横尾幸一* 市原良夫* 矢崎敦生** 森山茂男**

Investigation into the Propulsive Performance of Super Tankers with Bulbous Bow

by

Koichi Yokoo, Yoshio Ichihara, Atsuo Yazaki, Shigeo Moriyama

Summary

This report consists of two parts. In Part 1 was mainly studied the effect of fore-body shape upon the propulsive performance of a tanker with L/B=6.0 and $C_B=0.80$, and in Part 2 that with L/B=6.5 and $C_B=0.82$. 18 model ships were used in the work of Part 1 and 6 model ships in that of Part 2.

The principal results of these series model tests are as follows;

(1) The bulbous bow form projected forward from F. P. gave the best propulsive performance throughout the three loaded conditions of full, half and ballast among the four bow shapes of normal, cylindrical bows and orthodox and projecting bulbous bows.

(2) So far as the size of bulbs varies from 6% to 14% of midship section area, resistance coefficient for the fully loaded condition decreases with the increase of bulb size and there exists the optimum size varying with Froude no. for the ballast condition.

(3) Under the fully loaded condition shape of bulbous bow has very slight influence on the propulsive performance, but under the ballast condition the lowered and projecting bulb gives better propulsive porformance.

(4) Amount of projection of the bulb has a considerable influence upon the propulsive performance. For the hull form of $C_B=0.82$ and L/B=6.5, projection of about 1.5% of L_{PP} seems to give better propulsive performance around the service speed.

(5) Concerning the effect of the shape of prismatic curves, big shoulder gave better propulsive performance for the ballast condition and worse performance for the fully loaded condition. Taking the both conditions into consideration, the small shoulder seems to be better.

(6) According to the results of frame-line series tests, it is recommended not to make the frame lines of full tankers with bulbous bow too U shape.

(7) Optimum position of L. C. B. was found to be located around -3% of L_{PP} for the hull of L/B=6.0 and C_B=0.80.

(8) Comparative tests of two models with different B/d values showed that smaller figure of B/d gave better propulsive performance.

Further works in this field are being carried out and another report will be published in near future.

* 推進性能部 ** 船型試験部

緒言

昭和33年より2ヶ年にわって行なわれたタンカーの 推進性能に関する研究¹⁾においてすでに,パルブ船型 の優秀性が暗示されていたが,この頃の船型は長さ幅 比が大きく,バルブ船型に採用されたバルブの大きさ も小さく,普通型船首型との性能の差もそれ程大きく なかったので,バルブ船型は広く認められるに至らな かった。それ以後次第に広くバルブ船型に対する理 論的,実験的研究が行なわれるとともに,アジヤ丸, 日章丸等のバルブ船型の実船が好性能を示したので, 昭和39年頃からは,建造される殆んどの肥大船が船首 バルブを採用するようになってきた。

しかし、実際に設計者が船首バルブを取入れるに当 っては、今なお、資料が不足しており、基本設計につ いて困惑することが多い。そこで、最近も多く建造さ れると考えられる主要目2種を選んで母型を作り、バ ルブ要目、形状等の船首形状が推進性能に及ばす影響 を調査した。

第1部 L/B=6.0, C_B=0.80 の船型

1. 模型船および模型プロペラ

L/B=6.0, C_B=0.80 ぐらいの主要目で, 過去に比

較的すぐれた成績を示した船型をもとにして 母型と し、下記7シリーズ、合計18隻の主として船首形を変 化させた系統的模型試験を行なった。

(1) 船首形状シリーズ: M.S. No. 1771~1774

(2) バルブの大きさシリーズ: M. S. No.1771,

1775, 1776

(3) バルブ形状シリーズ:M.S.No. 1771,1777 ~1779

(4) 船体前半部フレームライン・シリーズ
 : M. S. No. 1771, 1780, 1781

(5) 船体前半部プリズマチック・カーブ・シリーズ
 : M. S. No. 1771, 1782, 1783

(6) 浮心位置シリーズ: M. S. No. 1771, 1784~1786

(7) B/dシリーズ: M. S. No. 1771, 1787

これらの模型船中 *lcB* および B/d のシリーズはバ ラフィン製で他は木製模型である。(1), (2)および(3)の シリーズの模型船は船首部のみをとりかえ、(4), (5)の シリーズでは 6 横断面から前を とりかえて 実験を 行 なった。両グループそれぞれに母型を作製したので, 母型としては2 隻あり,それぞれのグループの比較の もととした。使用した模型船の要目および載貨状態等 を一括して表1に示す。また,図1に母型M. S. No. 1711の正面線図および船首尾輪廓を,図2にプリズマ

