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Second-Order Wave Diffraction by an Axisymmetric Body
Bin Teng* and Shunji Kato**

Abstract

The main difficulty in calculation of third order force is its forcing on the free surface which includes
second order potential and its spacial derivatives. Second order potential also obeys an inhomogeneous free-
surface boundary condition, and its calculation needs to do an integration on the whole free surface. For third
order calculation, its forcing term is needed on a big area on the free surface, and individual calculation of the
second order potential at each point in the area is evidently not economic.

This report provides a detailed analysis for the second order diffraction of monochromatic waves by an
axisymmetric body in finite water. For wave diffraction from a body of revolution with vertical axis, the report
derives a new integral equation, which can cancel the leading singularity in the derivative of ring Green's
functions automatically. For the second order potential, the report proposes a forward prediction method to
calculate the integration on the free surface. By this method we only need to compute the infinite integration
on the free surface directly for a few of points; then an one-step quadrature is applied successively outward
from the body for potentials at other points. To get accurate results, different approaches are also used to deal
with singularities in the ring Green's functions in the integration both on the body surface and free surface.
The method has been implemented for body of revolution with vertical axes, but the theory is also available for
arbitrary bodies.

Numerical examination is also made to validate the numerical code by comparing second order force and
moment on uniform and truncated cylinders and second order diffraction potential on the free surface with
some published results. The comparison shows that the present results have a good agreement with those
results. At last, the method is used to compute the second order wave elevation around uniform and truncated
cylinders.
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1. Introduction

It was observed in model tests and prototype experiments that tension leg platforms (TLPs) and gravity
based structures (GBS) experience sudden bursts of highly amplified resonant activities during storms. This
phenomenon is called as the ‘ringing’. The ringing phenomenon will induce extreme stress in tethers of TLP,
and even induces tethers breaking. It was found that ringing occurs at low frequency non-breaking waves and
ringing periods are about 3-5 times of the period of the corresponding incident waves. This means that third
order force is an exciting source for ringing and its calculation will be significant in predicting ringing
phenomenon.

Nonlinear problems are characterized by forcing term in their boundary conditions. For the second order
potential, the forcing term on the free surface only includes first order potentials, which can be represented by
some simple ways. However, the third order forcing term on the free surface includes both first and second
order potentials. The difficulty in calculating third order forcing term is the complexity and time-consuming in
the calculation of second order potential, which is needed on the whole free surface or a big area. Usually, an
integral equation method is used to compute the second order velocity potential, in which integrations have to
be carried out on both body and free surfaces.

To get rid of the potential at the considering order from the integration on the free surface and the sea bed,
an oscillating source with corresponding frequency is usually applied as the Green's function. The basic
representation of the Green's function is written in a function of the Bessel function of the first kind of zero
order. Kriebel (1990) used this representation in calculation of second wave elevation around a uniform
cylinder. After using Graf's addition theorem to represent the Bessel function by the radii of source and field
points in a polar coordinate system located at origin of the cylinder, we can get an unanimous representation
with multiplications of functions of the radii of field and source points, no matter the radius of field point is
larger than the one of source point or not. Thus, we can integrate the forcing term on the free surface with the
functions only relative to the radius of field point to get a wave number spectrum. Then, second order potential
can be represented by the wave number spectrum in an explicit form. To calculate the third order forcing term
on the free surface, Teng and Kato (1996) tried to use this method to compute second order diffraction
potential from an axisymmetric body. They found that the wave number spectrum goes to infinite at a wave
number of twice of incident wave number when water depth is not infinity. The reason is that there is a
component with twice of incident wave number in the second order forcing term on the free surface, which is
called as the ‘locked wave’ by Molin(1979). Multiplication of the second order forcing term with Bessel
functions at that wave number will give constant contribution with the increase of distance. Applied some
techniques to deal with the infinity, Teng and Kato (1996) found that it is still hard to get a good agreement
with Eatock Taylor and Hung's (1987) on the second order forces on uniform cylinders. The reason is that the
wave number Spectrurh from this method converges slowly at high wave number, especially its derivatives.

To compute second order potential and forces, Hunt and Baddour (1981) and Hunt and Williams (1982)
applied Weber transformation method, which is similar as the method by applying the above mentioned
Green's function. Later, it was found that their results are not reliable. It has been doubted that their velocity
potential is incomplete. Recently, Newman (1996) studied the problem again by the same method. For second
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order potential on body surface of a uniform cylinder, he used Wronskians and transformation of integration
contour to overcome the numerical inefficiency. Then, he managed to get a good agreement with Eatock
Taylor and Hung's on second order forces.

