

写真6 タービン試験装置全景

3.1.2 動力計

動力計は(株)明電舎製の直流電気動力計で、制御 は直流電動発電機によるワードレオナード方式、容量 は吸収動力1050kW、駆動動力1100kW、最大試験回転 速度は低速軸1800rpm、高速軸30000rpmである。動力 計出力は当所の所内電力として使用される。

試験タービンの設計回転数は20000rpmであり、ター ビン軸は動力計本体に内蔵の速度比17.05の遊星歯車で 増速された高速軸に接続される。

試験タービンは動力計高速軸側の据え付け台に固定 され、専用の高速軸カップリングを用いて動力計と接 続される。動力計とタービンの運転・監視・計測は動 力計運転室で行う。監視・計測の詳細は3.2で述べる。

3.1.3 主空気および冷却空気

タービン主空気源および冷却空気源として980kW誘 導電動機で駆動される中間冷却2段遠心空気圧縮機を 使用する。圧縮機出口圧力は最大0.39MPa(ゲージ)、 最大空気流量は4kg/s、吐出空気温度141℃であり、出 口空気圧力あるいは流量は圧縮機のインレットガイド ベーン開度を操作して制御する。

主空気は圧縮機出口から300A管で供給され、オリフ ィス流量計、緊急遮断弁、電動弁、125A手動弁を経て、 タービン外部ケーシング内に入る。主空気流量は庄縮 機出口圧力と屋外放風弁の開度、および電動弁を操作 して調整する。緊急遮断弁は空気圧で駆動され、停電 やタービンに重大な異常が生じた場合に自動あるいは 手動で主空気を遮断することができる。

タービン冷却用空気は空気圧縮機の空気を分岐して

冷却器に通して約50℃程度まで温度を下げて100A管 で供給する。冷却空気は5系統に分かれ、流量調整弁 を操作してそれぞれ、所定の流量に保つ。各系統の流 量はそれぞれオリフィス流量計で測定する。同じ100A 管から主燃焼器着火トーチ用空気、タービン排気管シ ール用空気も供給する。

3.1.4 主燃焼器および主燃料供給系統

主燃焼器はタービンの上方に独立した架台上に水平 に設置され、L型の2重管でタービンと接続される。タ ービンとの接続部は外管とタービンの熱膨張を吸収す るためグランドパッキン方式とした。

主燃焼器の概観を写真7に断面構造を図12に示す。 主燃焼器は逆流缶型で内筒は日立PG5361用のものを使 用している(写真8参照)。低温の空気は燃焼器内外筒 の間を通り、内筒頭部のスワーラーと内筒周辺の1次、 2次空気穴から内筒に入る。低温空気の燃焼器入口部 には、燃焼器内の流れを周方向に均一にするため、整 流羽根(写真9)、旋回羽根(写真10)を設けた。図12 のA断面ではタービン入り口圧力、タービン入口温度 (または燃焼器出口温度)を計測する(写真11参照)。 B断面には温度計測に幅射の影響を考慮して追加設置 されたシールド付き熱電対6本を設置したが、その様 子を写真12に示す。

主燃焼器の燃料は灯油を使用する。図13に燃料油供 給系統図を示す。燃料噴射弁は、川崎重工S2A-01用の デュアルオリフィス圧力噴霧型のもので、入り口圧力 2.75MPa、プライマリー燃料流量0.012kg/s、メイン燃 料流量0.77kg/sである。着火はプロパンガストーチを

図12 主燃焼器断面図

写真7 主燃焼器概観

写真8 主燃焼器内筒

写真9 燃焼空気整流羽根

写真10 燃焼空気旋回羽根

写真11 タービン入口温度(シールド無し熱電対)・ 圧力計測

写真12 タービン入口温度計測(シールド付き熱電対)

利用し、プライマリー燃料は常時噴射し、燃焼器出口 温度の制御にはメイン燃料流量を制御する。メイン燃 料の噴射圧はニードル弁NV3をステップモータで自動 操作させて変化させる。図14に燃焼器出口温度制御系 統図を示す。始動時設定圧力は1.96MPaとし、実験時 のメイン燃料圧力はおよそ0.13~0.98MPaであった。 燃料消費量は燃料タンクの油面高さの変化をカセトメ ータと時計で測定し、燃料の比重と油タンク断面積か ら計算で求める。

3.1.5 水素供給系統

再熱用水素の供給系統図を図15に示す。ノズル翼に 水素を供給しない非再熱運転時にはノズル翼は空気で 冷却する。このため、水素供給の前後には、窒素を流 して冷却空気と水素の混合が生じないようにするので、 水素供給系統には窒素および翼冷却空気系統も含まれ る。空気、窒素、水素の切り替えは水素流量制御盤で 電磁弁を切り替えて行う。

水素供給源として、当初は36本組のカードルを使用 する予定であったが、安全上の配慮から7kl入り水素ボ ンベ(最大時は15本)を使用した。ボンベから出た水 素は減圧弁、浮子式流量計、水素流量調整弁を経て、 20mm銅管に入る。さらに、渦流量計、逆火防止弁を 経て、タービンの水素供給リングに入り、6mmの水素 導管により25枚のノズル翼に供給される。

