, which is represented by the sum of linear and quadratic forms 

of Gaussian random variables with mutual independence, can be red u.ced to 

a problem of solving eigenvalues and eigenfunctions of an integral equation. 

Since a probability density function (p.d.f.) of the response corresponds to an 

inverse Fourier transform of the c.f., Ne叫'smethod gives important information 

to estimate the p.d.f. of the nonlinear response to second order. This p.d.f., 

however, cannot be generally expressed in a closed form. 
Naess15),l6),t7) introduced a slow drHt approximation and a pure quadratic 

response approximation to obtain the second order response p.d.f., and showed 

that the resulting eigenvalue problem generated a set of equal double eigenval-

ues. The p.d.f. of the response can be obtained by his approximations except 

when the equal double eigenvalues exist. Equal double eigenvalues may occur 

because a large number of eigenvalues are needed to describe a highly tuned 

response as shown by the authors et al18). Included are many nearly zero eigen-

values, thus caution is required. The Naess'method requires a pure quadratic 

response. 
Vinje19)邸 sumedthat the considered nonlinear response is weakly nonlinear 

and the p.d.f. is close to a Gaussian p.d.f., and he provided the series form of 

the p.d.f. from Taylor expansions of cumulants. His method is a kind of the 

approxiniate method c叫ledthe Gram-Charlier expansion(or Edgeworth expan-

sion). 
N aess'method can be applied to obtain the instantaneous p.d.f. of the 

nonlinear response, but cannot be applied to get the peak p.d.f. while the 

Vinje's method can. In order to get the peak p.d.f. of the nonlinear response, 

a joint p.d.f. of response acceleration1, velocity, and displacement is needed. 

But it is very difficult to exactly obtain this p.d.f. and some approximation is 

required. Hineno20) applied the Vinje's method to the peak p.d.f. of nonlinear 

responses and obtained a series form(Hermite polynomial series). Recently 

Naess21) developed the SRSS (Square Root form of Sum of Squares) method, 

which is the method that the extreme statistical values can be represented by 

the square root form of sum of squares of stochastic variables, and applied it to 

get the extreme response of the nonline匹 response.But theoretical background 

is not clear. 
Besides these studies, Yamanouchi22) studied on nonlinear roll spectrum, 

and he investigated the relationship bet:ween the degree of nonlinearity and roll 

spectrum. And Roberts23),24) obtained the approximate steady p.d.f.'s by means 

of Fokker-Planck equation method (or stoch邸 ticdifferential equation method). 

This is a promising method in future, but h邸 thedefects that the external force 
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is limited only to. white noise and it is di:fficult to solve numerically because of 
infinite boundary conditions. 
In this way, the consistent method to get the statistics of the nonlinear 
response has not yet been developed。Asthings are, the deterministic manner 
is the main current25)126). As indicated earlier, this deterministic manner has 
many demerits, thus a new probability method may be required. 
The objective of the present study i:sto develop a simulation model for total 
second order response of floating structures moored in random seas and its 
stochastic analysis method. 
In Chapter 2, the study review fot slow drift force(second order force) is 
described, and four problems which m111st be solved infuture are discussed. As 
the most important problem in them, the following problems are treated in this 
paper. 

a) Hydrodynarni namic forces of slow drift miDtion in still water are modified in waves. 

b) The Newman-Pinkster's approximation25) for the slowly varying drift force 
does not satisfy the condition of ]Physical causality. 

In Chapter 3, it is shown that the total second order force including slow drift 
forces can be represented by a two te:rm Volterra functional series. Physical 
meanings of the kernel functions in the functional series are investigated from a 
viewpoint of frequency response functions (or transfer functions) and a method 
estimating the kernel ones from experimental data is also studied, which is the 
method using the bispectrum (a kind of higher order spectra). Furthermore 
a new functional model such that th.e second term of the Volterra functional 
series can be represented by the equivalent linear process of instantaneous wave 
power is developed. The new model is b邸 edon the Wiener filter theory27). 
Several kinds of experiments have loeen carried out. Relation between the 
kernel function and the frequency response function of the slow drift force is in-
vestigated through comparisons between the experimetal results and numerical 
calculations. And the applicability of the present functional model is studied by 
comparing between the experimental data and numerical simulations. Further-
more the unsolved problems a)(i.e. how much the hydrodynamic forces in still 
w・ater are modified in waves) and b) are investigated by using the new functional 
model. 
The main results obtained in this Chapter are邸 follows:

(1) The kernel functions in the Volterra series correspond to the linear and 
quadratic transfer functions in frequency domain. The quadratic transfer 
function expresses a frequency characteristic of slowly varying drift force. 
The quadratic transfer function estimated by using the bispectral analysis 
from the experimental results does not agree with the numerical result 
b邸 edon the potential theory, viscous drift force exists in addition to the 
drift force due to the potentiaJ. t;heory and it becomes more significant 
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 than the potential drift force when the wave amplitude has a finite am-

plitude. If the viscous drift force is taken into account to the quadratic 
transfer function obtained from the numerical calculations even though 
it is approximately evaluated, the corrected numerical result is in good 
agreement with the experimental one. 

(2) The hydrodynamic forces of slow drift motions are modified in waves. This 
phenomenon is caused not only by the wave drift damping proposed by 
Wichers et al.28) and but also by increase of viscous damping force in 
waves newly suggested by the authors29). Recently other causes have also 
been found (e.g. one of the authors and Taka.iwa30>). 

When the slow drift motion is dornunant compared with the linear motion, 
the damping force at the slow drift motion increases by 1.6 times a.s large 
as one in still water whereas the叫dedmass force becomes smaller than 
that in still water within limit of our experiment. However the problem 
how much and why the hydrodynaniic forces in still water are modified in 
waves remains completely unsolved. 

(3) Comparison between time domain simulations taking into account the vis-
cous drift force in addition to the potential drift force and measured data 
is conducted. It has been confirmed. that both results are in good agree-
ment if we know how much the added mass and the damping forces in still 
water are modified in waves. 

In Chapter 4, on the basis of the results obtained in Chapter 3 a theory of prob-
ability density functions(p.d.f.'s) is developed for an instantaneous total second 
order response and its maxima, in order to predict 1/n th highest mean ampli-
tudes and extreme responses. New form1JLla.s for the total second order p.d.f.'s 
which include not only quadratic but also linear ;responses are derived. These 
new p.d.f.'s can be represented by the geitteralized Laguerre polynomials of which 
the first term is a Gamma p.d.f. consisting of three parameters. Assuming that 
the response and its time derivative processes are mutually independent, the 
1/n th highest mean amplitude can be evaluated numerically from the deriva-
tive of the instantaneous response p.d.f.. This method is first applied to the 
sway motion of moored floating semi-circular and rectangular two dimensional 
cylinders, and the applicability of the method is studied by comparisons with 
Naess'exact solution. The variation of tlrte 1/n th highest mean amplitude of 
the total second order response is then investigated following increases in damp-
ing and restoring forces. And comparisons between the experimental results in 
Chapter 3 and the calculated ones obtained from the present theory are carried 
out. The applicability of the present theory is confirmed. 
The main results obtained in this Chapter are a.s follows: 

(1) In the ca.se of pure second order response (slow drift response) the instant a— 
neous p.d.f. and the extreme responses estimated from the present method 
are in good agreement with the e::x:act results shown by N aess. 
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(2) Using the present method, an investigation to determine the statistical in-
terference between the:first and second order responses was conducted for 
a system with a linear damping :and a linear restoring forces. The p.d.f. 
of the total second order response diifers from that of the pure second 
order response. In fact it becomes a widely-banded distribution with an 
increase in the damping coeflideirtt. Additionally it signi:ficantly deviates 
from Gaussian p.d.f.. 

(3) As to the extreme response, comp紅isonbetween the result obtained from 
the present method and one from the model test during long duration 
has been carried out. It is con:firmed that the usual prediction method 
based on the Longo.et-Higgins'method signi:ficantly underestimates the 
measured results while the present method estimates them very well. And 
it is shown that the extreme response of the total second order response 
is greater than that based on the assumption of the pure second order 
response. 
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Chapter 2 