Another representation of Green's function is of the modified Bessel functions, which is gotten by
transformation of integrating contour. The Green's function in this form converges quickly, but the problem is
that it has different definitions when radius of source point is larger than the one of field point or vice versa.
For computing the second order force on bodies, this representation does not give too much troubles.
However, for second order potential on the free surface, the integration domain on the free surface has to be
separated into two different ranges according to the radius of source point. Thus, the second order diffraction
potentials at different positions can not be represented by an explicit representation. Chau and Eatock Taylor
(1992) used a similar Green's function, which also satisfies the body surface condition, and developed a semi-
analytic solution for uniform cylinder. They used this method to compute second order wave elevation in the
near field surrounding the cylinder. Huang and Eatock Taylor (1996) even developed a semi-analytic solution
for truncated cylinders. For third order calculation, second order potential is needed on the whole free surface
or in a very big domain. Calculation by this method directly seems very expansive, as an infinite integration
has to be carried out for each point. Malenica and Molin (1995) made some improvement on this method in
their third order calculation. They applied a forward moving approach to predict the integration associated
with Hankel function from smaller radius to bigger one step by step. But for the parts associated with an
infinite summation of the modified Bessel functions, they still used the direct integration method as Chau and
Eatock Taylor did. .

The present work proposes an one-step forward prediction method for calculating the terms associated with
modified Bessel functions. Special concerns are also paid on the treatment for the logarithmic singularity in
the ring Green's functions. By this approach, the second order potential can be calculated much more
efficiently in a big area, like to form the forcing term for third order problem. The method has been
implemented for axisymmetric bodies, and no difficulty has been found for extending it to arbitrary bodies,
like TLPs.

2. Free Surface Condition

We define a right-handed coordinate system (¥, y, 2), with origin at the center of the body, 2=0 on the still
free surface and the z-axis pointing upward (see Figure 1). The fluid is assumed to be homogenous and
incompressible, and irrotational. There exists a velocity potential that satisfies the Laplace equation and the
nonlinear free-surface boundary condition on

1)
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the free surface z= ¢ (x,y,¢), defined by
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Figure 1. Definition sketch

Under the assumption of weak non-linearity, we can write the wave velocity potential as a perturbation
series with respect to wave slope parameter e =kA

=00 +20? +20® + .. ©)

We assume that the incident monochromatic waves have an incident frequency . To solve the ringing
phenomena, the first, second and third order harmonic potentials with the frequencies of w=w, w.=2® and
w =3 w are only considered. We separate the time dependencies explicitly, and write potentials at each order of
€ as

o @)
D (x,y,z,£) = Re[6P(x,y,2)e '] -

After expanding eq. (1) into a perturbation series and collecting terms at the same order of e, we can write
the free surface conditions for the velocity potentials at each order of ¢ as

gy &)
vj¢0)+¢§”=q0) on z=0

where

©)

2
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and the forcing terms at each order of «
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It can be seen that the third order forcing term includes both first and second order potential.
3. Integral Equation

For convenience in numerical calculation, we separate velocity potential into incident and diffraction
potentials '

SR, ®)

By applying an oscillating source with frequency «; as the Green's function, we can obtain an integral equation
for jth order diffraction potential as

0G(x; %, )
w ¢y - [ Sf ——F 4wds o

0
- [[ Gz wj)%ds‘ -[[ Gz @) gp ds
5y Sp

where Sz and Sr denote the body and free surface, and ¢»? is the difference between the total forcing term and
the forcing one for incident waves

(10)
af =q%-q

The positive direction of the normal to the body surface is defined as being out of the fluid. To weaken the

singularity in the integration of derivative of the Green's function, we add another equation obtained inside the
body (Eatock Taylor and Chau, 1992, and Teng and Eatock Taylor, 1995) and get a new equation as

(6)
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where Sw is the inner free surface. For axisymmetric body, we expand the velocity potential and the Green's

an

function into series
- YRR )
D(x,) = Eoem(b(gm(ro)cosmﬁo »0(x) = E@em%m(r)cosme 12)

G(x; %)= L ¢, G, (1,25 Ty Z9) cosm(6 -8,)
m=0

where ¢ .is the coefficient of Neumann's polynomial(=1 when »=0, 2 when m>0), e.g. see Watson,1966. Then,
the integral equation for the mth mode in azimuthal angle 8 of jth order potential can be obtained as

[5=-v f Gyrdr1dP(re) - f (2 0)-—4; () rdl

3

fG in dl+}G g2 () rdr

where I'zand I'ware the traces of Sz and Sw (see Figure 2), and the ring Green's function G~ is
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Figure 2. Integrating contour for axisymmetric body
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krand «» are defined by dispersion equations of
1
v, =k tanh(k,d) v,= %, 1g(x,d) s)
where d is the water depth. The eigenfunctions in z-direction are defined by
coshk (z+d) cosk, (z+d) 16
Zo(k,z) =_____.]___...’ Zn(K’nz) = ( )
' / coshkd / cosk;, d
and the factor Co and C. are
0 0
- 17)
Co=12 [ 23 (kz)da]™, C,=12 [Zi0c,2)dz]
-d -d

