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Chapter 3

Formulation of second
order forces due to
Volterra functional series
and Application of
Wiener’s filter theory

3.1 Relationship between Volterra functional
series and second order force system

Let f(t) denote the nonlinear total second order force vector of a floating struc-

ture to a random excitation {¢(¢) | ¢ € R}. Since F(¢) is the response vector

to the entire time history of ¢(t), we call F(¢) a functional vector defined on a

class of excitation ((t) as

F(t) = Fl¢(0) (3.1)

If F[¢()] is a continuous functional vector of ¢(%) in the function space sense,
then F (t) can be expanded in a functional vector power series such that

ﬁ(t) ¥F0 + /Zl(t, 4)¢(t)dty + - -

+/~--/ﬁn(t,tl,'-ﬁ,'tn)c(tl)'-((tn)dtl---dtn+-~-
(3.2)



If this series represents a causal physical system, then the kernel function vectors
satisfy

Ba(fytr, - ytn) =0 4>t (3.3)

Series satisfying this property were studied by Volterral), and series of the form
(3.1) that satisfy Eq.(3.3) are called Volterra functional vector series. -

If the nonlinear system is time invariant, then kernel function vectors in
Eq.(3.2) depend only on time difference. Thus,

F(t) =Fo+/g'1'i(1')((t-—r)dr+---

+//‘(-]';(T1,T2)C(t—Tl)C(t—tz)dTsz-l-“‘

(3.4)

where Fj is a constant vector. In general, the kernel function vectors in Eq.(3:4)
may not be symmetric for their arguments. However, a permutation of indices
in any kernel vectors only affects the order in which the integration is carried out
but does not affect the response. Thus, for the purpose of analysis, symmetric
kernel vector may be assumed without loss of generality; i.e.

™ 1
gn(ThTZ)"')Tn) - Hzgfb(ﬁl,'“,ﬁn) (3'5)
G '

If the kernels are continuous and absolutely integrable and if the input is
bounded and the contribution from terms of order n in Eq.(3.4) decreases to
zero as n — oo, then it can be proved that the functlona.l power series (3.4)
converge uniformly.

We shall limit our analysis to excitation effects through second order and
Fy = 0. Then Eq. (3.4) is truncated at n==2 and takes the fo]lowmg form:

F(t) = / f(T)((t —71)dr + //"’F(rl, 12)¢(t — 1)¢(t - Tz)dTlde (3.6)

And we will treat the vector function as the scalar function hereinafter for
simplicity. If {(¢) is a wave excitation, this series can be used to analyze the
response that is proportional to both the wave height and the squared wave
height. There exist the time and spatial dependencies in the incident wave
system. But since the wave system have a dispersivity, it is not necessary
to consider the spatial dependency as indicated by Hasselmann?® . It may
also be mentioned that the adopted formulation is consistent with second order
corrections to a linear wave field, in the sense that such corrections may be
incorporated in Eq.(3.6) where {(t) then denotes the linear part of the wave
field. Consequently, the assumption that ((¢) is a linear, Gaussian wave process
is consistent with the second order model in Eq.(3.6). If the kernels in Eq.(3.6)
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are continuous and absolutely integrable, then the kernels possess the Fourier
transform. The transform pairs are defined as follows:

al(t) = & [ Gf(w)exp(iwr)dw

G{(w) = fwg{('r) exp(—iwr)dr
(3.7)
gg('rl,'rg) = ri,—ful fw Gg(wl, wa) exp{i(w1 71 + worp)}dwidw,

Gf(w1,w2) = I fﬁgg(fl» 2) exp{—i(w1n +way)}dTidTy

In Eq.(3.7) the kernel g{ is a linear impulse response function, and its transform,
G{ ,is a linear transfer function. The kernel ng is analogous to the linear impulse
response function and is called “quadratic smpulse response function”. Its trans-
form, Gg , is called “quadratic transfer function”. Since the kernel gg (71, 72) can
be assumed to be symmetrical in its arguments; i.e.

g5 (r1,m2) = ¢f(r2,m1) (3.8)
- thus
Gg(wl, WQ) = G%(WQ, wl) (3.9)

Consequently, the quadratic transfer {function is symmetrical about the line
w1 = wq in the (w;, ws) plane.

If {(t) is a Gaussian random wave with one-sided spectrum U, Rice® has
shown that it is represented in the following stochastic integral:

) = / cos(wt — p(w))/2T(@)dw (3.10)

where p is a random phase distributed uniformly over 0° to 360°. This represen-
tation means the stochastic integral, and it converges in the sense of stochastic
quadratic mean.

Substituting (3.10) into (3.6) we have:

FO () = /cos(wt - u(w) + 01(‘w))\/2 | G{(w) |2 U(w)dw (3.11)

FOt) = [[oos{(wn +wa)t = (uler) + wa)) + Oa(ur, )}

X \/I G£ (w1, wa) |2 U(w1)U(ws)dwydws

+ [ [eos{n = wa)t = (u(er) = w(@a)) + s, =)}

x\/1 6 (w1, ~wz) |2 U(w1 U (ws)dwr dus (3.12)



where v

G{(w) =| G{(w) | exp(if1(w))

G (w1, w2) =| Gf(wr,w2) | exp{ib(wr, ws)}
It is clear that the first term on right hand side of (3.12) shows the sum com-
ponent of second order force and the second term indicates the difference com-

ponent. Taking the ensemble average of Eq.(3.12), and taking into account a
statistical independence of the random phases, we get:

E[F®] = / G (w, —w)U (w)dw (3.13)

While the time average of 7 () is represented in the following form:
FO =Y Fa(wi) | ai (3.14)

By using the relationship as;

a; = /20(w)dw;
Eq.(3.14) can be expressed in the following integral:
7P = / 2Fy(w)U(w)dw (3.15)
If (3.13) is equal to (8.15), the following relationship holds:
61w, ~w) = 2Fs(w) (3.16)

Similarly, from comparison between (3.12) and (2.11) the system function Gé
can be related to the transier function of slowly varying drift force like:

Gé(w}’ —w2) B :2f2(w11 "‘WZ) . (3.17)

3.2 Application of Wiener’s filter theory to
slowly varying drift force

It is clear from (3.12) that the slowly varying drift force can be expressed by a
quadratic form of random processes. So we expect that the quadratic impulse
response function may reveal a kind of filter function in the field of communi-
cation engineering. Thus if the system considered is Ergodic, it is possible from
the Wiener’s theory to replace g{ by a optimum linear filter, i.e.:

F@(t) = / wa(r)C2(t - 7)dr (3.18)

where wo is an optimum linear impulse response function.
The Wiener's theory? provides an optimum filter function ws under the
following three conditions:
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(1) The input process must be an Ergodic process and its spectral density can
be resolved into factors.

