加重係数dについては、Burlinは、エネルギーT。 の電子に対する加重係数d(T_o)を、次の式から求め られると考えた。

$$d(T_o) = \frac{\int_o^g exp(-\beta x)dx}{\int_o^g dx}$$
(2.7)

 β は実効質量吸収係数、gは空洞の平均行程長さを表 す。光子に対するd(E₇)は、式(2.7)のd(E₇)に 等しいと仮定するか⁶⁾、式(2.7)を 2 次電子平衡スペ クトルで平均する⁹⁾ことによって計算される。

以上より、Burlinの式 (2.3)の成立には、条件 a、 d、gの他に、次の条件が必要となる^{10 11}。

h. 空洞内で発生した電子フルーエンスは、スペクト ルを変化させずに媒質からの電子スペクトルの減衰 と同じ傾きで指数関数的にビルドアップする。

ここで注意すべきことは、こうした条件を低エネル ギー光子に対して厳密に満たせるのは、媒質と空洞が 同じ組成からなる場合だけということである。つまり、 両者の組成が異なる場合、式(2.3)は成り立たない 可能性がある。

2.1.3 空洞・媒質間の組成が大きく異なる場合の 加重係数

Attixは、図2.1に示すように、Burlin理論のdは媒 質からの電子フルーエンス平均値をその媒質中での平 衡値で割った値と指摘した¹²⁾。

$$\overline{d} \equiv \frac{\overline{\Phi_w}}{\Phi_w^e} = \frac{\int_o^g \Phi_w^e exp(-\beta_w x) dx}{\int_o^g \Phi_w^e dx}$$
(2.8)

つまり、dは、減衰を考慮した実際の媒質発生電子に よるエネルギー沈積の、減衰がないと仮定した場合の エネルギー沈積に対する比と考えた。同様に、1-d は、空洞発生の電子フルーエンス平均値をその空洞中 の平衡値で割った値と説明した。

$$1 - \vec{d} \equiv \frac{\Phi_c}{\Phi_c^e} = \frac{\int_o^g \Phi_c^e (1 - exp(-\beta_c x)) dx}{\int_o^g \Phi_c^e dx} \quad (2.9)$$

この場合も、 1 - dは、ビルドアップを考慮した実際の空洞発生電子によるエネルギー沈積の、ビルドアップなしのすべて平衡場であると仮定した場合のエネル ギー沈積に対する比となる。均質な組み合わせの場合、 $\Phi_{\epsilon}^{\epsilon} = \Phi_{\epsilon}^{\epsilon}$ となり、しかも両者のスペクトル、角度分 布が同じなので指数係数も同じとなり、式(2.8)と 式(2.9)の右辺の和は1となる。つまり、Burlinの 式(2.3)と同じになる。ところが、金とLiFのような 不均質な組み合わせの場合は、 $\Phi_{\epsilon}^{\epsilon} \neq \Phi_{\epsilon}^{\epsilon}$ となり、通 常、2次電子スペクトルと角度分布も異なるため、式

$$\frac{\overline{\Phi_c}}{\Phi_c^{\theta}} \equiv \overline{d'} \neq 1 - \overline{d}$$
(2.10)

すなわち、不均質な組み合わせの場合、式(2.3) は $f(E_r) = \overline{d}(E_r) f_s(E_r) + \overline{d}'(E_r) f_i(E_r)$ (2.11)

となり、両加重係数は $\overline{d+d'} \neq 1$ (2.12) の関係になる。つまり、空洞理論の一般的な適用性を 調べるには、式 (2.11) について議論しなければなら ない。しかし、その加重係数d'の計算方法が検討さ れておらず、その適用はほとんどなされていない。そ こで、簡便で従来広く調べられてきた式 (2.3)の低 エネルギー光子に対する適用範囲をまず調べることに より、その加重係数の物理的意味を考察し、式 (2.8)、 (2.9)の妥当性を検証することにした。

図2.1 空洞中における電子フルーエンスの減衰と ビルドアップ

表2.1 用いたX線フィルターと実効エネルギー

kVp	Basic filter (mm)			Effective energy	
(kV)	Al	Cu	Sn	Рb	(keV)
40	1. 3	•			32. 1
60		1.0			48.8
100		3.51			80. 0
200			3.03	0.52	160
250			1.01	1.99	200

図2.2 線源光子スペクトル

2.2 X線照射実験

2.2.1 方法

X線照射の実験は、日本原子力研究所の放射線標準 施設にて、10-400kVX線発生装置(HF-420C)¹³を用い て行った¹⁴⁾。用いた実効エネルギーは、32,49,80,160, 200keVであり、その値は半価層の厚さから求めた線 減衰係数に基づいている。各エネルギーで用いたフィ ルターを、表2.1に示す。実効エネルギーの最大エネ ルギーに対する比である線質指標は、すべて0.8であ り、利用できる最も単色に近いスペクトルを用いた。 図2.2は、線源から1mの距離にゲルマニウム検出器を おいて測定された光子スペクトルである¹³。実効エネ ルギー80keVのX線に対しては、タングステンターゲッ トからのK-X線が観察される。しかし、その光子数は 全体の2%であり、また、LiFと媒質のエネルギー吸 収係数は80keVの付近で大きく変化しない。さらに、 線源スペクトルは相対値として用いるので、TLD線 量に対する蛍光X線の影響は無視できると考えた。ま た、電離箱(Victoreen 550-4)を用いた測定から、 ビーム強度は半径5 cm以内で4%の均一性を持つこと、 線量計支持台の下にある可動テーブルからの散乱光子 成分は、直接線の1%以下であることが明らかになっ ている¹³⁾。