水素流量制御は手動で行い、浮子式水素流量計は流 量のおおよその監視のために使用し、試験データとし ての水素流量は渦流量計により測定する。実験中は水 素の消費が進むにつれて膨張によってボンベ中の水素 の温度が下がるので水素流量が一定になるように手動 で微調整を行った。渦流量計が正常に作動するために は圧力0.196MPaでの供給が必要であり、ボンベ元圧 1.96MPaを使用限界の目安とした。

図14 燃焼器出口温度制御系統図

3.1.6 排気系

タービン排気はタービン出口から計測用水冷排気管 1、水冷伸縮継ぎ手管、クランク型水冷排気管、計測用 水冷排気管2、水噴射排気管、消音器を通って屋外に 排出される。図16にタービン排気系統の一部とタービ ン内ガス温度・圧力測定位置、分析ガス採取位置を示 す(図11参照)。

タービンは計測用水冷排気管1とは熱膨張を吸収す るためにグランドパッキン方式で接続し、冷却空気系 からシール用空気を供給する。計測用水冷排気管1で はタービン出口圧力計測およびガス分析のためのガス サンプリングを行う。なお、水冷排気管1は内部にリ デューサを有しており、ここを介してタービン後部排 気ケーシングに冷却空気が供給されるとともにタービ ン出口温度および後部軸受け温度計測用熱電対のリー ド線がケーシング外部に導かれる。写真13に計測用水 冷排気管1の出口側からタービンを臨む様子を示す。 手前からリデューサ、4本の全圧管、ストラット、ロ

写真13 タービン出口排気管よりタービン出口を臨む

ータ翼が見られる。

水冷伸縮継ぎ手管は熱膨張の吸収を強化したもので ある。

クランク型水冷排気管は、最初のL部に3カ所の覗き 窓をもうけており、この内2個にビデオカメラを設置 した。これにより約2/3の枚数のノズル翼から噴き出 された水素がタービン内部で燃焼する状況がモニター できた。

計測用水冷排気管2で、本報告で後述する最終試験 のガス分析用ガスをサンプルした。

高温の排気ガスは、水冷管の下流で水噴射により 200℃程度に温度を下げられ、消音器を経て、屋外に 放出される。水噴射ノズルは12個を使用し、排気ガス 温度によって自動的に水噴射ノズル弁を開閉して水噴 射量を制御する。

3.1.7 潤滑系

タービンおよび動力計の潤滑油系統図(仕様は設計 値)を図17に示す。

タービン潤滑油系統はタービンが20000rpmと高速で 回転することから空気運転時初期までは動力計とは独 立に容量150Lの油タンクを設けて構成されていた。 しかし20000rpmの高速運転時になるとカップリングに おいてタービン側潤滑油が動力計側潤滑油戻り系統に 流れ込み、タービン用潤滑油が不足する事態が生じた。 このためこれ以後は、カップリングカバー内には油返 しを取り付け、タービン側と動力計側の戻り油が混ざ らないようにするとともに、動力計の潤滑油を分岐し てブースター潤滑油ポンプで加圧し、タービンの前後 軸受とカップリングに給油した。軸受からの戻り油は オイルミストが非常に多かったので一度オイルサンプ

図16 タービン排気系統とタービン内ガス温度・圧力 測定位置、分析ガス採取位置

図17 潤滑油系統図

に入れてから動力計の潤滑油戻り管に戻した。軸受け の封じ空気は戻り管の途中からファンにより吸引し、 オイルミストを分離したのち、大気に放出した。

タービン 潤滑 油供給 圧は、当初の設計 圧力は 0.39MPaであったが、空気運転中に15500~16000rpm 付近で振動値が異常に大きくなることが判明した。戻 り油温に注意しながら供給油圧を下げたところ振動値 が下がることが分かり、以後は0.25~0.29MPaに設定 圧を変更した。

3.2 監視・計測およびデータ処理3.2.1 タービン計測全般

排気ガス分析を除くすべての監視・計測データは動 力計制御室にとりこみ、ここで運転の監視と記録を行 った。図18に計測系統図を、写真14にパーソナルコン ピュータ計測システムの概観を示す。

主な計測項目はつぎの通りである。

- ・動力計回転数、トルク
- ・タービン振動(1ヵ所、上下・左右)

図18 計測系統図

- ・タービン軸受温度
- ・タービン潤滑油圧力および温度(入口、出口)
- ・主空気流量
- ・冷却空気流量(5系統)
- ・主空気および冷却空気のタービンケーシング流入口
 における温度および圧力
- ・水素流量、タービン流入口における水素の圧力と温度
- ・燃焼器入口空気圧力および温度
- ・タービン入口圧力
- ・タービン入口ガス温度(シールド付き6点およびシ ールドなし6点各1断面)
- ・タービン出口ガス温度(ストラット上12点、シール ドなし)
- ・タービン出口ガス温度(出口水冷ガスサンプル管先 端6点、シールド付き)
- ・タービン出口圧力

これらの測定データは全てデータロガーにとりこみ、約5秒間隔でGPIBインタフェースを通してパーソナル コンピューターに送った。コンピューターは流量計算 や零点補正などの処理を行い、ディスプレイ画面に表 示するとともにハードディスクに記録した。測定デー タを十分に画面表示するために2台のパーソナルコン ピュータをGPIBインタフェースで接続して使用した。 プリンターには必要に応じて10回の平均値を計算して 出力した。振動および潤滑油の圧力と温度については 測定値があらかじめ設定した危険値をこえる場合はコ ンピュータで警報を発するようにした。付録2に BASICで構成した計測監視プログラムを示す。

