Table 4.13	Measured Data	of	Propeller	Open	Characteristics	of	DTMB	Propeller	by	Using	H38	in	Cavitation
	Tunnel												

MPNo. 341; DTMB Prop. by H38 n=40rps, Tw=10°C α / α s=0. 32

NON-CAV.

J	Kt	10Kq	ηο
0.385	0.272	0.454	0.367
0.437	0.254	0.435	0.406
0.488	0.237	0.416	0.442
0.539	0.219	0.396	0.474
0.590	0.199	0.374	0.500
0.641	0.181	0.354	0.522
0.692	0.164	0.328	0.551
0.744	0.145	0.306	0.561
0.775	0.133	0.292	0.562
0.795	0.125	0.282	0.561
0.846	0.105	0.259	0.546
0.896	0.083	0.233	0.508
0.948	0.059	0.205	0.434
0.998	0.035	0.176	0.316

σ	v=0.6			
J		Kt	10Kq	ηο
	0.546	0.093	0.198	0.408
	0.664	0.114	0.197	0.612
	0.694	0.133	0.234	0.628
	0.745	0.133	0.242	0.652
	0.775	0.120	0.228	0.649
	0.795	0.107	0.212	0.639
	0.897	0.074	0.176	0.600
	0.947	0.048	0.141	0.513
	1.000	0.009	0.081	0.177
σ	v=0.4			
J		Kt	10Kq	ηο
	0.775	0.111	0.208	0.658
	0.796	0.104	0.200	0.659
	0.846	0.085	0.178	0.643
	0.896	0.063	0.148	0.607
	0.950	0.032	0.101	0.479
	1.000	0.005	0.054	0.147

σ	v=1.0			
J		Kt.	10Kq	ηο
	0.543	0.120	0.205	0.506
	0.592	0.133	0.229	0.547
	0.643	0.138	0.241	0.586
	0.693	0.142	0.253	0.619
	0.743	0.138	0.256	0.637
	0.774	0.129	0.248	0.641
	0.795	0.122	0.242	0.638
	0.845	0.102	0.219	0.626
	0.897	0.078	0.193	0.577
	0.947	0.053	0.162	0.493
	0.999	0.025	0.128	0.311

σ	v=0.5			
J		Kt	10Kq	ηο
	0.694	0.120	0.210	0.631
	0.745	0.123	0.224	0.651
	0.774	0.120	0.224	0.660
	0.795	0.114	0.217	0.665
	0.845	0.096	0.197	0.655
	0.897	0.071	0.165	0.614
	0.948	0.043	0.126	0.515
	1.000	0.004	0.062	0.103

MPNo. 345;SSPA Pr n=40rps, Tw=11°C α/α s=0. 30	op. by J26	
NON-CAV. J Kt 0.990 0.321 1.040 0.301 1.090 0.280 1.141 0.260 1.193 0.241 1.244 0.223 1.294 0.206 1.345 0.191 1.395 0.172	10Kq 7 0 0.877 0.576 0.836 0.596 0.795 0.611 0.755 0.625 0.715 0.640 0.679 0.650 0.642 0.661 0.607 0.673 0.567 0.674	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \sigma \ v=0.6 \\ J \ Kt \\ 0.793 \ 0.175 \\ 0.843 \ 0.176 \\ 0.893 \ 0.177 \\ 0.943 \ 0.183 \\ 0.993 \ 0.193 \\ 1.043 \ 0.200 \\ 1.093 \ 0.207 \\ 1.143 \ 0.210 \\ 1.194 \ 0.206 \\ 1.245 \ 0.185 \\ 1.295 \ 0.180 \\ 1.345 \ 0.183 \\ 1.396 \ 0.165 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\sigma v=0.5$ $J Kt 10Kq 7 o$ $0.793 0.170 0.461 0.465$ $0.843 0.171 0.466 0.492$ $0.893 0.171 0.469 0.518$ $0.944 0.171 0.471 0.545$ $0.994 0.172 0.477 0.570$ $1.044 0.181 0.496 0.606$ $1.094 0.188 0.509 0.643$ $1.144 0.193 0.518 0.678$ $1.194 0.195 0.530 0.699$ $1.244 0.178 0.504 0.699$ $1.295 0.172 0.502 0.706$ $1.346 0.182 0.534 0.730$ $1.395 0.168 0.507 0.736$
$ \sigma \ v=0.4 \\ J \qquad Kt \\ 0.793 \qquad 0.167 \\ 0.842 \qquad 0.167 \\ 0.894 \qquad 0.166 \\ 0.944 \qquad 0.166 \\ 0.994 \qquad 0.164 \\ 1.044 \qquad 0.163 \\ 1.094 \qquad 0.167 \\ 1.145 \qquad 0.173 \\ 1.195 \qquad 0.176 \\ 1.245 \qquad 0.170 \\ 1.295 \qquad 0.161 \\ 1.345 \qquad 0.175 \\ 1.396 \qquad 0.157 \\ \end{tabular} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	· · · · · · · · · · · · · · · · · · ·

Table 4.14 Measured Data of Propeller Open Characteristics of SSPA Propeller by Using J26 in Cavitation Tunnel

 $\dot{22}$

Table 4.15Measured Data of Propeller Open Characteristics of SSPA Propeller by Using H38 in Cavitation Tunnel

