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Appendix A

Theory of wave drift forces
based on the potential
theory

The wave drift force based on the potential theory is the low frequency com-
ponent of the second order force caused by nonlinear interaction between first
order phenomena at multiple frequency. In order to exactly evaluate the force
it is necessary to formulae the second order problem in a sophisticated manner.

In this section we introduce the regular perturbation technique formulated
by Ogilviel.

A.1 Coordinate system -

we define two sets of axes:

Ozyz = Oz 2323 : inertial( space fixed) axes;
O'z'y'z = O'z}zhzl: body fixed axes.

The Ozyz axes have their origin in the plane of the undisturbed free surface
with z axis pointing upwards. The two sets of axes coincide when the body is
at rest.(see Fig.A.1)

A.2 Boundary value problem

We consider hydrodynamic forces acting on the floating body oscillating in waves
under the coordinate system shown in Fig.A.1. The theory is based on the
assumption that the fluid surrounding the body is inviscid, irrotational, homo-
geneous, and incompressible. The fluid motions may then be described by a
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velocity potential from which the velocity field can be derived by taking the
gradient:
V=vd (A1)

where ®(&, ) is a velocity potential and it satisfies the Laplace equation:
[L}: A® =0 » (A.2)

I the potential ® is known, the pressure in a point in the fluid may be deter-
mined using the Bernoulli equation:

- p(2,9,2,1) - 5, - (Ve)? _

. 5 92 (A.3)

where p is the fluid density, g is the gravitational acceleration. If the elevation
of the free surface is given by ((z, ¥, t), the following two conditions must be

satisfied: D( 0
z —
T:@,—Q—@,,(,,—@,,Q:O 0]12:( (A.4)
?;0 =—® —(V®)?—-gz onz=¢ (A.5)

The first shows the kinematic condition of free surface and the second does that

‘the pressure is constant on the free surface. These free surface conditions are

exact under the assumption that viscosity and surface tension are negligible.
Eliminating ¢ from the conditions, the free surface conditions can be rewrit-
ten as:

[F]: q)tt + géz + 2(‘Dz®.ﬂ + QyQyt + Qzta) + QZ@,, + Qzéyy + q’zézz
+2(2. 0, Py + 2,2, 2y, + 9.9,P,,) =0 onz=¢( (A.6)

Let the body surface, S, be given by an equation of the form:
S(z,y,2,t)=0

and let # be a unit vector normal to the body surface, pointing outward from
the fluid, thus into the body. A body condition given by:

od
[H]: I = TeVP =, (A7)
where v, is the normal component of velocity of the body itself.

If a bottom surface is given by z = h(z, y), the bottom condition becomes:

0P

an

[B]: 0 onz=h{z,y) (A.8)

In addition, an outgoing wave radiation condition must be satisfied.



In general, it is difficult to directly solve the above boundary value prob-
lem in time domain because the free and body surfaces moves with time, and
the boundary value problem must have already been solved to determine the
movements of free and body surfaces. These problems can usually be solved
by making a linearization by means of a perturbation technique. In order to
carry out a perturbation analysis, we assume that there exists a small parame-
ter that provides a basis for ordering all quantities that arise. We can think of
this parameter as the maximum wave slope, for example, although its precise
definition does not really matter. We assume further that quantities such as
and can be expressed as power series in:

O(z,y,2,t) ~ Z ¢ i(z, 9, 2,t) + O(eN*1) (A.9)

C(x7 y’t) ~ Z ejCj(a% Y, t) + 0(5N+1) (AIO)

Substituting these expansions into the free surface conditions, and assuming
that all quantities that are supposed to be evaluated on 2 = ¢ can be evaluated
alternatively by expansions with respect to z = 0, then we get the following pairs
of free surface boundary conditions for the first and second order problems:

O(e): Y1t + 991, =0 onz=10 k o (A.11)
G= —‘-’ig-ll 2=0 (A.12)

O():  2u+g¢2 = —-%(cph +oly +ol)+ %lig—z(wm tg¢10)on 2 =0
: (A.13)

(2= [—%gi - %y(aofx + o}, +9)+ —(p-ligﬁll] |z=0 (A.14)

In addition, we need a bottom condition and a radiation condition for each
problem.

A.3 Body surface condition

Before considering the body surface condition, we shall define the transformation
of coordinates. : '

Let the position of O’ with respect to O be denoted by the vector ="

(é1,&2,&3) and let the position vector to a point in space be denoted by

X = (3"’ Y, z) = (xlery -7"3) (A.15)
X, = (xl’ y',z') = (a";’ wt‘z;-’”f’-}) (A.16)
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respectively, in the two coordinate systems. The position vectors are related by
a linear transformation

=D(X -§) (A.17)
X=D1%+¢ (A.18)

where D is a matrix presenting the rotation of body and D! is its transpose.
For such matrices, we note that the product D e D! is the unit matrix.

In order to consider the rotations, we may use the concept of Euler angles
(or an eqmva.lent) to specify the instantaneous orientation of the body, and the
resulting expression for D depends on the order in which the three rotations
are taken. The order is, of course, arbitrary, since any displacement of a rigid
body can be described as the sum of a translation and a single rotation about
some axis. But that axis constantly changing in time, and so we must use a
systematic method of describing the kinematics of the body. Our choicé is to
take roll, pitch, and yaw, in that order. These are not the Euler angles described
in a textbook, but they are more useful for our present problem.