The ring-source potential and its derivative have been investigated by a number of researchers (Fenton,
1978; Hulme, 1983; Kim and Yue, 1989). It was found that the ring sources at each mode have the same
logarithmic singularity when field point is close to the source point; and the leading singularities in their
derivatives have the same form as the reverse of the distance between field point and source point. Thus, the
leading term of singularity in equation (13) can be canceled each other. Other weak singularities are dealt with
by suitable coordinate transformation (Telles, 1937).

For the second order potential, if the minimum radius of free surface is larger than or equal to the
maximum radius of the body (otherwise, we should divide the free surface into different ranges), the integral
on the free surface can be written as

I(ry, 04, 2,) = - f rdr Eo €, a2 (r)cosm®, (18)

a

[—i%i C H, (k1. )T, (ko1 ) Zo(ky2,) + };:,1 C K, (¢, 1)1 (k.7 ) Z(x,2))]

where « .= x 2 for brevity. By defining

in T r ' 19
Slmo(a)=l—;- f qg;,(r) H (k,r)rdr, Simn(@) = f q,(,zg,(r) K, (x,r)rdr, (19)

we can write the above integral equation as

(8)
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Thus, for the second order potential on the body surface, integration on the free surface is only needed to run
once.

The infinite integration of Suw (#>0) converges quickly with the increase of the integration range as the
modified Bessel function K. decays at an exponential rate. However, the infinite integration of Sz is oscillating
and converges slowly with the increase of integrating distance. A method widely used for its calculation is to
divide the integration range into two parts. In the inner domain, a direct quadrature is used, and in the outer
domain an analytic method is used to integrate it to infinity, after some asymptotic approximations have been
used for Hankel functions.

4. Second Order Potential on Free Surface

For the second order potential at a point not close to the body, the following integral equation can be used to
compute second order potential directly

3y (x,2) @1
(2) 2) _ I\ _ @
0 (%,,0) - f ] D(xz)ds=[ ! G———ds [ Sf GqY ds
B F

For axisymmetric body, the integral equation for mth mode with respect to azimuthal angle 6 can be written
as

2) @ a‘b[,,,( r,2) @ 22)

T, 0) = f —dp (I‘Z)rdl+fG P rdl - fG dpn AT

Ty
However, when the computed point is close to the body surface, there are some quasi- singularities in the body

integration. Direct use of the above integral equation will not give accurate results. For weakening the quasi-
singularities, we add another integral equation

oG (x xo) 23)

-v, f f Gx, x)dsdp(x*) + f f D (x")ds=0

to the above equation, where
24)

* _ —
x"=acosb, , Jor x,=rycosf,

is the closest point to the computed point on the water line. It yields a new integral equation

(9)
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We expand the potentials into series

2
(b(z )(xo) Z e q> w (To) cosmOy, ¢(2)(x )= E £ ¢(2) (@) cosmB,, 26)

Then, another integral equation can be obtained for the mth mode of second order potential as

o) =, f Gyrdr dh(a) - f [—— Don(@) - —¢‘”(r>1rd!

Ty @7
2

fG Im v di - jG a@ rdr

2

This equation will weaken the leading term of quasi-singularity, and the other quasi- singularities will still be
dealt with by coordinate transformation.

5. Numerical Implementation

For second order potential on the body surface and in the fluid domain, two integrations have to be carried
out both on body surface and free surface when an integral equation method is used. Direct calculation of
those integrations is very expansive when second order potential is needed in a big area, like to form the third
order forcing term on the free surface. Thus, some techniques have to be applied to aim at a speedup of the
calculation. Besides the inefficiency in calculation of the integration on the free surface, the singularity in the
ring Green's function has to be dealt with carefully. The ring Green's function is represented by an infinite
summation of modified Bessel functions, and simple truncation will induce great inaccuracy when field point
approaches to the source point. To calculated those integration accurately, some special approaches are used.