MPNo. 345; SSPA Pr n=40rps, Tw=10°C α / α s=0. 28	op. by H38		
NON-CAV. J Kt 0.990 0.326 1.040 0.303 1.090 0.281 1.141 0.259 1.194 0.237 1.245 0.218 1.295 0.201 1.346 0.182 1.396 0.162	10 Kq 7 0 0.886 0.580 0.841 0.597 0.798 0.611 0.755 0.623 0.712 0.633 0.675 0.640 0.636 0.652 0.596 0.654 0.552 0.652	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{ccccc} \sigma \ v = 0.\ 6 \\ J & Kt \\ 0.\ 792 & 0.\ 181 \\ 0.\ 843 & 0.\ 182 \\ 0.\ 893 & 0.\ 185 \\ 0.\ 943 & 0.\ 185 \\ 0.\ 943 & 0.\ 188 \\ 0.\ 993 & 0.\ 194 \\ 1.\ 043 & 0.\ 199 \\ 1.\ 092 & 0.\ 204 \\ 1.\ 144 & 0.\ 207 \\ 1.\ 194 & 0.\ 193 \\ 1.\ 246 & 0.\ 176 \\ 1.\ 295 & 0.\ 168 \\ 1.\ 347 & 0.\ 162 \\ 1.\ 397 & 0.\ 147 \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \sigma \ v=0.5 \\ J \qquad Kt \\ 0.793 \qquad 0.176 \\ 0.842 \qquad 0.178 \\ 0.892 \qquad 0.177 \\ 0.943 \qquad 0.177 \\ 0.994 \qquad 0.179 \\ 1.045 \qquad 0.183 \\ 1.093 \qquad 0.188 \\ 1.144 \qquad 0.191 \\ 1.194 \qquad 0.187 \\ 1.245 \qquad 0.169 \\ 1.296 \qquad 0.156 \\ 1.346 \qquad 0.143 \\ 1.396 \qquad 0.143 $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 Kq 7 0 0.452 0.516 0.453 0.543 0.452 0.572 0.448 0.600 0.446 0.626 0.450 0.650 0.464 0.679 0.472 0.701 0.452 0.684 0.432 0.688 0.432 0.694		

(213)

α / α s=0.28						
NON-CAV.			σ v=1.0			
J Kt	10 K q	ηο	J	Kt	10 K q	η
0.940 0	. 344 0. 890	0.578	0.691	0.202	0.520	•
0.989 0	. 324 0.849	0.601	0.790	0.236	0.597	
1.040 0	. 303 0.808	0.621	0.840	0.247	0.623	
1.091 0	. 283 0. 765	0.642	0.890	0.258	0.648	
1.141 0	.265 0.728	0.661	0.941	0.264	0.665	
1.193 0	. 248 0. 695	0.678	0.991	0.267	0.675	
1.243 0	. 232 0. 662	0.693	1.042	0.260	0.669	
1.294 0	. 217 0.630	0.709	1.092	0.236	0.633	
1.343 0	.201 0.597	0.720	1.143	0.218	0.604	
1.395 0	.185 0.562	0.731	1.194	0.202	0.579	
1.446 0	. 170 0. 531	0.737	1.244	0.193	0.569	
1.496 0	.154 0.498	0.736	1.294	0.201	0.595	
1.597 0	.115 0.415	0.704	1.294	0.206	0.608	
			1.344	0.188	0.572	
			1.396	0.176	0.545	
			1.446	0.165	0.521	
			1.496	0.150	0.490	
			1.597	0.105	0.394	
σ v=0.6			σ v=0.5			
J Kt	10 K q	η ο	J	Kt	10Kq	η
0.693 0	. 174 0. 453	0.424	0.741	0.174	0.451	
0.743 0	. 179 0. 467	0.453	0.792	0.178	0.462	
0.792 0	. 183 0. 478	0.483	0.842	0.179	0.468	
0.842 0	. 186 0. 488	0.511	0.892	0.180	0.473	
0.892 0	.194 0.508	0.542	0.943	0.182	0.479	
0.943 0	. 201 0. 525	0.575	0.994	0.190	0.497	
0.993 0	. 212 0. 550	0.609	1.044	0.198	0.515	
1.042 0	. 219 0. 563	0.645	1.093	0.205	0.529	
1.092 0	. 221 0.569	0.675	1.144	0.200	0.523	

1.346

1.396

1.446

1.497

1.599

0.145

0.134

0.118

0.101

0.025

0.449

0.428

0.401

0.378

0.239

0.692

0.696

0.677

0.637

0.266

Table 4.16 Measured Data of Propeller Open Characteristics of SRIJ-I Propeller by Using J26 in Cavitation Tunnel

0.189

0.121

0	1
4	4

MPNo.356;SRIJ-II Prop. by J26 Tw=21°C α/α s=0.30	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
1.600 0.034 0.195 0.444 σ v=0.4 n=40rps Jv Kt 10Kq 70 0.793 0.153 0.379 0.510 0.844 0.152 0.379 0.539 0.894 0.152 0.379 0.571 0.945 0.150 0.377 0.598 0.995 0.151 0.381 0.628 1.044 0.159 0.397 0.665 1.095 0.165 0.410 0.701 1.144 0.166 0.414 0.730 1.195 0.165 0.420 0.747 1.245 0.162 0.429 0.748 1.295 0.159 0.437 0.750 1.346 0.145 0.407 0.763 1.397 0.129 0.373 0.769 1.448 0.112 0.339 0.761 1.497 0.078 0.271 0.686	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Table 4.17 Measured Data of Propeller Open Characteristics of SRIJ-II Propeller by Using J26 in Cavitation Tunnel