First, neglect the translations and consider only rotations (thus O and O’
comcxde) Define a new coordinate system O%§Z that is identical to the Oxyz
system except for a posmve rotation &4 about the z axis. Thus # = z. The

transformation from X to X is simple:

}% =AX
1 0 (0] .
=0 cos& singy | X (A.19)

0 —sinéy coséy

Then we make a second rotation, this time through an angle {5 about the §
axis. Let the new axes be denoted by O#j3.

X =BX
cosfs 0 ~—sinés\
=l o 1 0 X (A.20)
sinés 0 cosés

Finally, the third rotation, through the angle £ about the Z axis, brings the

axes into coincidence with the Oz'y'z' axes:

X =CX
Ccos ﬁs sin 66 0 -+ -
= | —sinég cosés 0| X (A.21)
0 0 1

The complete transformation is obtained by applying these in order, according

Lo



to the usual rules of matrix multiplication:
C5C6  CaS¢ -+ 5455C6 S48¢ — C455Ce
D= —css¢ cqc6+ 84C58¢ S$4Cg + C454S¢ (A.22)
S5 —84Cy C4Cs

where s, = siné,,c, = cosén,n = 4,5,6 and D! is equal to the transpose
ma.tnx of D.

If{ (é1,€2,¢83) a.nd & = (4, €5, €6) can be expanded in the following form;

£=efW 4+ 289 4 0(&) (A.23)
&= @M + 23 0(63) (A.24)
then this becomes:
D =D + DWW + ED? + 0(63)
100 0 & &
={0 1 0]+t 0 &
0 01 & —& 0
L [E+E 2% 26466
-5 0 &+8 26 | +0(P) (A.25)
0 0 g+¢& A

Thus, from Eq.(A.18) X can be expressed as:
X=X +f® 430 x X+ 2D + 3@ x X'+ SHI' + 0(e%) (A.26)

where
€?H = Z[D@]! (A.27)

If X’ is a fixed point vector, the velocity is

k4

L O .
g=X=cf +&V xRN+ +&? x X+ SHX +0(S) (A28)

where the dot e denotes time derivative. )

Let % be a unit vector normal to the body, directed into the body In the
O'z'y'2" axes, the same vector is denoted by # #!. Since # does not depend on
the translation vector £, from (A.19) to (A.24) it is represented by

=7 + @ x @'+ 2[@@ x @] + EHR' + 0(°) (A.29)

while a rotational normal vector is obtained from vector products of (A.26) and

(A.29) as

Xxit = X'xid' +Ex @ +@x (X' x ") +Ex (@ x 7))+ 2H(X' x ') +0(e®) (A.30)
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since the following vector relation holds:

Ax(BxN+Bx(CxA)+0x(AxB)=0

Next we shall consider a kinematic condition on the body itself. We as-
sume that the body surface can be described in O'z'y'z' axes (the body fixed
coordinate system) by an equation of the form

'S'(a:', y,Z)=0 (A.31)
or in Ozyz axes (space fixed coordinate system)
S(z,y,2,t)=0 (A.32)

The hydrodynamic problem forces us to use the Ozyz coordinates, in which the
unit normal on § = 0 is a function of time. So we reinterpret (A.31):

§'(2,y, 2) = 0 specified the body surface in its equilibrium position,
and we use the transformation of coordinates to express 7 in terms of
#', the unit normal vector to the body surface in its mean position.

As noted earlier,(A.29) provides this relationship. In order to avoid any possible
ambiguity, we shall use the following notations:

S : exact wetted surface, described with respect to Ozyz axes (S(z, v, 2,t) = 0);

S’ : exact wetted surface, described with respect to O'z'y’z' axes (S'(z', ', 2’ ) =
0); : . :

Sm : wetted surface of the body in its equilibrium condition {(S'(z, y,2) = 0).
The boundary condition is
AV® =Zed onS - . (A:33)

where @ is the velocity of the surface §. Equation (A.28) gives % in terms of
the vector X' of a body point in the body fixed coordinate system, but we
reinterpret X' as the position vector in the Ozyz axes of that body point when
the body is at rest. So, if we replace X’ by X in (A.28) and consider X as a
point on the surface S,,, then (A.28) gives the actual velocity of that point on
the body, but referred to the location of the point on S,,. Similarly, we use
(A.29) to give the actual normal vector, but referred to the corresponding point
on Sg. : '

In (A.33) V® has to be evaluated. We assume that the velocity potential and
its derivatives can be evaluated on the exact surface through Taylor expansions
with respect to points on the mean surface:

-V® = eV +2Vpy + O(e®) - (A.34)



and o Do
Vo, = Vol +[(X = X')V]Ve™ +--+ on Sp,  (A.35)
where (X — X') is given by (A.26)."

Substituting (A.35) into (A.34), and using Eqs.(A.23) and (A.24), Eq (A.34)
can be expanded by the quantities of the body surface S,, as:

V& = Vol + (Ve +[(ED + 3D x X")V]w;"}+ O()  (A.36)

Now, when all of the terms are organized according to powers:of ¢, we have the
pairs of conditions: :

' o O BT C T ' o o
O(e) :@'Vol'=# [£ + ¢ x X'l onSm (A.37)
o) @Vl = n'[g + 3P x X+ HE - (8D + 5D x X)V]Ver
+(@® x )@ +3Y X’) Vo] ; (A.38)

where all qua.ntltles on the nght hand sides are to be evaluated on Sy,
Condition (A.37) is familiar from ship motion theory. In (A.38), the left hand
side and the first term on the right.hand side are identical to (A.37) except that
the index 1 is replaced by 2. With respect to the other terms on the right hand
side, it is observed that. the second term accounts for nonlinear effects included
in the velocity @, the third term corrects for the fact that #'Ve]* in (A.37) is
figured on the mean position of the body instead of on its instantaneous position,
and that the last term accounts for the difference in direction between # and 7.