5.1 The integration on the free surface
Substituting the ring Green's function into the above integration, the integration on the free surface can be
written as

L]

L7 04, 0) == [rdr g n) [im CoH, (e, ) Kt ) 3)

a

+2X C K (x5)1,0c,7r)]
n=1

(10)
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The Green's function is represented by multiplies of Bessel function and an infinite summation of modified
Bessel functions. In numerical calculation the infinite summation has to be truncated at a big value N. As
pointed out by Fenton (1978), there is a logarithmic singularity in the ring Green's function, and simple
truncation will induce some inaccuracy. We define each term of the multiplication of modified Bessel function

as
29
L,=2CK (xr)I (r)Z (k) @9)
The limitation of L. term at large # is
‘ nwz 30
Lmn-*L,:,ﬁ—1 L exp(- 1 |r-r,|) cos 30)
nw Jrr, d

and the infinite sum of L. can be written as

- - 1 1 nw
=X L, =X— exp(-— |r-74])
n=1 n=l BT \/;;; p( d Ir=ro (31)
-1
=——In[1- Zexp(————lr r |)cos———+exp(-—-—|r-rol)]
2m,frr, ° d

When field point is close to the source point, we expend the exponential and cosine functions into Taylor series
and can find that it is a logarithmic singularity of

32
L2« L [ (o)) ©2)
27 \/;7;
To remove the logarithmic singularity, we write the infinite integration of modified Bessel function as
o - »r,,"Ar2
= 2
T (L, ()ap@rdr= E f L, (N (@yrdr- L [ Le®apn@irdr
n=1 a ro-Arn (33)
' ro+Ar2
[ Liwapm@rdr
ro-Arg

Outside the range (7~ A, r+ Arz), the higher modes in the first integration decay quickly and the summation
can be truncated at a big value N; inside the range (7~ A7, 7+ A7) the integrand in the first two terms will be
close to and cancel each other for big modes. Truncation at the big N will also give a good approximation.
Thus, we can write the integration as

(11)



rgtAr,
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mn
n=

>

n=1

6 =, 8

(34)

"o -Ary
r0+Ar2

+ f LEPaD @rdr

ro-Ary

For the third term, a coordinate transform

' 1 | 1 (35)
r=SArE+ S(2r A, Lapen-L drefareen

is used to remove the singularity. Then, we represent the integration on the free surface as

L(7gs 0) = = Co(S1,,0(re) (K5 70) +8,mo(To) H, (ks 7)) (36)
N
(’o) ehxnrolm(xnrm) +32mn(r0) eKnroKm(KnrO)) + ;_:1 an("o) - Vmo("o)

1mn

N
> C,(S
n=1
The functions in the above equation are defined by

Slmo(rO):lg— fqgg'(r)Hm(er)rdr’ Slmn(rO) qum(r)K (K r)rdre " 0 (37)

Iro

2m0( Ty) = fq(z)(")]m(kz’)"d", (7o) = f‘lpm(r)l (x,r)rdre *aTo_

and

ro+Ary
mo("o)"""‘ f g2 @ [l - exp(~——|r rOl)]\l_r- a%)

ro Ary

rot4r,
VanlTo) =5 — [ amm® exp(-— |- rol)\j' dr

"o bry

Here, the exponential functions are applied to multiply with modified Bessel functions to guarantee the

integrand not to overflow from both upper and lower limits of computers at large variable.

The integration in the function Va is localized in a small range (7~ Ari, r+ Arz), and can be calculated easily.

However, the integrations in Su and Sz« have to be carried out from the body to infinity. Direct calculation will

be very expansive, especially when calculation for many points is \needed. Here, a one-step forward prediction

method is applied. By this method, after we have gotten those functions at a point 7, the functions at next point

71, which is close to 7, can be obtained by

(12)
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8,07y = % [ @I, epyrdr =S8y, (1) + Lz’i [, Gy rdr
) a )
and

o n

8, (1)) = f a2 K, kHrdr =8, (ry)e™ "7 - f 42K, (x Hrdre™" a0
r To

r ny
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This method can save a lot of computing effort. But after a number of steps, the prediction will lose accuracy,
and even diverse. A remedy to solve this problem is just to use the direct integration method to compute them
again before a tolerant error has been accumulated. The number of steps used in forward prediction will be
determined by a series forehead numerical examination, and is different for different modes.

For the integrations of Hankel and Bessel functions, the terms called as S and Sz in this paper, Malenica
(1994) used a similar method to deal with them. But for the infinite summation of modified Bessel functions,
S and Sz in this paper, Malenica still used the direct integration method to compute them. Another distinct
difference between the present method and Malenica's is the approach used to treat the singularity in the ring
Green's function. The present method only adds an auxiliary integration in a small adjacent area of the source
point, but Malenica's is to add an auxiliary integration in the same area as the original integration.

5.2 The integration on the body surface
For those points not close to body surface, we apply equation (21) to compute the second order potential.
The integration on the body surface can be written as

. @ 41
aGm(r,z,ro,O') + ad)lm(r’ Z) Gm(r’z;ro,O)] rdl ( )
on on '

Ip(70:0) = [ 4520
Ty

After integrating with respect to the coordinates of field point on the body surface, the body surface
integration can be simply written as
= (42)
IBm(rD’o) = UmOHm(erO) + %UmnKm(Knro)
n=

where

(13)
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oZ
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7 b4
, 801 (r2)

— I (x, ") Z (¢, 2]r dl
an

For those points close to body surface, a direct integration method is performed with an application of
equation (27).