Table 4.18	Measured Data of Propeller	Open	Characteristics	of	SRIJ-II	Propeller	by	Using	H38	in	Cavitation
	Tunnel										

MPNo.356 n=40rps. α/α s=0	: SRIJ-II Tw=19°C . 29	Prop. by	H 3 8
NON-CAV. J 0.887 0.939 0.990 1.041 1.191 1.143 1.194 1.245 1.294 1.346 1.398 1.447 1.498	Kt 0.342 0.295 0.271 0.248 0.224 0.205 0.187 0.167 0.127 0.127 0.108 0.085	10 K q 7 0.821 0.776 0.730 0.682 0.636 0.592 0.554 0.517 0.433 0.395 0.354 0.306	7 O 0.588 0.614 0.637 0.658 0.677 0.688 0.703 0.717 0.721 0.715 0.703 0.662
σ v=0.6 J 0.693 0.742 0.793 0.842 0.892 0.943 1.043 1.043 1.093 1.144 1.245 1.295 1.346 1.397 1.448 1.498 1.549 1.600	Kt 0.162 0.167 0.170 0.174 0.181 0.197 0.200 0.197 0.200 0.197 0.192 0.181 0.176 0.161 0.142 0.123 0.103 0.072 0.041 -0.004	10Kq 0.386 0.398 0.407 0.419 0.437 0.459 0.476 0.487 0.487 0.482 0.471 0.471 0.471 0.471 0.471 0.443 0.403 0.364 0.320 0.256 0.196 0.102	$\begin{array}{c} 7 & 0 \\ 0 & 4 & 6 & 3 \\ 0 & 4 & 9 & 6 \\ 0 & 5 & 2 & 7 \\ 0 & 5 & 5 & 7 \\ 0 & 5 & 8 & 8 \\ 0 & 6 & 1 & 8 \\ 0 & 6 & 5 & 5 \\ 0 & 6 & 8 & 2 \\ 0 & 7 & 1 & 1 \\ 0 & 7 & 3 & 3 \\ 0 & 7 & 3 & 0 \\ 0 & 7 & 4 & 2 \\ 0 & 7 & 4 & 9 \\ 0 & 7 & 5 & 5 \\ 0 & 7 & 5 & 1 \\ 0 & 7 & 4 & 2 \\ 0 & 6 & 7 & 1 \\ 0 & 5 & 1 & 6 \\ - 0 & 1 & 0 & 0 \end{array}$
σ v=0.4 ·J 0.794 0.843 0.994 0.994 1.044 1.095 1.144 1.195 1.245 1.296 1.346 1.397 1.448 1.499 1.550	Kt 0.159 0.160 0.159 0.158 0.159 0.161 0.165 0.165 0.165 0.166 0.148 0.129 0.015 0.078 0.078	10 K q 0.383 0.385 0.387 0.390 0.395 0.398 0.407 0.415 0.418 0.423 0.415 0.374 0.324 0.274 0.205 0.027	$\begin{array}{c} 7 & 0 \\ 0 & 525 \\ 0 & 558 \\ 0 & 585 \\ 0 & 609 \\ 0 & 637 \\ 0 & 672 \\ 0 & 702 \\ 0 & 724 \\ 0 & 728 \\ 0 & 728 \\ 0 & 731 \\ 0 & 736 \\ 0 & 739 \\ 0 & 721 \\ 0 & 656 \\ 0 & 524 \\ -2 & 650 \end{array}$