図1 M.S.No. 1771の正面線図及び船首尾輪郭図

チック曲線および満載喫水線形状を示す。表1に対応 する実船としては

長	さ	\mathbf{L}_{PP}	240m
幅		в	40m
喫	水	d	14.5m
主格	影関		25,000BHP×114RPM

を仮定した。模型プロペラとしては、すべての模型船 に対して、表2に示す M. P. No.1551 を使用した。 なお、これを対応実船のプロペラに換算すると、その 直径は7.20mとなる。

表 2	M. I	² . NO.	1551	の主要目
-----	------	--------------------	------	------

M. P. No.	1551
Diameter (m)	0.180
Boss Ratio	0.180
Pitch Ratio (Const.)	0.700
Max. Width Ratio	0.294
Exp. Area Ratio	0.650
Blade Thickness Ratio	0.050
Angle of Rake	10°
Number of Blades	5
Blade Section	MAU

表 1 模型船要目表 (L/B=6.0, CB=0.80)

			·····	·			·····	·		
<u> </u>	M. S. NO.	1771	1772	1773	1774	1775	1776	1777	1778	1779
	LPP. (m)				6	000				
<u> </u>	LOWL (m)	6.150								
	<u> </u>	1.000								
	\overline{V} (m ³)	1.7364	1.7360	1.7308	1.7362	1.7410	1.7452	1.7363	1.7366	1.7372
1	S B.K. (m2)	8.719	8.105	8.688	8.699	8.769	8.802	8.724	8.752	8.755
Ľ,	<u>d</u> (m) <u>0.3619</u>									
2	TRIM (%OFLPP)		0							
18	Св	0.800	0.800	0.797	0.800	0.802	0.804	0.800	0.800	0.800
	Ср	0.808	0.808	0.805	0.808	0.810	0.812	0.808	0.808	1.808
7	См	0.990								
17	CB (400FLPP)	-2.48	-2.50	-2.36	-2.49	- 2.57	-2.64	-2.48	-2.48	-2.53
	B/d				2	76				
3	LPP/B				6	000				
4	V/LAP3 X10-3	8.039	8.037	8.013	8.038	8.060	8.080	8.038	8.040	8.042
	AREA (% OF AM)	6.10	6.10	0	6.20	10.40	14.30	6.00	6.00	650
BU	LB LENGTH (% OF LPP)	0.74	0	0	0	1.29	1.87	0.67	1.08	3.13
L	IMMERSION (% OF druit)	75.8	0	0	0	76.5	76.8	54.1	85.2	84.5
S.	<u> </u>	1.1287	1.1284	1.1250	1.1285	1.1317	1.1344	1.1286	1.1288	1.1292
l ĝ	S B.K. (m2)	7.191	7.179	7.316	7.326	7.254	7.267	7.193	7.214	7.293
) ê	<u>d</u> (m)	0.2436	0.2436	0.2438	0.2438	0.2437	0.2439	0.2437	0.2435	0.2433
22	TRIM (4.0FLAP)	ļ			1.	0				
r§-	∇ (m ³)	0.7640	0.7638	0.1615	0.7639	0.7660	0.7679	0.7639	0.7641	0.7644
25	5 B.K. (m2)	6.284	6.278	6.264	6.294	6.346	6.357	8.271	6.388	6.390
22	<u>d</u> (m)	0.1712	0.1712	0.1711	0.1711	0.1714	0.1715	0.1713	0.1710	0.1705
ΰŬ	TRIM (40 OFLPP)	[_		2	. 0				
	M. S. NO.	1780	1781	1782	1783	1784	1785	1786	1787	
	LPP (M)				6.0	00				
	1	6.150								
<u> </u>	LOWL (m)				8.1	50				
	B (m)				8.1	00				
2	$\frac{B}{\nabla (m)}$	1.7312	1.7259	1.7355	6.1 1.0 1.7356	50 00 1.7384	1.7391	1.7402	1.5679	
NOI	$\frac{E \text{ by } E}{B} (m)$ $\frac{V}{F} (m^3)$ $\frac{V}{S \text{ wirmour}} (m^2)$	1.73/2 8.676	1.7259 8.682	1.7355 8.728	8.1 1.0 1.7356 8.727	50 00 1.93 8 4 8.751	1.7391 8.751	1.7402 8.728	1.5679 8.354	