(2) A criterion of error minimizes the least mean square of error.

(3) A filter function is linear and causal.

The criterion of error between the second term of Eq.(3.6) and Eq.(3.18),
that is, J can be obtained from the conditions (1) and (3) as follows:

J= E[{//Q;{(Tl, 12)¢(t — 1 ){(t = 72)dmidTs — /w2(T)C2(t —7)dt}?] (3.19)

The problem minimizes J in (3.19) with respect to an arbitrary function ws,
i.e. a kind of stationary value problems in calculus of variation.

Let J[wq] be a functional.

Now, assuming that w} is a function minimizing J, then the necessary con-
dition for w3 to be a optimum Wiener filter is given by:

0
i aJ [w2,3+ sws) =0 (3.20)
£—+00 €

This representation is equivalent to the following equation:

| [IBe@Rc(ra = 1)+ 2Re(r = m)Re(r =)

x{gf(r1,72) — wa(m)é(m2 — 1) }dridry = 0 (3.21)

where R is the auto correlation function of ((t).
Thus we have:

9 (1, 72) = wa(r1)8(rs — 11) (3.22)

If the Fourier transform of w; is given by W, the following relation is satisfied.
G (w1, wz) = Wy(w1 + wp) (3.23)

Multiplying the incident wave spectrum in both sides of (3.23) and integrating
in frequency domain, a concrete form of W, is given by:

Walw) = — / Gl(w = ', w')S¢ (')’ (3.24)
¢

Now, we assume that GJ(w;, —wj) is smooth with respect to w; and w; and that

f
% = UG:{ (wi, —wj),t # j and v is any small quantity; that is, the tangent
y ,

planes of Gg(w,-, —wj) makes small angles with G%(wg, —wj).



Triantafylou® has pointed out that this assumption is valid only for the case

that the second order waves need not be considered as shallow water waves. If

this is valid, then from Taylor expansion we get:

Gi(w - w',0') — Gf(v', ') Zv"

—w"  [w— 0]

GI (wl wl) n!
From definition of asymptotic series
Gi(w —v',w') ~ G (W', ~0") - (W) [w — oo] (3.25)

where 9(w) is a response function, of which amplitude exponentially decreases
with an increase of w. This expression is equivalent to the approximation sug-
gested by Newman(see Eq.(2.13)).

Substituting (3.25) into (3.24) we get:

2) :
Wi(w) = — Hw) (3.26)

¢

where F® is the steady-drift force in irregular waves (see Eq.(3.13)). Thus, the
impulse response function can be expressed as:

wa(T) = 5 102 F? /ﬁ(w) exp(iwT)dr (3.27)

Taking into account that ¥(w) is a exponential decaying function , it means
that wy represents a low pass filter functlon That is, we can generate the

slowly varying drift force by passing —r - ¢2(t) through a low pass filter.

3.3 Estimation of transfer functions of' first
and second order forces

This section shows the method to estimate transfer functions of first and second
order responses from experiments.

If a surface elevation ((t) is expressed by a Gaussian random process with
zero mean, the cross correlation function between second order force F' and ¢
can be represented in the following form:

Rpe(t) = EI(F(t) - F)((t — 7)]

= / gl (11)Re (11 - t)dta ‘ (3.28)

* And from Wiener-Khintchine relationship the cross spectrum is given by:

Spe(w) = G (w)S @) (3.29)
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where S¢ is a two sided wave spectrum.

This result means that the cross spectrum mvolves only the first. term of
the functional polynomials, and the linear transfer function G{ is derived by
standard cross spectral technique.

Next, we consider a third order moment function as follows:

Reep(my, 1) = E[(t+ 1 )((t = n){F(t = 72) = F}] (3-30)
Substituting (3.6) and taking jnto account of the symmetry of the quadratic
impulse response function g{ » Eq.(3.30) becomes:

Reer(rym) =2 / / ot t)Re(ty + 71+ 72)Re(ta — 11 + 72)dtydty  (3.31)

And utilizing Parseval’s formula, the representation in frequency domain is ob-
tained in the following form:

Beep(m,m2) =2 /f‘gf(whwz)sc(wl)sc(wz)

x exp[i{(w) — w2)7y) + (w1 + wa)m2}dwy dws
(3.32)

Tick®) has defined a cross bispectrum C¢¢r as a two dimensional Fourier
transform of a third order moment function Re¢r as follows:

Reep(mi,m2) = / / exp{i(Qm1 + Q2m)}Crer(fh, 02)dR dQy (3.33)

1 .

C«p(ﬂl,ﬂg) = e //exp{—z(ﬂyl‘l + QQTg)}R{(F(Tl,Tg)dTldTg (334)
From (3.32) and (3. 34) we can find the relationship between the cross blspectrum
and the quadratic transfer function in the following form:
Ce¢r™ (w1 — wg, w1 + wy)

S¢(w1)S¢(w2)

The method for estimating the cross bispectrum by using experimental data is
indicated in Appendix B.

Gf (w1, ws) =

(3.35)

3.4 Comparisons between experimental results
and numerical simulations

3.4.1 Model tests
(1) Model

In the experiments an offshore floating structure model supported by twelve
legs with footing was used. The configuration of the model and the direction



-of incident waves are shown in Fig.3.1. The principal dimensions are indicated
in Table 3.1. This is the 1/14.3 scale model of the structure used in the at-sea
experiment being carried out in Yura port of Yamagata prefecture.

(2) Test set-up and Measuring items

The model experiments were carried out at the Mitaka No.2 Tank (Length is
400m, the breadth 18m, and the depth 8m) in Ship Research Institute. The
model set-up is shown in Fig.3.2. As shown in this figure, the model was re-
strained by two soft springs through the device which restricted the yaw motion.
The spring constant of them was 1.683 kg/m, (0.663 ton/m for the actual struc-
ture.).