a v - 1 0			
1	Υ.t.	1010	70
0 692	0.188	0.457	0.453
0.742	0.205	0.499	0.485
0.791	0.220	0.536	0.517
0.841	0.230	0.532	0.579
0.891	0.239	0.578	0.586
0.941	0.244	0.591	0.618
0.992	0.245	0.597	0.648
1.042	0.243	0.598	0.674
1.092	0.233	0.585	0.692
1.144	0.213	0.551	0.704
1.194	0.200	0.538	0.706
1.245	0.184	0.503	0.725
1.295	0.165	0.466	0.730
1.346	0.144	0.425	0.726
1.398	0.127	0.387	0.730
1.447	0.106	0.343	0.712
1.498	0.085	0.300	0.676
1.548	0.060	0.248	0.596
1.599	0.023	0.172	0.340
σv=0.5	** .	104-	
σν=0.5 J	Kt	10Kq	η ο
$\sigma v = 0.5$ J 0.743	Kt 0.161	10Kq 0.386	7 0 0.493
$\sigma v = 0.5$ J 0.743 0.792	Kt 0.161 0.164	10Kq 0.386 0.393	700.493 0.526
σ v=0.5 J 0.743 0.792 0.843	Kt 0.161 0.164 0.165	10Kq 0.386 0.393 0.396 0.403	7 0 0.493 0.526 0.559
σ v=0.5 J 0.743 0.792 0.843 0.893 0.943	Kt 0.161 0.164 0.165 0.168 0.171	10Kq 0.386 0.393 0.396 0.403	7 0 0.493 0.526 0.559 0.592 0.620
σ v=0.5 J 0.743 0.792 0.843 0.893 0.943	Kt 0.161 0.164 0.165 0.168 0.171 0.177	10 K q 0.386 0.393 0.396 0.403 0.414 0.430	77 O 0.493 0.526 0.559 0.592 0.620 0.651
σ v=0.5 J 0.743 0.792 0.843 0.893 0.943 0.943	Kt 0.161 0.164 0.165 0.168 0.171 0.177 0.182	10Kq 0.386 0.393 0.396 0.403 0.414 0.430 0.443	7 0 0.493 0.526 0.559 0.592 0.620 0.651 0.683
σ v=0.5 J 0.743 0.792 0.843 0.893 0.943 0.944 1.044	Kt 0.161 0.164 0.165 0.168 0.171 0.171 0.182 0.182	10Kq 0.386 0.393 0.403 0.414 0.430 0.443 0.443	7 0 0.493 0.526 0.559 0.592 0.620 0.651 0.683 0.710
σ v=0.5 J 0.743 0.792 0.843 0.893 0.943 0.994 1.044 1.094	Kt 0.161 0.164 0.165 0.168 0.171 0.177 0.182 0.183 0.180	10Kq 0.386 0.393 0.396 0.403 0.414 0.430 0.443 0.443 0.443	7 0 0.493 0.526 0.559 0.592 0.620 0.651 0.683 0.710 0.732
σ v=0.5 J 0.743 0.792 0.843 0.893 0.943 0.994 1.044 1.094 1.144	Kt 0.161 0.164 0.165 0.168 0.171 0.177 0.182 0.183 0.180 0.175	10Kq 0.386 0.393 0.403 0.414 0.430 0.443 0.443 0.449 0.448	7 0 0.493 0.526 0.559 0.592 0.620 0.651 0.683 0.710 0.732 0.725
σ v=0.5 J 0.743 0.792 0.843 0.993 0.943 0.994 1.044 1.094 1.144 1.195 1.245	Kt 0.161 0.165 0.168 0.171 0.177 0.182 0.183 0.180 0.175 0.178	10Kq 0.386 0.393 0.403 0.414 0.430 0.443 0.443 0.449 0.448 0.459 0.478	7 0 0.493 0.526 0.559 0.592 0.620 0.651 0.683 0.710 0.732 0.725 0.738
σ v=0.5 J 0.743 0.792 0.843 0.993 0.943 0.994 1.044 1.094 1.144 1.195 1.245 1.245	Kt 0.161 0.165 0.165 0.165 0.171 0.177 0.182 0.183 0.183 0.180 0.175	10Kq 0.386 0.393 0.403 0.414 0.430 0.443 0.443 0.449 0.448 0.459 0.478 0.478	7 0 0.493 0.526 0.559 0.592 0.620 0.651 0.683 0.710 0.732 0.725 0.738 0.740
σ v=0.5 J 0.743 0.792 0.843 0.993 0.943 0.994 1.044 1.094 1.144 1.195 1.245 1.295 1.346	Kt 0.161 0.165 0.168 0.171 0.177 0.182 0.183 0.183 0.180 0.175 0.178 0.139	10Kq 0.386 0.393 0.414 0.433 0.414 0.443 0.443 0.443 0.449 0.448 0.459 0.478 0.478 0.443	7 0 0.493 526 0.559 592 0.620 651 0.683 710 0.732 738 0.740 737
$\sigma v=0.5$ J 0.743 0.792 0.843 0.893 0.943 0.944 1.094 1.094 1.144 1.195 1.245 1.295 1.346 1.397	Kt 0.161 0.165 0.168 0.171 0.177 0.182 0.183 0.180 0.175 0.178 0.139 0.139 0.139	10Kq 0.386 0.393 0.403 0.414 0.430 0.443 0.443 0.449 0.448 0.459 0.478 0.478 0.443 0.404	7 0 0.493 526 0.559 592 0.620 651 0.683 710 0.732 732 0.725 738 0.737 740 0.733 733
σ v=0.5 J 0.743 0.792 0.843 0.943 0.943 0.944 1.094 1.094 1.144 1.195 1.245 1.295 1.346 1.397 1.447	Kt 0.161 0.164 0.165 0.168 0.171 0.182 0.183 0.180 0.175 0.175 0.178 0.159 0.119 0.093	10Kq 0.386 0.393 0.403 0.414 0.430 0.443 0.449 0.448 0.459 0.478 0.478 0.478 0.403 0.361 0.305	7 0 0.493 526 0.526 592 0.620 651 0.683 710 0.732 725 0.738 740 0.733 733 0.702 732
σ v=0.5 J 0.743 0.792 0.843 0.993 0.943 0.994 1.044 1.094 1.144 1.195 1.245 1.295 1.346 1.397 1.447	Kt 0.161 0.164 0.165 0.168 0.171 0.177 0.182 0.183 0.180 0.175 0.178 0.159 0.139 0.119 0.193 0.093 0.093	10Kq 0.386 0.393 0.403 0.414 0.430 0.443 0.449 0.449 0.448 0.459 0.478 0.478 0.443 0.404 0.361 0.305 0.245	7 0 0.493 526 0.526 592 0.620 651 0.710 732 0.725 738 0.737 733 0.733 702 0.603 603
σ v=0.5 J 0.743 0.792 0.843 0.993 0.943 0.994 1.044 1.094 1.144 1.195 1.245 1.295 1.346 1.397 1.447 1.498 1.549	Kt 0.161 0.164 0.165 0.168 0.171 0.177 0.182 0.183 0.180 0.175 0.178 0.159 0.139 0.139 0.93 0.093 0.062 0.027	10Kq 0.386 0.393 0.403 0.414 0.430 0.443 0.448 0.459 0.448 0.459 0.478 0.443 0.443 0.404 0.305 0.245 0.245	7 0 0.526 559 0.559 592 0.620 651 0.710 732 0.725 738 0.737 737 0.733 0.702 0.603 0.389