Review and some Problems 
of Second order forces 

In this section, first we shall describe the s,tate of the art of studies of the slowly 
varying second order forces. Second, we discuss some problems. The coordinates 
used in this section are shown in Fig.A.1 in Appendix A. 
If the static restoring force by mo01dng lines is very small, a highly tuned 
resonance generally occurs at a very low J(latural frequency in horizontal plane for 
a moored floating structure. It is important in practice to predict the magnitude 
of the low frequency horizontal excursllons of a platform and to ensure that 
they are kept within acceptable bounds. This is one of the most important 
hydrodynamic problems that must be solved in designing・ocean platforms. This~ 
phenomenon was:first reported・ by Verhagen and Sluijs1>. They explained the 

phenomenon as: 
Because of the nonlinearity of the free-surface conditions, the existence of 
two waves with different frequencies always implies the existence of waves at the 
sum and difference (beat) frequencies. The latter may occur near the resonance 
frequency of the moored platform in horizontal motion, i.e. sway, surge, or yaw 
motions. If the incident wave system consists of a continuous spectrum of waves, 
one is assured that there is always some disturbance at any very low frequency, 
and, if the damping is small (as it usuaJly is in such motions), a highly tuned 
resonant motion must be expected. 
On a basis of a physical investigatllon, Hsu and Blenkarn2> suggested an 
estimation method of slowly varying nonlinear forces causing the slow drift 

motion as follows: 
In any small time interval, consider the incident waves approximately as if 

they were simple sinusoidal waves, that is1,:fit the time history over a very short 
time interval by a sinusoidal curve with a sped:fic amplitude and the period, and 
compute the steady force as if these sinusoidal waves existed for all time. At a 
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slightly later time, the waves will have changed, and so the process is repeated 
with a new sinusoidal wave of different amplitude and period, to which there 
corresponds a new value of the "steady force". And so on. In this way, a slowly 
varying second order force is predicted, its amplitude varying roughly with the 
square of the wave envelope. 
This argument seems reasonable.if the incident waves constitute a narrow 
band process. 
Marthinsen3> h・as recently provided a mathematical ground for the method 
of Hsu and Blenkarn. First, note that, H the incident wave system consists of a 
single frequency wave, the steady drift force can be expressed: 

Jf2)＝凡(w)ai (2.1) 

whereFd is a transfer function that depends on the frequency of the primary 
wave(but not on its amplitude). and a1 is a primary wave amplitude. 
Now suppose that the incident wa.ves contain many frequency components: 

叩，t)＝区釘cos(wit-K.泣＋＆） (2.2) 

where ai is the real amplitude and Di is an arbitrary phase constant. 
He rewrites (2.2) in the following way: 

(1（ェ，t)= ~{A(x, t)exp[i(wpt -K.px)]} (2.3) 

where 

A(x, t)＝La; exp{i[（しり '-wp)t-(K.i-K.p)x十わ］｝ （2.4) 

and Wp is some frequency at or near the peak of the wave spectrum, with K.p 
the corresponding wave number. The quantity A(x, t) is clearly slowly varying 
in both space and time, if the wave spectrum is narrow banded. So by using a 
slowly varying function a(x, t) can be represented as: 

C1(x, t) = a(x, t).cos(wptーデ＋ゆ(x,t)) (2.5) 

where a(x, t) is the slowly varying am.plitude and炒theslowly varying phase 
function. They are represented as: 

a(x, t) = [(Lai cos{(w, ・-wp)t -(K,i -K,P)の十ふ｝）2

＋（区aisin{(四 -wp)t-(K,i -K,p)x + 6i})2]112 

ゆ(x,t) = tan-1[ ー1r~｛色― Wp)t- （m- J'i,p)ぉ十ふ｝
こ佑cos{(w,-wp)t -(K,, -K,P)ぉ＋＆｝ ］ 



If the local frequency WL and local wave number "-L are introduced as 

-+ 
8ゅ

WL =w p 
at 

(2.6) 

8ゅ
んL=りp--

,at 

finally the following representation can lbe obtained. 