A.4 Force and ;mom‘ent

The three components of force and three components of moment on the body
can also be expressed initially as follows:

F}(t):/Ln;pdS (i:l,.;,G) | (A‘39>,

where S is the exact wetted surface of the body, and - p = p(z,¥y,2,1) is the

fluid pressure on the body surface. The six quantities n;, defined in (A.29) and
(A.30), must be evaluated instantaneously as functions of time.

In order to proceed further analytically, we transform the mtegra.l over S into
an integral over S,, the wetted surface of the body in its equilibrium position
in calm water. This requires two kinds of adjustments.

The first is that since S is displaced and Totated with respect to Sy, we
must express p and n; in terms of their values on Sy, . For the latter, we use
(A.29) and (A.30), the primes now denoting qua.ntltles evaluated on .S,,. For
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P, we assume that values on S can be obtained in terms of a Taylor expansion
with respect to Sy,

pls=pls. +(X - X')Vp) s, +--- (A.40)

Since p contains a hydrostatic pressure term, —pgz, the first term on the right
hand side is O(1) and the second term is O(¢). But the hydrostatic pressure
has no effect after the second term of the expansion, and so the first unwritten
term is actually O(e3).

The other is that the integration over § is to be cairied right up to the
water surface, z = (, but the integration over S,, goes up only to z = 0 which
is equivalent to z = £3 + y€4 — z¢5 on S ( as shown in Fig.A-2). Let AS be the
part of § between z = £3 + yé4 — x€5 and z = ¢. Then, to second order,

€[( €31 —yEa1+als1 ]+
// n;pdS = ._p/ dl/ s
AS » o

x(n} + -+ Mgz + eloTs + g(€a1 + véar — v€s1)] + -}
(A.41)

where C,, is the intersection of §,, and the plane z = 0, and in the double
indices, i.e. &, the first, 1, denotes the orientation of the axis, and the second,
Jj, shows the term in the perturbation expansions. On the right hand side, we
can now drop the prime on n!, since the indicated domain of integration makes
it clear that n; is being evaluated on the mean position of the body. Two further
simplifications can be made consistently:

(2,9, 2) = ni(x, 9,0) + O(e)

¢1:(2, 9,2, 1) = oT(2, 9,0, 1) + O(e) = —g(i(=, 3, 1)

So Eq.(A.41) can be evaluated as:

[ mivas=-2e§ amic o -sta+atal  (ra2)
AS Cm '

Now let us consider the force. We have divided S into two parts, i.e. the main
integral over S, and the integral given by (A.41). Organizing the results by
order of magnitude, we obtain

F = —p_qu'c’
—fl’{//s RpdS + gAwp (€1 + ypéa — 11»';{51)75}

- V ? | ! -], m
= [ [ e+ oL 4 @0 4 500w Ryvop + 1w epas



-—%62 fc dIR[(E — 201 (€31 + yéar — zés1))]

+g€® Awp{(¢32 + y;&z ~ z7€51) + o1 (2 €01 + ypés1)}E + O(€%)  (A.43)
where
F = unit vector in 2 direction
L, X = normal and point vectors in the body-fixed coordinate system

V = volume of displaced water at equilibrinm

V:// zdxdy:// xdydz:// ydzdz
: Som Sum Sm

Awp = area of water plane at equilibrium
zy = position of longitudinal centre of flotation

ys = position of transverse centre of flotation

' 1
zfAwp = // zdzdy = —fa,jdy
; s, 2
1
yrAwp = // ydzdy = —fyzd:z
Som 2

Next we divide the first and second order potentials into three parts in the
following forms:
I d 4 .7
1 =t erter A
44
OF =l + o+ ¢} | (A4)
where the indices I,d, and r denotes the incident wave potential, diffraction
potential, and radiation potential respectively. Furthermore, we decompose

Eq.(A.43) as :
F= PO (PO 1 D 4 FOy _ 2(1353)4@(;21)) D) +0() (A45)

where the indices, W, HD, and HS denote the wave {force, the hydrostatic force,
and the hydrodynamic force respectively. Then, organizing the results by order
of magnitude, we get:

o(1): FQ =,p4VE (A.46)
o@: B = [[ weli+atyis (A47)
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FQ) =p / / w7, dS (A.48)
Sm
F}}; = pgAwp(éa1 + y5éar — 3»'/651)75 - (A.49)
o): FP =24 @it - (€ +én - st

] o + oo+ L 4 (@0 4 50 ¢ Ryvomias

+a® x _13(1) + pgAwper(zséar + ypési)E (A.50)
F& = / / AL, dS (A.51)
F}% = pgAwp (€32 + yséaa — fb‘f{sz)iﬂ._ (A.52)

where in order to lead (A.50) the following relation is used.