26

Table 4.19 Measured Data of Propeller Open Characteristics of SRIJ-A Propeller by Using J26 in Cavitation Tunnel

 σ v=1.0

```
MPNo. 365; SRIJ-A Prop. by J26
Tw=23.5°C
\alpha / \alpha s=0.27
```

NON-CAV. n=35rps J Кt 10Kq ηο 0.786 0.403 0.504 1.001 0.837 0.378 0.954 0.528 0.355 0.888 0.909 0.552 0.939 0.333 0.866 0.575 0.990 0.312 0.826 0.595 1.040 0.292 0.786 0.615 1.092 0.272 0.750 0.630 1.143 0.252 0.713 0.643 1.193 0.233 0.675 0.655 1.244 0.217 0.641 0.670 0 676 1.294 0.199 0.606 0.183 1.345 0.575 0.168 1.395 0.540

0.143

0.493

1.446

σ	v=0.5		n=45rps	
J		Kt	10Kq	ηο
	0.791	0.201	0.494	0.512
	0.842	0.206	0.508	0.543
	0.892	0.209	0.520	0.571
	0.942	0.216	0.538	0.602
	0.992	0.226	0.566	0.630
	1.042	0.234	0.584	0.664
	1.093	0.235	0.593	0.689
	1.144	0.221	0.578	0.696
	1.194	0.208	0.568	0.696
	1.244	0.206	0.580	0.703
	1.295	0.194	0.564	0.709
	1.345	0.181	0.545	0.711
	1.396	0.165	0.515	0.712

0.010	1.004	0.202
0.681	1.345	0.185
0.691	1.395	0.165
0.668		
	σ v=0.4	
0	J	Kt
0.512	0.792	0.192
0.543	0.842	0.196
0.571	0.893	0.199
0.602	0.943	0.200
0.630	0.993	0.202
0.664	1.043	0.209
0.689	1.093	0.214
0.696	1.143	0.212
0.696	1.194	0.197
0.703	1.244	0.195

σ	v = 0.3		n=45rps		
J		Kt	10Kq	ηο	
	0.842	0.190	0.463	0.	550
	0.892	0.191	0.470	0.	577
	0.943	0.191	0.471	0.	609
	0.993	0.190	0.472	0.	636
	1.043	0.188	0.470	0.	664
	1.094	0.187	0.474	0.	687
	1.094	0.187	0.472	0.	690
	1.144	0.188	0.482	0.	710
	1.195	0.178	0.486	0.	697
	1.245	0.178	0.491	0.	718
	1.295	0.172	0.486	0.	729
	1.346	0.161	0.473	0.	729
	1.396	0.141	0.442	0.	709

J		Кt	10Ka	n	0
	0.789	0.281	0.690		0.511
	0.839	0.293	0.719		0.544
	0.890	0.299	0.735		0.576
	0.940	0.302	0.749		0.603
	0.990	0.297	0.744		0.629
	1.041	0.279	0.720		0.642
`	1.092	0.262	0.698		0.652
	1.143	0.246	0.680		0.658
	1.194	0.236	0.670		0.669
	1.244	0.218	0.635		0.680
	1.294	0.202	0.605		0.688
	1.345	0.185	0.573		0.691
	1.395	0.165	0.536		0.683

n=45rps

σ v=0.4		n = 45 rps	
J	Kt	10Kq	ηο
0.792	0.192	0.471	0.514
0.842	0.196	0.483	0.544
0.893	0.199	0.494	0.573
0.943	0.200	0.497	0.604
0.993	0.202	0.506	0.631
1.043	0.209	0.525	0.661
1.093	0.214	0.539	0.691
1.143	0.212	0.544	0.709
1.194	0.197	0.535	0.700
1.244	0.195	0.544	0.710
1.294	0.183	0.523	0.721
1.345	0.175	0.518	0.723
1.396	0.159	0.491	0.719

Table 4.20 Measured Data of Propeller Open Characteristics of SRIJ-III Propeller by Using J26 in Cavitation Tunnel

MPNo. 366; SRIJ-III Prop.	bу	J 2 6
n=40rps, Tw=25, 26°C		
$\alpha / \alpha s = 0.28,30$		