用いたTLDは、3.2mm四方で厚さが0.38mmのSolon Technologies,Inc.製のLiF(TLD-100) TLDである。 照射前に素子を400℃、1時間でアニーリングし、照 射後は初期フェーディングを避けるため、2日間放置 した。その素子を、Harshaw/Bicron製のModel 3500 TLDリーダーを用いて、毎秒10℃の速度で加熱し、 放出される熱ルミネセンスを測定した。なお、加熱は すべて窒素ガス雰囲気中で行った。

テフロン、アルミニウム、銅、金の吸収線量を測定 するために、TLDをそれらの薄い箔ではさみ、無限 媒質中と同じ条件が箔とTLDの境界近傍で近似的に 得られるようにした。金のK吸収端は80.72keV¹⁵で、 その付近では線量が著しく線源スペクトルの影響を受 けることが予想されたため、金に対しては80keVのエ ネルギーは用いなかった。他の箔では、吸収端は30keV 以下なので問題ない。線源と線量計間の距離は約1.5 mあり、照射線量は、照射直前に同位置にて電離箱 (Victoreen 550-4)を用いてモニターし、それぞれ 0.01Gy程度照射した。

2.2.2 箔厚さ決定法

2.2.2.1 ITSコードによるエネルギー透過。反射 計算

無限媒質中と同じ条件を得るためには、TLDの表 面に無限媒質中と同じ電子フルーエンスを与えるよう、 箔の厚さを決める必要がある。厚さが0から増加する につれて、箔から出てくる2次電子の数と全エネルギー は増加するが、ある厚さで飽和する。つまり、そこで 平衡値に達したと判断し、その厚さを測定に用いるこ とにした。電子数と全エネルギーの計算には、ITSコー ドパッケージ¹⁰中の1次元平板用コードTIGER, TIGERPを用いて数、エネルギー透過、反射係数を計 算した。ここで、光子に対する数、エネルギー透過、 反射係数とは、光子が1個入射した時に透過、反射し てくる電子の個数あるいはエネルギー積分値の光子エ ネルギーに対する比とそれぞれ定義している。

ITS (Version 3.0) コードは、光子と電子の輸送を 1 keVまでシミュレートできるモンテカルロ計算コー ドである。1次元多重層平板体系のTIGER、3次元 円柱体系のCYLTRAN、combinatory geometry^mの ACCEPTコードから構成される。ITSコードは、Berger とSeltzerによって開発されたETRAN®をもとにして いるため、低エネルギーの電子、光子輸送に関する多 くの挙動が考慮されている。すなわち、光子輸送にお いては、光電効果¹⁹、電子束縛効果を考慮したコンプ トン散乱²⁰、レイリー散乱²¹、そして電子対生成が計 算される。また、制動放射線、TIGERコードではK軌 道特性X線、TIGERPコードではL、M軌道特性X線、 そしてオージェ電子がシミュレートされる。電子輸送 では、計算時間短縮のため、個々の散乱を扱うのでは なく、Gaudsmitt-Saundersonの多重散乱理論²⁰を用 いていくつかの散乱をまとめて計算するcondensed history技術²⁰が用いられている。同理論は、低エネ ルギー電子輸送において、より小さな行程長さに適用 でき、散乱角の制限がない点でMolieの理論²⁴⁾より優 れている50。エネルギー沈積は、電子衝突阻止能20を

12

用いて計算され、電子のエネルギー損失は、ランダウ 分布³⁷⁰からサンプリングされる。カットオフエネルギー 以下になった電子のエネルギー沈積は、その電子が直 線に沿って一定の割合でエネルギーを失うと仮定して 計算される。さらに、同じ媒質で空間メッシュを細か く切っても電子のステップに影響しないようプログラ ムされている。同種のコードにEGS4³⁰⁰があり、どち らにも優劣があるが、ここではK、L-X線およびそれ 以下のエネルギーの電子輸送を計算する必要があり、 しかもそうした低エネルギー電子の輸送が重要なため、

図2.3 光子入射に対する電子エネルギー透過係数 横軸は電子CSDA飛程Rで規格化した箔厚さ

夜4.4 用いた泪の序	Z4.4	用い	いた泪	の厚	9
-------------	------	----	-----	----	---

Energy (keV)	Teflon	Thickne Al	ess (mm) Cu	Au
200 160 80 49 32	0. 2 0. 13 0. 05 0. 05	0. 1 0. 1 0. 1 0. 1 0. 1 0. 01	0.05 0.03 0.005 0.005 0.002	0. 01 0. 01 0. 001 0. 001 0. 00025

その点で優れた^{23 29} ITSの方を用いた。

同コードで計算したテフロン、アルミニウム、銅、 金箔に対するエネルギー透過係数を、実効エネルギー に対応する電子のCSDA(連続減速近似)飛程で規格 化した箔厚さとともに、図2.3に示す。テフロンの係 数は電子飛程の70%以上の厚さで飽和する。つまり、 電子飛程の70%以上の厚さで十分なことになる。アル ミニウム、銅、金に対しては、その厚さは飛程のそれ ぞれ50%、40%、30%であることが示されている。実 効エネルギー、すなわちエネルギー透過係数を数透過 係数で割った値もその厚さ以上で一定であることから、 スペクトルも変わらないことが推定された。同様の方 法で、後方の箔の厚さも調べ、その厚さは前方の厚さ と同じだけ必要であることがわかった。

箔の厚さが厚くなればなるほど、線源光子は減衰し、 その代わりに散乱、蛍光光子、制動放射線が増加する。 そのため、その厚さは、電子平衡フルーエンスを維持 しつつ、なるべく薄くなるよう決定した。表2.2に、 各々の線源エネルギーに対して決定した箔厚さを示す。 TLD前後の厚さは同じである。32keVX線に対する金 の厚さは電子飛程の10%で、必要な30%厚さより少し 薄い。

