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Figure 3. Examination on the methods, the direct integration method and forward predict method, for 

computing S1(m,n) for a uniform cylinder of radius a in a water depth of d/a=lO; wave number ka=0.5. 

For the 1st, 10th and 50th eigen-rnodes of S1 we apply the forward prediction method for every 400 steps, 

then correct it by the direct integration method. From the Figs. 3-C -3-H, we can seen that for the first eigen-

mode the forward prediction method can give accurate results in the 400 steps. For the 10th eigen-mode the 

forward prediction method can give accurate results for some steps. After that the method will lose accuracy 

and diverges quickly. For the 510th mode, the a~railable distance to predict is shorter than the 10th mode and 

the prediction method diverges more easily. The reason for long predictable length for low eigen-modes is that 

actually the dominating factor is the variable K n△r in modified Bessel functions rather than the distance山

itself. Furthermore, the predic紐blelength is also affected by a truncation-error tolerance 

r ＋△r r1 r1+Ar 

+ f K (1e_r)a招rdrl<Er (51) 

n 『o r1 

used in calculation of the function S1 by the direct integration method. In the present calculation, a tolerance of 

l.OE-04 is applied. 

Figure 4 shows the comparison between the direct integration and forward prediction method for the 

function S2. The steps for the forward prediction method are exactly the same as for the function S1. It can be 

seen that for the all of the four eigen-modes, the results from the two methods are exactly the same. The 

reason is that the forward prediction method for the function S2 is successively accumulating, rather than 

subtracting as for S1. 

In practical calculation, the method used in computing S1 is that firstly the direct integral method is used to 

compute the accurate values, then the forward prediction method is used to predict them for a certain steps. 

Then, the direct integration method is used again to remove the error accumulated in the forward prediction 

method and to guarantee that the forward prediction method can be used for the next loop. The nu1:11-bers of 

steps used in the forward prediction method are different for each models, and are determined by a previous 
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numerical examination. This calculation loop is used repeatedly until the second order potential is obtained in 

the whole desired area. 
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Figure 4. Examination on the methods, the direct integration method and forward predict method, for 

computing Si(m,n) for a uniform cylinder of radius a in a water depth of d/a=10; wave number ka=0.5. 

6.3 Second order potential on the free surface 

After having gotten those two functions S1 and S2, we can obtain the second order potential in fluid domain 

easily. Figure 5 shows the comparison of present results of second order diffraction potential on the free 

surface with Malenica's (1994) results. The co:mparison is made on the 0th, 1st and 5th Fourier modes of 

diffraction potential, and also the radial derivative of the potential, which is obtained by a simple backward 

numerical differentiation. 

It can be seen from the figures that the curves of potentials are very smooth, but the ones of radial 

derivatives have some noises. This is due to that some errors have been accumulated in the forward prediction 

method when the direct integration method is used to get an accurate value for the next computing loop. For 

the potential itself, this error is very small and can be tolerated. But, since the step is very small, the error of 

derivative will be quite big in the local area. To obtain a smooth result for the radial derivative, we have to use 

less steps to predict, or use other differentiation scheme. 

From the comparison with l¥,1alenica's semiー皿alyticsolution, it can be seen that for all the three modes of 

both potential and its derivative, the present results have a good agreement with Malenica's. 
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Figure 5. Examination on second order diffraction potential and its radial derivative on the free surface for a 

uniform cylinder of radius a in a water depth of d/a=lO; wave number ka=0.5. 
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6.4 Wave elevation 

Figure 6 shows the second order wave elevation from the second order diffraction potential around a 

uniform cylinder. The water depth d/a=lO; waves direct to positive x-direction with a wave number of ka=Oふ

The pictures are plotted at every time step of one 16th of wave period TP ; that is one 8th of the second 

harmonic oscillation. Figure 7 shows the second order wave elevation from the diffraction potential around a 

truncated cylinder. The draft of the cylinder is'.T/a=l.0, and the water depth and the wave conditions are the 

same as for the uniform cylinder. From the comparison of figures 6 and 7, it can be seen that the diffraction 

wave from the uniform cylinder is much higher than the one from the truncated cylinder. It means that at 

present wave frequency the diffraction from the lower part of the cylinder is still quite strong, and uniform 

cylinders will not make a good substitution for truncated cylinders when considering ringing phenomenon in 

long waves. 
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Figure 6. Wave elevation from second order diffraction potential around a uniform cylinder of radius a in a 

water depth of d/a=lO; wave number ka=0.5. 
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Figure 7. Wave elevation from second order diffraction potential around a truncated cylinder with radius a and 

draft T/a=l.O in a water depth of d/a=lO; wave number ka=Oふ

7. Conclusions 

A complete second order diffraction solution has been derived for a vertical revolution body. The method is 

based on using the ring-source integral equation. The emphasis was laid on the quick calculation of the 

integration on the free surface. It can also be easily expanded for 3D arbitrary bodies. The following 

conclusions can be summarized. 

1. The report derives an new integral equation for revolution bodies with vertical axes. The integral 

equation can cancel the leading term of the singularity in de1ivative of the ring-source. Remaining low order 
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