(ii) Asymptotic solution method

Naess? found an exact series form solution for the instantaneous p.d.i. of total
second order response. His argument is as follows:

From equation (4.10) and the slow drift approximation, the c.f., ¢x (s) is
given by

éx(s) = ]['I $i(s (4.21)

- (025—1 + ng)

\8) = ————m = . 4.22
#3(e) = 2 2%\js 21 - 2i,\~s)] (+.22)
It is seen that ¢ x(s) has 1sola,ted essential singularities at s = —-;-— Rewriting
45(s) as 2
: i ibjs® .
i(5) = —= exp|— 4.23

46 = gy Pl (4.39)

where b; = (cgj_l + c§,)47\,~ and s; = -—;ﬁf, it can be shown that
2A;j

idj(s)

br(em(cias) = L0

exp{—i(sjz + 2b;s;)}

2.2

T} ()
J

x exp{—i[(b; + z)(s — s;) + .

where the function q;j = %f))- Hence qgj(s) is analytic in a neighborhood of s;,
which implies that

oo
$;(s) = E a{)(s — s;)* for |s| < ¢j (e; are any constants) (4.25)

n=0

The p.d.{. can be obtained from integrating (4.24) from —oo to co with respect
to s. Invoking the residue theorem, consequently we get:

{; b
Z sk em(=55 - £)Qi(=) =20
Px() = l » (4.26)
e —=__biyo.
z 21251 exP(z[Ajl X )Qi(z) =<0

where the function Q,(x) are defined by

)m/2 (____\W) (4.27)

. o) o
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and Ip,(z) denotes the modified Bessel function of integer order m. The expan-
() can be derived from the Taylor expansion of the function

$i(s) =[] #els)

kT

sion coeflicients am

around s = s;. When b; = 0,5 = 1,--+, N, i.e. when the first order response is
neglected, it is easily seen that since Ip(0) =1 and

= IT ¢ (e)
K77

,equation (4 26) reduces to equation (4.14).

Since it is very difficult to numerically evaluate equation (4. 26), Naess ob-
tained the aymptotic solution for # — oo from ( 4.26) when A; is dominant
compared with the other eigenvalues, i.e. when the following approximation is
adopted.

$1(s) = d1(s1) = 4((31) H ¢k(81) (4.28)
From Eq.(4.22) it is found that
N -
a‘()l) = H 1 = exp[= :\’b’ =] - (4.29)

(-3 Mh—ay)

Using the following asymptotic relation:

Ip(z) ~ \/217;exp(a:) as & — 00 (4.30)

it can now be shown that

a'g) (m)—lﬂ [ (\/b—lﬂ‘i' \/—)2

2TA1 1

] asz — oo

- px(z) ~

(4.31)
This 1mphes that px behaves like O(exp(—:z:)) for 2 — oo when X; > A
Vinje® also found the same expression as (4.31). But his result is in error
as noted by Naess.

(iii) New approximate theory

An alternative approach to Naess’ exact solution will now be developed. If the
number of the eigenvalues are finite, then from Eq.(4.4) the total response X (t)
may be decomposed into the following form:

X(t) =721+ 75 (4.32)



where
M
Zy =) (c;W; + \W?) ' (4.33)
=1
N
Za= Y (c;W;+)\W2) (4.34)
J=M+1

It can be mathematically proven that Z; and Z5 are mutually independent in a
statistical sense(e.g. Papoulis!®). I the time is fixed and ¢; = 0, Z; becomes a
random variable which is always positive while Z, is always negative. In this case
it can be proven from the approximate theory of continuous random distribution
in mathematical statistics that the p.d.f. of Z; and -Z; can be expanded to a
series of the generalized Laguerre polynomials!?. The first term of the series
is the two pa.ra.meter Gamma p.d.f. For example, f Y = \;WZ +--: + A, W2
and A; > 0(i =1,---,n), then the p.d.f of Y can be expanded by the fo]lowmg
series Wlth umform convergence:

py (z) = py(z, 26; )[1L+zj15ek1;‘fr 1)( ) - (a35)

k=1

where p, is the Gamma p.d.f. with two parameters § and v, LS{_) is the general-
ized Laguerre polynomials, and Bj represents the coefficients determined from
the orthogonal property of the Laguerre polynomials. Since the parameters ¢
and v are unknown, they can be determined by eliminating B; and Bs. Then
py becomes a second order approximation for py, and the first and second order
moments of py agree with those of p,. The same approximation can be also
applied in the case of ¢j # 0 by transforming Z; in Eq.(4. 33) into the followmg

form:
Y, ~ Cj 2
1 1+ 244,\j Z’\J J

W, | |
Vi=Wi+3 y (4.36)
Eq.(4.36) is the same quadratic form of Gaussian random variables as the case
for c; = 0, except that E[Vj(#)] = 5 # 0. Since the p.d.f. of V(t) becomes a

non-central x% p.d.f. and V; are mutuallly independent, the p.d.f. of ¥ can be
represented by a series form of the non-central x2 p.d.f. Using the fact that a
non-central x? p.d.f. can be expanded by the generalized Laguerre polynomials,
the p.d.f. of Y can also be represented by a series form using a Gamma p.d.f.
and a generalized Laguerre polynomials like Eq.(4.35). There is, however, sta-
tistical interference between the linear and the quadratic responses at the higher
order moments greater than third order(e.g. Eq.(4.11)), thus it is insufficient
to adequately describe this statistical interference approximation by using only
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the leading two terms. Therefore we must extend the two term approximation
to at least a three term approximation, i.e. approximate the response by means
of a Gamma p.d.f. is defined with three parameters(f, v, andé) in the following
form:

v 1
Pt 3) = GG ©

where U(z — 6) is the step function defined as:

.U(x_s)z{(l) zig (4.38)

0 is the generating number of Gamma p.d.f., and v the degrees of freedom.
The corresponding c.f. becomes: :

by (u, 6,20, v/2) = exp(i6u) (4.39)

1
(1 = 2i0u)y/2

Taking the difference between the cumulant-generating function of Z; and that
of a random variable which yields a three parameter (4, v, §) Gamma p.d.f. we
obtain,

A =log ¢z, —loge,

02u2

— _..Zlog(l ~ 2i)ju) + ~—10g(1 - 2i01u) - Z m

=1
—i&l U ) (4.40)

Substituting tu = T-F%E into equation (4.40) we get:

1 & M-y
A = —§Elog[1 =2(2; - 61)6] + : log(1 + 26,4)
ot

J f, _ 516
+Z P erTer -—01)]£1}(1+201£1)] T+ 20:6)

(4.41)

If 6, is taken such as 26; > mazd;(j = 1,---, M), |2(}; — 61)&1)| < |26:&64] < 1
for all £;. Thus A can be expanded into a uniform convergence power series.
Consequently the expansion form of A is given by:

2
ce
A =N -nh-8)a+ (A =22 Nk +nbl+ Y, L+ 26

_ gyl exp(—%;—ts)U(w _5)  (437)
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3
+[Z(Z A =3 A20 4307 — 01 63) — 4625, + Y Xjc?

~2) " Z01]e} + 0({260:41}*) (442)
The first, second and third terms of the right hand side of equation (4.42) may
be eliminated if the unknown variables #,,1, and §; are determined as follows:
4 Z A? +3 z /\jcjz-
40 +23 ¢
o Tt Ty
- T4 E )\? +3 Z: ’\j C?

by = 22 A2+ 2P
(42 A2 +33 )2y
If the slow drift approximation obtained by Naess is applied, the parameters in

Eq.(4.43) should be replaced by 8, = 261, i = 211, and 6, = ;. Thus the
p.d.f. of Z; can be approximately evaluated in the following form:

p2,(7) 2 py(, 81, 261; 51 /2) (4.44)

This becomes the third order approximation of pz, because the first, second,

and third order moments completely agree with the actual ones. Equation (4.44)

can be exactly expanded by the genera.hzed Laguerre polynomials as follows:
From Eq.(4.42) the ci. of Z; is given by the expansion form as:

01:

(4.43)

bz, = ¢y (u, 61, 201551 /2) eXP[Z A €7

n=4
o0
= ¢, Butt (4.45)
k=0
where By = 1, By = B, = B3 = 0.
Using the following relation
a . .
o7 ——=¢, = in(in +2)---(in + 2k - 2)EX 9, A (4.46)
results in
o By o*

¢Z1 =’§—_(:)171(i}1 +2)...(1'}1+2k__2)'a—5'§¢1 . (4.47)

The partial derivative of ¢,, with respect to 6, can also be represented in another
form by:
ak _ (_l)kewl‘ * 2iué1z

—— = = e T 7 f2+k-1 dz 4.48
86" — 6*r(5,/2) Jo oz ’°( ) (4.48)
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Using the generalized Laguerre polynomials,

(e~%a"+*) (4.49)
where a > -1, » = 0, 1, 2,---, Eq.(4.48) can be rewritten as follows:

(—l)k had 61 § — 61

)u1/2— (”1/2-1)( ) LY Bl
B T(5,/2) J;, 01 26,

4’1

30" d01
(4.50)
Finally we obtain the complete form of the p.d.{f. of Z; in the following series

form

Zooi - o~ o (=1)FEIT(5,/2)
P = py(, 61,260,501 [2)[1 + Bf—-—-
Z1 'Y( 1 1 1/ )[ ; k 9{']:‘(1/1/2 n k)
x LA (IS L =4 ) (4.51)
20,
where - i
4 1),z =6
By = —1 —_— 4.52
T EE ( A ) (4.52)

This final expansion form is not used except in the cases where the moments
higher than third order are of importance.

The p.d.f. of —Z5, as well as that of Z;, can be also approximated by a three
parameter Gamma p.d.f.(f3, i3, and 83) as follows:

p2,(2) = py(2, &3, 202 72 /2) (4.53)

The results of Eqs.(4.44) and (4.53) indicate that the total second order response
process X(t) can be approximated by the difference of the two independent
random variables which yield a Gamma distribution with three parameters.
From the convolution integrals of the Gamma p.d.f.’s the p.d.f. of the total
second order response can be obtained by:

f f(él,ég; 31, 52)f:°(z +z— 51 + 32)'71/2‘12‘77/2'16““"«1.3

x exp(— —;64'—"-52-) z > 6 = bg

px(z) = ¢ o ) o ) .
F(01,02;61,62) [ (2 — z + b6y — 6)72/2=11/2~1¢mez g,

.

X exp("—'—gf—gz) T <8 — b
(4.54)



where
1

T b0, ba) = o G AT or J)T G T2)'

1 1
a= 2 41 4.55
201 209 ( )

and the multiple-valued integrants take a principal value.