	MPNo. 36 n=40rps α / α s=	6;SRIJ-I . Tw=25.2 0.28.30	II Prop. by J2 6°C	: 6			
NON-CAV. Jv 0.839 0.940 0.991 1.042 1.093 1.144 1.194 1.245 1.295 1.346 1.397 1.447 1.498 1.548 1.600	Kt 0.317 0.298 0.279 0.261 0.243 0.226 0.209 0.194 0.178 0.161 0.142 0.124 0.161 0.142 0.243 0.161 0.142 0.054 0.054 0.013	10Kq 0.740 0.668 0.634 0.599 0.565 0.533 0.504 0.472 0.438 0.402 0.366 0.326 0.236 0.236 0.233 0.160	$\begin{array}{c} 7 & 0 \\ 0 & 5 & 7 & 2 \\ 0 & 5 & 9 & 9 \\ 0 & 5 & 2 & 5 \\ 0 & 5 & 4 & 9 \\ 0 & 5 & 4 & 9 \\ 0 & 5 & 7 & 3 \\ 0 & 5 & 9 & 6 \\ 0 & 7 & 1 & 4 \\ 0 & 7 & 3 & 1 \\ 0 & 7 & 5 & 1 \\ 0 & 7 & 5 & 3 \\ 0 & 7 & 4 & 7 \\ 0 & 7 & 5 & 3 \\ 0 & 7 & 4 & 2 \\ 0 & 5 & 8 & 4 \\ 0 & 5 & 7 & 1 \\ 0 & 2 & 0 & 7 \end{array}$	$\sigma v=1.0$ Jv 0.694 0.743 0.793 0.842 0.992 0.942 0.993 1.043 1.093 1.144 1.194 1.246 1.296 1.347 1.397 1.447 1.498 1.549 1.601	Kt 0.170 0.183 0.194 0.201 0.206 0.210 0.210 0.210 0.207 0.180 0.199 0.180 0.179 0.164 0.148 0.129 0.111 0.900 0.090	10Kq 0.407 0.435 0.458 0.471 0.485 0.493 0.498 0.498 0.498 0.498 0.483 0.455 0.461 0.431 0.401 0.364 40.332 0.291 0.250 0.206 0.156	$\begin{array}{c} 7 & 0 \\ 0. & 461 \\ 0. & 535 \\ 0. & 572 \\ 0. & 603 \\ 0. & 666 \\ 0. & 693 \\ 0. & 717 \\ 0. & 720 \\ 0. & 738 \\ 0. & 755 \\ 0. & 761 \\ 0. & 761 \\ 0. & 761 \\ 0. & 743 \\ 0. & 712 \\ 0. & 639 \\ 0. & 491 \\ 0. & 212 \end{array}$
$\sigma v=0.6$ Jv 0.694 0.744 0.844 0.893 0.944 1.044 1.094 1.144 1.195 1.246 1.296 1.348 1.398 1.448 1.499 1.551	Kt 0.145 0.148 0.153 0.160 0.166 0.174 0.176 0.173 0.165 0.154 0.154 0.154 0.154 0.131 0.116 0.090 0.063 0.030 -0.020	10 K q 0. 3 4 4 0. 3 5 1 0. 3 5 4 0. 3 6 6 0. 3 8 0 0. 3 9 5 0. 4 0 9 0. 4 1 3 0. 4 1 0 0. 4 0 2 0. 3 9 1 0. 3 7 9 0. 3 5 0 0. 3 2 5 0. 2 8 0 0. 2 3 2 0. 1 6 5 0. 0 6 2	$\begin{array}{c} 7 & 0 \\ 0. & 466 \\ 0. & 499 \\ 0. & 528 \\ 0. & 562 \\ 0. & 598 \\ 0. & 631 \\ 0. & 673 \\ 0. & 708 \\ 0. & 735 \\ 0. & 747 \\ 0. & 749 \\ 0. & 769 \\ 0. & 769 \\ 0. & 772 \\ 0. & 766 \\ 0. & 715 \\ 0. & 526 \\ 0. & 434 \\ -0. & 796 \end{array}$	σ v=0.5 Jv 0.743 0.794 0.844 0.994 1.045 1.094 1.144 1.196 1.245 1.297 1.347 1.399 1.449 1.500	Kt 0.145 0.145 0.145 0.151 0.159 0.163 0.153 0.159 0.151 0.139 0.125 0.107 0.082 0.047 -0.002	10Kq 0.346 0.347 0.350 0.362 0.379 0.385 0.385 0.385 0.385 0.385 0.358 0.358 0.358 0.358 0.358 0.358 0.358 0.358	$\begin{array}{c} 7 & 0 \\ 0. & 499 \\ 0. & 528 \\ 0. & 561 \\ 0. & 594 \\ 0. & 627 \\ 0. & 664 \\ 0. & 704 \\ 0. & 733 \\ 0. & 752 \\ 0. & 764 \\ 0. & 769 \\ 0. & 769 \\ 0. & 780 \\ 0. & 760 \\ 0. & 713 \\ 0. & 586 \\ -0. & 058 \end{array}$
$\sigma v = 0.4$ Jv 0.794 0.844 0.894 0.945 0.995 1.045 1.196 1.246 1.296 1.348 1.398 1.449 1.500	Kt 0.142 0.142 0.138 0.139 0.145 0.149 0.149 0.149 0.148 0.136 0.120 0.065 0.027 -0.010	10Kq 0.333 0.331 0.329 0.332 0.343 0.357 0.365 0.344 0.316 0.277 0.213 0.126	$\begin{array}{c} 7 & O \\ 0 & 5 & 3 & 9 \\ 0 & 5 & 7 & 3 \\ 0 & 6 & 0 & 2 \\ 0 & 6 & 3 & 1 \\ 0 & 6 & 6 & 3 \\ 0 & 7 & 0 & 3 \\ 0 & 7 & 7 & 3 & 3 \\ 0 & 7 & 6 & 1 \\ 0 & 7 & 7 & 2 \\ 0 & 7 & 8 & 4 \\ 0 & 7 & 8 & 3 \\ 0 & 7 & 6 & 7 & 9 \\ 0 & 5 & 7 & 9 \\ 0 & 4 & 9 & 4 \\ -0 & 4 & 4 & 2 \end{array}$				

10Kq

0.560

:

0.504

0.586

0.611

0.626

0.618

0.592

0.564

0.546

0.515

· 0.623

ηο

0.448

0.483

0.515

0.547

0.582

0.612

0.641

0.655

0.663

0.676

0.685

Table 4.21 Measured Data of Propeller Open Characteristics of SRIJ-IV Propeller by Using J26 in Cavitation Tunnel

 σ v=1.0

0.692

0.742

0.790

0.840

0.890

0.941

0.992

1.041

1.092

1.142

1.192

1

Κt

0.205

0.229

0.240

0.250

0.256

0.256

0.251

0.234

0.215

0.203

0.186

```
MPNo. 369;SRIJ-IV Prop. by J26
n=40rps.Tw=9°C
α/α s=0.33
```

J		Kt	10Kq	η	0	
	0.890	0.309	0.761		0.	575
	0.942	0.283	0.713		0.	595
	0.992	0.260	0.671		0.	612
	1.041	0.241	0.638		0.	626
	1.092	0.221	0.602		0.	638
	1.145	0.203	0.565		0.	655
	1.193	0.185	0.525		0.	669
	1.244	0.166	0.491		0.	669
	1.297	0.147	0.456		0.	665
	1.347	0.129	0.420		0.	658
	1.397	0.111	0.383		0.	644
	1.447	0.092	0.345		0.	614
	1.498	0.070	0.306		0.	545

σ y=0.6				σ v=0.5	
J	Kt	10K q	πο	J	Kt
0.692	0.147	0.368	0.440	0.792	0.14
0.742	0.153	0.385	0.469	0.844	0.15
0.791	0.163	0.408	0.503	0.893	0.10
0.842	0.178	0.442	0.540	0.942	0.1
0.892	0.192	0.474	0.575	0.993	0.10
0.942	0.200	0.492	0.609	1.040	0.19
0.992	0.206	0.505	0.644	1.093	0.18
1.042	0.208	0.511	0.675	1.144	0.1
1.092	0.202	0.505	0.695	1.195	0.1
1.144	0.186	0.492	0.688	1.245	0.1
1.193	0.187	0.507	0.700	1.296	0.14
1.246	0.168	0.476	0.700	. 1.347	0.13
1.297	0.144	0.430	0.691	1.398	0.1
1.347	0.128	0.396	0.693	1.448	0.0
1.397	0.113	0.364	0.690	1.498	0.0
1.448	0.092	0.321	0.660	1.549	0.0
1.497	0.071	0.276	0.613		
1.551	0.045	0.228	0.487		
σ v=0 A					
1	K t	1010			
, 0 8/6	0 1/3	1010	η U 0 520		
0.040	0.143	0.304	0.529		
0.033	0.145	0.305	0.550		
0.940	0.145	0.303	0.550		
0.094	0.100	v. 531	0.041		

	1.246	0.169	0.482	0.695
	1.297	0.151	0.440	0.708
	1.346	0.135	0.403	0.718
	1.396	0.115	0.369	0.692
	1.448	0.094	0.328	0.660
	1.498	0.074	0.286	0.617
	1.549	0.054	0.242	0.550
σ	v=0.5			
J		Kt	10Kg	ηο.
	0.792	0.148	0.374	0.499
	0.844	0.151	0.377	0.538
	0.893	0.160	0.401	0.567
	0.942	0.173	0.430	0.603
	0.993	0.185	0.458	0.638
	1.040	0.190	0.470	0.669
	1.093	0.188	0.471	0.694
	1.144	0.178	0.469	0.691
	1.195	0.177	0.484	0.696
	1.245	0.160	0.453	0.700
	1.296	0.141	0.417	0.697
	1.347	0.123	0.382	0.690
	1.398	0.107	0.350	0.680
	1.448	0.088	0.307	0.661
	1.498	0.069	0.269	0.612
	1.549	0.044	0.222	0.489

0.846	0.143	0.364	0.529
0.895	0.143	0.365	0.558
0.943	0.145	0.369	0.590
0.994	0.155	0.391	0.627
1.042	0.163	0.409	0.661
1.094	0.168	0.424	0.690
1.144	0.168	0.439	0.697
1.195	0.166	0.453	0.697
1.245	0.152	0.429	0.702
1.295	0.136	0.392	0.715
1.346	0.126	0.375	0.720
1.396	0.107	0.340	0.699
1.447	0.087	0.302	0.663
1.499	0.060	0.245	0.584

Table 4.22	Measured Dat	a of	Propeller	Open	Characteristics	of SRIJ-IV	Propeller	by	Using	H38	in	Cavitation	
	Tunnel								0				

MP No. 369	
Measured by H38	
Tw=19.0°C, α / α s=0.30, 0.33,	n=40rps

NON-CAV.						
Jν	Kt	10Kq	ηο			
0.889	0.314	0.771	0.576			
0.941	0.286	0.718	0.597			
0.992	0.263	0.676	0.614			
1.042	0.243	0.638	0.632			
1.093	0.223	0.599	0.648			
1.143	0.204	0.561	0.662			
1.195	0.185	0.522	0.674			
1.245	0.164	0.480	0.677			
1.296	0.146	0.443	0.680			
1.346	0.127	0.405	0.672			
1.398	0.107	0.364	0.654			
1.448	0.085	0.319	0.614			
1.497	0.063	0.274	0.548			