タービン入口温度、タービン出口温度、回転速度、 トルク、振動などの監視上重要なデータについては、 直接ペンレコーダに連続的に表示・記録した。

その他、排気管内ガス温度(水噴射下流)、ガスサン プリング部ガス温度、タービン排気管冷却水温度、サ

写真14 制御室パーソナルコンピュータ計測システム概観

ンプリング管冷却水温度、サンプルラインリボンヒー タ温度などの監視データは打点式記録計に表示・記録 した。

3.2.2 タービン入口・出口の温度および圧力

図16にタービン入口温度・圧力と出口温度・圧力の 測定位置を示す(図12参照)。

タービン入口ガス温度は図16に示すように燃焼器出 口とタービンとの中間ダクトの2断面(図12のA、B断 面)で測定した。

試験の当初、A断面に幅射シールドをつけない熱電 対3本を挿入したが、3本の温度差が大きいことから数 を6本に増やし、さらに温度測定値に幅射の影響を考 慮して、B断面に幅射シールドをつけた熱電対6本を追 加した。A、B断面における測定値の関係はガス流量と ガス温度レベルを変えてタービンを運転して調べた。 図19にその関係を示す。測定した温度域でB点温度は A点より約40℃~70℃高い値となる。本報告における タービン入口温度(TIT)は全てB断面測定値を用い、 初期の試験でB断面測定値がない場合はA断面測定値 をB断面測定値に換算して示している。

タービン出口温度は、出口側の4本のタービンスト ラットに半径方向に3点ずつ、計12点のK熱電対で計 測した。熱電対には幅射シールドは取り付けていない。 別に計測用水冷排気管1にガスサンプル管先端にシー ルド付き熱電対をつけたもの6本を挿入して計測した が、冷却水の影響でストラットより温度が低く計測さ れた。そのため試験結果の整理にはストラット上の温 度の平均値を用いた。

タービン入口圧力として、入口ガス温度測定位置A 断面の中央で全圧を測定した。タービン出口圧は、タ ービン出口の計測用水冷排気管1に全圧管4本を挿入し て測定した。ただし、タービン出口圧用の圧力変換器 チャンネル数は1個であるのでタービン性能計測時に はコックを切り替えて出口圧を計測した。

3.2.3 動力計測

回転速度は動力計低速軸に取り付けられた歯数600 の歯車からの電磁パルスで測定する。動力計のトルク は動力計本体(固定子側)の腕にかかる力をロードセ ルにより測定する。ロードセルの出力は動力計の慣性 と速度制御の影響を受けて激しく変動するため、ロー パスフィルターに通して0.2Hz以上の変動分をカット した。

ロードセルの校正は、検定用重錘を用いて、ロード セル交換時に行う。高速軸の遊星歯車は動力計本体に 内蔵されているため、タービン出力を求める際に動力 計の歯車損失を考慮する必要はない。

動力計始動時にはロードセルに過負荷となる場合が あり、タービンを始動させた後で動力計クランプを開 にする。

3.2.4 振動監視

タービンの振動はタービンケーシングの脚上部に加 速度式振動計を取り付けて監視する。空気運転中には 4本の脚のそれぞれに上下及び左右、計8点の振動セン サーを取り付けて計測を行った。動力計側の脚の振動 が比較的小さいことが確認されたので、監視箇所は後 部脚1本とし、上下および左右、計2カ所を運転中常時 監視した。脚は水で冷却しているがタービンケーシン グからの熱伝導と幅射により、振動センサーが加熱さ れ誤指示するおそれがあるため、振動計センサー取り 付け台も水冷した。

3.3 排気ガス計測

3.3.1 計測項目とサンプリング

試験タービンの排気ガス特性に関しては、NOx、CO、 CO2、O2および残存H2濃度を測定した。測定値は本報 告ではすべて体積分率で表示する。測定に用いた計測 器および測定系統図を図20に示す。

図20(a)は図16のサンプル1断面とサンプル2断面 の2つの断面で計測する時の機器構成を示し、図20(b) はサンプル2断面だけで計測する時の機器構成を示す。 断面1はタービン出口フランジから約420mm下流に位 置し、周方向6カ所にガスサンプリング管の挿入穴を 設け、周方向および半径方向分布を測定することがで きる。断面2はタービン出口フランジ面からL型曲がり を2回通過した約1580mm下流に位置する。断面2の成 分ガス濃度分布は、予備試験でほぼ均一になっている ことが確かめられたので、中心部のサンプリングを断 面の平均値とした。本報告で後述する最終試験結果は 断面2における測定値を用いている。すべての成分ガ ス濃度を調べるためにはサンプリング管1本のサンプ リングガス量が不足するため、断面2ではほぼ同位置 に2本のサンプリング管を挿入して、サンプリングを 行った。