F(2)（t) ＝p(2)＋秤）（t)＝恥(wL)a2(xo,t) (2.7) 

where x0 is a fixed point, which is typically the location of the centre of gravity 
of the body, or possibly just the origin of the coordinates used for analyzing the 
body motion. And灼 isa slowly varying drift force. 
Equation (2.7) represents essentially the method prescribed by Hsu and 
Blenkarn. This method is justified only if the wave spectrum is narrow banded. 
Because if the wave. spectrum is of wide band, the concept of local frequency 
can no longer be used. 
Robert4> developed a formula like (2、7).His formula is ~_J, = wp, i.e.ゅt= 0. 
Marthinsen shows that this method gives valid results if 竺~< i, that is, the du 
transfer function of steady drift force is flat for wave frequencies, and invalid 

results if拾 >1.
Newman5> followed a different formulation but derived a similar result. His 
approach has been used by many subsequent investigators. His argument is as 
follows: 
Let the wave elevation at some x be represented by 

叫）＝況｛Laiexp(i叫）｝ ・ (2.8) 

where a; is the complex wave amplitude of frequency w;. The first order force 
caused by these waves can be represented as: 

砂(t) ＝沢｛~fiLiai exp(i匹t)} (2.9) 

where hi= fi(wi) is a:first order transfer function relating force amplitude and 
phase to the wave amplitude and phase. 
We expect that the second order force,components will depend on the square 
of the wave amplitude. Thus, noting tha~t the products of two wave components 
can be written: 

況{aiexp(iwit)} X ~{a、;exp(i巧t)}= 

1 
咽 {a氾;exp[i(wi十町）t]+ ai叶exp[i(wi-w;)t]} 
2 
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where the asterisk denotes a complex conjugate. 
The second order force components should then take the form: 

p(2)(t) ＝咬｛〉こf認a;a;exp[i（四十町）t]}
i j 

＋吟工J認ai叶exp[i(Wi-w;)t]} 

(2.10) 

The (+) and (-) notations distinguish between the second order transfer func-
tions relating to the sum frequency皿 dthe difference frequency, respectively. 
We are interested only in the second order zero-and beat-frequency force, and 
so we neglect the first sum and delete t.he subscript 2 and (-) notation. So we 
have simply: 

p(2)(t) ＝虻｛~~J砂叶 exp[i(w、—町）t]} (2.11) 

ーや）．Note that fa; = f2(w;, w;). The time :average of F'-'is 

炉＝叱｛こfii吋｝
i 

Since F and the products aia主arereal, ~fii is of no interest. Thus, J 

fii＝凡（四）

(2.12) 

The coefficients, J.; with i = j, are generally complex. Since the force expression 
in (2.11) does not depend on the choice of i and j (which are arbitrary), we 
require that 

Jii=： J; 
that is, the second order force matrix must be a Hermitian matrix. J.; can be 
viewed邸 asurface in a three dimensional space with coordinates w,, w;, and 
Ji;, For each pair of frequencies, which define a point with coordinates (w,, w;) 
in thew, -w; plane, the height of the surface is given by ~h; or by S'J.;, The 
height of the surface is known along the 45° line in the base plane: The real 
part is just JH, and the imaginary part is zero. Newman邸 sumesthat these 
surfaces are smooth and that their tangent planes make small angles with the 
b邸 eplane. 
If this assumption is valid, then 

fij = fii+0（四一w;) (2.13) 



for frequency pairs lying near the 45° line.. Then the off diagonal terms in Ji; can 
be approximated, the following formula, is given for the slowly varying force 

p(2)(t)＝叫{:区J:ii叫;exp[i(wi -w;)t]} 

x{l + O(wiー町）｝ as 匹一町→ 0 

(2.14) 

Triantafylou6) has pointed out that the Newman's approximation might be valid 
unless the second order waves could be considered as shallow water waves. 
Pinkster7> h邸 developedthe same formula as Newman's. He indicated that 
if Fd can be represented by a linear fundlion, hi in (2.11) can be approximated 
as: 

fij=J辻い＃
2'2  

And he gave a slow drift force spectrum in the following form: 

w ＇ 和 (w)=2p2尻／災(w')S<;(w'+w)F}(w + ~)dw' 
2 

(2.15) 

~::-,~:~r.:~ is a incident wave spectrum. All of these analyses are approximate 
solutions. 
Recently Pinkster8),9) and Ogilvie101) h ave shown the exact expressions for 
the second order forces and moments within the potential theory, those expres-
sions were obtained based on the method of direct integration of fluid pressure 
acting on the instantaneous wetted suri:ace of a body. 
Their expressions of the second order force can be represented as the sum of 
the following components (see Appendix A): 

(1) : Component caused by fluid pressure between mean and instantaneous 
wave surfaces: 