6. Numerical Results

6.1 Second order force

To ensure the numerical code reliable, we first make a comparison on the second order force with some
published results.

After we have resolved the second order potential, the second order wave force and moment can be
obtained by direct integration of hydrodynamic pressure on the body surface with an approximation to second
order in ¢ . After some mathematical derivation, the equation of the second order generalized force on a
vertically piercing fixed body in monochromatic waves can be written as

, 44)
F;-Z) = Re[(f‘(,z) +f;2))e-2unt ]

where
3 [P sme “

is the contribution from the second order V€10C1ty potentials; and is the contribution from quadratic
multiplication of first order velocity potentials and height of water surface ¢, where n=n, #:, (22)0-11:), 2: is
the center of mass and Cw is the water line.
For axisymmetric body, we rearrange the quadratic multiplication of first order terms as
- = 7
VP VW= X ¢ ¢, cosmb’ {wd= 3_:0 e, M, cosmo
m=0 . h

and write the second order surge force as

(14)
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f; ‘——fp @,n, rdi+ = pgan‘n | g=a @8s)
2 = f d)a)n rdl
the second order heave force as
=-— nrdl+Z pgan,n -
£ !p Ponrdl+ = PEA TN, |rey @)
B8
2=-2 [0 4Pnrdl
I's
and the second order pitch moment as
@
=-L n rdl+— ann,|g.
ey f TRE PEAN T, |pey )

m® = - f p & n rdl

Tables 1-3 are comparison with Eatock Taylor and Hung's (1987) results on the part of second order force
from second order potential, 4%, on uniform cylinders in different water depth d/a= 1.0, 3.0 and 10.0. The
Eatock Taylor and Hung's results have been rearranged by summing up of the data in the last three columns
of their paper. The meshes used in the present calculation are 4, 16 and 40 elements respectively for the three
cylinders. It can be seen that for all of the three cylinders and in the all frequency range of the calculation, the
present results have a good agreement with Eatock Taylor and Hung's.

Table 1. Comparison on f;, the part of second order forces from
second potential, on a uniform cylinder 4/a=1.0.

Present Results Ref. (1)
Re Im Re Im

0.25 .7126E+05 -.3640E+06 J144E+05 -.3649E+06

0.50 4469E+05 -.9970E+05 A4TTE+05  -.9992E+05
0.75 A1138E+05 -.3294E+05 1140E+05 -.3300E+05
1.00 .8931E+04 -.1181E+05 B937E+04 -.1183E+05
1.25 1802E+05 -.3080E+04 A1804E+05 -.3038E+04
2679E+05 -.1115E+04 2687E+05 -.1116E+04

(15)



Table 2. Comparison on f;, the part of second order forces from
second potential, on a uniform cylinder #/a=3.0.

ka Preseni Results Ref. (1)

Re - Im Re Im
1268E+05 -.3118E+05 1272E+05 -3133E+06
G409E+04  .8404E+04 6431E+04  .8417E+04
8837E+04  .1819E+05 88G8E+04  .1824E+05
1963E+05  .1961E+05 1966E+05  .1979E+05
3385B+05  .1585E+05 3396E+05  .1597E+05
A4521B+05  .7071E+04 A538E+05  .7098E+04

e e

Table 4 is the second order pitch moment with respect to the free surface on those cylinders. For this case,
we have not found available published results to compare with. From the table, it can be seen that the
component from the second order potential is the dominant part. In shallow water, large moment occurs at low
frequency; in deep water, large moment occurs at high frequency.

Table 3. Comparison on f;, the part of second order forces from
second potential, on a uniform cylinder %/a=10.0.

s

ka Present Results Ref. (1)

Re Im Re Im
0.25 J126E4+05  -.3640E+06 J144E+05 -.3649E+06
0.50 4469E+05 -.9970E+05 A4TTEH05  -.9992E+05

0.75 A1138E+05 -.3294E+05 1140E+05 -.3300E+05
1.00 8931E+04 -.1181E+05 .8937E+04 -.1183E+05
1.25 1802E+05 -.3080E+04 .1804E+05 -.3038E+04

2679E+05 -.1115E+04 2687E+05 -.1116E+04
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Table 4. Second order pitch moment m,?/ 0 ga’A? (with respect to the free
surface) on uniform cylinders.