VITION	$\frac{B}{B} (m)$ $\frac{B}{V} (m^{3})$ $\frac{S}{S} (m^{2})$ $\frac{C}{K} (m^{2})$	1.73/2 8.676	1.7259 8.632	1.7355 8.728	8.1 1.0 1.7356 8.727 0.3	5 0 0 0 1.73 8 4 3.751 6 1 9	1.7391 8.751	1.7402 8.128	1.5679 8.354 0.3268	
NDITION	E SWL (m) B (m) V (m²) S (m²) d (m²) d (m) TR/M (% of Lee)	1.73/2 8.676	1.7259 8.682	1.7355 8.728	8.1 1.0 1.7356 8.727 0.3	5 0 0 0 1.7384 8.751 6 19 0	1.7391 8.751	1.7402 8.728	1.5679 8.354 0.3268	
CONDITION	E bul (m?) B (m) V (m?) S ^{wrmour} S ^{wrmour} C m (m) C B	1.73/2 8.676 0.797	1.7259 8.632 0.795	1.7355 8.728 0.799	8.1 1.0 1.7356 8.727 0.3 0.799	5 0 0 0 1.7384 8.751 6 19 0 0.801	1.7391 8.751 0.801	1.7402 8.728 0.802	1.5679 8.354 0.3268 0.800	
CONDITION	E bul (m) B (m) V (m) S wrmour (m) d (m) TR/M (%of Lerr) CB CP	1.7312 8.676 0.797 0.805	1.7259 8.632 0.795 0.803	1.7355 8.728 0.799 0.807	8.1 1.0 1.7356 8.727 0.3 0.799 0.807	5 0 0 0 1.7384 8.751 6 19 0 0.801 0.809	1.7391 8.751 0.801 0.809	1.7402 8.728 0.802 0.810	1.5679 8.354 0.3268 0.800 0.808	
AP CONDITION	E bul (m) B (m) V (m) S wr advr B (M) d (m) TR / M (% of Lee) CB CP CM	1.7312 8.676 0.797 0.805	1.7259 8.632 0.795 0.803	1.7355 8.728 0.799 0.807	8.1 1.0 1.7356 8.727 0.3 0.799 0.807 0.9	5 0 0 0 1.7384 3.751 6 19 0 0.801 0.809 9 0	1.7391 8.751 0.801 0.809	1.7402 8.728 0.802 0.810	1.5679 8.354 0.3268 0.800 0.808	
VOUTIONOS ORDITION	E bul (m) B (m) V (m) S wr700T(m) d (m) TR/M (% 05 Lpr) CB CP CM Lcs (% 05 Lpr)	1.73/2 8.676 0.797 0.805 -2.35	1.7259 8.632 0.795 0.803 - 2.25	1. 7355 8. 728 0. 799 0. 807 - 2.49	8.1 1.0 1.7356 8.727 0.3 0.799 0.807 0.9 - 2.49	5 0 1.7384 3.751 6 19 0.801 0.801 0.809 9 0 -1.50	1.7391 8.751 0.801 0.809 - 3.50	1.7402 3.728 0.802 0.810 - 4.00	1.5679 8.354 0.3268 0.800 0.808 - 2.48	
L LOAD CONDITION	E bul (m) B (m) V (m) S ^(m) S ^(m) C (m) C B C P C M C C M C M	1.73/2 8.676 0.797 0.805 -2.35	1.7259 8.682 0.795 0.803 - 2.25	1. 7355 8. 728 0. 799 0. 807 - 2.44	8.7 1.00 1.7356 8.727 0.3 0.799 0.807 0.807 0.9 -2.49 2.7	5 0 0 0 1.7384 3.751 6.79 0 0.801 0.807 90 -1.50 6	1.7391 8.751 0.831 0.809 - 3.50	1.7402 8.728 0.802 0.810 - 4.00	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06	
NOILIGNOS GVOT 770.	E bul (m) E (m) F (m) S (m) S (m) G (m) TR/M (% 6FLPP) CB CP CM Los (% 6FLPP) B/d LPP/B	1.73/2 8.676 0.797 0.805 -2.35	1.7259 8.632 0.795 0.803 - 2.25	1. 7355 8. 728 0. 799 0. 807 - 2.49	8.7 1.0 1.7356 8.727 0.3 0.799 0.807 0.9 -2.49 2.7 6.0	5 0 0 0 1.7384 8.751 6.19 0 0.801 0.809 90 -1.50 6 00	1.7391 8.751 0.801 0.809 - 3.50	1.7402 8.728 0.802 0.810 - 4.00	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06	