/ i (@M x R)p1,dS — —f dii[¢? — 2(1(531 + yéa1 — x€s51)]

=g x FO _ Efc dli[¢y — (€31 + véar — z51)] (A.53)
where . :
FO = FD 4 FG) + F§) (A.54)

' From (A.50) it is found that the second order force, i.e. Fg), consists of the

following five terms:

(1) The first term is the component caused by fluid pressure between mean and
instantaneous wave surfaces

B2 =24 aimo - (ntota-agl?  (A)
Cm

(2) The second term comes from the quadratic pressure term in the Bernoulli
equation.

F® = / f #|Ver|2dS | (A.se)

(3) The third arises from the variation of the acting point of fluid pressure.



oo, / / F{(E® + 80 x XYV }ds (A.57)
Sm

(4) The fourth comes from the variation of direction of first order wave force
with respect to rotation of a body.

F® =g x pO) | (A.58)
(5) The last term is the component due to second order potentials
=, / /S (ol + ¢3)dS - (A59)
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Appendix B

Estimation of Cross
Bispectrum

FFT, BT and MEM method have been used as the estimation of auto and cross
spectra. But the general estimation of bispectra has not been developed so far.
In this section, we shall introduce the Dalzell’s method?) as one example of the
estimations of cross bispectrum.

Since the sample(one record obtained by experifnents) is necessarily finite, it
is possible only to estimate cross bispectral averages rather than actual densities:

G0, ) = / H(3,2)C( + D3, Qg + Q4)dadS2y (B.1)

where the average H(f3, (Q4) is weighted by the kernel function, which is called
“eross bispectral window”. The window by analogy with scalar spectrum analysis
must take a peak at a bi-frequency (0.0,0.0), fall off rapidly elsewhere, and
remain near zero away from the peak. As for a usual scalar spectrum analysis,
a too-broad window makes the estimates bad and a too- narrow window with
respect to sample length increases the variance of the estimate. It is clear that
since the window is for averaging over frequency, its integral should be unity;

/ / H(Q,04)dQad0y = 1 (B.2)

Because the data is sequentially sampled at time interval At, bi-frequencies
outside the principal range:

<<%
—F << £

are aliased with those inside. It is assumed that the data is sampled at a
sufficiently short time interval so that the cross bispectrum is negligible outside



the principal range. According to Dalzell’'s work?, the time interval should
- be about half the interval for a scalar spectrum analysis. Because the data is
sampled sequentially, a lag window of the form:

W, m) =YY ajbed(n — jAL)S(r, — kAL) (B.3)
F N

is chosen, where the a; and b; are real, and §(¢) is the Dirac’s delta function.
Then the cross bispectrum estimate is given by:

m n
C(, )= > Y. Rypx(—iAt,—kAt)abe exp{iAt(iQ + kQ2)} (BA4)
j=—mk=—n )

This estimator involves the third order correlation function. Setting time, that
is, £ = nAf, the correlation function can be expressed by the form readily
available with the sequentially sampled data as:

Rypx(~jAt, —kAl) = E[fi(nAt+jAt)i(nAt—jAL){ X (nAt+kAt)-X}] (B.5)

The expected value is conventionally estimated by a summation over the avail-
able sample divided by the sample length and this interpretation is followed so
that

BGR) = o7 (n+ i)' (a = )X (n+ )

= Ry, x(—jAt, —kAY) (B.6)
where:
N' = number of products summed
7'(n) = wave elevation time series corrected to zero sample mean

X'(n) = nonlinear response time series corrected to zero sample mean

Next, the main problem is to construct the cross bispectral window H (23, 24).

Considering m and n as maximum lags, Eq.(B.4) becomes:

5 ey . .h I
S(, ) = j_Z_jm ,Z_:,, R(j, Kasbe explin(i > + 5=} (B.7)
where ; = ;n’%;,ﬂz = ﬁ%.
In choosing the cross bispectral window, it was assumed that the natural
choice would be a two-dimensional analogy with the spectral windows to be
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used in the estimation of the wave spectrum. The continuous lag wmdow cor-
responding to the scalar spectrum window is of the form: ‘

A(7) = gler + eo cos(ntzt i ' (B.8)

where e; and ey are coefficients of window function.

Since optimum window function for cross bispectrum estimate has not been
known yet, we détermined the coefficients as e; = 0.54 and ez = 0.46. These
coefficients are equal to ones of the Hamming type window function. In Eq. (B.3)
the lag window is a product, one factor for each lag variable. The factors may
be different. This would result in spectral windows differently shaped in the
sum and difference frequencies, as well as having different bandwidths. There
appeared no justification for a difference in normalized shape of the window. It
was assumed that a discrete version of the scalar spectrum lag window would
be appropriate for each of the factors, so that in Eq. (B.3) let:

a;(7) = gj[e1 + ez cos(ZL)}
L (B.9)
be(7) = qiler + > cos(-ﬂ‘-)]

where ¢; and ¢; are constants independent j and k and they are determined by
normalization condition, that is, Eq.(B.2). Since the cross bispectral window
H(23,84) and the lag window are a transform pair and thus:

H(Q,0) = (‘-'2"-’;3[ E (e1 + e cos(—))cos(At]Q3)]

j=-m

x[ Z (e1+e2 cos(——)) cos(AtkS2y)] (B.10)

k=-n

This result shows that the cross blspectra.l window is real and symmetric

in 7 and k, and is continuous in ; and 92 The window also has a period of

_ 2=
1= At”