(iv) Convergence to Gaussian p.d.f

When the eigenvalues A; are very small compared with c;, i.e. when }; are

neglected, the total second order response process, X(t) certainly approaches

Gaussian. In this section we shall show this fact from the present theory.
From Eq.(4.43) it is found that

b= 2=
.Y (4.56)
b= X -/ —21-0X :

Namely the parameters of the Gamma p.d.f. are not mutually independent, two
parameters in the three can be represented by the rest if ox and X are fixed.
Taking 71, which represents the degree of freedom of the Gamma p.d.f.,, as an
independent parameter, replacing the variable by z like

X

z= -

oX
and setting » = 7, /2, the Gamma p.d.f. can be rewritten from Eq.(4.37) as

py(2) = { 725 (Vo2 + n)*~t exp(~/az — n) iz;j 2 ::{g (4.57)

When ); € 1,i.e. » 3> 1, we shall consider the asymptotic behavior of Eq.(4.57)
as n — oo, »
Noting that the first term of asymptotic expansion of Gamma function I'(z)
is given by
Tz +1) = V2rz* %™ a5 2 -

and the Taylor expansion of log(1 + u) for |u| < 1 is represented as:
1 2
log(l+u)=u-— 5;‘—2-+o(u )

then we have:

22 23

logp, =—1og\/27r+{— — t- }—'—+ WS

+ + <)+ 0o(1) (4.58)

_(\/_
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If n — oo, from equation (4.58) it is found that
—  z° z
].ng.y ~ -—log 2% — ?+O(ﬁ)

that is

L exp( zz) as n — 0o (4.59)
~ € _— n — .
Py fom Xp 2

This implies that p, can be approximated by the Gaussian p.d.f. when = is
sufficiently large. But we should note that the the range which the Gamma
p.d.f can be regarded as the Ga.ussm.m p-d.f. is limitted to the variable range of

z <+/n.
4.1.2 Maxima p.d.f.

Statistical prediction of the maxima of a random process is usually performed
using the Rayleigh distribution under the condition that a random process is
a stationary, narrow banded, Gaussian process with zero mean. But in the
case of a second order response for a moored floating structure, this condition
may no longer be satisfied. In order to exactly obtain the maxima p.d.f. of
a nonlinear response, the expected number of maxima greater than a specified

level is required as shown by Linl?.

First, according to Lin, we shall show the exact theory.

Figure 4.1 is an explanatory sketch of a random process X (¢) for which the
maxima(or minima) could be anywhere in the range of (—o0,00) and several
ma.x1ma(or minima) could occur during one cycle as defined by mean crossings.
Here, maxima are defined as peaks which satisfy the condition X (ty=o0 and
X (t) < 0. Whereas minima are defined as troughs satlsfymg the condition X =
0 and X > 0. As shown in Fig.4.1 maxima and minima can take both negative
and positive values. The ma.gmtude of the maxima with positive values {X(¢) >
0,X =0,X < 0} or the minima with negative values {X(t) < 0,X =0,X > 0}
would be critical if they exceed a certain value, and hence the statistical extreme
values of these maxima and the minima provide valuable information for the
engineering design purpose.

For the problem of a mooring system the positive maxima are the most
important, if the direction drifted by waves is positive. Since the statistical
properties of negative minima can be estimated from those of positive max-
ima by means of the transform of random variables, the positive maxima are
considered in the following analysis.

It can be assumed that X(t) is stationary and zero mean without loss of
generality. Then the expected number of maxima above a specified level X () =
¢, denoted as E[M(£)], is obtained by:

o0 0
E[M(¢)] = /g / lélpx % 3 (2,0, 5)di (4.60)



The total expected number of maxima with positive values, denoted as E[M (—o0)],

becomes - .
E[M(~o0)] = / dz / #lpy 5 £ (2, 0, 5)di (4.61)

where py 5 3 is the joint p.d.f.

Huston & Skopinski!® has assumed that the ratio of their two expected
numbers is approximately equivalent to the probability in which the maximum
values exceed a level y, i.e. E[M(y)/M(~o0)] ~ E[M(y)]/E[M(-c0)] . Under
this assumption the probability in which the maximum positive values exceed
a level y becomes

Fp =1~ E[M(y)/M(-o0)] = 1 — E[M(y)]/E[M(~o0)] (4.62)

Then maxima p.d.f. is given by:

1 - e
B() = - g | EPeee (0.8 (4.63)
In the case that X(t) is the Gaussian process, p, has already been obtained
by Cartwright & Longuet-Higgins'®). It can be prescribed by two parameters,
i.e. spectrum band width parameter and variance. As well known, when the
band width parameter is close to 1, i.e. wide banded process, Pp approaches the
Gaussian p.d.f., and when the parameter close to 0, p, approaches the Rayleigh
p.d.1l ’ ‘

But statistical characteristics and maxima p.d.f. of nonlinear responses has
not been found out yet. So we must introduce some approximations to obtain
pp for the nonlinear response. '

For this purpose the following assumptions are introduced.

(1) The response is narrow banded, i.e. the negative maxima and positive
minima are negligible.

(2) The response is stationary.

(3) The expected number of crossings at a specified level with a positive gradient
is equal to that of maxima over it, i.e. one-to-one correspondence between
zero-upcrossings and maxima.