FULL LOAD CONDITION	E out (m?) B (m) V (m?) S ^{wirradur} (m?) d (m) TR/M (% 6F LPP) CB CP CM CCM CCM CCM CB CM CB CM CB CM CB CM CB CM CB CM CCM C	1.73/2 8.676 0.797 0.805 -2.35 8.015	1.7259 8.632 0.795 0.803 - 2.25 7.990	1.7355 8.728 0.799 0.807 - 2.49 8.035	8.7 1.0 1.7356 8.727 0.307 0.807 0.807 0.99 -2.49 2.7 6.0 8.035	5 0 0 0 1.7384 5.751 6.19 0.801 0.801 0.809 90 -1.50 6 00 8.098	1.7391 8.751 0.801 0.809 - 3.50 8.051	1.7402 8.728 0.802 0.810 - 400 8.056	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06 7.259	
NOILIGNON GWDI TTT	E DWL (MR) B (MR) V (MR) S ^{WITFOUT} (MR) d (M) TR/M (% 0F LPP) CB CP CM CB CM CB CM CB CM CB CM CB CM CB CM CB CM CA CM CA CA CM CA CA CA CA CA CA CA CA CA CA	1.73/2 8.676 0.797 0.805 -2.35 8.015 6.10	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10	1.7355 8.728 0.799 0.807 - 2.49 8.035 6.10	8.1 1.0 1.7356 8.727 0.3 0.799 0.807 0.9 -2.49 -2.49 2.7 6.0 8.035 6.10	5 0 0 0 1.7384 8.751 6.19 0 0.801 0.801 0.809 90 -1.50 6 00 8.098 6.10	1.7391 8.751 0.801 0.809 - 3.50 8.051 6.10	1.7402 8.728 0.802 0.810 - 4.00 8.056 6.10	1.5679 8.354 0.3268 0.800 0.808 - C.48 3.06 7.259 6.10	
NOILIGNO CONDILION	E but (mi) B (m) V (mi) S S M (Mostlere) CB (mi) TR / M (%oflere) CB (mi) CB (mi) CB (Mostlere) CB (Mostlere) B/d Lene/B V/Leps X 10-3 AREA (%off Am) ABEA (%off Am) LENGTH (%off Lere)	1.73/2 8.676 0.797 0.805 -2.35 8.015 6.10 0.83	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10 0.97	1. 7355 8. 728 0. 799 0. 807 - 2.49 8.035 6.10 0.76	8.1 1.0 1.7356 8.727 0.3 0.799 0.807 0.9 -2.49 2.7 6.0 8.035 6.10 0.68	5 0 0 0 1.7384 3.751 6.19 0 0.801 0.801 0.809 90 -1.50 6 00 8.098 8.10 0.76	1.7391 8.751 0.801 0.809 - 3.50 8.051 8.10 0.71	1.7402 8.728 0.802 0.810 - 400 8.056 6.10 0.75	1.5679 8.354 0.3268 0.800 0.808 - e.48 3.06 7.259 6.10 0.74	
NOILIGNOS OVOT TINE BUL	E bul (m) E (m) F (m) S (m) S (m) Cm CP CM CM CP CM CP CM CP CM CP CM CP CM CP CM CP CM CM CP CM CM CP CM CP CM CM CP CM CM CP CM CM CP CM CM CM CM CM CM CM CM CP CM CM CM CM CM CM CM CM CM CM	1.73/2 8.676 0.797 0.805 -2.35 8.015 6.10 0.83 78.3	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10 0.97 70.0	1. 7355 8. 728 0. 799 0. 807 - 2.49 8.035 8.10 0.76 70.0	8.1 1.0 1.7356 8.727 0.3 0.799 0.807 0.9 -2.49 2.7 6.0 8.035 6.10 0.68 70.0	5 0 0 0 1.7384 8.751 6 19 0 0.801 0.801 0.809 90 -1.50 6 00 00 8.048 6.10 0.76 76.5	1.7391 8.751 0.801 0.809 -3.50 8.051 6.10 0.71 76.5	1.7402 8.728 0.802 0.810 - 400 8.056 6.10 0.75 76.5	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06 7.259 6.10 0.74 75.8	