炉＝予ic荘（G-知—蜘＋蜘）2ds (2.16) 

(2) : Component due to quadratic pressure term in Bernoulli equation : 

が＝川／L月1%|2 dS (2.17) 

(3) : Component caused by variation of the acting point of fluid pressure: 

野＝pff莉｛（別＋詞 x笠）・▽知｝dS. (2.18) 
Sm 
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(4) : Comp on en t caused by variation of direction of first order wave force with 
respect to rotation・ of a body: 

『j2)：：：：:rJ(l)X p(l) (2.19) 

(5) : Component due to second order potentials: 

『炉＝ pJJ:_ it（吐＋心）dS
Sm 

(2.20) 

where (1 is the first order・ surface elevation, and iJ(l) =（知，知，知）， whichis 
the first order rotational motion vector1, and知 isthe first order heave motion 
In addition, there exists a term pgAwp(a::,e41 +Y1e5i) in the vertical second order 
forces, which term is caused by the product of first order rotational motions. 
If the i e instantaneous wave surface elevation is expressed by (2.8), the second 
order forces can be represented like (2.10). The components (1) through (4) 
are caused by the product of first order quantities, the component (5) is only 
caused by second order potentials, that is, it can be obtained only by solving 
the boundary value problem of second order potentials. 
Although the Pinkster-Ogilvie theory has become popular, there are several 
problems that can not be determined by the theory. They are as follows: 

[1] Contribution of second order potentials to the drift force 

The component (5) depends on the second order velocity potential cp2, which is 
very difficult to compute. There are several different ways in which to approach 
this problem. For exam.ple, Lighthill11) has shown that the second order force 
can be expressed wholly_in terms of jlirst order quantities by use of reciprocal 
relationships. His expressions, howevet, require the evaluation of an integral 
of second order pressures over the entire free surface, which is called a free 
surface integral. The amount of numerical work required to achieve this is 
likely to become vast unless some approximation will be found to represent an 
asymptotic behavior of second order potential away from the body. The purpose 
of evaluating this term is not to obtain :a.n accurate prediction of slowly varying 
drift force but rather than to find out if the term is important. 
Pinkster9>, St.anding et al.12), and Matsui13 have obtained the following 
conclusion by evaluating the total slowly varying drift force without calculating 
the free surface integral. 
The contribution of term (5) to the total slowly varying drift force can be 
negligible at high wave frequencies, at which the first order diffraction effect is 
significant, but it can be of great importance at low frequencies. 
Faltinsen and L9.1ken 14) formulated the problem precisely to second order, 
expressed the drift force in terms of first and second order potentials, and then 
used Green's theorem to eli血natethe explicit dependence on the second order 
potentials. They obtained the same conclusion. They treated only the two 



dimensional problem, but it certainly is possible that the same conclusion will 
be obt叫nedin the three dimensional case. 
However there is one case in which the second order potential may be impor-
tant. It is the case that the second order waves may be shallow even though the 
first order waves are still deep water waves. It is possible for this phenomenon to 
occur, because the second order waves have the very low frequency component. 

[2] N ・ecessity of singular perturbatiion 

One defect of the usual perturbation analysis (regular perturbation analysis) is 
that it is based on the assumption that motions of the structure are small com-
pared with the dimensions of the structure itself. Since it is well known that the 
low frequency resonance response of a moored floating structure often involves 
very large horizontal excursions, then Jlt is clear that this usual perturbation 
approach becomes invalid. 
Triantafyllou6) developed a mathematical model that involves only linear 
hydrodynamic problems, even while it permits large excursions of the platform 
in the horizontal plane. He used a kind of multi-scale expansion theory, and 
assumed that・ the motion response consilsts of two motions: 

1) The one is the usual motion response to the incident waves; the amplitude, 
velocity, and acceleration are small, and considered to be O{e), where~ is 
the usual perturbation parameter.. 

2) The other is the low frequency motion having the velocity that is O(e), 
whereas its amplitude is 0(1). 

If t is the time variable that is normally used, he used a new time variable, 
t = et, for analyzing tlte low. frequency motion. Thus ・his method is a, kind of 
derivative perturbation analysis, i.e. singular perturbation. 

(3] Effect of wave drift damping etc. 