The measured items are as follows:

(i) Surge and heave motion measured by a non-contact optical motion measur-

ing system;
(ii) Pitch motion measured by a vertical gyroscope;

(iii) Surface elevation measured by a servo needie wave probe fixed at a position,
the z coordinate of which is equal to that of the centre of gravity of the
model in still water.

(3) Kinds and methods of model tests

(a) Free oscillation test in still water

The natural periods and equivalent damping coeflicients in surge motion was
obtained from this test. Two kinds of spring coeﬁiments were used. The one
was 1.683 kg/m, and the other 5.09 kg/m.

(b) Forced surge sinusoidal or random oscillation tests in still water

Forced surge sinusoidal oscillation tests were carried out at the range of 3.75 to

15 cm in amplitude, and the oscillation period of 17sec. The range corresponds -

to Keulegan-Carpenter numbers(K, number) of 1.6 to 6.2. This test was done
to study the dependence of the drag force to K, numbers.

Irregular forced oscillation tests were made to compare with the results of
the sinusoidal forced oscillation. Irregular signals for the forced oscillation tests
were the surge response data recorded in the following test {d).

(c) Test for measuring steady drift force

Four kinds of tests in regular waves were carried out. Encounter angles of the
tests are 0, 30, 60, and 90 degrees. The frequency range of the regular waves
was from 3.0 to 9.8 rad/sec.
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(d) Test for measuring a quadratic transfer function of surge motion

In order to experimentally obtain the quadratic transfer function of a moored
floating structure, the estimation of the cross bispectrum between waves and
responses is required as mentioned in the Chapter 2.2. Therefore, in order to
generate irregular waves over long duration, the filtered signals were used, which
we obtained by means of passing the white noise signals generated from a noise
generator into band pass filters. The rolloff( cuttoff characteristics) of the band
pass filters was 24db/oct.. Four kinds of irregular waves were generated. The
central frequencies f of the band pass filter were 0.4, 0.5, 0.6 and 0.7 Hz. In the
case of { equal to 0.7 Hz, the duration time of irregular waves was 90 minutes,
and for the other cases it was 45 minutes. The encounter angle of these tests is
only head sea.

3.4.2 Numerical calculation
(1) Method

Computation of the first order hydrodynamic forces was made by a program
based on the three dimensional potential theory. In the computation the mean
wetted surface of the body is approximated by 480 facets. The cpu time con-
sumed to calculate the first order forces was about one hour on the FACOM
M180 IT AD computer. The steady and slowly varying drift forces were calcu-
lated by integrating pressure distributions over the wetted surface. The compo-
nent due to second order potentials was not taken into account. The cpu time
for calculation of drift forces was 10 minutes for the same computer.

(2) Check of numerical accuracy

In order to check the numerical accuracy of drift forces, computed results were
compared with the Pinkster’s. All of calculations were executed in double pre-
cisions. Comparisons between ours and Pinkster's are shown in Fig.3.3. In
this figure black circles show the present results and broken and solid lines
show Pinkster's results. The legends ( 1), 2), 3), 4) ) denote components of
steady drift force in Eqs.(2.16) through (2.19) and "total” means a sum of these
components. There are a important points to note in this figure. The present
calculations for the component 1) in the horizontal mean drift force are less than
Pinkster’s results. The other three terms and results of the vertical mean drift

~ force agree very well. The component 1) is the largest and is opposite in sign

to the components 2),3) and 4), whose sum is comparable in magnitude with
the component 1). Thus, small percentage errors in term I give rise to larger
percentage errors in the total drift force. The differences in the component 1)
are also certainly due to the difference of the way modelling the waterline.



3.4.3 Hydrodynamic force characteristics of surge motion
(a) Free oscillation test in still water

An example of experimental results is shown in Fig.4. By using this data, a
virtual mass and equivalent damping coefficient were obtained as follows:

Let z, be sequential peak values(amplitudes) of damping curve. . And It is
assumed that the decaying motion can be represented by:

z = Xo exp[—

in + v 3.36
i ol +9) (3.36)
where Tp is the natural period, (M) + mi;1) the virtwal mass, and N§; the
equivalent linearized damping coefficient. Then if we plot | Zp42 — Zp41 |as a
function | &p41 — &, | and the damping is constant, from Eq.(3.36) we get:
€

| a2 — Tng1 l— exp[— 4(—ml | #ni1 — zn | | (3.37)

Thus by the least square method, the minimum error estimate of the inclination
® can be obtained. The natural period Ty is obtaired from the mean of zero-
upcrossing periods and zero-downcrossing periods. Then the virtual mass and
equivalent damping coefficient are given by:

120
M, + myy = % (3.38)
Ny = —g———————DOHTIQOg(@) (3.39)

where C; is a restoring force coefficient.

The results obtained in this way are shown in Table 3.2. In order to apply this
method, a large number of peak values is required and the motion equation must
be linear. If the number of peak values is small, the accuracy of hydrodynamic
force coeflicients will become poor. So we must study whether the hydrodynamic
coefficients obtained from Eqs.(3.38) and (3.39) have a good accuracy.

(b) Forced irregular oscillation test in still water

The forced irregular oscillation tests were carried out in still water by using the
surge motion signals (including the slow drift motion) obtained from the motion
measurement experiments in waves. This test was done to study the accuracy
of the hydrodynamic force coefficients obtained from the free oscillation test.
The hydrodynamic force coefficients by this test are given as follows:

Let S;r be a cross-spectrum between the forced surge displacement z and
the hydrodynamic reaction force F and 5, be a auto-spectrum of z. Then the
hydrodynamic force coeflicients can be obtained from the following equation.

Ci1 — (M1 +ma1) = R{ ;F(E:}))} (3.40)
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e =g =W 3.41
11 =¥ o ( )

This method can be applied only to the case of linear motion equation. If
the hydrodynamic forces in the motion equation are nonlinear, note that those
coefficients obtained by this method express nothing but equivalent linearized
coefficients. Comparison between the surge hydrodynamic coefficients obtained
from the free oscillation test and ones from the irregular forced oscillation test is
shown in Fig.3.6. The horizontal axis indicates the non-dimensional frequency

W= w\/%, where D is the diameter of one column and w is the surge motion

frequency. In this figure white circles show the hydrodynamic coefficients ob-
tained from the irregular forced oscillation test while black circle show those
from the free oscillation test. The broken line indicates the numerical results
calculated by the three dimensional source distribution method. The damping
force coefficient is nondimensionalized by pV\/:bf.