Unknown consta.nts g5 a.nd 2 can be determmed from normahza.tlon COIldl-

tion, Eq.(B:2) as \
L= {(elél-tez)}2 ' (B.11)

Then the estimate of the cross bispectral a,vera.ges'becomes:

C($h, Q) = {—-—At—-}2 Z E (e1+e2 cos(—-))(el + e cos(—))
,21(61 +e2)

J_ —m k=—n
xexp{in(2 + 2oy S i 4 (o - j)X'(n‘+ H B12)



Multiplying AQ; @ A2, in the above equation and summing over all values of I,
and Iy, the integration of the cross bispectrum approaches the following form:

1 1
yr——— 0((nm)2 )

(0 0) — a0, 0+ L s L
A AQ, IIZ,, C(u, Q) = 4% R(0,0)[1 + st oot

(B.13)

Thus the estimate of the cross bispectrum has a error. But the error is small
compared with the true value and is negligible for practical values of m and n.

93

(481)



(482)

Appendix C

Viscous drift force acting
on a vertical circular
cylinder with small
diameter

The forces on a small vertical cylinder due to waves is represented by the Morison
equation. For a unit length of the submerged portion of the cylinder, the force
is given by:

CmprD?.  pDCy

fo= =i+

Jul (C1)

~ where u is a horizontal component of wave particle velocities, D is a diameter

of the cylinder, and C,, and Cy are inertia and drag coefficients.

If current is not included and the linear wave theory can be applied, a sur-
face elevation ((t) and the horizontal component of wave particle velocities are
represented in the following form:

¢(t) = % cos wt (C.2)
u(t) = H;,w exp(xz) coswt (C.3)

where H, is a wave height, x is a wave number, and w is a circular wave
{frequency.

Substituting the equations (C.2) and (C.3) into (C.1), the horizontal force
acting on the vertical cylinder can be expressed as:

¢
F, = / fodz
-h



CypDH2w?

O D?
=[- CmxpD"Hwrg sin wt +

8
exp(k() — exp(—kh
(E2e0) (o),
Thus if it is assumed that k( < 1, F, can be divided into the following two
parts( Fél) and Féz)):

cos wt| cos wi|]

(C.4)

2 2 2
FY = [—gﬂﬁpg—}{ﬂsm wt + -—qd—/%l-“i—ui—cos wt| cos wif]
1 —exp(—kh),
x{_.__m(___).} (C.5)
2 2,2
F® = [-—-C—'mwst——————Msin wt + C—de—?-s—q’”—u—)—cos wt|coswt|]¢ (C.6)

where %;-)- is the force per section area integrated over —h to 0.0 with respect to
z. It expresses a first order force when s¢ = O(e). And Féz) indicates a higher
order force and it does not depend on the draft. In Fj, the most important
term for the drift force is Fz(z), which can also be represented by the alternative
form like: ’ ,
Féz) =fs !z=0 x(¢ (07)

Namely this is the product of the wave elevation ¢ and the horizontal force per
unit length at the still water surface, that is, it is the wave force integrated over
the range from the still water surface to the instantaneous wave surface when
the horizontal wave particle velocity is distributed as shown by Fig.(C-1). Thus
the force expressed by Eq.(C.7) is called a “free surface force”.

Since the linear wave theory is applicable only for infinitesimal wave ampli-
tudes and it is valid up to the still water level, extension of expression for the
water particle kinematics up to the free surface of a finite amplitude wave is
questionable. Therefore in order to exactly discuss, it is necessary to use the
finite wave amplitude theory. But since our interest is to study fundamental
characteristics of a viscous drift force, we dare to use the linear wave theory.

By using the Hilbert transform, an out-of-phase component of the surface
elevation ( can be expressed by:

n(t) = -% /~ : (f-%df | (C.8)

Then the horizontal velocity Componeht ug on z = 0 is given by the derivative
of » as follows:

up = n(t) = %/_Z -(-Eg_(—-r%i-dr ' (C.9)

And similarly the horizontal acceleration becomes:

Up = 'r)('t) = —-% /°° —-—g—(z))—ad’r (C.IO)‘

oo (E—T
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From the characteristics of the Hilbert transform, it is easily found that ug is in
phase with (, and 4o out of phase with it.

It is well known that Cyq and C, in the Morison equation are the functions
of the Keulegan-Carpenter number and the Reynolds number. In addition, we
may assume that these hydrodynamic force coeflicients can also be represented
by a function of wave frequency.

f() = / g1(r)io(t — T)dr + / ga(rYuo(t = Dluo(t — T)ldr  (C.11)
Similarly applying this system representation for Eq.(C.7), F<? has:
F20) = [a(ryio(t -7 - ryir
+ / aa(uolt = Dluo(t = De(t = T)dr  (C.12)

Now, by using the equivalent linearization technique, ugluo| can be approxi-
mated in the following forms:

i) in the case that ¢ is a regular wave process,

4rH,w
3

ii) in the case that { is a Gaussian random process,

/8
u0|u0| = QUg = ;_'O',O‘uo (0.14)

where o,, is the standard deviation of u,.
Since « is afunction of wave frequency, it can be included in the system
function hy. Thus Eq.(C.12) can be rewritten as:

upl|uo| = aup =

Ug (0.13)

Ff)(t) = /;gl('r)'&o(t —7)(t—T1)dT + /hQ(T)U()(t -7)(t—-7)dr (C.15)