Assumption (1) imposes considerable limitations to our objective. However
the condition is usually satisfied, except for fatigue analysis, because if the
specified level is sufficiently high, the negative maxima or positive minima that
exist over this level are infrequent. In general, using these assumptions, the
maxima (or minima) probability is overestimated as compared with exact one
because the expected number of maxima over a specified level is always greater
than those crossing that level. Since statistical properties of the minima can be
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obtained from those of the maxima, by means of a variable transform, only the
maxima will be considered in the following analysis.
Using the above assumptions, then

M(y) ~ N*(y) (4.64)

where Nt is a random number crossmg a specified level y at positive gradient
and its expectation per unit time is given by:

BN = 5 [ elpxx(, )i )

Thus a p.d.f. for an event where the maxima are greater than a level y + X is
given by:

Pp(y)= {fo pXX(y+Yx)xdx}

fcs pXX('X x)xdx
where py 5 is a joint proba.bilxty densxt}y function of the response X and its time
derivative X.

In this way, under narrow band assumption the problem obtaining the max-
ima p.d.f. of nonlinear response can be transformed to the problem obtaining
the joint p.d.f. py 3.

(4.66)

(i) Series approximate solution

Obviously if instantaneous p.d.f.’s can be expanded into useful series represen-
tations, one would expect that similar useful generalized expansions would also
exist for higher dimension p.d.f.’s.

A particularly useful expansion for our purpose was introduced by the autors®.
The following development closely follows their original works.

Let p(z1,%2) be a joint p.d.f. for the variables z; and z5. The corresponding
instantaneous p.d.f.’s are then

P1($‘1) = /p(ml,xz)dxz
(4.67)

pa(z2) = /P(wh zq9)dzy

Using the instantaneous p.d.f.’s as weilghtihg functions, we can construct two
sets of orthonormal polynomials {A14(z1)} and {Az,(22)} from the integral
relation

/Pl(xl)Alm(-’t'l)Am(wl)dl'l = bmn
(4.68)
/ P2(22)Aom (22) Ao (22)dT2 = 6ipn



If we assume that it is permissible to expand p(z1,z2) in terms of those two
sets of orthonormal functions, then : :

p(z1,22) = P1(?1)p2($2) > amnAim (1) Azn(2) (4.69)

m,n

By employing Eq.(4.68) in Eq.(4.69), we can evaluate the expansion coefficients,

App = /‘/}.)(.’Bl,.’llz)Alm(.’L‘l)Azn ((L’g)d(l)ld.’t’z (4.70)
If the matrix (amy ) is diagonal, i.e. @y = @nbmn,

(@1,22) = p1(21)p2(22) ) anA1n(@1)A2n(22) (4.71)

This is equivalent to the Mercer expansion® of the kernel function in the inte-
gral equation (see Appendix E).

The validity of Eq.(4.71) can be illustrated as follows:

Let p(z1,z2) be the joint Gaussian p.d.f. as

1 (23 + 23 — 203135)
v = ‘ 4.72
p(z1, z2) PNy exP{ 27(1 = ) } (4.72)
with corresponding p.d.f.
, z2
p(z) = \/— exp(~ 202) (4.73)

Using the Mehler’s expansion'®) given by

{w?(z? + z2) - 2u:z:1a:2}]
2(1 — u?)

— exp[—

= Z -——H (z1)Hy(z2) (4.74)
n—O

where Hy () is the Hermite polynomials of order n, and inserting Eq.(4.74) into
(4.72),we get

Hene) = oA S L @y B )

n=0

Since the matrix apy, in Eq.(4.70) is not always diagonal in general cases, the
joint p.d.f. py %, the first approximation of which is the joint Gaussian p.d.f.,
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may be expressed as:

. 1 (z-X)2 X2
Pxx (a:, %) T rox a‘; exp{~ 20% B 20%
% 3 buon H (=X, (1) (4.76)
= ox oy

where X is the mean of X and b,,, is a function of the higher moments of X
and X.

Vinje'? has found the same equation as (4.76) by using the Taylor expan-
sion of cumulants. Hineno'® and Dalzell!?) extended the above method to the
method obtaining three dimensional joint p.d.f.’s, i.e. p X X%

(ii) Independence approximation

- Although X and X are not generally mutually independent, let their indepen-

dence be assumed. Then a p.d.f. of maxima that are greater than y+ X is given
by:
d px(y+X)
Poly) = ——1————=—="
This means that the maxima p.d.f. can be represented in terms of the derivative
of the p.d.i. of the instantaneous response.

,y>0 (4.77)

4.1.3 1/n th highest mean amplitude and extreme value

From the maxima p.d.{f., 1/n th highest mean value can be represented as:

-X-* = /;: zpy(z)dz . (4.78)
1/n=1-PFy(Xy) | (4.79)

where P, is the peak probability distribution function.
An extreme value will be derived by applying the order statistics. The
extreme value is defined here as the largest maxima that occurin NV observations.
Let (1,72, +,7n) be an ordered sample of size N , where 7; have the same
p.d.f. given by Eq.(4.66). If #; is recorded as 71,72, ,ny, 7; can be regarded
as the output of an independent random variable z;. Thus the random variable
zN, which is the largest 7y in the ordered sample, has the following p.d.f.:

f(zw; N) = Npp(an)[1 — Py(an)I¥ ! - (4.80)

Then the estimation of an extreme response is obtained as:

Efen] = /0 T 2.5z, N)iz (4.81)



Approximation based on Poisson distribution law

Naess® has introduced an alternative approximation based on Poisson distribu-
tion law to obtain the extreme statistics. His approximation is as follows:

The statistics of high level excursions and extreme values of the total second
order response are largely determined by the mean upcrossing frequency zx} =
E[N*(z)] for large z. If extreme values are associated with very high levels and
upcrossings of such levels are rare events, then the probability such that the
extreme values, i.e. Z(T) = maz{X (#) : T >t > 0}, is less than any level z is
given by:

Poa{Z(T) < 2} = exp(—viT) asz— oo (4.82)
where T is an observation time. This leads to the assumption that these UPCross-
ings are statistically independent, which in term implies the Poisson probability
law. Except in the case of narrow banded process, this would be a reasonable

approximation. Now considering the expected value as a statistical measure of
the extreme value, its expectation is given as:

E[Z(T)] = /0 ~ 2dP,(2) (4.83)

where P;(z) = P,ob{Z(T) <z}
Since the number of observations N can be replaced by N = vy T, we get:

log[(1 - Pp(2))Y] = Nlog(1~ UJZ;T)
- _U;T+O(V%VT) (4.84)

This implies that (1 — P,)N approaches exp(—v3T) as N — oo. That is,
Eq.(4.81) tends to Eq.(4.83) when N — co. Thus it is expected that both
Eq.(4.81) and Eq.(4.83) lead to a same extreme value estimate for a large N.

4.2 Numerical Examples

From this point forward it will be assumed that the rapidly varying part of the
pure second order response is negligible. In this case, the Naess’ method does
then yield a complete analytical solution for the pure second order response,
but it can not be applied to the problem of obtaining the total second order
response p.d.f. unless the linear response is negligibly small. Unfortunately an
exact closed form or numerical solution for this case has not yet been found.
The direct approach to the problem by approximating the p.d.f. using a power
series would. probably theoretically work, but the effort involved is considered
too great. The logical and most conservative approach is to attempt to utilize
only a few terms of series expansion. Experience dictates that an important
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step in series solution techniques lies in the choice of an expansion function
which closely represents the desired nonlinearity characteristics with a minimum
number of terms. The present method, “new approzimate theory ” is a series
expansion approach that approximates the total second order response p.d.f. by
three terms of the generalized Laguerre expansion. This method also gives an
approximate solution for the pure second order response. So exactly speaking,
the method is a third order approximation because the first, second, and third
order statistical moments completely agree with the exact ones. Additionally a
convolution integral has to be conducted in the present method which is not the
case for the exact Naess’ solution. Thus it should not be inferred that the present
method is more efficient than the exact Naess’ solution. The present method
will however be effective in evaluating the effect of the statistical interference
between first and second order responses for the extreme response.

(1) Inveétigation to the pure second order forces and responses

In this section, the present method will be compared to the exact Naess’ solution
for pure second order forces and sway motion responses in order to show that
the present method is an accurate enough approximation. The moored floating
structures that will be used for comparisons are two dimensional, lie in the
horizontal plane, and have linear restoring forces. The half submerged circular
structure has a diameter of 20m, and the half submerged rectangular structure
has beam to draft ratio of 2. The principal dimensions are given in Table 4.1.
In order to compare the present method for pure second order forces with the
Naess’ method, the quadratic transfer fanction G2 (w1, —w2) of slow drift forces
is required. Thus the same numerical estimates used by Naess were utilized (
Faltinsen and Lgken??).

Tables 4.2 and 4.3 indicate the numerical estimates of the quadratic transfer
functions that were obtained by Faltinsen and Lgken. To specify the sea state
an International Ship Structure Congress (ISSC) spectrum with a significant
wave height H, = 2m and an average period T} = 5.5sec is used and is given
by: )

173H; 691
SC(w) T4 5 eXp( T4w4) (4.85)

Using this data as a basis, the eigenvalue problem was numerically solved by
Naess®).

Figure 4.2 (a.) compares the p.d.f. obtained from the present method and
the exact one for the half circular structure, and Fig.4.2 (b) indicates the same
comparison for the rectangular cylinder. The results of the present method
closely agree with the exact ones except in the peaked area. The difference in
the vicinity of the peak may be atiributed to the difference between the exact
higher order moments greater than the third order, and the ones obtained from
the present method.



A comparison of both methods for the pure second order motions will be
presented next. :
_First consider the linear dynamic system as:

FO(1)

Xg +2KWOX2+I‘.4)3.X2 = %

(4.86)
where F)(t) is the slowly varying drifting force, X5(t) the corresponding slow
drift sway response,  a relative damping coefficient , wp the undamped natural
frequency, and M the total mass including an added mass per unit length of the
cylinders. Parameter values for &, wp, and M are given in Table 4.1. The linear
transfer function Hy (w), which corresponds to equation (4.68), is given by:

1

Hu(w) = (Wi — w?) + 2 Kwow

(4.87)

Thus, the quadratic transfer function of the slow drift sway response can be -

represented by:

Hi(w; — w)G (w1, —wa)
M

The same input wave spectrum given in Eq.(4.85) was used for calculating the
eigenvalues for the sway response. Naess calculated only eight eigenvalues. This
is equivalent to assuming that a random seastate has only eight frequency com-
ponents. This number is insufficient if a practical seastate situation is con-
sidered. Furthermore Naess’ results appear tc be too inaccurate to estimate
eigenvalues for a lightly damped oscillator since the amplitude of Hr changes
suddenly at |w; — wa| 2 wp. As a result, the authors??) extended the quadratic
transfer functions given in Tables 4.2 and 4.3 to higher dimensional matrices by

G2 (wl, —wz) = (488)

interpolation, then solved the eigenvalue problems, and investigated the rela-

tionship between the variances between the pure second order responses and the

dimension of the quadratic transfer matrices. From this it was determined tlat

the variances of pure second order response change largely with a decrease of the

dimension, and that at least a dimension greater than 200 is required for getting -

stable variances. Thus based on the above determination 200 dimensions of the
quadratic transfer matrices were used.