my, my,
Re Im Re Im

0.0097 -0.1906 -3.4751 17.7610 -3.4654 17.5710
0.6410 -0.3113 -2.0256 4.5736 -1.9615 4.2623
0.1346 -0.2991 -0.4948 1.3555 -0.3602 1.0564
0.1696 -0.2075 -0.4648 0.3174 -0.2952 0.1100
0.1711 -0.1125 -0.8715 -0.1044 -0.7004 -0.2169
0.1456 -0.0493 -1.2153 -0.1432 -1.0697 -0.1925

_ 0.0231 -0.3900 -1.4726 3.8020 -1.4496 3.4120
0.50 0.0974 -0.2289 -0.5558 -1.0018 -0.4584 -1.2307

30 1 075 0.1653 -0.0299 | -1.0021 -2.3006 | -0.8367 -2.3305
1.00 | 02257 00202 | -1.9792 -2.8090 | -1.7535 -2.7889
1.25 02580 0.0873 | -3.1615 -2.5160 | -2.9035 -2.5073
1.50 02393 -0.0107 | -4.1937 -1.3519 | -3.9544 -1.3626
0.25 0.0214 0.1476 | -0.6531 -1.7621 | -0.6317 -1.6145
0.50 0.0707 0.2423 | -0.3894 -4.0820 | -0.8187 -3.8397
10.0 0.75 01520 0.1406 | -1.5668 -6.4158 | -1.4148 -6.2752
1.00 02269 00632 | -2.9981 -7.3396 | -2.7711 -7.2764
1.25 0.2610 0.0172 | -53630 -6.2119 | -5.1020 -6.1948
1.50 - 0.2409 -0.0094 | -8.0749 -3.1548 | -7.8341 -3.1642

Tables 5 and 6 are the second order surge and heave forces on a truncated cylinder with radius @ and draft
T/a=4 in a water depth of d/a=10. A mesh of 25 elements on the body trace I's is used in this calculation.
Comparison is made with Huang and Eatock Taylor's (1996) recent results at a few available frequencies. It
can be seen that the present results also have a good agreement with Huang and Eatock Taylor's results.
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Table 5. Comparison on second order surge forces £/ o gaA’ on a
truncated cylinder of radius ¢ and draft 7/a=4 in a water depth of
d/a=10, first row is the part from the first order potential £, the

second row is the part from the second order potential f; and the last

row is the total force f.
ka Present Resulis Huang and Eatock Taylor's I
Re Im Semi-analytical BEM results
Re Im Re Im
0.8 -0.4306 -1.4561 | -0.4425 -1.4746 | -0.4452 -1.4746
1.0265 1.9767 1.0144 1.9740 1.0261 1.9702
0.5960 0.5206 0.5719 0.4994 0.5808 0.4991
1.0 -0.8828 -1.1533
1.9253 1.9518
1.0425 0.7985
1.2 -1.3653 -0.7721 | -1.4356 -0.7970 | -1.4334 -0.8024
3.0557 1.6631 3.0406 1.6594 3.0451 1.6570
1.6904 0.8910 1.6050 0.8629 1.6116 0.8552
1.4 -1.7242 -0.3821
4.0810 1.0968
2.3568 0.7146
1.6 -1.8386 -0.0048
4.6876 0.2180
2.8490 0.2132
-1.6679 0.3694 Il
1.8 4.6072 -1.0689
2.9393 -0.6995
-1.2595 0.7371 | -1.3530 0.7652 | -1.3629 0.7606
2.0 3.9259 -2.4594 3.9052 -2.4883 3.8702 -2.4750
2.6663 -1.7224 2.5529 -1.7233 2.5071 -1.7144
é
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Table 7 is the second order pitch moment on the same truncated cylinder. The water depth and the mesh
used are the same as for Tables 5 and 6, but calculation is run at different wave numbers for comparing with
Table 4. It can be seen from the comparison between Tables 4 and 7 that the contributions from first order
potential are almost the same for the uniform and truncated cylinders, especially at high frequency; but the
contributions from the second order potential have a lot of difference. The reason is that the second order
diffraction potential decays slowly with z-coordinate. It can also be seen that as for uniform cylinders the
contribution from second order potential is the dominant part for this truncated cylinder.

Table 6. Comparison on second order total heave forces £?/ 0 gaA’
on a truncated cylinder of radius a and draft 7/e=4 in a water depth

of d/a=10.
Present Re;u]ts Huang and Eatock Taylor's
—
ka Re Im Semi-analytical BEM resulis
Re Im Re Im
0.8 0.0028 0.4075 0.06020 0.4047 0.0026 0.4084
1.0 | 0.0038 0.4113 Il
1.2 0.0691 0.3344 0.0690 0.3319 0.0695 0.3347
14 0.1908 0.2007
1.6 0.3366 0.0445
1.8 0.4538 -0.1037
20 0.4952 -0.2301 0.4941 -0.2319 0.4960 -0.2331 II
——
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Table 7. Second order pitch moment m,?/ o gaA’ (with respect to
the free surface) on a truncated cylinder of radius @ and draft 7/a=4

in a water depth of d/a=10.