NOILIANOS AVOT TTAL BUL	E bul (m) E (m) E (m) V (m) S (m) S (m) C (m) CB CP CM CM CP CM CM CP CM CM CM CP CM CM CM CM CM CM CM CM CM CM	1.73/2 8.676 0.797 0.805 -2.35 6.10 0.83 78.3 1.1253	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10 0.97 70.0 1.1218	1.7355 8.728 0.799 0.807 - 2.49 8.035 6.10 0.76 70.0 1.1281	8.7 1.0 1.7356 8.727 0.35 0.799 0.807 0.99 -2.49 2.7 6.0 8.035 0.10 0.68 70.0 1.1282	5 0 0 0 1.7384 5.751 6.19 0.801 1.809 90 -1.50 6 00 8.048 6.10 0.76 76.5 1.1300	1.7391 8.751 0.801 0.809 - 3.50 8.051 6.10 0.71 78.5 1.1424	1.7402 8.728 0.802 0.810 - 400 8.056 6.10 0.75 76.5 1.1351	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06 7.259 6.10 0.74 75.8 1.0192	
NOILIANOS AVOT TITLE BU NOILIAN	E BUL (MC) B (MC) F (MC) S (MC) S (MC) C	1.73/2 8.676 0.797 0.805 -2.35 8.015 6.10 0.83 79.3 1.1253 7.185	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10 0.97 70.0 1.1218 7.197	1.7355 8.728 0.799 0.807 - 2.49 8.035 6.10 0.76 70.0 1.1281 7.203	8.7 1.0 1.7356 8.727 0.307 0.807 0.99 -2.49 2.7 6.0 8.035 6.10 0.68 7.197	5 0 0 0 1.7384 5.751 6.19 0.801 1.809 90 -1.50 6 00 8.048 6.10 0.76 7.65 1.1300 7.231	1. 7391 8. 751 0. 831 0. 809 - 3.50 8. 051 6.10 0. 71 76.5 1. 1424 7. 332	1.7402 8.728 0.802 0.810 - 4.00 8.036 6.10 0.75 76.5 1.1351 7.223	1.5679 8.354 0.3268 0.800 0.808 - e.48 3.06 7.259 6.10 0.74 758 1.0192 7.004	
NOILIANOS AVOT TITZ B NOILIANOS.	E but (m) B (m) V (m) S (m) S (m) S (m) S (m) S (m) TR / M (% of Lpe) CB (m) CP CM CA (% of Lpe) B/d Lpe/ B V / Lpe ² × 10 ⁻³ AREA (% of Ang) IMMERSION(MOF Leng) IMMERSION(MOF Leng) S TO (M)	1.73/2 8.676 0.797 0.805 -2.35 6.10 0.83 78.3 1.1253 7.185 0.2440	1.7259 8.682 0.795 0.803 - 2.25 7.990 6.10 0.97 70.0 1.1218 7.197 0.2493	1.7355 8.728 0.799 0.807 - 2.49 8.035 6.10 0.76 70.0 1.1281 7.203 0.2436	8.7 1.0 1.7356 8.727 0.3 0.799 0.807 0.99 -2.49 2.7 6.0 8.035 6.10 0.68 70.0 1.1282 7.197 0.2436	5 0 0 0 1.7384 9.751 6 19 0.801 0.801 0.809 90 -1.50 6 00 8.098 6.10 0.76 1.1300 7.231 0.2927	1.7391 8.751 0.801 0.809 - 3.50 8.051 6.10 0.71 76.5 1.1424 7.332 0.2436	1.7402 8.728 0.802 0.810 - 4.00 8.056 6.10 0.75 76.5 1./351 7.223 0.2457	1.5679 8.354 0.3268 0.800 0.808 - e.48 3.06 7.259 6.10 0.74 75.8 1.0192 7.004 0.2200	