Figures 4.3 (a), (b), (c) show respectively the p.d.f.’s of pure second order
sway motion responses, their tail behavior, and their 1/n th highest mean values
for case 1 of Table 4.1. Figures 4.4 (a), (b), (c) show the same parameters for
case 2, and Figs. 4.5 (a), (b), (c) case 3. These figures indicate that the p.d.f.
calculated by the present method is in good agreement with Naess’ exact p.d.f.
in contrast to the differences in the pure second order force responses of Fig.4.2
which were discussed previously. There is however a noticeable difference in
the tail of the p.d.f. shown in Figs. 4.3 (b), 4.4 (b), and 4.5 (b). The effect
of this difference is small because the difference in the 1/n th highest mean
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amplitude by the present method shown in Figs. 4.3 (c), 4.4 (c), and 4.5 (c) is

" only slightly lower than the exact one, i.e. a difference of less than 3%. This

difference becomes small as the damping coeflicient decreases, i.e. the difference
between the Naess’ and the present methods in Fig.4.3 (c) is smaller than 1%.
Therefore it is considered from practical point of view that the present method
is a good approximation with a high degree of accuracy.

The difference between the p.d.f. of pure second order responses and the
Gaussian p.d.f. with equal mean and variance will briefly be discussed next.
Before doing this it should be noted that the Rayleigh method in figures 4.3 (c),
4.4 (c), and 4.5 (c) is an approximation to predict the 1/n th highest mean am-
plitude under the assumptions that responses are Gaussian and narrow banded,
i.e. the maxima p.d.f. is a Rayleigh p.d.f. When the damping coefficient & is
significantly reduced to a value of 3 x 1075, it can be seen by comparing Fig.4.3
(a) to Figs.4.4 (a) and 4.5 (a) that the mean value, which is the mean drift
displacement, is small. Similarly the asymmetry of the p.d.f. about the mean
value is small, indicating that the pure second order response p.d.f. approaches
the Gaussian p.d.f. However the difference becomes much more significant in
the tail response as well as the 1/n th highest mean amplitude. This is as
expected because the tail of the pure second order response p.d.f. behaves
like O(exp(—x))(e.g. Eq.(4.14)), while that of a Gaussian p.d.f. behaves like
O(exp(—z?)). When & is increased there is an increase in the mean value and
the asymmetry of the p.d.f. around the mean value. Thus as the damping
coefficient is increased there is a greater deviation between the p.d.f. of the
pure second order response and the Gaussian p.d.f. This results in Gaussian
approximation that will significantly underestimate high level excursions and
extreme responses. The use of moored circular or rectangular structures shows
no differences and thus do not influence this conclusion.

(2) Statistical interference between first and second order responses

In general the first and second order responses are not mutually independent so

it is important to study the statistical interference of both responses. Thus we

shall consider the following system:

FDO() + FO@))
M

where F(1) ig a linear wave exciting force, M = 3.21 x 10® kg/m, wp =0.1

X +2rwoX + WX = (4.89)

" rad/sec, and the damping coeflicient « being equal to 0.1,0.006, and 0.0001.

Calculations were conducted only for the half circular cylinder. The wave
exciting forces were calculated based on two dimensional potential theory(see
Table 4.4). The ratio of the standard deviation of the second order exciting
force response to the first order response (02/01) is 3.31 x 10™%, and the ratios
for the sway motion response are 1.36, 2.9, and 4.96 for k=0.1, k=0.006 and
#£=0.0001, respectively. The numerical results are shown in Figs.4.6 through



4.8, and are compared to the Gaussian p.d.f. and the p.d.f. for pure second
order responses. Based on these figures, it was determined that the p.d.f. of
the total second order response was widely distributed, while that of the pure
second order response was narrowly distributed, with the Gaussian p.d.f. being
located between these two distributions. The width of the p.d.f. of the total
second order response is strongly dependent on the damping coefficient. When
the damping coefficient is decreased, the width of the p.d.f. of the total second
order response becomes narrow and approaches that of the pure second order
response. The difference between the p.d.f.’s. of the pure and total second order
responses in the tail region may be caused by the following reasons:

Since maximum double amplitudes of a pure first order response
can possibly occur at the pure second order response peaks, the
probability density of the total second order response increases as
compared to the pure second order tail response. ‘

Furthermore it should be noted that the p.d.f. of total second order re-
sponse differs from the Gaussian p.d.f. in the tail region even though both
p.d.1.’s are, on the whole, in good agreement as the damping force decreases to
zero. With respect to the 1/n th highest mean amplitude, the results shown

in the total second order response are the largest of the three responses and
~ significantly deviate from the well-known expected value that is estimated us-
ing the assumption that the peak p.d.f. is a Rayleigh p.d.f. when the damping
coeflicient is increased . Thus, if the pure second order approximation is used
to predict the highest mean values of the total second order responses or if the
assumption that the peak p.d.f is a Rayleigh p.d.f. are applied, this will cause
a large underestimation of high level excursions and extreme values. This fact
was experimentally confirmed by the authors®.