From the relationship between ug and {, the second term on right hand side
of the above equation includes a slowly varying drift force but-the first term
does not. Hereafter we shall consider only the second term in Eq.(C.15). From
Eq.(C.9),then, the second term can be represented in the following form:

FO@) == / r (hz(:l_))z((t—Tl)((t-—'rg)dndrz (C.16)

If we define the new function g9 by

hz(’l‘l) hg(’rg)
Tz+7'1) (’l'2+’7'1)2

92(7'1,7'2) [( ] ) (0.17)



F{? indicates the second term in Volterra functional series, that is, g9 is equiv-
alent to the quadratic impulse response function. Using the Fourier transform
of generalized function® as

/‘—00 zT™eT Yy = % sgn(y), (C.18)

the Fourier transform of Eq.(C.17) becomes:

G2(w11 wz) = -[Iwle(wl - wz) + lelQ(wl - “’2)] (0-19)

where @ is: ‘the Founer tra.nsform of ho. : : :
Finally, the quadratic transfer function of slowly varymg dnft force due to
viscous effect can be represented by: - ' ¢

Gz(wl,—wg),=,—}['lwgl,'@(wlxwz)+,,|w1|Q(w1+£uz.)1 ()

If the drag coeflicients Cy does not depend on the wave frequency and the waves
are the combined regular waves with two frequencies, the quadratic transfer
function G4 is proportional to the square of mean frequency of two wave compo-
nents. And if the wave system consists of a single-;frquex}cy wave, G2 becomes:

3
H Cdperw (C.21)

H,
Ga(w, —w)(—-)* =
This result agree with the result obtained by Standing and the others®), that is,

the viscous steady drift force is proportxonal to the wave a.mphtude to the third
power..
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Appendix D

'On the effect of exciting

short period disturbances
on the free and forced
oscillations for the system
with nonlinear damping

Free oscillation tests have been used for measuring the damping coefficient of a
ship or a floating offshore structure. Especially, since moored offshore structures
have a long natural period in surge motion in general and the damping force
is very small at this period, the experiment is one of the best ways to get the
damping force.

This appendix shows the analytical results on the influence of exciting high
frequency disturbances on free and forced oscillations for the system, the damp-
ing force of which is assumed proportional to the square of velocity, and it
concludes that the damping force coefficients increase by the exciting high fre-
quency disturbances.

D.1  Free osc1llatlon in regular high frequency
exciting disturbance

The free oscillation equation including exciting disturbance E(t) is described in
the fo]lowmg equation:

MX 4+ NX|X|+ KX = E(2) (D.1)



where M is the total mass coeflicient, N is the damping force coefficient, K the
spring constant, and the dots represent the derivatives with respect to time.
Considering Eq.(D.1) in the time when X becomes a negative value, replac-
ing E by BM cos(n.t) and dividing the both side of Eq.(D.1) by M, Eq.(D.1)
becomes as follows:
X -aX?4n?X = B cos(n.t) (D.2)

where a = ﬁ,’rﬂ = 111{4’ and n and n. are unequa.l

o 1s small, the solution of Eq.(D.2) and n? can be expanded by c. Na.mely,
X and n? are expressed in the following form:

X=Xo+oXi+a?Xy+---

(D.3) .
n? :n%-}-anf-}-oﬁng-}-n-
Substituting Eq.(D.3) into Eq.(D.2) and ordering Eq.(D.2) in term o.
O(1): Xo+n3Xo = Bcos(net) (D.4)
O(e): Xi+n2Xi=X2-22X, (D.5)
O0(a?): Xp+n2X;=-n2X; —n2X, +2XoX; (D.s)

If the initial conditions of Eq.(D.2) are X =0and X = a, the initial conditions
corresponding to Eq.(D.4), (D.5), and (D.6) are as follows:

X0=G,X0=0 ‘
X = O,Xl =0 (D.7)
Xg:O,Xz:O : :

Accordingly, if the resonance phenomena do not occur -and the ratio between
the natural frequency no and the frequency of exciting disturbance n, is large

enough, the period of one cycle and the decaying ratio of amplitude a, are

obtained approximately by:

Qp41 4a 2182
el =
ap +of 3 3ak2)

where § = -’?2- and k = %2, From Eq.(D.8) it is found that the exciting distur-
bance exerts an influence on the decaying ratio of amplitude and the period of
one cycle. Thus, in the case of measuring the damping coeflicient from the result
- of free oscillation test, we must use the amplitude which satisfies the following
relation:

B
>
\/:?:nlne

(D.9)

(’D.é)"
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Let us confirm the above result by the numerical calculation. As a free oscﬂla.tmn
equation, we con:«uder the following equation: ‘

X+ X|X|+9X =Bsin(308) . (D.10)

The numerical results calculated for both 8 = 0 and 8 = 10 by use of Runge-
Kutta-Gill method when the initial conditions are X = 0 and X = 1 are shown
in Fig.D.1. From this figure it is found that the decay of a.mphtude in exciting
disturbance is-larger than that in still water. Furthermore it is'confirmed that
the effect of exciting disturbance occurs within - '

an < 0.08 ; (D.11)
calculated by Eq.(D.9).

D.2 Forced oscillation in exciting disturbance

When the regular and irregular exciting disturbances are added into the oscilla-
tion system with nonlinear damping force, the differential equation of oscillation
can be expressed in the following form:

- MX + f(X)+ KX = Ei(t) + Ex(%) - (D.a12)

where M, N and K are the same coefficients in the previous section, f(X) is the
nonlinear damping force and E; and E, are the regular and irregular exciting
disturbances, respectively.