2.2.2.2 光子減衰、散乱の影響評価

表2.3に、各々の媒質における光子の平均自由行程 と電子のCSDA飛程を示す。平均自由行程の1%長さ が、ほぼ1%減衰距離に対応する。金については、電 子飛程の30%長さが1%減衰距離より大きいので、電 子平衡場を得るためには、ある程度の光子の減衰が不 可避である。線源光子の減衰は、線減衰係数³⁰⁰を用い て計算し、金の160keVで3%、200keVで2%、銅の 32keVで2%、他については1%以下の値を得た。線 源光子スペクトルを考慮しても、そのスペクトルのもっ とも低エネルギーの光子の減衰は数%程度であり、透 過スペクトルの実効エネルギーにわずかに影響を与え る程度であった。

表2.3 光子平均自由行程と電子CSDA飛程R

Energy	r Tef	lon	А	1	С	u	A	u
(keV)	mſp	R	mfp	R.	mfp	R	mfp	R
200	8. 41E+0*	5.40E-2	8. 18E+0	5.80E-2	6. 42E+0	6.81E-2	1. 09E+0	9. 00E-2
150	7.63E+0	3. 39E-2	7. 26E+0	3. 66E-2	4. 52E+0	4.31E-2	5.38E-1	5.78E-2
80	6. 13E+0	1.18E-2	4. 97E+0	1.28E-2	1. 32E+0	1.54E-2	4.58E-1	2.12E-2
50	4. 71E+0	5.24E-3	2.74E+0	5.74E-3	3.85E-1	6.95E-3	1.38E-1	9.89E-3
30	2, 51E+0	2.14E-3	8.97E-1	2. 37E-3	9.23E-2	2.91E-3	3.63E-2	4. 32E-3

K-X線については、TLD線量に及ぼす最大影響を次の式により計算した。

$$\frac{P_K Y_K (1 - exp(-\mu_\tau t_m)) (D_{LiF,K})_{iso}}{D_{LiF}} \quad (2.13)$$

 P_{κ} はK殻で光電効果が起こる割合、 Y_{κ} は蛍光収量、 μ_{τ} は箔中の光電効果の減衰係数、 t_{m} は箔厚さ、 D_{LiF} は箔ではさまれたLiFの線量測定値、 $(D_{LiF,\kappa})_{iso}$ は等方放射を仮定してITSで計算したK殻 エネルギーの光子によるLiF線量を表す。計算の結果、 金の200keVで0.8%、150keVで2%、銅の50、30keV で7%であった。同方法で、金箔からのL-X線の影響 も計算したところ、50keVで4%、30keVで3%であっ た。

電子の初期エネルギーのうち、電子が静止するまで に制動放射線のエネルギーに変換される割合として定 義されている量に放射線収量があるが、制動放射線の 影響は、この放射線収量を用いて評価した。ICRU Report 37³⁰によると、金の中での200keV電子に対す る放射線収量はほんの2%であり、さきの光子減衰計 算により、光子から電子に変換されるエネルギーが数 %であることを考えれば、制動放射線として放出され るエネルギーは全体の0.02%以下であると考えられる。 散乱光子については、そのエネルギーが線源エネルギー とほとんど同じであることから、そのTLD線量への 影響は無視した。

光子束は、空洞すなわちTLD自身によって乱され、 光子束摂動と自己遮蔽を受ける。しかし、光子の平均 自由行程と比較して空洞は非常に小さいので、光子束 摂動の補正係数はほとんど1と考えられる。自己遮蔽 は、入射光子束を平行と見なし、次の式によって評価 した。

$$\frac{1 - exp(-\mu_a t_{TLD})}{\mu_a t_{TLD}}$$
(2.14)

 μ_{a} はTLDの光子線減衰係数、 t_{TLD} は、TLDの厚さで ある。計算の結果、その値は30keVで0.98、40keV以 上で1.0であった。他方、電子スペクトルの擾乱は無 視できないが³⁰、空洞理論の加重係数に含まれると仮 定した。

箔は、周りの空気中で発生した電子がTLDに影響 しない程度の厚さを持たなければならない。とくに、 金に関しては、その厚さが電子飛程よりずっと小さい ので、可能性として考えられた。そこで、空気からの 電子が金箔に与える線量をTIGERPによって計算した ところ、電子飛程の10%より深いところには、ほとん ど影響しないことがわかった。

また、箔とTLD間の空気は、箔からの電子を減衰 させ、TLDの線量をいくらか減少させうる。しかし、 過大に見積もってその厚さを0.5mmと仮定しても、30 keV電子の空気中の飛程である16.6mmよりずっと小さ いので、影響はすべてのエネルギーで無視できるとし た。

TLD中の線量分布が不均一だとすると、蛍光のTLD 中での減衰を考慮しなければならない。その度合いを 表す光学吸収係数 μ は、蛍光がTLD表面に垂直に放 射され散乱をおこさないと仮定し、Lambert-Beerの 法則

$$I = I_o \frac{1 - exp(-\mu t_{TLD})}{\mu t_{TLD}}$$
(2.15)

に基づいて測定されている³⁰。ここで、I、I₀は、それ ぞれ透過、発光強度を表す。測定の結果、μ=0.24 mm⁻¹の結果が得られており、0.38mm深さからだと9% ほど減衰することになる。後述のモンテカルロ計算で、 TLD表面と内部の線量が最も異なる金箔の場合、そ の比は3:2で、そのうち照射面側の線量はその65% を占めることがわかっている。したがって、過大に見 積もっても蛍光減衰の影響は4%である。しかし、文 献の測定は厚さ0.9mmのTLDで行われ、I/I。が0.9しか なく、誤差を考えればμの値は大きく変動しうる。ま た、照射したTLDの上に未照射のTLDを何枚か重ね て測定している例もあるが30、重ねた境界面での蛍光 減衰、反射を考慮していない。また、実際には蛍光は すべて平行ではないので、素子と増倍管受光面間の距 離でµの値も変わってくる。そこで、蛍光のTLD中 における減衰が読み値に与える影響は、多くても数% 程度と見なし、測定値自体に補正は行わなかった。