The statistical interference between the first and second order responses can
be significantly large as shown by the use of these examples, and so it must be
taken into account for the motion prediction of moored vessels in random seas.

(3) Relationship between the damping and restoring force coefficients
and 1/10 th highest mean amplitude

In this section the variation of the 1/10 th highest mean amplitudes is investi-
gated following changes in damping and restoring force coefficients. Fig.4.9 (a)
shows the relationship between the damping coefficient and the 1/10 th highest
mean amplitude. In this figure all the lines approach the well -known expected
value for the Rayleigh p.d.f. as the damping coefficient is decreased, but the re-
sults of the total second order response deviate considerably from the estimated
one with an increase in the damping coefficient.

The relation between the restoring force coefficient and the 1/10 th highest
mean amplitude is shown in Fig.4.9 (b). In this figure the X axis indicates the
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undamped natural frequency because the restoring force coefficient is propor-
tional to the square of the natural frequency if the total mass is held constant.
When the restoring force is increased the 1/10 th highest mean amplitude of the
pure second order response’ approaches the well-known expected value for the
Rayleigh p.d.f., while the 1/10 th highest mean amplitude of the total second
order response deviates from its expected value for Rayleigh p.d.f. by becoming
larger.

4.3 Comparisons between estimates and ex-
perimental results

In order to investigate the applicability of the present method to the measured
slow drift motion, we shall compare the results estimated by the present method
with the statistics obtained from the model test( see 3.4.1).

(1) Instantaneous p.d.f.

First of all, we must solve the eigenvalue problem (4.5) for obtaining the in-
stantaneous p.d.f. Utilizing the quadratic transfer function with viscous effect
shown in 3.4.5, the integral equation leads to the linear algebraic equations with
512 dimensions since the lag aumber of the wave spectrum was 256. However
if we adopt the slow drift approximation indicated by Naess, the integral equa-
tion generates a set of double eigenvalues. Thus the algebraic equations can
be reduced to a set of 256 frequencies in the positive frequency range. In the
256 frequencies we use only the 32 frequency components which are within a
frequency range where the wave spectral densities are more than 10 % to the
peak.

Table 4.5 shows the examples of eigenvalues obtained by solving the 32
dimensional algebraic equations.

Comparisons between the statistical values estimated from the relation (
4.11) and the sample ones obtained from the time average of the measured data
are shown in Table 4.6, where §; and #; are parameters of Gamma p.d.{f. and
“wave conditior No.” indicated in the tables corresponds to the number shown
in Table 3.3. From both tables it is seen that the estimated statistical values
agree with the sample ones even though the number of eigenvalues used for
calculation is a few. '

The instantaneous p.d.f.’s of slowly varying second order surge response are
indicated in Figs.4.10 and 4.11. In these figures the solid line shows the line
due to the present method, the dash-dotted line expresses the Gaussian distri-
bution furction and the broken line the result of the third order Gram-Charlier
expansion. The probability distribution is asymmetry with respect to the mean
value even if the restoring force is linéar, and it has the tendency that the tail
spreads towards the direction drifted by waves. And the difference between the



probability distribution due to the present method and the Gaussian distribu-
tion is certainly significant at the tail and the agreement of the present method

and the third order Gram-Charlier series method with the observed histograms .

is still good.

(2) Maxima p.d.f.

For mooring design purpose, positive maxima is the most important of all max-
ima. Figure 4.12 compares the observed positive maxima and the estimated
maxima p.d.f.’s. The dash-dotted line is the Rayleigh p.d.f., the solid line is the
curve due to the present method, and the broken line is the result due to the
third order Gram-Charlier series method, where an assumption of the indepen-
dence between the response process and its time derivative process was used for
comparison. From this figure, it is found that the observed positive maxima
histograms exponentially spread towards the tail and that the estimated p.d.f.’s
due to the present method are in rough agreement with the observed ones.

(3) Extreme response

Comparisons between the extreme responses due to the present method and the
maximum excursions in N, observations in the total measured data are shown
in Figs.4.13 and 4.14. In these figures the dash-dotted line indicates the esti-
mation results by Longuet-Higgins’ method'?, which uses the assumption that
the maxima p.d.f. yields the Rayleigh p.d.f., and the black circles represent the
largest values in each observations of maxima in the long measured data, the
broken line is the result due to the third order Gram-Charlier series method,
and the solid line is the estimate due to the present method. The extreme values
are normalized by the standard deviation of the response. From these figures
it is found that the results from the Longuet-Higgins' method significantly un-

derestimate the extreme values whereas those from the present method show

fairly good agreement with the largest excursions in the measured data, which
are samples of the extreme values. .
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Chapter 5

Conclusions

This paper describes the researches about the slowly varying second order re-
sponse simulations of moored floating structures in random seas and its stochas-
tic analysis.

First, we reviewed the study on the slowly varying drift forces causing the
slowly varying response and discussed four problems excluded in the investi-
gations obtained up to now. As the most important problems in them, the
following problems are treated in this paper.

a) Hydrodynamic forces of slow drift motion in still water are modified in waves.

b) The Newman-Pinkster's approximation for the slowly varying drift force does
not satisfy the condition of physical causality.