σ v=0.6			
Jv	Kt	10Kq	ηο
0.743	0.155	0.376	0.487
0.793	0.163	0.396	0.520
0.843	0.175	0.424	0.554
0.893	0.187	0.453	0.587
0.942	0.197	0.476	0.620
0.993	0.203	0.495	0.648
1.043	0.204	0.501	0.676
1.093	0.195	0.497	0.683
1.143	0.195	0.525	0.676
1.195	0.177	0.495	0.680
1.245	0.155	0.448	0.686
1.296	0.137	0.416	0.679
1.347	0.121	0.379	0.684
1.397	0.100	0.331	0.672
1.448	0.079	0.286	0.637
1.499	0.054	0.236	0.546
1.549	0.029	0.185	0.386

σ v=0.4	L		
Jv	Kt	10Kq	ηο΄
0.794	0.145	0.357	0.513
0.844	0.147	0.361	0.547
0.893	3 0.147	0.364	0.574
0.944	0.149	0.369	0.607
0.99	5 0.152	0.380	0.633
1.04	5 0.160	0.401	0.664
1.09	5 0.166	0.423	0.684
1.14	5 0.170	0.453	0.684
1.19	5 0.161	0.448	0.683
1.24	6 0.137	0.396	0.686
1.29	6 0.125	0.378	0.682
1.34	7 0.103	0.332	0.665
1.39	8 0.080	0.284	0.627
1.45	1 0.052	0.228	0.527
1.50	0 0.019	0.151	0.300

σ v=1.0			
Jv	Kt	10Kq	ηο .
0.691	0.203	0.491	0.455
0.740	0.224	0.540	0.489
0.791	0.239	0.577	0.521
0.840	0.249	0.604	0.551
0.889	0.254	0.617	0.582
0.941	0.255	0.623	0.613
0.992	0.246	0.611	0.636
1.042	0.228	0.583	0.649
1.092	0.211	0.561	0.654
1.144	0.202	0.546	0.674
1.194	0.183	0.508	0.685
1.246	0.163	0.469	0.689
1.296	0.144	0.432	0.688
1.346	0.127	0.395	0.689
1.397	0.107	0.353	0.674
1.448	0.085	0.308	0.636
1.498	0.062	0.259	0.571
1.549	.0.039	0.212	0.454
σ v=0.5			
Jv	Kt	10Kq	ηο

~ ~ ~ ~ ~			
Jv	Kt	10Kq	ηο
0.743	0.148	0.360	0.486
0.793	0.152	0.371	0.517
0.844	0.156	0.381	0.550
0.894	0.162	0.397	0.581
0.943	0.172	0.422	0.612
0.995	0.181	0.446	0.643
1.044	0.184	0.457	0.669
1.094	0.183	0.467	0.682
1.145	0.181	0.490	0.673
1.195	0.167	0.467	0.680
1.245	0.150	0.436	0.682
1.297	0.132	0.401	0.680
1.346	0.110	0.356	0.662
1.398	0.092	0.316	0.648
1.448	0.066	0.261	0.583
1.498	0.045	0.219	0.490
1.549	0.015	0.153	0.242

30

Fig. 4.9 Propeller Open Characteristics of Newton-Rader Propeller Measured by Using J26 Dynamometer

Fig. 4.11 Propeller Open Characteristics of Newton-Rader Propeller Measured by Using H38 Dynamometer

Fig. 4.10 Sketch of Cavitation Pattern on Newton-Rade Propeller Set Up to J26 Dynamometer

Fig. 4.12 Propeller Open Characteristics of SSPA-F Propeller Measured by Using J26 Dynamometer

Fig. 4.13 Sketch of Cavitaion Pattern on SSPA-F Propeller Set Up to J26 Dynamometer

Fig. 4.14 (a) Propeller Open Characteristics of DTMB Propeller Measured by Using J26 Dynamometer

Fig. 4.14 (b) Viscous Effect on DTMB Propeller Performance Measured by Using J26 Dynamometer

Fig. 4.15 Sketch of Cavitaion Pattern on DTMB Propeller Set Up to J26 Dynamometer

Fig. 4.16 (a) Propeller Open Characteristics of DTMB Propeller Measured by Using H38 Dynamometer

船舶技術研究所報告 第31巻第5号(平成6年11月)研究報告 35

Fig. 4.16 (b) Viscous Effect on DTMB Propeller Performance Measured by Using H38 Dynamometer

Fig. 4.17 Sketch of Cavitaion Pattern on DTMB Propeller Set Up to H38 Dynamometer

Fig. 4.18 (a) Propeller Open Characteristics of SSPA Propeller Measured by Using J26 Dynamometer

Fig. 4.18 (b) Viscous Effect on SSPA Propeller Performance Measured by Using J26 Dynamometer

(226)

Fig. 4.19 Sketch of Cavitaion Pattern on SSPA Propeller Set Up to J26 Dynamometer

Fig. 4.20 (a) Propeller Open Characteristics of SSPA Propeller Measured by Using H38 Dynamometer

Fig. 4.20 (b) Viscous Effect on SSPA Propeller Performance Measured by Using H38 Dynamometer

Fig. 4.21 Sketch of Cavitaion Pattern on SSPA Propeller Set Up to H38 Dynamometer

Fig. 4.22 Propeller Open Characteristics of SRIJ-I Propeller Measured by Using J26 Dynamometer

Fig. 4.24 (a) Propeller Open Characteristics of SRIJ-II Propeller Measured by Using J26 Dynamometer

Fig. 4.24 (b) Viscous Effect on SRIJ-II Propeller Performance Measured by Using J26 Dynamometer