2.2.3 TLD校正

LiFの熱ルミネセンス強度は、およそ5Gy以下では LiF内の吸収線量に比例する。つまり、その線量域で は、吸収線量D_{TLD}は熱ルミネセンスから求められる ことになる。そこで、原研放射線標準施設内の [®]Coγ線を用いて、校正を行った。電子平衡状態を保 っため、TLDを3mm厚さのテフロン箔ではさみ照射 した。照射線量は、電離箱を用いて4.4%の精度で測 定されている。ここで、TLDはテフロンから放出さ れる電子の影響を受けるので、照射線量をTLD中の 吸収線量に直接関係づけることはできない。すなわち、 TLD中の吸収線量D_{TLD}([®]Co)は次の式によって得ら れる。

$$D_{TLD} = f_{TLD, Tef} D_{Tef}$$
(2.16)

 $f_{TLD, Tef}$ は式 (2.2)の、空洞がTLD、媒質がテフロ ンの場合のfの値である。空気吸収線量D_{eir}を照射さ れた時のテフロン中の吸収線量D_{Tef}は、"大きな空 洞"に対する理論を用いて、次のように書ける。

$$D_{TLD} = f_{TLD, Tef} \frac{(\mu_{en} / \rho)_{Tef}}{(\mu_{en} / \rho)_{air}} D_{air} \qquad (2.17)$$

 $f_{TLD, Tef}$ の値は、"小さな空洞"に対する理論に基づいて計算される。こうして、測定の結果、校正定数として0.866nC/Gyを得た。この定数を用いて、光電子増倍管により熱ルミネセンス光から変換された電流値を、TLD中の吸収線量に変換した。

2.2.4 f值測定結果

低エネルギー領域においても、単位吸収線量当たり のTL発光が[®]Co γ線による校正時と同じであること を確認するため、空気中において80、160、200keV光 子に対するTLD吸収線量を測定した。10keVから40keV までは、シンクロトロン放射光を用いてすでに行われ、 6%以内で一致することを確認している³⁰。本エネル ギー領域でも、Burlinの空洞理論を適用して得た単位 吸収線量当たりのTL発光は、⁶⁰Co γ線照射時と5% 以内で一致することを確認した。

fの値は、D_{TLD}を、線源エネルギーに質量エネルギー 吸収係数³⁰⁾を乗じたD^mで除して得た。線源スペクト ルは、同施設において以前、ゲルマニウム検出器によっ て測定されており¹³⁾、その値を用いて質量エネルギー 吸収係数を平均し、D^mを求めた。結果を表2.4に示す。 誤差は、照射された数個のTLDの標準偏差である。 テフロンではおよそ1であるが、アルミニウム、銅、 金と原子番号が増大するほど、また光子エネルギーが 減少するほど、fの値は小さくなった。

表2.4 fの測定値、Burlin理論値およびITS計算値

	Effective	fexp	fв	fitte	3 ⁴⁴
Medium	energy (keV)	(ơ %)		broad energy	mono energy
Teflon	49	0.808(8.5)	0.920	0.944	0. 985
	80	1.03(7.9)	0.947	0.976	1.02
	160	0.955(2.0)	0.962	0.982	0.979
	200	1.00(4.6)	0.964	0.945	0.971
A1	32	0.226(7.4)	0.209	0.219	0.220
	49	0.239(18)	0.252	0.242	0.262
	80	0.464(4.6)	0.444	0.420	0.487
	160	0.845(0.62)	0.836	0.861	0.862
	200	0.908(8.6)	0.917	0.880	0.927
Cu	32	0.0244(6.2)	0.0230	0.0247	0. 0238
	49	0.0295(2.6)	0.0297	0.0334	0.0345
	80	0.0689(13)	0.0626	0.0638	0.0678
	160	0.306(5.4)	0.275	0.298	0.333
	200	0.524(14.7)	0.489	0.462	0.524
Au	32	0.0104(16)	-	0.0105	0. 0111
	49	0.0151(5.7)	0. 0208	0.0161	0.0162
	160	0.0743(2.2)	0.105	0.0611	0.0711
	200	0.115(2.1)	0.170	0. 103	0.110

^{*}図 2.2の広スペクトルと単一エネルギー両線源について計算

2.3 実験値と空洞理論値の比較

低エネルギー領域における空洞理論の適用性を調べ るため、同理論を用いてf(D)の値を計算した。その 適用に当たっては、 β 、すなわち加重係数における指 数関数の指数部を、どのように計算するかが重要であ る。 β の表現についてはいくつかの提案がなされてい るが⁵⁰、ここでは、

$$exp(-\beta R) = 0.01 \tag{2.18}$$

を採用した^{9) 30}。ここで、RはCSDA電子飛程であり、 光子エネルギーと等しいエネルギーをもつ電子の飛程 を用いて β の値を求めた。また、式(2.11)について は、d、d'の計算方法が確立していないので、まず、 式(2.3)をf(D)の計算に用いた。式(2.7)の電子 行程長さgは、4V/Sの式を用いて求めた。ここで、 V、Sは、それぞれTLD体積、表面積を表し、計算の 結果、gの値として0.614mmを得た。また、 実際の計 算において、式(2.4)に示したf₈の限定阻止能の計 算に必要なカットオフ値の正確な決定は困難である。 ところで、ICRU Report 37²⁰によると、電子阻止能 のカットオフ値への依存度は数%以下である。そこで、 空洞理論の計算には非限定阻止能すなわち通常用いら れる全衝突阻止能を用いた。