図19 タービン入口温度・輻射シールドの影響

サンプリング管は高温ガス中に挿入するため水冷す る。しかし冷却しすぎるとガス中の水分の凝縮が生じ、 配管が塞ったり、管壁に水が付着してNO2が吸収され るので、冷却水の温度はサンプリング管入口で60℃、 出口で90℃以下に保つように、冷却水温度と水量を調 節できる専用の冷却水ループを準備した。サンプル1 断面測定に使用したサンプリング管の先端には幅射シ ールド付きのシース熟電対をとりつけ、サンプリング 位置のガス温度が同時に測定できる。

サンプリング管からガス分析装置までは外径6mmの テフロンチューブで接続し、外面をリボンヒーターで 約60℃に保温した。

 H_2 、 O_2 、CO、 CO_2 濃度測定ラインでは前処理装置で 排ガス中の水分を除去し、NOx測定ラインでは NO_2 の 水への吸収誤差をさけるために前処理装置で水分除去 は行なわなかった。

3.3.2 測定器

H₂はガスクロマトグラフにより測定した。ガスクロ マトグラフによる1回の測定には2~4分が必要である が、試験タービンの運転中、残存水素濃度はしばしば 変動することがあり、できるだけ連続に近い測定が望 まれた。このため、測定間隔が4分の自動ガスクロマ トグラフと2分の手動ガスクロマトグラフを用いて、 ほぼ1分に1回の測定を行った。

NOxは化学発光式NOx計(CLD)を用いて測定した。 NOx i NO₂の和と考える。4.2.4 で述べるように、 水素燃焼を行った場合、NOx中のNOとNO2の比は残 存水素濃度によって大幅に変わる。化学発光式検出器 はNO濃度のみを測定するもので、NO2を含む全NOx 濃度の測定には採取ガスをコンバータに通し、NO2を NOに変換して測定する。2台のNOx計でNOとNOx を別に測定すると、ゼロドリフトやスパンの時間的な 変化が測定器で異なって生じるため、2つの測定値の 差からNO2濃度を求めると誤差が大きくなる。このた め1台を監視用として常時NOxを測定し、1台はコン バータ回路を切り替えて、NOとNOxを交互に測定し た。コンバータ切り替えを行う場合、計測器内部のガ スの容量を考慮する必要があるが、ほぼ40秒で測定値 が定常値となることを確認したので、切り替えは1分 毎に行った。コンバーターによるNO2からNOへの変 換率は96~98%で、NO2量が多い場合はコンバータの 変換効率を考慮する必要がある。本実験に際してはあ らかじめコンパータ変換効率を校正実験で求め、NOx とNO測定値の差の見かけのNO₂濃度から真のNO₂を 計算で求めた。

O2濃度の測定には当初、磁気風式測定器を用いたが、 採取ガス中に濃度の高い未燃の水素が含まれると、誤 差を生じるため、磁気圧式測定器を用いた。COおよび CO2は赤外線式分析計(NDIR)を用いた。 各測定器共、実験の測定開始直前と終了直後に標準 ガスを用いてキャリブレーションを行った。連続計測 値は多チャンネルペンレコーダで連続記録するととも に、1分毎にディジタル出力を行い、結果の整理には ディジタル出力の平均値を使用した。

3.4 タービン運転手順

試験タービンの運転には表5に示す運転制限値およ び規定値が設定されている。これを基にタービンの運 転は実験目的に応じて様々に実施されてきた。最終運 転シリーズにおいては表6に示すような運転手順に固 まり、表6にはタービン定格の主空気流量2.6kg/s、回 転数20000rpm、水素再熱運転時のガス分析計測実験の 場合を例示している。

表5	タービン	⁄ 運転制限値および規定値

項目	単位	著報	制限値 (トリップ)	備考
振動(p-p)	μm	23	45	
危険速度域	μm	-	63	
入口油温	l℃	50	55	設定値35℃以下
軸受け戻り油温度	°C	79	82	
油圧	kg/cm2	2	1.6	設定値2.5~3
タービン排気温度	°C	900	_	
回転数	rpm	-	21000	
入口圧力	ata	2.1	-	
		規定値		
昇速率	%/sec	0.2	1	40rpm/sec
減速率	%/sec	0.4	-	80mpm/sec
ターニング回転数	rpm	100	-	
ターニング時間(終了時)	h	1	-	

表6 タービンの標準的運転手順

1	圧縮機起動
2	タービン冷却空気供給
3	タービン潤滑油供給
4	主空気電動弁開、最小流量0.5kg/s
5	タービン起動、最低回転200rpm(保持10分)
6	動力計クランプ開
7	▲ 主空気流量増、2.0kg/s
8	3000rpmへ増速(加速度2400rpm/min)
9	着火、プロパントーチ
10	プライマリー着火(250℃)、プロパンoff、保持10分
11	メイン着火(500℃)、保持10分
12	12000rpm へ増速 (9000rpmで1分保持)
13	温度上昇800℃(100℃/6分)
14	主空気流量増2.6kg/s
15	温度上昇910℃
16	20000rpmへ増速
17	ノズル翼冷却N2へ切換(保持1分)
18	H2噴き出し
19	ガス分析計測(16分/H2一流量設定)
20	回転数切換計測(18000rpm、16000rpm)保持4分
21	ノズル翼冷却空気へ切換
22	12000rpm へ減速(2400rpm/ min)
23	700℃へ温度低下(6分)
24	│ 空気流量減2.0kg/s(4分)
25	500℃へ低下(保持10分)
26	3000rpmへ減速
27	メインoff(保持10分)
28	プライマリーoff(保持10分)
29	主空気流量ゼロ
30	最低回転(保持30分)
31	動力計クランプ閉
32	タービン停止
33	潤滑油、冷却空気閉
34	圧縮機停止