Second, it is shown that the total second order force including slow drift forces
can be represented by a two term Volterra functional series. Physical meanings
of the kernel functions in the functional series are investigated from a viewpoint
of frequency response functions (or transfer functions) and a method estimating
the kernel ones from experimental data is also studied, which is the method
using the bispectrum ( a kind of higher order spectra). Furthermore a new
functional model such that the second term of the Volterra functional series can
be represented by the equivalent linear process of instantaneous wave power is
developed. The new function model is based on the Wiener filter theory.

Several kinds of experiments have been carried out. Relation between the
kernel function and the frequency response function of the slow drift force is
investigated through comparisons between the experimetal results and numeri-
cal calculations. And the applicability of the newly developed functional model
is studied by comparing between the experimental data and numerical simula-
tions. And the unsolved problems a)(i.e. how much the hydrodynamic forces
in still water are modified in waves) and b) are investigated by using the new
functional model.



Finally, on the basis of the obtained results a theory of probability density
functions(p.d.f.’s) is developed for an instantaneous total second order response
and its maxima, in order to predict 1/n th highest mean amplitudes and ex-
treme responses. New formulas for the total second order p.d.f.’s which include
not only quadratic but also linear responses are derived. These new p.d.i.’s
can be represented by the generalized Laguerre polynomials of which the first
term is a Gamma p.d.f. consisting of three parameters. Assuming that the
response and its time derivative processes are mutually independent, the 1/n th
highest mean amplitude can be evaluated numerically from the derivative of the
instantaneous response p.d.f.. This method is first applied to the sway motion
of moored floating semi-circular and rectangular two dimensional cylinders, and
the applicability of the method is studied by comparisons with Naess’ exact so-

lution. The variation of the 1/n th highest mean amplitude of the total second

order response is then investigated following increases in damping and restoring
forces. And comparisons between the experimental results and the calculated
ones obtained from the present theory are carried out. The applicability of the
present theory is confirmed.

The summary of the results obtained in this paper are as follows:

(1) The total second order responses(forces and motions) can be represented by
a two term Volterra functional series and the quadratic transfer function
in the second term of the functional series physically correspond to a
frequency characteristic of the mean and slowly varying drift responses.

On the basis of the mathematical fact that by using the Wiener filter’

theory, the second term of the Volterra functional series can be expressed
by an equivalent linear process of instantaneous wave power in stochastic
sense, a new functional model is developed. This model can be used
not only to simulate mean and slowly varying drift responses of moored
floating structures but also to solve the problems a) and b) mentioned
previously.

~ (2) The quadratic transfer function in the Volterra functional series (or present
functional model) can not only be estimated from the bispectral analysis
of experimental data, but also be calculated from pressure integrals ovei'
the instantaneous wetted surface of a floating body within the potential
theory. As to the quadratic transfer function, comparison between the
result obtained through the cross bispectral analysis of experimental data
and the numerical ones is conducted. As the result, it is found that the
numerical result based on the potential theory is remarkably lower than
the experimental ones and the difference of both results can be accounted
for by viscous drift force, which occurs by the finiteness of incident wave
amplitude and is proportional to the third power of wave amplitude. If
the viscous drift force is taken into account to the qua.dra.tlc transfer func-
tion obtained from numerical calculations even though it is approximately
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‘evaluated, the corrected numerical result is in good agreement with the
experimental one. And the linear frequency response function can roughly
be estimated from the ususal linear motion prediction method con31der1ng

. the viscous damping force. But when the slow drift motion response is
dominant compared with the linear motion response, the damping force
at the slow drift motion increases by 1.6 times as large as one in still water
whereas the added mass force at the slow drift motion becomes smaller
than that in still water. It may be considered that for semi-submersibles
this phenomenon is attributed to not only the nonlinear coupled viscous
damping but also the wave drift damping and others.

(3) Comparisons between. the simulated results due to the present functional
model and the experimental ones have been conducted in time domain,
and it has confirmed that both results are in good agreement, however it
remains unsolved how much and why the added mass and the damping
forces in still water are modified in waves.

(4) An approximate solution is presented for calculating the p.d.f.’s (instanta-
neous p.d.f. and maxima p.d.f.) of total second order responses including
first order as well as second order motions. It is confirmed through com-
parisons with Naess’ exact solution that the present method is an accurate
approximation for pure second order forces and responses.

(5) Using the present method, an investigation to determine the statistical in-
terference between the first and second order responses was conducted for
a system with a linear damping and a linear restoring forces. The p.d.f.
of the total second order response differs from that of the pure second
order response. In fact it becomes a widely-banded distribution with an
increase in the damping coefficient. Additionally it significantly deviates
from the Gaussian p.d.f.

(6) The 1/10 th highest mean amplitude of the total second order response is
greater than that obtained using the pure second order approximation or
by using the conventional method which is estimated under the assumption

" that the peak p.d.f. is a Rayleigh p.d.f.. Thus the statistical interference
between the first order and second order responses must be taken into
account for prediction of extreme responses and high level excursions.
The statistical interference changes with variations in the damping and
restoring forces.

(7) As to the extreme response, comparison between the result obtained from
the present method and one from the model test during long duration
has been carried out. It is confirmed that the usual prediction method
based on the Longuet-Higgins’ method significantly underestimates the
measured results while the present method estimates them very well. And



it is shown that the extreme response of the total second order response
is greater than that based on the assumption of the pure second order
response.

Moreover, some subjects excluded in this paper, for example, mooring forces,
compa,nsons between estimated results and at-sea experimental results etc., are
going to be completed in future. »
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