If the nonlinearity of Eq.(D.12) is not so strong, it is considered that the
response of Eq.(D.12) can be represented in sum of the linear responses due to
E, and E2. Namely, if z; and z; are the linear velocity responses due to F1
and E2 respectively, the nonlinear velocity response may be expressed in the
following representa.tlon ‘

f(zl + z2) ~ K121 + K229 (D.13)
So, we consider the following functional
J= E[(Nf(zl + 2‘2) - K121 — K222)2] (D.14)

and determine k; and k2 such that minimize J, that is, we shall apply the so-
called equivalent linearization method. Then the Equivalent Linearized Damp-
ing (E.L.D.) coefficients x; and &2 are given as follows:

_ Elznf (a1 + 22)]
B2

= o.i%./_w/_oozlf(zl + 22)p1(21)p2(22)d21d2g (D.15)

K1



ke = Elzaf (21 + 22)]
ke = --—-———-————-E[z ]

/ / zgf(zl + 22)}71 (zl)pg(zz)dzld22 | (D.16)

where Efe] denotes the expectation, p;(i = 1,2) are the probability density
functions of 2;(i = 1,2) and ¢%(: = 1,2) are the mean square of z;(: = 1,2).
By use of the characteristic function ¢; for 2; and the Fourier transform F' for
f(z), Eqs.(D.15) and (D.16) can be rewritten in the form:

i

Kj = — = [.ooF(z'g)ztﬁk d—‘i-dw (5, k=1,2,7 #£k) (D.17)

2'xaj

where

$i(w) = / exp(iwz;)p;(z;)dz  forj =1,2

-—00

F(iw) = / ” exﬁ(iiwaa) f(d:)d&:

Let us now apply for the osc1lla.txon system with nonlinear da.mpmg force f (X ) =

X|X). I 2 is Asin(wt) and’ 2, is the, zero-mean statxona.ry Gaussian process,

the E.L.D. coefficients k; and ko are glven by:

— / JI(A“’) xp(— "{:’ Ydw (D.18)

/ J"(A“’) p "2“' Ydw (D.19)

where Jy and J; are the Bessel functions of the fist kind.
Considering the following relation

_F(%—%+1) a?

0 _pey-lg = a3t e
o () exp(=b22)rdt = e s exp(~ )

2
(v (LB LA
3(26) 1F1(2 5 TLv+ligs )(D.20)
Egs.(D.18) and (D.19) can be expressed in the form:
8 A? - A2
Ky = \/;'0'2 exp ———')1F1(2.5; 2; 5—-—5) (D.21)
L 8 o .
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where I is the Gamma function and ; F} is the confluent hypergeometric function®.
From Eqgs.(D.21) and (D.22) it is found that the E.L.D. coefficients change with
the energy ratio between z; and z,.

When o > «, the asymptotic expansion of 1 F} (03; 2) for the large value of
|2} is as follows: '

F . ’
1Fi(a;932) ~ I‘éz; exp(z)z®™" | (D.23)
Accordingly, when 5‘%— >1,
84
~ — .24
K 3r - (D.24)
44
~ —_— .25
et ©.29)

The result of Eq.(D.24) is identical with that of only Ej.

A2 :
When 267 <1, .
Ky =Ko~ \’-78?72 (D.26)

This result coincides with the result for pure Gaussian input E,. F igures D.2
and D.3 show the calculated results of x; and x5. From these figures it is
found that the interaction effect due to two exciting disturbances on the E.L.D.
coeflicients is large. The energy dissipation consumed by nonlinear damping
can be expressed as follows: ‘ ‘ '

2
E = nl%- 4+ Kgﬂg

[8 5. A? A?
=4/= —_— 2.5;1; — 27
72 exp( 20%)1F1( 5 1; 20,%) (D.27)
When 24% >1, :
— 4 3
E~ ;;A , (D.28)

In this case, the energy dissipation consumed by nonlinear damping is identical
. . . - . 2
with that due to the sinusoidal exciting disturbance. When -2‘-“;;- <1,
2

E~ \/-itag _ (D.29)

This result coincides with the energy dissipation due to random exciting dis-
turbance. The calculated result of Eq.(D.27) is shown in Fig.D.4. From this
figure it is found that the energy dissipation due to two exciting disturbances
is larger than that due to pure regular exciting disturbance, further than the
sum of the energy dissipations due to regular and irregular exciting disturbances
respectively.



Appendix E

Instantaneous p.d.f.‘ of

total second order response

based on the Kac & Siegert
theory

We shall consider a second order functional series as:

X(t) = / a(r)e(e = 7)ir + / ! / () = ) = )i

(E.1)
=XW 4 x® (E.2)

Now considering ((¢) as transformed “white noise” process, and denoting by
g(t) the appropriate impulse response function of the linear filter giving ¢(¢)
from white noise process W(t), it follows that

o= [ amwi=ryr (E:3)
~00
where ¢(7) is a weighting function and W(t) is a unit white noise which satisfies:

EW@W(t - 7)] = 6(r) (E.4)

Substituting ((¢) as given by Eq.(E.3) into Eq.(E.1), we get the following rela-
tions:

XO(3) = / T bWt = 7)dr (E.5)
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where o
ki(7) = L 91(8)g(r — s)ds (E.6)
and
X(z)(t) = A /(; kz(Tl, T2)W(t - Tl)‘W(t - Tg)d’TldTg (E.7)
where

ko(m,72) = /0 ” /(; wgg(u,v)q(ﬁ - u)q(ﬁ - v)duc‘lv' ‘ (E.8)

Since ¢, g1, and g should be filter functions with physical causality, they must
vanish at mﬁmty, and for practical purpose they may be considered zero outside
a bounded region. Thus we shall consider T, which is sufficiently large, as the
integral upper limit of the above equations.