第4章 試験結果

4.1 試験タービン運転経過

1991年3月に空気運転による領収試験終了後、燃焼 運転のための設備の整備と点検を行い、最初の燃料着 火運転を1991年7月10日に、タービン入口温度(TIT) 800℃までの温度上昇試験を7月15日に実施した。次 いで7月17日には最初の水素導入・着火試験を行い、 ノズル後縁からタービン内に噴き出した水素の着火を 出口温度の上昇によって確認した。あらかじめ実施し た高温翼列風洞試験によって、ガス温度800℃の条件 で翼後縁から噴き出した水素が高速流中で確実に着火 燃焼することは確認していたが、試験タービンでは TIT800℃であっても、水素燃焼効率は低く、下流の温 度上昇は不均一であった。ビデオ観察によっても周方 向に燃焼状況が一様でなく、水素着火に必要な温度が ノズルリングの全周で維持されていないためと考えら れた。このため、燃焼器出口温度の均一化をはかるた め、燃焼器空気入口に旋回羽根と整流羽根を付けたり、 燃料ノズルと燃焼器内筒の配置を変えるなど、種々の 方策を講じた。以降、1992年2月まで、試験装置およ び計測装置の整備をはかりつつ試験・運転操作に習熟 することを目的として、TIT800℃の条件で、空気流量 を変えて試験を行った。表7に燃焼運転開始から後の 運転の経過を示す。

1992年2月末から9月末まで、TITを設計目標値の 900℃に設定して主空気流量と水素流量を変えた運転 試験を行った。燃料消費量と燃焼器出口温度から推算 される燃焼器を通過する空気量が主空気流量の約80% 程度になり、タービン内部ケーシングの接続部の隙間 から低温の主空気が高温主流ガス側へ漏れ込むことが 推察された。この場合測定されたTITとノズルリング 入口の主流ガス温度に約100℃の差が生じる。そのた めシールド付き熱電対でTITを測定してTIT測定法の 改善を行うとともに、さらにTITを上昇させて実験す ることにした。

試験・計測方法がひととおり確立された段階で、 1992年10月から1993年7月まで、TTT900℃(シールド 付き温度TTTで940℃)の条件で、主空気流量、水素流 量をパラメータとする一連の運転試験(シリーズ1) を行った。TTTを940℃としたことにより、水素燃焼効 率は従来に比べて大幅に改善される傾向が見られ、特 に水素流量の少ない場合には水素燃焼効率は95%に達 したが、依然としてノズルリングの一部に燃焼の不安 定な部分が観察された。ノズルリングの問方向に見ら れる水素燃焼不均一の原因として、タービン高温ガス 流路を構成する内部ケーシングの接続部、特にノズル リング直前の接続部の隙間に大きな不均一があり、一 部の隙間から低温空気が高温ガス流路側に強く流れ込 むためと考えた。試験タービンの冷体状態でノズルリ

表7 タービン運転試験経過要約表

	タードン入口温度	主空氣法書	軍動水臺清景	同新教	
年月日	°c	kr/s	x100NI/m	×1000mm	英职王日的、領考
910710	500	2.0		10	主義與着火、温度上昇時機動チェック
910715	800	2.0		10, 20	500℃2万rpm, 800℃1万rpm擾動チェック
910717	800	2.0	6	10	水素着火初テスト
910719	800	2.6		20	非再動學定格状態
910919	800	2.6	12	10	水素着火テスト、ビデオかラテスト、出口全圧管チェック
910925	800	2.0	10,14	10	主空気低減十水素燃焼実験
911002	800	2.0, 2.6		10	主営業署入口圧力分布チェック、主営料流量チェック
911015	800	2.0	[10	主義機器燃料噴射弁取り付け位置変更、TIT分布
911016	800	2.0, 2.6		10	主燃烧蕃45"回転、TTT分布
911211	700	2.0	l	10	TTT温度計6本に増し、異常振動値発生
920225	800	2.0		10	タービン排気管に水冷伸縮維ぎ手設置
920227	800	2.0		10	主燃料弁圧力圧力不調につき実験中断
920228	900	2.0	11, 16	10	TIT上昇十水素燃焼実験
920312	900	2.6	12, 16	20	定格時再熱実験
920330	900	3.1		12	審張比2を目指す、言南のため中断
920402	900	2.9	12, 16, 20	20	主空気2.9kg/s時再熟実験
920430	900	2.0	12, 16	10	クランク上遺でガス分析
920615	900	2.6		10	クランク後流でガス濃度分布測定、振動計冷却台座設置
920622	900	2.6	12	10	クランク後流でH2,NOxガス濃度分布測定
920701	900	2.6	12,16	20	定格時再熟実験、ガス分析
920709	900	2.0	12, 16	10	クランク上流でガス分析(920430の再確認)、TIT分布変化
920929	900	2.6		10	主態機器に清流羽根設置後TIT分布測定
921014	900	2.6	12, 16, 18	20	定格時再熟、ガス分析実験
921029	900	2.9	12,16,20	20	主空気2.9kg/s時再働実験、ガス分析
921130	800, 900	2.0, 2.6, 2.9		10,20	TITシールド付き熱電対6本追加、温度校正試験
930715	900	2.3	10, 12, 16	20	主空気2.3kg/s時再搬実験、ガス分析
931116	900	2.6	12	20	タービン出口(クランク上流)H2、NOx、O2周方向分布
931130	900	2.6		18,20	非再熟時タービン出口NOx、O2周方向分布
931207	900	2.6	12, 16, 20	20	ノス"ル上流にシム挿入、定格時再熱実験
940707	900	2.6	12	20	動力計更新、トルク計出力にフィルタ設置、自動ガスクロ追加
940715	900	2.6	10, 12, 16, 20	20	定格時再勤、ガス分析実験
940802	910	2.6	12	18	TTT上昇によるH2懲焼効率向上テスト
940905	910	2.6	10, 12, 16	16, 18, 20	シム違加揮入、ガス分析、出力変化計測
940908	910	2.3	10, 12, 16	16, 18, 20	カス分析、出力変化計測
941020	910	2.6	10, 16, 20	16, 18, 20	ガス分析、出力変化計測
950322	500	2.0		9	計測系統チェック試運転
950323	910	2.9	10, 12, 16, 20	16, 18, 20	ガス分析、出力変化計測
950328	910	2.6	10, 12, 16, 20	16, 18, 20	ガス分析、出力変化計測