VOILION OV TOTO TOND CONDITION	E DWL (MR) B (MR) V (MR) S ^{WITFOUT} (MR) d (MR) TR / M (%6FLPP) CB CP CM LCB (%6FLPP) B/d LPP/B V / LPP ³ × 10 ⁻³ AREA (%6F Am) /MMERSION(%6F dFul) V (MR) S ^{WITFOUT} S ^{WITFOUT} S ^{WITFOUT} CM (MR) CM CM CM CM CM CM CM CM CM CM	1.73/2 8.676 0.797 0.805 -2.35 8.015 6.10 0.83 77.3 1.1253 7.185 0.2440	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10 0.97 70.0 1.1218 7.197 0.2493	1.7355 8.728 0.799 0.807 -2.44 8.035 6.10 0.76 70.0 1.1281 7.203 0.2436	8.7 1.0 1.7356 8.727 0.307 0.807 0.97 -2.49 2.7 6.0 8.035 6.10 0.68 70.0 1.1232 7.197 0.2436 1.0	5 0 0 0 1.7384 3.751 6.19 0.801 0.809 90 -1.50 6 00 8.048 6.10 0.76 765 1.1300 7.231 0.2427	1.7391 8.751 0.801 0.809 - 3.50 8.051 6.10 0.71 76.5 1.1424 7.332 0.2436	1.7402 8.728 0.802 0.810 - 400 8.056 6.10 0.75 76.5 1.1351 7.223 0.2457	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06 7.259 6.10 0.74 75.8 1.0192 7.009 0.2200	
Tow 12 CAMPITION R FULL LOAD CONDITION	$ \begin{array}{c} E \ bull & (mi) \\ B & (mi) \\ \hline P & (mi) \\ S & (mi) \\ S & (mi) \\ \hline G & (mi) \\ \hline T R / M & (% of Lee) \\ \hline C B \\ \hline C B \\ \hline C P \\ \hline C M \\ \hline C B \\ \hline C P \\ \hline C M \\ \hline C B \\ \hline C P \\ \hline C M \\ \hline C B \\ \hline C P \\ \hline C M \\ \hline C B \\ \hline C P \\ \hline C M \\ \hline C B \\ \hline C P \\ \hline C M \\ \hline C B \\ \hline C P \\ \hline C M \\ \hline C B \\ \hline C M \\ \hline C B \\ \hline C M \\ \hline C B \\ \hline C M \\ $	1.73/2 8.676 9.676 0.797 0.805 -2.35 6.10 0.83 7.185 7.185 0.2440 0.7617	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10 0.97 70.0 1.1218 7.197 0.2443 0.7594	1.7355 8.728 0.799 0.807 - 2.44 8.035 6.10 0.76 70.0 1.1281 7.203 0.2436 0.7636	8.7 1.0 1.7356 8.727 0.3 0.799 0.807 0.9 -2.49 -2.7 6.0 8.035 6.10 0.68 70.0 1.1282 7.197 0.2436 1.0 0.435 1.0 0.2436 0.709 1.1282 7.197 0.2436 1.0 0.2436 1.0 0.2436 1.0 0.2436 1.0 0.2436 1.0 0.2436 1.0 0.2436 1.0 0.2436 1.0 0.0 0.0 0.0 0.0 0.0 0.9 0.0 0.0	5 0 0 0 1.7384 1.7384 1.7384 5.751 6.19 0.807 90 -1.50 6 00 8.098 6.10 0.76 7.65 1.1300 7.231 0.2927 0.7699	1.7391 8.751 0.801 0.809 - 3.50 8.051 6.10 0.71 76.5 1.1424 7.332 0.2936 0.7692	1.7402 8.728 0.802 0.810 - 400 8.056 6.10 0.75 76.5 1.1351 7.223 0.2457 0.7594	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06 7.259 6.10 0.74 75.8 7.0192 7.004 0.2200 0.6899	