結果を、表2.4に示す。空洞理論値は、テフロンの 49keVで実験値より14%過大になっているが、アルミ ニウム、銅も含めてその他は10%以内で一致した。一 方、金は、38%から48%と測定値よりかなり大きい値 になることが明らかになった。

2.4 モンテカルロ輸送計算

2.4.1 f値計算

金の場合に、空洞理論値と測定値が一致しなかった 原因を調べるため、境界付近の電子輸送を調べること にした。なぜなら、媒質発生電子によって与えられる 線量分布は、すでに述べたように加重係数に大きく関 係しているからである。この目的のためには、空間座 標の精細性および電子輸送計算コードとしての普及性 からモンテカルロコードが適している。そこで、 2.2. 2.1項と同じくITSコードを用いて調べることにした。 結論から述べると、モンテカルロ計算により、式(2. 18)のβの値は箔からの電子の減衰係数と大きく異な る、つまり、加重係数dの値が正確に計算されていな いことが明らかになった。その詳細について説明する 前に、まず、同コードの本体系に対する計算精度を調 べるために行ったf値の計算について説明する。計算 は、エネルギースペクトルを考慮した光子ビームを、 箔にはさまれたLiFTLDの1次元平板に垂直に入射さ せて行った。Dmの値は、実験と同じく、光子エネル ギーに質量エネルギー吸収係数を乗じて得た媒質線量 をスペクトルで平均して得た。得られたfの値を、表2.

4に示す。同計算の統計誤差は、すべて $1 \sim 3$ %である。テフロン、アルミニウムの箔では、ほとんど5%以内で実験値と計算値が一致した。しかし、アルミニウムの80keVで6%、銅の49、200keVで13、12%、金については160keVで18%、200keVで10%の開きがあった。

2.4.2 実験とITS計算におけるf値の差異の原因

LiFTLD素子間において、15%ほど発光量にばらつ きがあることが経験的にわかっているので、実験とITS 計算によるf値の差は誤差の範囲内と考えられる。ま た、実効エネルギーを単一入射エネルギーとしてfの 値を計算したところ、表2.4に示すように、アルミニ ウムの80keV、銅の160、200keV、金の160keVにおい て、12%から16%ほどとさきほどの線源スペクトルを 考慮した計算値と差を生じた。つまり、上記のITSコー ドと実験値の差異は、線源スペクトルの評価精度によ る可能性がある。式(2.2)に示されるように、f値は LiF線量の媒質線量に対する比である。LiF線量はLiF 自身で発生した電子と媒質中で発生した電子による線 量からなる。LiF中で発生した電子による線量は、近 似的にエネルギー吸収係数を用いて計算でき、単一エ ネルギーと連続スペクトルでほとんど同じであった。 これは、LiFの吸収係数がエネルギーにそれほど依存 しないからである。他方、媒質電子による線量は、媒 質からの電子フルーエンスによって決定される。しか し、透過、反射電子の全エネルギーは単一エネルギー と広スペクトルの間でほとんど同じなので、線量に差 異をもたらさないと考えられる。なぜなら、TLDの 厚さは最大電子飛程より大きく、媒質からの電子はす べてTLD中に吸収されると考えられるからである。 最後に、媒質線量は質量エネルギー吸収係数を用いて 計算される。しかし、連続スペクトルに対する値は、 単一エネルギーに対する値と、銅、金において15%と 大きく異なった。これは、高原子番号媒質の質量エネ ルギー吸収係数は、エネルギーに大きく依存するため、 吸収線量で平均された実効エネルギーと半価層から得 られた実効エネルギーの差が大きくなったためである。 つまり、ITSによる単一エネルギーと連続スペクトル のf値の違いは、媒質線量の解析における線源スペク トルに関する平均方法に起因すると考えられる。同様 に、測定とITS計算の差異は、評価された線源スペク トルの精度にあると考えられ、それが媒質電子による TLD線量に影響を与えたと思われる。

2.4.3 加重係数の計算

積分量による適用性を確認したITSコードを用いて、 2.3節の空洞理論計算値と実験値が異なった原因を調 べるため、まず加重係数の値を同コードを用いて計算 し、空洞理論による値と比較することにした。そのためには、 \overline{d} 、 \overline{d}' をITSで計算できる形で表現しなければならない。そこで、まず式(2.2)のD。を、媒質発生電子によるエネルギー沈積Dm.。と空洞発生電子によるエネルギー沈積Dom.

$$f = \frac{D_{m,c}}{D_m} + \frac{D_{c,c}}{D_m}$$
(2.19)

これを式(2.11)と比較すると、

$$\bar{d} = \frac{D_{m,c}}{f D_m} \tag{2.20}$$

$$\overline{d'} = \frac{D_{c,c}}{f_l D_m} \tag{2.21}$$

が得られる。式(2.20)の分母は、空洞中に媒質中と 同じ電子平衡場がある場合の空洞中の吸収線量を表す。 つまり、dは、実際に媒質からの電子によって空洞に 与えられる線量の、空洞が"小さい"場合に空洞で 吸収される線量に対する比に等しい。同様に、d'は 実際に空洞発生の電子によって空洞に与えられる線量 の、空洞が大きい場合に空洞で吸収される線量の比に なる。このDm.cとDc.cをモンテカルロコードITSを用 いて計算することにより、後は解析的に、d、d'の 値を得ることができる。その結果を、表2.4の空洞理 論値の計算に用いたd、d'の値とともに、表2.5に示 す。ほとんどの値が、ITSと空洞理論の間で大きく異 なった。