The inertia coefficients obtained from the forced irregular oscillation test
are distributed around the numerical values calculated by the three dimensional
source distribution method while those from the free osciilation test agree well
with the numerical values. The equivalent damping coefficients from the ir-
regular forced oscillation test take negative value in some frequency range and
distribute in the wide region from -0.1 to 0.2. Both results from the forced irreg-
ular oscillation test and the free oscillation test are in rough agreement. From
this figure it is found that the inertia force in low frequencies can roughly be pre-
dicted from the three dimensional potential theory and the damping force can
be obtained from the free oscillation test in still water. But in general, it is well
known that the hydrodynamic forces depend on the magnitude of motion dis-
placement. Thus in order to investigate the motion displacement dependency of
hydrodynamic forces, the sinusoidal forced oscillation test was carried out. The
motion amplitudes in this test were changed from 3.75 to 15cm, and the motion
period was a constant period (17.5 sec., i.e. w=0.0429). Results are shown in
Fig.3.7. The horizontal axis is the Keulegan-Carpenter number (K, number),
which is defined by 27 Xo/D (where Xj is the motion amplitude and D is the
column diameter). The solid line indicates the results obtained from the free
oscillation test, and the broken line shows the results calculated by using the
three dimensional source distribution method. From this figure it is seen that
the hydrodynamic forces acting on this structure do not depend much on the
K. number against our expectation. However one of the authors and Takaiwa”
have conducted the forced and free damping tests for a tanker, a box-shape
barge, and a semisubmersible, and they obtained the K, number dependency
of drag coeflicients for theses structures. According to their results, the drag
coeflicients appear to be inverse proportional to K, number in the range of small
K. number. This means that the equivalent damping coefficients do not depend
on K. number in this range of K, number, but the further researches will be



required to examine this problem.

Within this experiment, inertia force coefficient (1 + my1/M;) in low fre-
quencies can roughly be estimated at 2.0, and the equivalent damping coefficient
(IV§,) is about 4.6 kg - sec/m ( 3.56 ton - sec/m in the prototype structure).

3.4.4 Frequency response functions of surge motion

The spectra of irregular waves generated in the experiments are shown in Fig.3.8.
And the statistical values are indicated in Table 3.3. The Blackman-Tukey
method was used in the spectral analysis. The number of lags was 256 and the
Hamming window was used. The number of data taken for the analysis was
about 35500 in the case of wave condition 4 and it was about 23000 in the other
cases. The sampling interval was 120msec for the analysis and it was 60msec
when the data were measured. . _

In order to get the quadratic transfer functions we need the cross bispec-
trum estimates as mentioned in Appendix B. The utilization of the Fast Fourier
Transform have significant advantage to compute the full components of the
cross bispectum. For present purpose however the full computation is not re-
quired, only results on or near the line wy = ws in bi-frequency plane are needed
because our discussion concentrates upon slowly varying forces. Thus, we used
the method developed by Dalzell®) to estimate the cross bispectrum. The win-
dow function used in the computation of cross bispectrum was the Hamming
type extended to two dimensions. The coefficients of the window function, i.e.
e; and ey were 0.54 and 0.46 respectively.

For the spectral analysis based on the Blackman-Tukey method the maxi-
mum lag number must be less than 1/10 of sampling data. And Dalzell® showed
that in order to get a stable cross bispectrum, the maximum lag number must be
less than 1/200 or 1/250 of sampling data. Futhermore, as shown by Appendix
B, if the lag number of the spectrum analysis is m, one of cross bispectrum
analysis becomes m/2. In this case we decided that m was 256. '

The auto spectra of surge motion are shown in Fig.3.9. The surge response
in the case of wave condition 4 is the largest in the four wave conditions and low
frequency motions are most dominant in the surge responses. The first order
frequency response function, which is obtained from the cross spectra between
the surge motion and waves, is shown in Fig.3.10. In the figure, the white
circles indicate the experimental results. The solid line shows the theoretical
value due to the usual linear motion prediction method which takes into account
the viscous damping force obtained from the experiments(see Chapter 3.4.3).
The experimental results and the linear theoretical curve are in good agreement.

3.4.5 Characteristics of steady drift force

The steady wave drift forces in wave direction are shown in Figs.3.11 through
3.14. In these figures, x means a encounter angle to waves and circles indicate
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the experimental results, where black circles are for the experimental results
with the wave height higher than 7 cm and white circles are for ones with the
wave height lower than that. The solid line shows the theoretical curve based
on the potential theory and the dotted line shows the modified theoretical curve
obtained by taking into account of the viscous drift force (this will be mentioned
later) in addition to the potential theory. Fine lines indicate the results obtained
from the experiment in irregular waves as follows:

As indicated in the previous section or Appendix B, if the cross blspectrum
estimates between waves and second order forces can be directly obtained from
the experiment in irregular waves, the frequency response characteristics of drift
forces can be estimated with good accuracy. But it is difficult to measure the
wave forces including the second order forces when the body is oscillating. Thus
we adopted the indirect method instead of the direct measuring method of
wave forces. First, we estimated the quadratic transfer function G from the
cross bispectrum between the surge motion and waves. Second, we determined
the frequency characteristics of the steady drift force in irregular waves by the
product between the diagonal components of Gz and the spring constant. In
these figures, the abscissa expresses the non-dimensional wave frequency @, the
vertical axis means the mean (steady) drift force coefficients in wave direction,
those are normalized by %—pg({;’L (where L is the total length of the floating
body and (o is the incident wave amplitude). And H/D is the ratio between
the wave height and the diameter of column. When H/D < 0.5, that is, the
wave height is less than half of the column diameter, the experimental results
agree well with the theoretical line based on the potential theory. But, when
H/D becomes larger than 0.5, both results are different considerably. As the
cause of the difference, the following physical factors may be considered:

(a) Viscous drift force(surface force):

This occurs from the product of a wave force term, which is in proportion
to a squared fluid velocity in the Morison equation, and a wave surface
elevation. Chakravarti® and Standing'® has reported that this force ex-
ists.

