Papers of Ship Research Institute Vol. 34 No. 1 Technical Report

Second-Order Wave Diffraction by an Axisymmetric Body
Bin Teng* and Shunji Kato**

Abstract

The main difficulty in calculation of third order force is its forcing on the free surface which includes
second order potential and its spacial derivatives. Second order potential also obeys an inhomogeneous free-
surface boundary condition, and its calculation needs to do an integration on the whole free surface. For third
order calculation, its forcing term is needed on a big area on the free surface, and individual calculation of the
second order potential at each point in the area is evidently not economic.

This report provides a detailed analysis for the second order diffraction of monochromatic waves by an
axisymmetric body in finite water. For wave diffraction from a body of revolution with vertical axis, the report
derives a new integral equation, which can cancel the leading singularity in the derivative of ring Green's
functions automatically. For the second order potential, the report proposes a forward prediction method to
calculate the integration on the free surface. By this method we only need to compute the infinite integration
on the free surface directly for a few of points; then an one-step quadrature is applied successively outward
from the body for potentials at other points. To get accurate results, different approaches are also used to deal
with singularities in the ring Green's functions in the integration both on the body surface and free surface.
The method has been implemented for body of revolution with vertical axes, but the theory is also available for
arbitrary bodies.

Numerical examination is also made to validate the numerical code by comparing second order force and
moment on uniform and truncated cylinders and second order diffraction potential on the free surface with
some published results. The comparison shows that the present results have a good agreement with those
results. At last, the method is used to compute the second order wave elevation around uniform and truncated
cylinders.
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1. Introduction

It was observed in model tests and prototype experiments that tension leg platforms (TLPs) and gravity
based structures (GBS) experience sudden bursts of highly amplified resonant activities during storms. This
phenomenon is called as the ‘ringing’. The ringing phenomenon will induce extreme stress in tethers of TLP,
and even induces tethers breaking. It was found that ringing occurs at low frequency non-breaking waves and
ringing periods are about 3-5 times of the period of the corresponding incident waves. This means that third
order force is an exciting source for ringing and its calculation will be significant in predicting ringing
phenomenon.

Nonlinear problems are characterized by forcing term in their boundary conditions. For the second order
potential, the forcing term on the free surface only includes first order potentials, which can be represented by
some simple ways. However, the third order forcing term on the free surface includes both first and second
order potentials. The difficulty in calculating third order forcing term is the complexity and time-consuming in
the calculation of second order potential, which is needed on the whole free surface or a big area. Usually, an
integral equation method is used to compute the second order velocity potential, in which integrations have to
be carried out on both body and free surfaces.

To get rid of the potential at the considering order from the integration on the free surface and the sea bed,
an oscillating source with corresponding frequency is usually applied as the Green's function. The basic
representation of the Green's function is written in a function of the Bessel function of the first kind of zero
order. Kriebel (1990) used this representation in calculation of second wave elevation around a uniform
cylinder. After using Graf's addition theorem to represent the Bessel function by the radii of source and field
points in a polar coordinate system located at origin of the cylinder, we can get an unanimous representation
with multiplications of functions of the radii of field and source points, no matter the radius of field point is
larger than the one of source point or not. Thus, we can integrate the forcing term on the free surface with the
functions only relative to the radius of field point to get a wave number spectrum. Then, second order potential
can be represented by the wave number spectrum in an explicit form. To calculate the third order forcing term
on the free surface, Teng and Kato (1996) tried to use this method to compute second order diffraction
potential from an axisymmetric body. They found that the wave number spectrum goes to infinite at a wave
number of twice of incident wave number when water depth is not infinity. The reason is that there is a
component with twice of incident wave number in the second order forcing term on the free surface, which is
called as the ‘locked wave’ by Molin(1979). Multiplication of the second order forcing term with Bessel
functions at that wave number will give constant contribution with the increase of distance. Applied some
techniques to deal with the infinity, Teng and Kato (1996) found that it is still hard to get a good agreement
with Eatock Taylor and Hung's (1987) on the second order forces on uniform cylinders. The reason is that the
wave number Spectrurh from this method converges slowly at high wave number, especially its derivatives.