表2.5 加重係数のBurlin理論値とITS計算値

Energy	Medium	Bur	lin	ITS	5
(keV)		\overline{d}	$1 - \overline{d}$	d	$\overline{d'}$
32	Cu	0. 00294	0.9971	0.0021	1.00
49	Teflon	0.00722	0. 9928 ⁻	0.01	1.00
	A1	0.00722	0.9928	0.01	1.00
	Au	0.00722	0.9928	0.0046	1.00
80	A1	0.0163	0.9837	0.034	1.00
	Cu	0.0163	0.9837	0.018	1.00
200	Teflon	0.0745	0.9255	0.034	0.983
	A1	0.0745	0.9255	0.039	0.983
	Cu	0.0745	0.9255	0.074	0.983
	Λu	0.0745	0.9255	0.038	0.983

2.4.4 電子フルーエンス減衰係数の計算

ITSと空洞理論の間において加重係数が大きく異なっ た原因は、式(2.18)の適用性、すなわちCSDA飛程 における1%減衰またはg=4V/Sと仮定したこと、 あるいは電子減衰を指数関数で近似したことによると 考えられる。[®]Coγ線に対しては、HorowitzがLiFと アルミニウム、鉛の境界付近の電子フルーエンスをモ ンテカルロ輸送計算コードを用いて解析し、電子フルー エンスのビルドアップ係数は減衰係数と異なること、 さらに、減衰のβ値は媒質の実効原子番号に大きく依 存することを明らかにしている。の。指数近似の成立は β値の前提であるので、まず、その近似の妥当性を確 かめることにした。なお、境界線量に対しては、TIGER コードあるいはそのオリジナルであるZTRANコー ド³⁰による計算値と実験値が比較され、よい一致が得 られている^{39) 40) 41)}。そこで、30~200keV、400~1250 keV光子照射に対して、アルミニウム、銅、金からの 媒質電子による0.38mm厚さTLD中の線量分布をITSを 用いて計算した。結果を、図2.4(a)~(c)に示す。統計 誤差は20%以下である。アルミニウムについては線量 が10%に減衰するまでその傾きは一定であるが、銅、 金の傾きは、200、100keV光子に対して、深さととも に変化することがわかった。また、減衰の傾きは各媒 質に大きく依存し、アルミニウムの600keV以下、銅 の600、400keV、金の200keV以下に見られるように 式(2.17)から求まる減衰値と大きな差異を示した。 これは、光電、コンプトン効果の各割合が入射光子エ ネルギー、媒質に強く依存することから、媒質中に発 生する電子のエネルギースペクトル、角度分布もエネ ルギー、媒質により著しく変化するためであり、低エ ネルギーにおいては、近似的にさえβの式を得るのは 困難であることが推測された。

2.4.5 f値の加重係数精度に対する感度

アルミニウム、銅において、加重係数の値が大きく 異なったにも関わらず、fの値が一致した理由を調べ るため、dの精度がどれほどfの値に影響するかを調べ ることにした。まず、Burlinの空洞理論に基づくfを f_Bとし、真のfに対する比をとる。

$$\frac{f_B}{f} \equiv \frac{\overline{d_B}f_s + (1 - \overline{d_B})f_l}{f}$$
(2.22)

$$\mathcal{Z} = \mathcal{T}_{\infty} f = df_{s} + d'_{1} \mathcal{D} \dot{\mathcal{D}}_{\infty}$$

$$\frac{f_{B}}{f} = \frac{1 - \overline{d_{B}}}{\overline{d'}} + \left(\frac{\overline{d_{B}}}{\overline{d}} - \frac{1 - \overline{d_{B}}}{\overline{d'}}\right) \frac{\overline{d}f_{s}}{f} \qquad (2.23)$$

と変形される。さらに、表2.4から明らかなように、 低エネルギー領域では1 - d в≅d′であるので、

$$\frac{f_B}{f} \cong 1 + \left(\frac{\overline{d_B}}{\overline{d}} - 1\right) \frac{\overline{d}f_s}{f}$$
(2.24)

となる。dfs/fは、物理的には、TLD内の全吸収エ ネルギーのうち、媒質電子によって与えられる割合を 表す。式(2.24)より、このdfs/fが大きいと、fの 値はd_B/dの精度の影響を強く受けることがわかった。 そのdfs/fの値を示したのが、図2.5である。アルミ ニウムについては十分小さく、d_Bがdの2倍あっても、 f_Bとfの差は10%以下になり、その結果、実験値をよ く再現することがわかった。銅のdfs/fは、アルミニ ウムの値より大きいが、d_Bとdの差が25~50%以下で あれば、f_Bとfの差は10%以下に押さえられる。それ に対して、金のdfs/fは、50keV以上でおよそ0.6と 大きく、f_Bとfの差を10%以下に押さえるためには、 d_Bとdの差がすべて17%以下である必要があり、その 結果、空洞理論計算値と実験値が大きくかけ離れたこ とが明らかになった。

図2.4(a) アルミニウム箔からの2次電子による エネルギー沈積 βは式 (2.18)を用いて計算した減衰

図2.4(b) 銅箔からの2次電子によるエネルギー沈積

Depth in LiF (cm)

図2.4(c) 金箔からの2次電子によるエネルギー沈積

Photon energy (MeV)

図2.5 アルミニウム、銅、金に対するdfs/f計算値

2.5 f値の新たな計算法

2.5.1 式の導出

媒質が金など原子番号が大きい物質の場合、fの値 は加重係数dの精度に大きく影響し、Burlinの式ではf の値を精度よく求められないことがわかった。Burlin の理論は、電子減衰の指数関数近似を加重係数に対し て仮定している。ところが、図2.4(a)~(c)に示すよう に、その仮定はいくつかのエネルギーに対して妥当で ない。また、たとえその近似が正しくても、近似的に せよ β の値を簡易的な方法を用いて得ることは困難で ある。さらに、d=d'の関係は、表2.5が示すように 必ずしも満足されるとは限らない。空洞中の電子の行 程長さgの正確な評価も難しい。他方、指数近似を用 いない場合、d、d′の値を求めるには、式(2.20)、 (2.21)のD_{mc}とD_{oc}の値を各エネルギー、空洞大きさ について、ITSのような輸送計算コードを用いて計算 しなければならないことになる。