(b) Steady force due to other viscous drag force:

A vertical viscous drag force changes by angle of pitch motion. And its
force produces the horizontal viscous force. Huse!!) expressed the hori-
zontal steady viscous force as:

Fyiy == < Caz v, | v; | €1 > (3.42)

where < - > denotes time mean value, v, is a relative vertical velocity
between a vertical wave particle velocity and a heaving velocity and £s; is
the pitch motion and Cyz is the vertical drag coefficient.

(c) Steady force due to mass transfer velocity of waves:



Stokes'? has shown that the horizontal mean velocity in the direction
of wave propagation occurs in the vicinity of wave surface and this phe-
nomenon is caused by the nonlinearity of free surface condition. This ve-
locity is in proportion to the squared wave height. If a steady drag force
can be produced by the mass transfer velocity, it may be proportional to
the fourth power of wave height.

(d) Drift force due to the second order potentials:

Standing and the others'!® has shown that the second order potential
makes no contribution to the horizontal steady force or the steady turning
moment. The absence of a steady drift force due to the second order wave
can also be explained in physical terms. A steady force would imply the
presence of a mean pressure gradient, which would in turn imply a steady
acceleration throuout the fluid. This is not possible in the horizontal
steady state situation.

In the four factors, we need not consider (d) because the drift force due
to the second order potential does not produce a steady force.

Figure 3.15 a) shows the variation of steady drift force coefficient vs. the
wave height at the wave frequency w equal to 4.387 rad/sec( 1.16 rad/sec in
actual structure, and 0.5254 in the non-dimensional frequency). And Fig. 3.15
b) shows it for each wave frequencies. It is clear from these figures that the
" steady drift force coefficient linearly increases with an increase of the wave
height when H/D is greater than 0.5. This means that the steady drift force
is proportional to the third power of wave height when H/D > 0.5. Thus the
factor (c) is not considered. If the factor (b) is significant, the steady drift force
component (4) represented by Eq.(2.19) must also be significant. Because since
the first order wave force in the vertical direction includes the force component
proportional to the vertical velocity vy, the-component (4), in natural, becomes
large when the factor (b) is dominant compared with other factors. Thus, we
studied the contribution ratio of each steady drift force components ((1) to (4))
to the total steady drift force by numerical calculations. Figure 3.16 shows the
results.

As found from the figure, for this structure, the force components (1) and
(2) are dominant compared with other components, that is, the contribution
of the force components (3) and (4) to the total force is very small compared
with the force components (1) and (2). Accordingly, also the factor (b) is not
dominant. Finally the phenomenon, which the steady drift force is proportional
to the third power of wave height in some frequency range, is caused by the
viscous drift force or surface (drift) force.

Since it is very difficult to strictly evaluate this force, we shall study the
force on a simple vertical circular cylinder within the linear wave theory. This
investigation is referred to Appendix C. This viscous drift force has the following
characteristics.
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{1) The viscous drift force is in proportion to the third power of wave height and
it is expressed by the product of the horizontal drag force in the Morison
equation and the instantaneous wave surface elevation. And if the drag
force can equivalently be linearized, the viscous drift force can also be
represented by the second term in the Volterra functional power series.

(2) The slowly varying viscous drift force increases with increasing the mean
wave frequency of two different wave components.

(3) The viscous drift force does not depend on the draft but the ratio between
the wave height and the diameter of the cylinder.

The second resuit shows that the slowly varying drift force including the vis-
cous drift force can be expressed by the second term of the Volterra functional
series. But in order to strictly deal with the viscous drift force, it is necessary
to take into account the interaction between viscous and potential flows, fur-
thermore we must consider the problems of diffraction and memory effects in
the Morison equation.

For simplicity, we applied the Standing’s method to estimate the viscous
drift force acting on the structure considered.

Standing® has shown the relation between the steady viscous drift force
and the potential drift force on a fixed vertical circular cylinder, resting on the
sea-bed and piercing the free surface as follows:

i
R=<{ — 3.43)
{ 2%’3 %204 } (

where D is a diameter of the cylinder, H the wave height, A the wave length
and Cy the drag coeflicient.

Figure 3.17 shows the contribution rate of viscous and potential components
to the steady drift force. The dotted line indicates a wave breaking limit. White
circles are the experimental results and the solid line shows the curve of R equal
to 1, i.e., the viscous steady drift force is equal to the potential steady drift
force, when Cg = 1. It is clear that the viscous steady drift force is larger than
the potential one when H/D > 0.5. Thus if the ratio of the viscous drift force
to the potential one is high, we must take into account the viscous drift force
as follows:

Fy=(1+ R)F, (3.44)
where Fy is the potential steady drift force and Fj is the steady drift force
corrected by viscous effect, i.e., the steady drift force including both the viscous
and potential drift forces.

In the case of experiments in irregular waves, H is replaced by half of the
significant wave height and Cy is 0.5. The drag coefficient was obtained from a
result of the towing test. Fy is shown by the thick dotted line in Fig.3.17. From
this figure it is found that the estimate of the steady drift force corrected by
viscous effect agrees with the experimental results.



3.4.6 Characteristics of slowly varying drift force

Numerical contours of real and imaginary parts of slowly varying drift force f;;
are shown as a function of two variables w; and w; in Fig.3.18. The variables @;
and f.-,- are normalized by:

Wi = w; D (3.45)
g
R (B
309 ailla;| L
where a; and a; are amplitudes of two different waves respectively.

It is found from this figure that the real part of f,'j has the peak in the
vicinity of (u”;., @;) = (0.806,0.806), but it is flat except in the the vicinity, and
that the imaginary part is also flat along the line @; = @;. This result may 1nfer
that the Newman approximation can be applied to this model.

Comparison between the numerical and experimental results with respect
to the slowly varying drift force is shown in Fig.3.19. The left side indicates
the amplitude of quadratic transfer function of slowly varying drift force and
the right side does the phase of it. The thin dotted lines are the experimental
results in irregular waves(those results are obtained from the cross bispectrum
analysis), the solid line is the numerical results based on the potential theory,
the dash-dotted line obtained from applying the Newman approximation to the
numerical results, and the broken line the results obtained from the applying
the Newman approximation to the numerical values corrected by the viscous
effect; i.e. the values estimated by Eq.(3.44). And Aw indicates the difference
of two different wave frequencies and the horizontal axis is the mean frequency
of them.