To compute second order potential and forces, Hunt and Baddour (1981) and Hunt and Williams (1982)
applied Weber transformation method, which is similar as the method by applying the above mentioned
Green's function. Later, it was found that their results are not reliable. It has been doubted that their velocity
potential is incomplete. Recently, Newman (1996) studied the problem again by the same method. For second
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order potential on body surface of a uniform cylinder, he used Wronskians and transformation of integration
contour to overcome the numerical inefficiency. Then, he managed to get a good agreement with Eatock
Taylor and Hung's on second order forces.

Another representation of Green's function is of the modified Bessel functions, which is gotten by
transformation of integrating contour. The Green's function in this form converges quickly, but the problem is
that it has different definitions when radius of source point is larger than the one of field point or vice versa.
For computing the second order force on bodies, this representation does not give too much troubles.
However, for second order potential on the free surface, the integration domain on the free surface has to be
separated into two different ranges according to the radius of source point. Thus, the second order diffraction
potentials at different positions can not be represented by an explicit representation. Chau and Eatock Taylor
(1992) used a similar Green's function, which also satisfies the body surface condition, and developed a semi-
analytic solution for uniform cylinder. They used this method to compute second order wave elevation in the
near field surrounding the cylinder. Huang and Eatock Taylor (1996) even developed a semi-analytic solution
for truncated cylinders. For third order calculation, second order potential is needed on the whole free surface
or in a very big domain. Calculation by this method directly seems very expansive, as an infinite integration
has to be carried out for each point. Malenica and Molin (1995) made some improvement on this method in
their third order calculation. They applied a forward moving approach to predict the integration associated
with Hankel function from smaller radius to bigger one step by step. But for the parts associated with an
infinite summation of the modified Bessel functions, they still used the direct integration method as Chau and
Eatock Taylor did. .

The present work proposes an one-step forward prediction method for calculating the terms associated with
modified Bessel functions. Special concerns are also paid on the treatment for the logarithmic singularity in
the ring Green's functions. By this approach, the second order potential can be calculated much more
efficiently in a big area, like to form the forcing term for third order problem. The method has been
implemented for axisymmetric bodies, and no difficulty has been found for extending it to arbitrary bodies,
like TLPs.

2. Free Surface Condition

We define a right-handed coordinate system (¥, y, 2), with origin at the center of the body, 2=0 on the still
free surface and the z-axis pointing upward (see Figure 1). The fluid is assumed to be homogenous and
incompressible, and irrotational. There exists a velocity potential that satisfies the Laplace equation and the
nonlinear free-surface boundary condition on
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Figure 1. Definition sketch

Under the assumption of weak non-linearity, we can write the wave velocity potential as a perturbation
series with respect to wave slope parameter e =kA

=00 +20? +20® + .. ©)

We assume that the incident monochromatic waves have an incident frequency . To solve the ringing
phenomena, the first, second and third order harmonic potentials with the frequencies of w=w, w.=2® and
w =3 w are only considered. We separate the time dependencies explicitly, and write potentials at each order of
€ as

o @)
D (x,y,z,£) = Re[6P(x,y,2)e '] -

After expanding eq. (1) into a perturbation series and collecting terms at the same order of e, we can write
the free surface conditions for the velocity potentials at each order of ¢ as

gy &)
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where
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2
Vj=(0j/’g

and the forcing terms at each order of «
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It can be seen that the third order forcing term includes both first and second order potential.
3. Integral Equation

For convenience in numerical calculation, we separate velocity potential into incident and diffraction
potentials '

SR, ®)

By applying an oscillating source with frequency «; as the Green's function, we can obtain an integral equation
for jth order diffraction potential as

0G(x; %, )
w ¢y - [ Sf ——F 4wds o

0
- [[ Gz wj)%ds‘ -[[ Gz @) gp ds
5y Sp

where Sz and Sr denote the body and free surface, and ¢»? is the difference between the total forcing term and
the forcing one for incident waves

(10)
af =q%-q

The positive direction of the normal to the body surface is defined as being out of the fluid. To weaken the

singularity in the integration of derivative of the Green's function, we add another equation obtained inside the
body (Eatock Taylor and Chau, 1992, and Teng and Eatock Taylor, 1995) and get a new equation as
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where Sw is the inner free surface. For axisymmetric body, we expand the velocity potential and the Green's

an

function into series
- YRR )
D(x,) = Eoem(b(gm(ro)cosmﬁo »0(x) = E@em%m(r)cosme 12)