m, m,,

ka Re Im Re im

0.25 0.0146 0.3363 | -0.3198 -0.4347
I[ 0.50 0.0647 02712 | -0.4676 -1.6493
ll 0.75 0.1500 0.1462 | -1.0222 -2.5751
“ 1.00 0.2268 0.0634 | -2.0075 -3.0066

1.25 0.2613 0.0168 | -3.2300 -2.6530

1.50 0.2410 -0.0097 § -4.3187 -1.4233

6.2 St and Sema functions ,

To accelerate the convergence of the integration on the free surface, this report suggested a forward
prediction method for compute the functions S: and S: after having got the functions at a position. Before
applying the method for practical calculation, some examinations on the forward prediction method have to be
carried out. Here an examination is made on a uniform cylinder of radius ¢ in a water depth of d/a=10. Wave
number ka is 0.5. The examination is only made on the zero Fourier mode and 0th, Ist, 10th and 50th eigen-
modes of the functions. The step length used in the forward prediction is 0.01257a.

Figure 3 shows the comparison of function S: by the direct integration and forward prediction method. For
the zero eigen-mode, the forward prediction method is to compute the function at 7=a by the direct integration
method, then to apply the forward prediction method successively. From Figs. 3-A and 3-B we can see that
even though we have applied the forward prediction method for 2000 steps, the results are still the same with
the one from the direct integration method. We can not see any difference between the results from the two
different methods.

(20)
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Figure 3. Examination on the methods, the direct integration method and forward predict method, for
computing S:(m,n) for a uniform cylinder of radius @ in a water depth of d/a=10; wave number ka=0.5.

For the Ist, 10th and 50th eigen-modes of S: we apply the forward prediction method for every 400 steps,
then correct it by the direct integration method. From the Figs. 3-C - 3-H, we can seen that for the first eigen-
mode the forward prediction method can give accurate results in the 400 steps. For the 10th eigen-mode the
forward prediction method can give accurate results for some steps. After that the method will lose accuracy
and diverges quickly. For the 50th mode, the available distance to predict is shorter than the 10th mode and
the prediction method diverges more easily. The reason for long predictable length for low eigen-modes is that
actually the dominating factor is the variable «.Ar in modified Bessel functions rather than the distance A
itself. Furthermore, the predictable length is also affected by a truncation-error tolerance

ryrAr ry T +AF
f K, (Knr)qg) rdrf{ f K, (xnr)qg) rdr+ f K, (Knr)q(pz) rdr]<Er (51)
‘N Ty n

used in calculation of the function S: by the direct integration method. In the present calculation, a tolerance of
1.0E-04 is applied.

Figure 4 shows the comparison between the direct integration and forward prediction method for the
function S:. The steps for the forward prediction method are exactly the same as for the function S.. It can be
seen that for the all of the four eigen-modes, the results from the two methods are exactly the same. The
reason is that the forward prediction method for the function S: is successively accumulating, rather than
subtracting as for Su.

In practical calculation, the method used in computing S: is that firstly the direct integral method is used to
compute the accurate values, then the forward prediction method is used to predict them for a certain steps.
Then, the direct integration method is used again to remove the error accumulated in the forward prediction
method and to guarantee that the forward prediction method can be used for the next loop. The numbers of
steps used in the forward prediction method are different for each models, and are determined by a previous

(22)
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numerical examination. This calculation loop is used repeatedly until the second order potential is obtained in

the whole desired area.
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Figure 4. Examination on the methods, the direct integration method and forward predict method, for
computing S:(m,n) for a uniform cylinder of radius « in a water depth of d/a=10; wave number ka=0.5.

6.3 Second order potential on the free surface

After having gotten those two functions S: and S, we can obtain the second order potential in fluid domain
easily. Figure 5 shows the comparison of present results of second order diffraction potential on the free
surface with Malenica's (1994) results. The comparison is made on the Oth, Ist and 5th Fourier modes of
diffraction potential, and also the radial derivative of the potential, which is obtained by a simple backward
numerical differentiation.

It can be seen from the figures that the curves of potentials are very smooth, but the ones of radial
derivatives have some noises. This is due to that some errors have been accumulated in the forward prediction
method when the direct integration method is used to get an accurate value for the next computing loop. For
the potential itself, this error is very small and can be tolerated. But, since the step is very small, the error of
derivative will be quite big in the local area. To obtain a smooth result for the radial derivative, we have to use
less steps to predict, or use other differentiation scheme.