ング直前の内部ケーシング接合部の隙間を計測したと ころ、0.5mm~1.5mm程度であるとわかったので、2 回にわたって0.3mmのステンレス薄板(シム)を挿入 できる隙間に押し入れた。

1993年12月から翌年4月まで動力計の自動制御、操 作盤、直流電源設備の更新を行い、工事終了後、シム 挿入効果とTIT上昇効果の確認試験を行ったのち、 1994年9月から1995年3月までの間、TITを910℃(シ ールド付き温度TITで970℃)に上昇させた一連の最終 運転試験を行った(シリーズ2)。その結果、ほぼ100% の水素燃焼効率が得られた。本章ではシリーズ2の試 験結果と比較のためのシリーズ1の試験結果について 述べる。

4.2 試験タービン運転結果

4.2.1 試験パラメータ

試験タービンの運転パラメータは、TIT(タービン入口温度)、主空気流量、水素流量、タービン回転速度である。主空気と別系統の冷却空気流量は常に一定にした。

主空気は主空気配管のオリフィス流量計により流量 が測定され、全量がタービンケーシング下部の左右2 本の空気入口部からタービン内に入る。そして内部ケ ーシングを冷却しながら燃焼器に導かれる。ただし、 主空気の一部は燃焼器に到達せず、燃焼器からタービ ンノズル前までの内部ケーシングの接続部隙間から高 温ガス側に流入するものとノズル翼下流の防熱リング を冷却した後に高温ガス側に流入するものとがある。 このように主空気の一部が燃焼器をバイパスするが、 ロータ翼は全ての主空気量が通過する。燃焼器を通過 する空気量は燃料消費量と燃焼器出口温度から推算す ると80~84%程度になる。ノズルリング周囲の主流ガ ス温度は低温空気の漏れ込みによって、TIT測定値よ り100℃程度下がると推定されるが、本報告ではTITと して測定値(6点の平均)をそのまま示した。

本章で述べるシリーズ1およびシリーズ2の試験条件

表8 タービン試験条件

項目		シリーズ1		シリーズ2	
タービン入り口温度	Ĵ	940		970	
タービン回転速度	rpm	20000	16000	18000	20000
主空気流量	kg/s	2.3	2.6	2.9	
再熱水素流量	g/s (LW)	1.5	1.8	2.4	3 (365)

を表8に示す。シリーズ1ではまだ周方向に水素の着火 しにくい部分が見られ、水素燃焼効率も95%程度に止 まったが、シリーズ2ではほぼ全周に一様な燃焼が観 察され、水素燃焼効率もほぼ100%が達成された。表9 および表10に試験結果をまとめて示す。

4.2.2 出力

図21にシリーズ2の出力測定結果を示す。再熱により主空気量がわずかであるが変わり、これによる出力の増減が無視できないため、図では出力を主空気量で割った比出力で示した。TITおよび圧力比も再熱時と

表9 タービン試験結果(シリーズ1)