Although the slowly varying drift force may dlrectly be obtained from the
experiment, we indirectly obtained the force in the following way.

fis = (3.46)

Using the quadratic transfer function of surge motion, Go ( which is ob-

tained from cross bispectral analysis of the experimental data) and the transfer
function of surge motion to the external force, Hz ( which is obtained from the
free oscillation test in still water), the quadratic transfer function of the slowly
varying drift force sz, can indirectly be obtained by the following relation:

Ga(w1, —w2)
f —wo) = 21 Tw2) .
G3 (w1, —w2) Ho(or =) (3.47)
where .
Hy(w) = (3.48)

Cy — (M =+ mu)wz + iNflw

and we assume that the hydrodynamic force coefficients of Eq.(3.48) do not
change in waves.
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From this figure the numerical value based on the potential theory is much
lower than the experimental results, but the former has the same tendency
as the latter. Comparisons of the solid and dash-dotted lines reveal that the
Newman approximation can be applied in this case. And the broken line, i.e. the

‘numerical results corrected by taking into account the viscous effect, agrees with

the experimental results. This means that in order to estimate the slow drift
motion of the floating structure supported by many legs with small diameter, we
should take into account not only the potential drift force but also the viscous
one.

3.4.7 Variation of hydrodynamic force coefficients of slow
drift motion in waves

In the section 2.1, we state that the damping coefficient of slow drift motion in
waves is different from one in still water. In this section we shall investigate if
such phenomenon occurs in the following way.

First, let G, G{ and Hy, be the quadratic transfer function of surge motion,
the quadratic transfer function of slowly varying drift force and the transfer
function of surge motion to external force, respectively. Let them hold the
relationship of Eq.(3.47). And we shall introduce the transfer function of slow
drift motion to instantaneous wave power, Z(w), given by :

= Sz(’

._.(W) - S(Z (W)
_ JurSe(w = 0)Se(w)Ga(w = o, ! )
ST L Selw - oS @

(3.49)

where S;¢2 is the cross spectrum between the surge motion z and instantaneous
wave power (2, and S;2 the auto spectrum of ¢2. Then from Eqgs.(3.23) and
{3.47), the following relation is satisfied:

| E*(w) = Hp(w)Wa(w) (3.50)

Thus, if the Newman approximation can be applied, the non-dimensional trans-
fer function of surge motion to external force, Hy can be obtained by:

E*(w)
E(0)
Comparison between H, obtained from Eq.(3.51) and hig (= C11-HL) obtained

from Eq.(3.48) is shown in Fig.3.20. In the figure the thin lines are the results of
Hp and the solid line is the result of Hy,, where the value Z(0)(= Hy,(0)- W(0))

Hi(w) =

(3.51)



in Eq.(3.51) is estimated from (3.26) as follows:
' 72)
F
2(0) = o—5 .
0= 5 (352)

From this figure, Hy, is in good agreement with Hy, in case of wave condition -

1, but in other cases, the peak frequency of Hy moves towards the low fre-
quency side and the peak value becomes small when the peak frequency of wave
spectrum becomes high, as compared with Hy. Namely, this means that when
the peak frequency of wave spectrum becomes high, the damping coefficient of
slow drift motion in waves becomes bigger than one in still water. In order to
examine an increase rate in the damping coefficient, we got the hydrodynamic
coefficients by means of the least square method from Eq.(3.52), under the as-
sumption that Hy is equivalent to Eq.(3.48). These results are shown in Table
3.5. Obviously, the phenomenon that the damping force in waves becomes larger
than one in still water occurs. The amount is 1.6 ~ 1.7 times the damping force
in still water. Furthermore the virtual mass in waves decreases 10 % of one in
still water. '

3.4.8 Time domain simulation
(1) Surge motion equation in time domain and its solution

If the added mass and the damping forces of slow drift motion in still water
do not change in waves and the coupling terms are neglected, a surge motion
equation of the floating body moored by linear springs may be represented in
time domain as follows:

, .
(Ml + mu(OO))X]_ + / Ku(t - T).deT + an(X;, ¢; t) + Cin1 X,
—00 R .

= FO(1) + FO(1) (3.53)

where
M, ; mass

my1(00) ; added mass at w = 0o
a1 ; viscous damping force

C11 ; restoring force coefficient
K3, ; memory effect function
FO) ; first order force

F® ; second order force

‘Moving all terms in Eq.(3.53) except for inertia terms to the right hand side,
Eq.(3.53) becomes equivalent to the Newton equation as:

1
MiX) =-mu(o0)X; — / Ky (t— 1) Xadr — a11(X1,¢5t) ~ Cn X
oo _
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+FO (1) + FO(1) (3.54)

Then we can numerically solve the above equation in time domain if the viscous
damping force is known. In order to solve Eq.(3.54) in time domain, we used
the Newmark- 3 method!®. According to the Newmark-8 method, when a surge
motion at a time ?, is expressed by X}, X{"H at ty41 = t, + At can be
represented as follows:

2 - .
XM = XP 4 AXT + -é—X1 + ﬁAtZ(X,’:“ - X7 (3.55)

Xpt= _(X,.+1 +X7) (3.56)

After iterations, the motion equation, that is, Eq.(3.54) can be solved in time
domain, where we use 1/4 as a value of 3. When this value is used, it is
mathematically proven that the solution is absolutely stable.

The judgement of convergence was conducted under the following condition:

CY o
Xl,m - ‘Ll,m
v r+1
Xl,m

1
< 3.57
< 760 (3.57)

where the subscript m denotes the iteration number.