ここで、次の現象に着目した。つまり、低エネルギー 光子に対しては、図2.4にあるように、200keV以下で は、現在線量計として実用的に用いられているLiFTLD の厚さを媒質からの電子は透過することができない。 この現象を用いれば、Dm.eとDe,eの値を簡便な方法 で求めることができる。すなわち、媒質発生の電子は、 空洞にいったん入射するとすべて空洞中で吸収される と仮定する。Dm.eは、媒質から境界を通り空洞に入 射する電子エネルギー積分値に近似的に等しくなり、 エネルギー透過、反射係数のデータを用いてその値を 計算できることになる。この仮定の妥当性は、電子の エネルギー反射係数を用いて推察することができる。 表2.6は、ITSコードにより電子のエネルギー反射係数 を計算したものである。LiFに対する値は、垂直入射 で0.03、コサイン入射で0.13ほどである。つまり、LiF に入射した2次電子は最大10%ほど反射されるが、銅 の場合その30%、金の場合50%近くがさらにLiF側に 反射されるので、結局、7%程度の誤差で箔から入射 する電子すべてが吸収されると仮定できることになる。 また、Depeは、光子エネルギーに質量エネルギー吸収 係数を乗じたものから、光子のビルドアップ分を差し 引いた値に近似的に等しいと考えられる。しかし、光 子のビルドアップ分は、表2.4のd'の値がほとんど1 であることから、200keV以下では無視できると考え られる。結局、Dm, eとDe, の値は、それぞれ次の式に よって計算できる。

$$D_{m,c} = \frac{E_{\gamma}(\eta_{tr,m} + \eta_{ref,m})}{(t\rho)_{LiF}}$$
(2.25)

$$D_{c,c} = E_r (\mu_{en} / \rho)_{LiF}$$
 (2.26)

 $\eta_{tr.m}$ 、 $\eta_{ref.m}$ はエネルギー透過、反射係数、 (tp)LiFはLiF素子の厚さを表す。ITSコードを用い て計算した光子入射時のエネルギー透過、反射係数を、 表2.7と2.8に示す。この値を式(2.25)、(2.26)に代 入してDm.o、De.oを計算し、fの値を得た。その結果 を、表2.9に示す。単一エネルギーを用いて計算した 値は、ITS計算値と6%以内の誤差で一致した。結局、 ITSコードによるfの計算値は、2.4.1項でその妥当性 を確認しているので、本計算法の妥当性も確認したこ とになる。

2.5.2 式の適用範囲

本方法は、200keV以上のエネルギーにおいても、 媒質発生電子がTLDを透過しない限り応用できる。 0.38mm厚さのLiFTLDについては、その条件は図2.4に 示すように、アルミニウム、銅に対して600keVまで、 金に対しては400keVまで満足される。その限界値に おける透過電子の実効エネルギーを計算してみると300 keVであり、そのエネルギーに対応するLiF中のCSDA 飛程は0.395mmである。その長さは、用いたLiFの厚さ 0.38mmにほぼ等しい。このように、実効エネルギーは 本方法の適用範囲を示す指標となる。表2.10に、100 keVから1250keVの光子に対して計算した実効エネル ギーを示す。反射電子の実効エネルギーは透過電子の 実効エネルギーより常に小さいので、ここでは必要な い。この実効エネルギーとCSDA飛程を用いて適用範 囲をまとめたのが、図2.6である。ある光子エネルギー に適用できる最小厚さは、下部の4本の曲線が表して いる。逆に、ある厚さに対しては、同図は適用エネル ギーの上限を表していることになる。

よりエネルギーの高い領域において、D。。の値を 計算するためには、ビルドアップの寄与を考慮しなけ ればならない。表2.11に、ITSのD。。計算値と、光子 エネルギーに質量エネルギー吸収係数を乗じた値を示 す。両者の差異はビルドアップ領域の線量と電子平衡 状態の線量の差に対応し、300keVでD。。の10%、400 keVで20%である。その差異は、TLDの前にもしLiF があると仮定した場合にそのLiF中で発生した電子に より与えられる分と考えられるので、その値はLiFか らのエネルギー透過にほぼ等しいと考えられる。そう した、LiFの前部で発生した仮想の電子がすべて線量 計に吸収される関係は、図2.4に示すように、600keV 以下において成り立つ。つまり、その領域では、式

表2.6 電子の垂直、コサイン入射に対する ITSのエネルギー反射係数値

Medium	Energy (keV)	normal incic	cos θ lence
LiF	30	0.0343	0.129
	50	0. 0298	0. 135
	80	0.0294	0.131
	200	0.0229	0.115
Cu	30	0.194	0.317
	50	0.190	0.325
	80	0.199	0.335
	200	0.174	0.306
Au	50	0.381	0.470
	200	0.383	0. 493

表2.7 ITSによるエネルギー透過係数値

Photon energy	Transmission					
(keV)	Teflon	Al	Cu	Au		
200	8.16E-5*(1)	9. 40E-5 (3)	4.50E-4(1)	2. 80E-3(2)		
150	4.02E-5(2)*	6. 72E-5 (2)	5.27E-4(1)	2.68E~3(2)		
100	2.31E-5(3)	7.80E-5(4)	8,00E-4(3)	2.54E-3(2)		
80	2.40E-5(4)	1.00E-4(4)	1.00E-3(2)	2.61E-3(2)		
60	2.85E-5(4)	1. 30E-4 (3)	1.25E-3(2)	3. 10E-3 (2)		
40	4.69E-5(3)	2.10E-4(3)	1.60E-3(2)	3.60E-3(2)		
30	6.89E-5(2)	3.00E-4(3)	1.85E-3(1)	3.80E-3(2)		