From the comparison with Malenica's semi-analytic solution, it can be seen that for all the three modes of
both potential and its derivative, the present results have a good agreement with Malenica's.
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Figure 5. Examination on second order diffraction potential and its radial derivative on the free surface for a
uniform cylinder of radius a in a water depth of d/a=10; wave number ka=0.5.



6.4 Wave elevation

Figure 6 shows the second order wave elevation from the second order diffraction potential around a
uniform cylinder. The water depth d/a=10; waves direct to positive x- direction with a wave number of ka=0.5.
The pictures are plotted at every time step of one 16th of wave period T; ; that is one 8th of the second
harmonic oscillation. Figure 7 shows the second order wave elevation from the diffraction potential around a
truncated cylinder. The draft of the cylinder is T/a=1.0, and the water depth and the wave conditions are the
same as for the uniform cylinder. From the comparison of figures 6 and 7, it can be seen that the diffraction
wave from the uniform cylinder is much higher than the one from the truncated cylinder. It means that at
present wave frequency the diffraction from the lower part of the cylinder is still quite strong, and uniform
cylinders will not make a good substitution for truncated cylinders when considering ringing phenomenon in
long waves.

i Vel
i il
mmmmm\;“’
’uunmmmw

BN

Fig. 6-C Wave elevation at {=27,/16 Fig. 6-D Wave elevation at 1=37,/16

Fig. 6-E Wave elevation at 1=47,/16

Figure 6. Wave elevation from second order diffraction potential around a uniform cylinder of radius @ in a

water depth of d/a=10; wave number ka=0.5.
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Fig. 7-C Wave elevation at t=27,/16 Fig. 7-D Wave elevation at 1=37;/16

Fig. 7-E Wave elevation at t=47,/16

Figure 7. Wave elevation from second order diffraction potential around a truncated cylinder with radius ¢ and
draft 7/a=1.0 in a water depth of d/a=10 ; wave number ka=0.5.

7. Conclusions

A complete second order diffraction solution has been derived for a vertical revolution body. The method is
based on using the ring-source integral equation. The emphasis was laid on the quick calculation of the
integration on the free surface. It can also be easily expanded for 3D arbitrary bodies. The following
conclusions can be summarized.

1. The report derives an new integral equation for revolution bodies with vertical axes. The integral
equation can cancel the leading term of the singularity in derivative of the ring- source. Remaining low order
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singularities are dealt with by a coordinate transform.

2. For the integration on the free surface, a forward prediction method is proposed for computing the
second order potential in a big area. By this method the integration on the free surface for different source
points is carried out outward from the body by successively subtracting and accumulating the quadratures in
each forward moving step, rather than integrating on the whole free surface for each point individually. This is
very significant for the calculation of third order forces, for which the second order potential is needed on the
whole free surface or in a very big area.

3. Attention is also paid for dealing with the integration of singularities on the free surface. In this report, a
method is proposed to add and subtract an integration of the singular kernel of the ring-source in the nearby of
the source point. Thus, the infinite summation of the ring-source can be truncated at a big number, and
integrations with the singular kernel can be localized to lower computing burden.

4. Numerical examination is made on the forward prediction method for functions S: and S: by comparing
with the direct integration method. The numerical results show that for S: the forward prediction method is
uniformly available; for S, the forward prediction method is uniformly available for its zero eigen-mode, buit for
other eigen-modes it can only be used in certain steps. Numerical results also show that for lower eigen-
modes, the predictable distance is longer; and for higher eigen-modes, the distance is shorter.

5. A predicting and correcting method is used for computing S: and S: repeatedly, which is to predict them
by the forward prediction method for a certain steps, then correct them by the direct integration method. The
number of predicting steps is determined by previous numerical examination, and is different for each modes.
The method can save a lot of computing effort, and can be used to compute the second order potential over the
big area, including the free surface.

6. Comparison with other published results is made on second order force on different cylinders and the
second order diffraction potential to validate the numerical code. Comparison shows that the present results
have a good agreement with others. The program is also used to compute pitch moment on the uniform and
truncated cylinders. Results show that the difference is evident between the moments on uniform and
truncated cylinders in the same water depth.

7. The numerical code has been used to compute the wave elevation from second order diffraction potential
around uniform and truncated cylinders in the same water depth and the same wave conditions. The results
shows that at the calculation frequency, the second order wave diffractions from the two cylinders are quite
different. It suggests that we should be careful to use an array of uniform cylinders as a substitution of actual
TLPs when considering ringing phenomenon in long waves.

8. After getting the second order potential on the free surface by the present method for axisymmetric
bodies, we can obtain the third order forcing term on the free surface. Then, the calculation of third order
force is straightforward, such as by an indirect method for second order forces.

This work is partly supported by Japan Science and Technology Promotion Foundation, Japan Science and
Technology Agency Fellowship, and the National Natural Science Foundation of China.
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