>(2) Hydrodynamic force in time demain

From the Fourier transform to the first two terms in the left hand side of
Eq.(3.53), the following relations are given;

mu(w) = mn(oo) - 5—}-/ .Ku(‘t) sin widt (3.58)
0

NO() = / K (f) cos wtdt (3.59)
where

my1(w) ; added mass in frequency domain
Nﬂ)(w) ; radiation wave damping in frequency domain

Then if the added mass and the radiation wave damping force over infinite
range are given, the hydrodynamic forces in time domain, i.e. mj1(00) and
K;1(t), can be obtained from the relations (3.58) and (3.59). But this procedure
is not easy, because it is impossible to get the frequency-domain hydrodynamic
force numerically over infinite range. Thus we extrapolate Nﬁ)(w), which is
obtained in some frequency range, by using the spline function, get the frequency



point wg that the extra.polafed value becomes zero, and calculate the following
integral over wp > w > 0.

I |
Ku(t) = -;/ NS (w) coswidw © (3.60)
0
We will check the accuracy of the above numerical approximation later.

(3) Viscous hydrodynamic force

In order to get the viscous hydrodynamic damping forces, one divides wetted
surfaces of a floating body into several blocks, and obtaines the viscous damping

force from integrating the viscous drag acting on the centre of projection area
of all blocks: That is

aijl = Nl(f)Xl | Xl | ‘ . (361)
N® = -;—p / / n1CydS ' (3.62)
s ,

In this paper, for simplicity, the viscous drag force was determined by the
following equivalent linearized form:

an = Ni X, (3.63)

where the experimental value shown in the section 3.4.3 was used as the value
of Ni, in this case.

(4) Wave force
(a) First order force

According to the linear system theory in the field of (_ibmmunication theory, the
first order wave excitation acting on a floating body can be represented as;

F(l)(t) = /g{(t)((t - T1)dT (3.64)

where g{ is a impulse response function of first order wave excitation, and its

Fourier transform , i.e. frequency response function, becomes as:
! L far ~
gl(r) = o Gy (w) exp(iwt)dw (3.65)

If the wave spectrum shape U(w) is known, Rice has shown that the first order
wave excitation can be represented by the following stochastic integral form:

FO®@) = /I G (w) | cos(wt + p(w) — arg(GY (w)))/2U (w)dw (3.66)

Note that the Rice’s representation does not depend on the initial value, i.e. it
is a stochastic integral representation, and it is not a physical causal system.
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(b) Steady and slowly varying drift forces

Using the system function wy defined in Eq.(3.18), the slowly varying drift force
including the steady drift force can be represented as:

FO0) = [ua(r)(e-rar (3.67)
where )
wa(r) = P /W’g(w) exp(iwT)dw (3.68)
and ‘
Wow) = ;]52— /Gé(w - ', w')S¢ (w')dw' (3.69)
¢ :

. aG{ aG{
It Gg (wi,w;) is smooth enough for w; and w; and Zo— and —5—‘;?- are small, we

=2)
can generate the slowly varying drift force by passing %;— -¢2(¢) into a low pass
¢

filter, as shown in the section 3.2.

' (5) Comparison between simulation results and experimental ones

Before doing the simulation we investigated that the assumption (3.60) can be
applied. Takagi and Saito'® has shown theoretically an asymptotic behaviour of
the memory effect functions for a half submerged sphere. Comparisons between
their results and the calculated results due to Eq.(3.60) are shown in Fig.3.21.
It is found from this figure that both results are in agreement although a slight
deformation is observed to the calculated memory effect function. It is consid-
ered from practical point of view that the present calculation method is accurate
enough to get memory effect functions since in general radiation damping forces
exponentially decrease with increasing wave frequency. However we should note
that the added mass m;;(00) is slightly modified by the truncation effect.( see
e.g. Fig.3.22). In this paper calculations were carried out untill the frequency
range such that a stable added mass, m;;{00) is given.

Comparisons between simulation results due to Eq.(3.53) and experimental
results of slow drift surge motion for each wave conditions are shown in Figs.3.23
and 3.24, and the surge motion spectra of each results are indicated in Fig.3.25.
The slowly varying drift forces are simulated by using both Eqs.(3.18) and (3.27).
As an amplitude of ¥(w), which expresses the frequency characteristics of a low
pass filter in Eq.(3.27), a squared cosine type such that 9(w) = 1 for w = 0 and
d(w) = 0 for w equal to the peak frequency of wave spectrum is used. A time
interval for simulation is 60msec. From this figure it is found that both results
are in good agreement in the case that the first order motion is dominant, but
that the simulation results become larger than the experimental results when
the slow drift motion is dominant. It is considered that this is caused by a wave
drift damping force.
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Chapter 4

Stochastic analysis of
second order responses

This section develops a theory of two probabilistic subjects associated with ob-
taining the second order response of a moored floating structure in the horizontal
plane. The first method utilized to obtain the total second order response p.d.f.
assumes neither a weakly nonlinear response nor a pure quadratic response.
This theory is based on the “approzimate theory” of continuous distribution in
mathematical statistics where the p.d.f. of the total second order response can
be represented by the Laguerre expansion which express the first term by a
Gamma p.d.f. This is similar to the Vinje's method which is comparable to the
Gram-Charlier expansion which expresses the first term by a Gaussian p.d.f.,
although the Gram-Charlier expansion does not uniformly converge and nega-
tive probabilities may occur. The use of the Laguerre expansion/Gamma p.d.{.
method to obtain the total second order response p.d.f. can be applied to solve
the above problems, furthermore it can also treat the case of equal double eigen-
values that the Naess’ method cannot. The second method utilized obtains the
highest mean amplitude of the total second order response of a moored floating
structure. By introducing an assumption that a response and its time derivative
processes are mutually independent, it is shown that the p.d.f. of the positive
maxima or the negative minima can be expressed by the derivative of the p.d.i.
of the instantaneous response.

As a basic study, the applicability of the present method is first discussed
by comparisons between the Naess’ exact p.d.f. solution for pure second or-
der responses of moored floating semi-circular and rectangular 2- D structures.
Next, the statistical interferences of the linear and quadratic responses on the
p.d.f. and the 1/n th highest mean amplitude are investigated by changing the
damping and restoration coefficients of the response system. Finally we investi-
gate the practicability of the present method through comparisons between the



measured results and the estimates obtained from the present method.