It is observed that the damping force on a moored floating structure during 
low frequency motion in waves becomes greater than the one in still water. 
Wichers et al.15),lS) explained that this phenomenon is caused by a kind of 
added damping force due to the drifting of a structure in waves. They called it 
wave drift damping in or~~r to distinguish it f!?_m the linear radiation wave 
damping. The authors et al.17 and Standing et al.18) examined a simple method 
, which is called "drift force gradient meithod ", for approximating the additional 
damping due to the presence of waves, based on drift forces in regular waves 
at zero forward speed, using the analytilcal relationship between forward speed 
and wave encounter frequency together with wave frequency gradients of the 
drift forces. Wichers et叫．19)proposed a different way using added resistance 
gradient and Hearn et al.20) computed lby so called "added resistance method" 
that models the low frequency motion by steady forward speed of the structure 
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in the fiuid structure interaction ana1.ysis. Hearn et al. concluded that the drift 
force gradient method seems to predict the correct trend but not the correct 
magnitude, and that the subject of theoretically predicting wave drift damping 
is not fully resolved and more research is required. 
On the other hand, the authors21) showed an increase of the decay ~flow 
frequency motion coupled with the wa.ve induced motion due to the nonlinear 
viscous damping force (nonlinear coupled viscous damping). The explana— 
tion of this phenomenon is indicated in Appendix D. 
Saito and Takagi22) demonstrated from comparisons between simulations 
and model experiments that drift forces based on potential theory as well as 
the nonlinear coupled viscous damping have an influence on the increase of low 
frequency damping in sway motion. One of the authors and Takaiwa23) showed 
that the increase of the viscous damping force due to waves is sometimes much 
larger than the nonlinear coupled viscous damping even taking off the wave drift 
damping for a semisubmersible and it depends on the ratio between wave particle 
velocity and motion velocity. They called it as drag coefficient change due 
to. waves. Furthermore they indicat,ed that the low frequency added mass 
in still water is also modified in waves. But theoretical backgrounds of these 
phenomena are still not clear yet. 

[4] Physical causality of Newman :approximation 

In general, the slowly varying drift force can be represented by a Volterra system 
function, which will be stated in the next sections. 

F(2)（t) ＝/j恥，r2)((t-r1)((t -r2) d乃伍 (2.21) 
T1oJ T2 

where 

J 1 
如心）＝戸1/ G}（W1心）exp{i(w1 r1 + w匹）｝dw1dw2 (2.22) 

U1 U2 

As stated earlier, Newman24) introduced the approximation for the quadratic 
J transfer function・ G{. His approximation is that G{ (w1, w2) is estimated by its 

values along the diagonal w2 = -w1邸 follows:

喝（W心）＝ ｛喝(W1,-W1) 邸叫 •W2 SO 

゜
otherwise 

then Eq.(2.22) becomes 

恥，r2)= h如）6（叫
where 5(r) is the Dirac's delta function and 

h{ =｛吐霊応ご雷。Ws[：dT:dw
訂；箋{Gt(w,-w)}sin(wr)dw for T ~ 0 

(2.23) 

(2.24) 

(2.25) 



Substituting (2.24) into (2.21) yields: 

r 
p(2)(t)＝く(t).)材(T)(（t-T)dT 

1「

(2.26) 

and since Gt(w, -w) represents the s1;e叫ydrift force, it must be real; i.e. 

~{Gt(w,-w)｝三 0. Eq.(2.26) means that F<2>(t) i is approximately written 
as the product of two Gaussian random processes (which are not statistically 

independent). However, from (2.25) we must note that h{ (t) does not satisfy 

the physical causality unless Gt(w, -w) takes a constant value. It is physically 
f inconsistent that G~ (w, -w) is constant, it.e. the steady drift force does not de-

pend on wave frequencies. This inconsis,tency is caused by the lack of the phase 
information of Gt・(w, -w). 
In this way, there exist many pro blen認 whichmust be solved on the slow drift 
phenomenon. This paper treats the slowly varying drift force from a viewpoint 
of system functional theory in order to solve the problem of physical causality of 
Newman's approximation. Then there will be a discussion along this approach 
on the third problem, i.e. how the wa,ve drift damping affects the slow drift 
motion can also be investigated by this approach. But we will not discuss on 
the first and second problems in this pa,per since they require lots of additional 
research. 
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