実験番号		930715				Ι	940715						921029				
主空気流量 GO	kg∕s	2.332	2.323	2.320	2.314	2.323	2.655	2.644	2.636	2.633	2.636	2.650	2.903	2.888	2.884	2.881	2.892
タービン回転速度 n	rpm	19980	20025	19990	19990	19980	19970	19980	19980	19980	19880	19960	20010	20010	20020	20010	19950
再熱水素流量 GH	g/s	-	1.50	1.82	2.40	-	-	1.83	2.44	3.03	1.47	-		1.83	2.43	3.02	-
タービン入り口温度 TIT	ີ	939.7	942.5	943.6	945.0	942.5	938.6	941.9	943.9	944.9	943.8	943.4	<i>936.5</i>	<i>939</i> .7	940.8	942.9	938.6
燃料流量 Gf	g/s	40.7	→	→			48.1	→	→	→	→	→	50.5	→	→	→	→
燃焼器空気通過空気流量比	96	80.1		-	→		83.8		→	→	→	→	79.7	→	→	>	→
タービン出口温度 TOT	°C	642.5	692.6	703.9	720.6	645.7	639.1	686.9	703.5	711.8	680.5	644.0	628.0	676.0	692.0	705.0	632.0
燃焼器入口温度	ິດ	117.9	118.0	118.8	119.0	119.8	122.3	123.2	124.0	124.8	125.0	125.4	114.0	115.0	115.0	116.0	117.0
冷却空気温度	ິດ	37.3	38.0	38.8	39.6	40.0	41.3	42.5	43.7	44.6	45.0	46.0	30.0	31.0	32.0	32.0	33.0
水素温度	ິ	- 1	30.0	30.0	30.0	-	-	42.5	42.7	40.5	40.5	-	-	30.0	30.0	30.0	-
タービン入口圧力	kg/cm2	1.627	1.636	1.678	1.640	1.627	1.792	1.804	1.808	1.808	1.800	1.791	1.771	1.782	1.785	1.786	1.769
タービン出口圧力	kg/cm2	1.111	1.117	1.118	1.121	1.111	1.146	1.157	1.161	1.164	1.154	1.146	1.141	1.152	1.154	1.155	1.146
タービン出力 L	PS	211.5	225.8	226.7	225.7	213.2	301.9	315.5	318.6	317.4	312.7	302.8	362.4	372.2	374.6	374.2	362.1
冷却空気0	g/s	16	-		-	16	16	_	-	-	-	16	16	-	-		16
冷却空気1	g/s	30	30	30	30	30	31	31	31	30	30	30	31	31	31	31	31
冷却空気2	g∕s	83	83	83	83	83	84	85	84	84	84	84	85	85	85	85	85
冷却空気3	g/s	100	100	100	100	100	102	102	102	102	102	101	102	103	103	102	102
冷却空気4	g/s	199	201	201	201	198	202	205	205	204	203	201	205	207	207	207	204
O2濃度	%	16.1	15.7	15.6	15.5	-	16.2	15.8	15.6	15.5	15.8	16.1	16	15.5	15.4	15.2	-
CO2濃度	96	3.46	3.48	3.48	3.47	-	3.52	3.61	3.61	3.64	3.7	3.63	3.48	3.53	3.53	3.51	-
CO濃度	ppm	113	205	217	219	-	81.6	186	197.2	167.1	168.7	75.9	79	172	177	161	-
NOx濃度	ppm	35.1	32.6	33.6	34.4	-	34.2	34.5	34.3	33.6	33.8	33.7	45.3	43.9	44.9	45.7	
NO濃度	ppm	25	9.6	10.3	8.2	-	24.8	7.1	6.2	3.2	7	24.4	33.5	10.6	8.3	7.9	
H2濃度	ppm	-	600	510	1010	-	-	568	711	2190	536	-	-	730	1060	2230	
水素燃烧効率	%	-	92.7	94.9	92.4		_	93.5	93.9	84.9	92.4	_		91.1	90.2	83.4	
												イタリッ	ク表示は	シール	「付き淵	度に換け	L.

表10	ター	ビン試験結果	(シリーズ2)
-----	----	--------	---------

実験番号		940908					950328						950323					
主空気流量 GO	kg∕s	2.339	2.328	2.321	2.324	2.330	2.623	2.614	2.601	2.595	2.613	2.599	2.875	2.860	2.844	2.846	2.863	2.844
タービン回転速度 n	rpm	19970	19970	19970	19960	19970	20000	20010	20010	20020	20000	20000	20000	20000	20000	20000	20000	20000
再熱水素流量 GH	g∕s	-	1.82	2.49	1.52	-	-	1.51	2.41	3.02		1.81	-	1.51	2.42	3.05		1.82
タービン入り口温度 TIT	ະ	965.0	967.6	970.7	969.7	968.6	966.9	969.5	971.0	971.2	967.9	971.9	963.5	966.5	969.6	971.0	9 6 9.5	972.6
燃料流量 Gf	g/s	44.2	>	→	→	→	49.2		→	→	→	→	53.6	→	→	→	→	→
燃烧器空気通過空気流量比	%	84.0	→	-	→	→	82.8	→	→	→	-	→	82.6	→	-	→	→	-
タービン出口温度 TOT	°C	672.1	728.5	747.5	722.5	676.3	664.7	708.4	732.8	745.2	667.7	719.4	655.6	696.0	722.8	736.3	662.1	710.3
燃焼器入口温度	ິດ	118.0	118.3	120.0	120.0	121.0	113.9	114.0	115.8	116.0	118.0	118.0	113.0	114.0	115.8	116.0	118.0	118.1
冷却空気温度	°C	40.9	41.0	42.4	43.0	43.2	31.4	32.0	33.0	33.9	36.0	36.0	29.9	30.0	32.0	32.4	34.9	35.0
水素温度	ະ	-	39.6	38.6	39.0			24.3	23.0	22.0		26.2		25.6	24.0	22.8		26.2
タービン入口圧力	kg/cm2	1.654	1.666	1.668	1.662	1.653	1.786	1.797	1.802	1.802	1.783	1.795	1.907	1.917	1.921	1.923	1.903	1.917
タービン出口圧力	kg/cm2	1.125	1.133	1.136	1.131	1.125	1.146	1.154	1.162	1.160	1.144	1.156	1.165	1.173	1.1 78	1.181	1.167	1.177
タービン出力 L	PS	220.7	235.5	237.4	233.8	221.6	292.2	303.7	305.6	308.2	290.0	302.1	367.6	377.4	381.5	382.1	364.9	377.0
冷却空気0	g/s	16	-	_		16	16	-	-	_	16	-	15	-	_	-	16	-
冷却空気1	g/s	30	30	30	30	30	30	30	30	30	30	30	31	31	31	31.0	30	31
冷却空気2	g/s	83	84	83	83	83	84	84	84	84	84	84	85	86	85	85.0	85	85
冷却空気3	g/s	100	100	100	100	99	101	101	101	101	101	100	103	103	103	102.0	102	102
冷却空気4	g/s	198	202	202	201	197	202	205	205	205	201	204	206	208	208	208.0	204	206
02濃度	96	16.1	15.6	15.5	15.7	16.1	16.1	15.8	15.6	15.5	16.2	15.8	16.1	15.8	15.6	15.5	16.1	15.7
CO2濃度	96	3.68	3.74	3.74	3.71	3.64	3.69	3.68	3.66	3.67	3.67	3.58	3.67	3.65	3.68	3.7	3.58	3.58
CO濃度	ppm	70.1	174	175.7	164	62.4	63.7	161.7	180.9	162.8	64.4	168.5	49.9	146.7	171.2	165.8	44.3	152.7
NOx濃度	ppm	34.8	36	35.7	36.4	35.8	45.1	46.6	47.4	46.7	46.7	48.2	45.2	46.8	47.3	46.5	46.9	48.2
NO濃度	ppm	27.4	22.5	8.6	21.4	27.8	37	31.3	31.6	14	37.7	31	37.8	30.1	31.5	12.4	38.7	32.2
H2濃度	ppm	-	6	407	14	-	-	6	0	544	-	16	-	21	3	478	-	4
水素燃焼効率	%	_	99.9	96.9	99.8			99.9	100	96.3		99.9	_	99.7	100	96.5		100