4.1 Probabilistic Approach to The Total Sec-
ond Order Response of a Moored Floating
Structure

4.1.1 Instantaneous p.d.f.
(1) Exact Theory

The total second order response of a moored floating structure that is being
subjected to a Gaussian random ex01ta.t10n at some fixed time may be expressed
as:

X(t)= X“) +X@ (4.1)

where the linear term is given by:

X0 = / o (F)C(t = 7)dr (4.2)
T
and the nonlinear second order term as:

X = / / a2(r1, 72)C( = 7)C(t = 7)dydrs (4.3)

In equations (4.2) and (4.3), ((¢) denotes the surface elevation which is a sta-
tionary Gaussian random variable with a zero mean. The kernel g; is a linear
impulse response function. The kernel g, is analogous to the linear impulse re-
sponse function and is called the quadratic impulse response function (see 3.1).
And we assume that they are continuous and absolutely integrable, then they
possess a Fourier transform as shown prev1ously(Eq (3.7)).

In order to represent the quadratic process X by a sum of random vari-
ables, yielding the same probability distribution, the Kac & Siegert theory(K—
method) is used. This leads to the following representation:

X(t) = i cj W,(”t) + i Aj VVJ?(t) (4.4)

where W; is a set of independent Gaussian random variables of zero mean value
and unit variance. The A; are eigenvalues which satisfy:

/ K (w1, w02) ¥ (wg)duwn = A ¥;(wr) (4.5)
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The parameters c;, which represent the linear response, can be determined by:

o= [ aw/sene (45)

where * indicates a complex conjugate and S¢ is a two-sided wave spectrum. In
equation (4.5) is a set of orthogonal eigenfunctions which satisfies:

/ :w,-(w)w:(w)dw ={ (1) ;;’]z (4.7)

and kernel function K(w;,ws) is a Hermite kernel defined by:

K(w,wz) = [ S¢(w1)S¢ (w3)Ga(wr, wa) (4.8)

When the eigenvalues A; and the parameters c; are known, the p.d.f. is given
by: '

1 o .
px(z) = 2—-/ exp(—izs)¢x (s)ds (4.9)
x -0
where the characteristic function is
o0 1 0?32
= - 4.10
¢x(2) E /1= 2k exp| /20 - 2iAjs)] (#10)
The mean, the variance and the higher order cumulants are given by:
k= X =E[X(t)] =Y
(4.11)

ko= 0‘2,(:2(:?-{-22,\?:0%+a§
k= 227 Y m -1 + 30 m!)\;-"’_zcjz- form >3

Kac and Siegert!) and Neal? concluded that the p.d.f. expressed in Eq.(4.9)
cannot be determined in a closed form and therefore must be computed numer-
ically. Although this is true in most cases, it can be written in a closed form in
some special cases which will be discussed next.

(2) NAESS’ APPROACH

Naess®#% introduced a slow drift approximation such that Ga(wi,wz) = 0
when w; - we > 0. This indicates that -the high frequency component which
corresponds to sum of w; and ws is negligible. This is a physically acceptable
fact, and it is a convenient approximation for our purpose. Naess determined



that the Eq.( 4.5) eigenvalue problem generated a set of double eigenvalues as
follows:

K(wy,w2) =0 forwj-wp <0

) |
/ K(wn,w2)¥(ws)dwn = 4;¥;(w1) forws >0  (412)
0

Aaj-1 = dgj =

where

(4.13)

: . _ﬁ’@J (w) ,w>0
Poj(w)=4 0 ,w=0
V‘E‘Iﬂ;‘(w) ,w<0
and also that the linear response is negligibly small when compared to the second

order response, i.e., c; = 0. The p.d.f. of the pure second order response can be
shown in the closed form as follows:

I\
3 E-f;exp(—-;:f\; ,x >0
px(z) = 1 , (4.14)
—— =z
gy 2o <0
where
N
l; = —— (4.15)
_ - 2k
vy ( AJ’),

and the set of eigenvalues g are divided into two groups, Aj,7 = 1,---, M, for
Aj >0and Aj,5 =M+1,---,N, for A; < 0. The above results are then valid
unless equal double eigenvalues exist. :

(3) APPROXIMATE THEORY

(i) Gram-Charlier expansion method

The authors® showed that if the nonlinear response considered here is weakly
nonlinear the instantaneous p.d.f. can be represented by the Gram- Charlier
expansion. The expansion is the Hermite expansion, the first approximation of
which is the Gaussian p.d.f.. We shall indicate their method in brief.
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If the eigenvalues A; are very small compared with ¢;, X may approach

Gaussian. So we replace X — E[X] by Z and introduce the error function p(z)
defined by

pe(2) = px(z) - N(0,0%) (4.16)
where N(0,0%) is the zero mean Gauss p.d.f. with variance equal to 0%. If p.

can be represented by a family of orthogonal functions with weighting function
{w(z)ha(2)}, it can be expanded in the following form:

pe(z) = Z D-’u-hn.(‘?")'w(z) (4.17)

n=l

where oo
Qg =/ by (2)pe(2)dz (4.18)

If w(z) is the Gaussian p.d.f, it is well-known that h,(2) are given by the
Hermite polynomials. From the properties of the Hermite polynomials the p.d.f.
can be approximated by the Gram-Charlier expansion:

YR T SR SUSE S, SR 2 O PR
pxi®) = 2rox i nloy "L ox exP 20% )

where H, are the Hermite polynomials and b, represent the higher moments
defined by

by = E[(x—X)"] forn>3 (4.20)
And the moments functions can be obtained from frequency domair integrals
of transfer functions and wave spectrum as shown in Appendix F.

This method has a sigrificant advantage in the point of obtaining the ap-
proximate solution from numerical integral procedures. However, we should
note that the Gram-Charlier expansion does not always converge uniformly and
that the negative probabilities occur if the expansion is truncated at finite order.
The occurrence of negative probabilities is physically inconsistent.

Edgeworth” investigated the convergence of the Gram-Charlier series and
he has shown that if only a few terms are computed, the best grouping of terms
in Eq.(4.19) is not that associated with taking terms in their natural order(i.e.
0,3,4,5,-+-). And he proposed regrouped series. The grouping is

0
0,3 .... 1st approximation
0,3,4,6 .... 2nd

0,3,4,6,5,7,9 .. 3rd

This list implies that if the 0 and 3 terms are used as the first approximation,
the addition of terms 4 and 6 gives the next order approximation, and so forth.
This regrouped series is called “Edgeworth series”. The Gram-Charlier series
up to third order is equal to the Edgeworth series.