G(x; %)= L ¢, G, (1,25 Ty Z9) cosm(6 -8,)
m=0

where ¢ .is the coefficient of Neumann's polynomial(=1 when »=0, 2 when m>0), e.g. see Watson,1966. Then,
the integral equation for the mth mode in azimuthal angle 8 of jth order potential can be obtained as

[5=-v f Gyrdr1dP(re) - f (2 0)-—4; () rdl

3
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where I'zand I'ware the traces of Sz and Sw (see Figure 2), and the ring Green's function G~ is
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Figure 2. Integrating contour for axisymmetric body
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where d is the water depth. The eigenfunctions in z-direction are defined by
coshk (z+d) cosk, (z+d) 16
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0 0
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The ring-source potential and its derivative have been investigated by a number of researchers (Fenton,
1978; Hulme, 1983; Kim and Yue, 1989). It was found that the ring sources at each mode have the same
logarithmic singularity when field point is close to the source point; and the leading singularities in their
derivatives have the same form as the reverse of the distance between field point and source point. Thus, the
leading term of singularity in equation (13) can be canceled each other. Other weak singularities are dealt with
by suitable coordinate transformation (Telles, 1937).

For the second order potential, if the minimum radius of free surface is larger than or equal to the
maximum radius of the body (otherwise, we should divide the free surface into different ranges), the integral
on the free surface can be written as

I(ry, 04, 2,) = - f rdr Eo €, a2 (r)cosm®, (18)

a
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where « .= x 2 for brevity. By defining

in T r ' 19
Slmo(a)=l—;- f qg;,(r) H (k,r)rdr, Simn(@) = f q,(,zg,(r) K, (x,r)rdr, (19)

we can write the above integral equation as
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Thus, for the second order potential on the body surface, integration on the free surface is only needed to run
once.

The infinite integration of Suw (#>0) converges quickly with the increase of the integration range as the
modified Bessel function K. decays at an exponential rate. However, the infinite integration of Sz is oscillating
and converges slowly with the increase of integrating distance. A method widely used for its calculation is to
divide the integration range into two parts. In the inner domain, a direct quadrature is used, and in the outer
domain an analytic method is used to integrate it to infinity, after some asymptotic approximations have been
used for Hankel functions.

4. Second Order Potential on Free Surface

For the second order potential at a point not close to the body, the following integral equation can be used to
compute second order potential directly

3y (x,2) @1
(2) 2) _ I\ _ @
0 (%,,0) - f ] D(xz)ds=[ ! G———ds [ Sf GqY ds
B F

For axisymmetric body, the integral equation for mth mode with respect to azimuthal angle 6 can be written
as

2) @ a‘b[,,,( r,2) @ 22)

T, 0) = f —dp (I‘Z)rdl+fG P rdl - fG dpn AT

Ty
However, when the computed point is close to the body surface, there are some quasi- singularities in the body

integration. Direct use of the above integral equation will not give accurate results. For weakening the quasi-
singularities, we add another integral equation

oG (x xo) 23)

-v, f f Gx, x)dsdp(x*) + f f D (x")ds=0

to the above equation, where
24)

* _ —
x"=acosb, , Jor x,=rycosf,

is the closest point to the computed point on the water line. It yields a new integral equation
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We expand the potentials into series
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Then, another integral equation can be obtained for the mth mode of second order potential as
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This equation will weaken the leading term of quasi-singularity, and the other quasi- singularities will still be
dealt with by coordinate transformation.

5. Numerical Implementation

For second order potential on the body surface and in the fluid domain, two integrations have to be carried
out both on body surface and free surface when an integral equation method is used. Direct calculation of
those integrations is very expansive when second order potential is needed in a big area, like to form the third
order forcing term on the free surface. Thus, some techniques have to be applied to aim at a speedup of the
calculation. Besides the inefficiency in calculation of the integration on the free surface, the singularity in the
ring Green's function has to be dealt with carefully. The ring Green's function is represented by an infinite
summation of modified Bessel functions, and simple truncation will induce great inaccuracy when field point
approaches to the source point. To calculated those integration accurately, some special approaches are used.

5.1 The integration on the free surface
Substituting the ring Green's function into the above integration, the integration on the free surface can be
written as

L]

L7 04, 0) == [rdr g n) [im CoH, (e, ) Kt ) 3)

a
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