非再熱時でわずかに変わるがこれによる出力の変化量 は主空気流量の影響にくらべると小さい。回転速度に よっても比出力は変わるが、その変化量は比較的小さ い。比出力は試験パラメータである主空気流量の増加 と共に増加するが、これは試験タービンの膨張比が増 加する結果である。

水素再熱によって比出力は非再熱時(水素流量0) から約5%増加する。しかし水素流量を変えても比出力 の変化は小さい。比出力と水素流量の関係をさらに検 討するため、図22に非再熱時からの比出力の増加量を 示す。図中の実線は計算値を示す。計算方法の詳細は 付録3に示す。計算ではノズルから吹き出した水素が ロータ翼前で燃焼を完了しロータ入口ガス温度は一様 に上昇しているものとした。計算によれば比出力は水 素流量の増加とともに増大するが、試験結果では水素 流量を大きくしても比出力はあまり増加しない。ター ビンの下流で計測した水素燃焼効率はほとんど100%で あるので、水素流量が多い場合、燃焼反応はロータ翼 出口まで続き、ロータ入口で水素の発熱量に相当する ガス温度が上昇するとした仮定は適当でなかったと考 えられる。

表11に試験タービンの出力と運転条件について計画 値と試験結果を比較する。試験タービン出力は計画時 は再熱時405kW、非再熱時は380kWとしたが、試験結 果の出力は計画出力を大幅に下回り、非再熱、再熱時 ともに当初計画の60%程度に止まった。計画性能と実 機との差は、翼列設計誤差、設計時に考慮しなかった 各種損失、冷却空気に起因する損失、タービン機械損 失等、多くの要因が考えられるが、表11から、特にタ ービン入口および出口圧力が設計目標値と大きく異な っていることがわかる。図23に試験タービンの主空気 流量と膨張比の関係を示す。試験タービンの膨張比が 流量に対して計画値より著しく低いことが明瞭であり、 膨張比の不足が出力が設計目標値に達しない最も大き な理由である。膨張比不足の理由にはタービン翼列出 口流出角設計の誤差、主空気のガス側への漏れ込みに よるTITの低下および有効な作動ガス量の減少、ロー タ翼チップクリアランスの過大が考えられる。このよ うな出力の大きな差異を定量的に解析することができ なかったため、より精度を要するタービン内再熱に固

表11 試験タービンの設計性能と試験結果の比較

項	目単位	設計値	試	験結	R
ノズル入口温度	к	1,173	1,240	1,243	1,244
ノズル入口圧力	MPa	0.196	0.175	0.176	0.177
タービン出口圧力	MPa	0.106	0.112	0.113	0.114
膨張比	-	1.85	1.56	1.56	1.55
回転速度	rpm	20,000	20,000	20,010	20,020
空気流量	kg∕s	2.63	2.62	2.61	2.60
燃焼ガス流量	kg∕s	2.67	2.67	2.66	2.64
再熱入力	kW	440	0	180	360
出力(再熱時)	kW	405	-	223	227
出力(非再熟時)	kW	380	215	-	-
上出力	kW/kg/s	154	81.9	85.5	87.4

Main Air Flow Rate kg/s 図23 試験タービンの主空気流量と膨張比の関係

(170)