* Read as 8.16x10⁻⁵ *Statistic error in %

表2.8 ITSによるエネルギー反射係数値

Photon	Reflection					
(keV)	Teflon	Al	Cu	Au		
200	2. 24E-6 (8)	7. 30E-6 (5)	1. 10E-4(3)	1. 38E-3 (3)		
150	1.90E-6(9)	9.84E-6(6)	1.67E-4(2)	1.69E-3(2)		
100	3.18E-6(8)	1.55E-5(6)	3. 20E-4(3)	1.65E-3(2)		
80	5.70E-6(9)	2.70E-5(3)	4. 30E-4 (3)	1.59E-3(2)		
60	8. 90E-6 (8)	4.40E-5(2)	5.97E-4(3)	2. 10E-3 (3)		
40	1.84E-5(6)	8.80E-5(5)	8.88E-4(2)	2.60E-3(2)		
30	2.84E-5(4)	1.40E-4(1)	1.10E-3(1)	2.90E-3(2)		

表2.9	エネルギー透過、	反射係数を用い	いたf計算値と
	ITS計算値の比較		

Medium	Monoenergy (keV)	f	f _{rrs}
A1	30	0.212	0. 220
	50	0.278	0.262
	80	0.477	0.487
	150	0.871	0.846
	200	0.945	0.927
Cu	30	0.0222	0.0238
	50	0.0319	0.0345
	80	0.0699	0.0678
	150	0.299	0.299
	200	0.525	0.524
Au	30	0.0104	0.0111
	50	0.0171	0.0162
	150	0.0614	0.0602
	200	0.114	0.110

$$D_{c,c} = E_r \left(\frac{\mu_{en}}{\rho}\right)_{LiF} - \frac{E_r (\eta_{tr,LiF} + \eta_{ref,LiF})}{(t\rho)_{LiF}}$$
(2.27)

を適用できることになる。600keV以上では、TLD前 部にあると仮定したLiFからの電子はTLDを透過する のでビルドアップはTLD内において完了せず、D。。 は表2.11に示されるように、式(2.27)を用いて計算 できない。つまり、図2.6のLiFの曲線は、式(2.27) を適用できるそのような最大エネルギーを示している。

表2.10 透過電子の実効エネルギー計算値

Photon energy	Effectiv	ve electro Med	on energ ium	y (keV)
(keV)	LiF	Al	Cu	Au
1250	560	580	620	750
800	340	355	370	470
600	240	240	270	370
400	140	145	180	250
300	90	100	145	180
200	60	65	120	110
150	35	60	100	80
100	30	55	70	60

図2.6 提案式の光子エネルギー、LiF厚さに関する適用範囲

ある光子エネルギーに適用できる最大厚さは、LiF 中の自己吸収によって決まるので、自己吸収の曲線と 上に述べたCSDA飛程を表す曲線によって囲まれた領 域は、LiF厚さと光子エネルギーに関する適用範囲に 対応する。図2.6は、式(2.14)を用いて計算した1 %自己吸収の厚さを表す。もし、1%の精度が要求さ れないなら、その適用範囲はさらに広がる。Dm.e計 算には厚さの上限は存在しないが、厚さが増すほどそ のD。への寄与は小さくなる。そして、Dm, の値が無 視できるほど小さくなると、TLDは"大きな空洞"と 見なせ、fの計算はもっと単純になる。すなわち、式 (2.6) のように質量エネルギー吸収係数の比になる。 他方、電子の減衰が大きくても、すなわち式(2.11) のdが1よりずっと小さくても、"小さい空洞"の成 分は、とくにflの値が小さい場合、必ずしも無視でき るとは限らない。このように、空洞が"小さい"か、 "大きい"かの基準は電子減衰の程度にあるのではな く、Dm.eとDe.eの定量的関係にあるといえる。つま り、Dm.c/Dc、すなわち図2.5のdfs/fが基準の指標 になる。dfs/fの値が、200keV以下のテフロン、ア ルミニウムのように十分小さいと、空洞は "大きい" と判断できるが、そうでなければ、空洞は"一般の 大きさ"となり、"小さい空洞"の成分計算は無視で きないことになる。

2.6 結論

Burlinの空洞理論において、アルミニウム、銅では、 媒質発生電子のTLD線量に及ぼす影響が小さいため、 加重係数の精度にfの精度はあまり依存しないが、金 では、その影響が大きいため、加重係数の精度が重要 であることを明らかにした。そこで、光子に対する透 過、反射係数を用いて、fの値を低エネルギー領域に おいて精度よく計算する方法を提案した。この方法を 適用すれば、6%以内でモンテカルロ計算と同じfの 値を得られることを確認した。また、TLD厚さおよ び光子エネルギーに関する同式の適用範囲を実効エネ ルギーを指標にして示した。応用として、放射光施設

表2.11 ITSとエネルギー吸収係数、 透過係数を用いたD。。計算値

E, (keV)	ITSによる D _{e,e}	$D_1 = E_{\gamma} (\mu_{on} / \rho)_{LF}$ (MeV	$D_2 = E_{\gamma} \eta_{v, uP} / (t \rho)$ (cm^2/g)	$D_{up} = D_1 - D_2 = D_c, c$
1250	6.31E-2*	3.07E-2	4.38E-2	-
800	8. 59E-3	2.14E-2	I. 49E-2	6.50E-3
600	9.63E-3	1.64E-2	6. 90E-3	9.50E-3
400	9.07E-3	1.09E-2	1.81E-3	9. 09E-3
300	7.28E-3	7.99E-3	7.17E-4	7.27E-3
200	4.79E-3	4. 97E-3	1.74E-4	4.80E-3

* Read as 6.31x10-2