. Now, we shall consider the following integral equation :

/0 " (o, DA@)dy = MA() | (£.9)

Then this integral equation becomes the Fredholm type integral equation. Since
ka(z,y) is symmetric kernels, it can be shown from the Fredholm type integral
equation theory® that

1) the eigenvalues and the corresponding eigenfunctions exist,
2) the eigenfunctions are mutually orthonormal,
3) the elgenva.lues are all rea.l

4) the Mercer’s theorem can be applied to express the posmve semi -definite
kernel as

) = TAM@AG) (E10)

. - 1=t
Substltutlng the above rela.tlon into the Eq. (E 7), we have

X0 = Al / M)W (= i (E.11)

ci=1

If the stochastic process W;(t),i = 1, 2,..., are defined as

. ..
Wi(t) = /0 W(t - r)Ai(r)dr (E.12)
Eq.(E.11) becomes | : :
XO3) = AW (E.13)
=1



Furthermore from the relation (E.3) and the orthonormality of A; , it can be
seen that

EW,()W;(t)] =0  fori#j  (B14)

Tlus means that W;(t) and W;(t) are uncorrelated random variables and there-

fore independent, since they are Gaussian, and that E[W?(t)] = 1,{W;} is the
family of the standard Gaussian random variables.
Similarly we expand- the kernel k; in terms of the eigenfunctions {A } as

kl('r) = Z c,'A,-('r) . . . . : (E.15)

i=1
where ‘ SEVIRE C
T (

6 = / ky(r)As(r)dr (E.16)
0 , ,

Then substituting Eq.(E.15) into Eq.(E.5) we have:

(o <] .

XD(y=3Y" eWi(t) : - (B17)
izl )

This leads to the following decomposition of the total second order response
process:

X(t) = Z(C,W(t) FNWEE) (B18)

The instantaneous p.d.f. can be obta.ined from the inverse Fourier transform of
its cha.ra.cterjstic function. The chara.cteristic function is deﬁned by

¢X(o) . Elexp(iX)] = HE[exp{w(c,W WO (B19)

J=1

Since W; have the p.d.f as

ow,(2) = \/%exp(i;) (E.20)

by using the following identity:

[ 2 " : ‘ t2 .
/;oo exp(itz — '%)dx = \/%}exp(—ﬂ) ff)r a>0 o (E21)

the characteristic fanction can be rewritten as
2 92

¢x(0) = H\/T 2-(1 23,0))

(E.22)
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By the inverse Fourier transform of the characteristic function the instantaneous
p-d.f. becomes:

o0

px(z) = 2—1,‘_— ¢x(0) exp(—ibz)do (E.23)

-0

Next we shall consider the integral equation (E9) It can be simplified by
defining :

T .
¥i(t) = / g(u —t)A;(v)du, O0<Lt<LT (E.24)
0

Then the integral equation (E.9) can be rewritten as

T
/0 Fa(t, w)s (w)du = At (t) (E.25)

where T ‘
Falt,u) = /0 Re(t - r)ga(r, u)dr (E.26)

The new set of eigenfunctions {¢;} will satisfy the following normalization re-
lation

T T
/ / gg(Tl,Tg)iﬁ,‘(Tl)’l/Jj(Tg)dTldTg = )\,‘6,‘j (E.27)
o Jo
where 6;; is the Kronecker delta and the parameters ¢; are determined by
' T
6 = / g1(TWi(r)dr (E.28)
0 .
If the time domain kernel go(m1,72) is known, the integral equation may be
solved to obtain eigenvalues and eigenfunctions. However, it seems to be more

common to obtain these values and functions in frequency domain than to do
in time domain. For this purpose we define the Fourier transform of ;(t) as

e o]
Bi(w) = — / i) exp(—iwt)dt (E-29)
27 Jo oo
Then we obtain the frequency" domain integral equation as follows:
o0
/ Se(w)Ga(w, =) (1)dv = A ¥ () (E.30)
- 00 .

where S¢(w) is the two-side wave spectrum.
Equation (E.30) may be rewrittén as

* K(w, V)‘If;(u)du = XV (w) (E.31)

-00



where the kernel K(w,v) is defined by

K(w,v) = /8¢ (w)S¢(v)Ga(w, —v) (E.32)

and the eigenfunctions ¥;(w) by

W, (w) = 4 / S( (w)\il;(w) (E.’33)

~ Since Gy is symmetric, it follows that K(w, v) = K(v,w), that is, K(w,v) is the
Hermitian. Since the eigenfunctions A; are all real, ¥;(—w) = ¥¥(w) and the
normalization condition is o ' : ' :

/ " () (w)do = 6 (E.34)

—00

Equation (E.28) for ¢; becomes

= [_: G (w)y/Se (@) (w)dw (E.35)
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