ATTION 12 CONDITION S FULL LOAD CONDITION	$ \begin{array}{c} E & (m) \\ B & (m) \\ \hline B & (m) \\ \hline & (m^2) \\ S & (m) \\ S & (m) \\ \hline & S & (m) \\ \hline & S & (m) \\ \hline & S \\ \hline \\ \hline & S \\ \hline & S \\ \hline & S \\ \hline & S \\ \hline \\ \hline & S \\ \hline \\ \hline & S \\ \hline & S \\ \hline \\ \hline & S \\ \hline \hline \\ \hline & S \\ \hline \hline \\ \hline & S \\ \hline \hline \\ \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \\ \hline \hline \hline \hline \hline \hline \hline \\ \hline \hline$	1.73/2 8.676 0.797 0.805 -2.35 8.015 6.10 0.83 71.3 1.1253 7.185 0.2440 0.7617 6.272	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10 0.97 70.0 1.1218 7.197 0.2493 0.7594 6.280	1.7355 8.728 8.728 0.799 0.307 -2.49 8.035 6.10 0.76 70.0 1.1281 7.203 0.2436 0.7636 6.287	8.1 1.0 1.7356 8.727 0.3 0.799 0.807 0.9 -2.49 2.7 6.0 8.035 6.10 0.68 70.0 1.1232 7.197 0.2436 7.09 0.7637 6.293	5 0 0 0 1.7384 8.751 6 19 0.801 0.801 0.809 90 -1.50 6 00 8.098 6.10 0.76 765 1.1300 7.231 0.2427 0.7649 6.344	1.7391 8.751 0.801 0.809 -3.50 8.051 6.10 0.71 76.5 1.1424 7.332 0.2436 0.7642 6.302	1.7402 8.728 0.802 0.810 - 400 8.056 6.10 0.75 76.5 1.1351 7.223 0.2457 0.7594 6.299	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06 7.259 6.10 0.74 75.8 1.0192 7.004 0.2200 0.6899 6.130	
ONDITION IL CONDITION B FULL LOAD CONDITION	$ \begin{array}{c} E & (m) \\ B & (m) \\ \hline B & (m) \\ \hline & (m^2) \\ S & (m^2) \\ S & (m) \\ \hline & G & (m) \\ \hline & G & (m) \\ \hline & G & (m) \\ \hline & C \\ \hline \hline & C \\ \hline & C \\ \hline & C \\ \hline & C \\ \hline \hline & C \\ \hline \hline & $	1.73/2 8.676 0.797 0.805 -2.35 6.10 0.83 79.3 7.185 0.2440 0.7617 6.272 0.1715	1.7259 8.632 0.795 0.803 - 2.25 7.990 6.10 0.97 70.0 1.1218 7.197 0.2443 0.7594 6.280 0.1717	1.7355 8.728 0.799 0.807 - 2.49 8.035 6.10 0.76 70.0 1.1281 7.203 0.2436 0.7636 6.287 0.1712	8.1 1.0 1.7356 8.727 0.35 0.799 0.807 0.97 -2.49 2.7 6.0 8.035 0.10 0.68 70.0 1.1282 7.197 0.2436 1.0 0.7637 6.293 0.1714	5 0 0 0 1.7384 2.751 6 19 0.801 1.809 9 0 -1.50 6 00 8.048 6.10 1.76 7.65 1.1300 7.231 0.2427 0.2427 0.7649 6.344 0.1681	1.7391 8.751 8.751 0.801 0.809 - 3.50 - 3.50 8.051 0.71 78.5 1.1424 7.332 0.2436 0.7642 6.302 0.1712	1.7402 8.728 0.802 0.810 - 400 8.056 6.10 0.75 76.5 1.1351 7.223 0.2457 0.2457 0.7594 6.299 0.1722	1.5679 8.354 0.3268 0.800 0.808 - 2.48 3.06 7.259 6.10 0.74 75.8 1.0192 7.004 0.2200 0.6899 6.130 0.1548	

2. 試験状態

試験の載貨状能は、満載状態(イーブン・キール)、 半載状態(満載時の約65%排水量、1%Lep船尾トリ ム)、バラスト状態(満載時の約44%排水量、2% Lep船尾トリム)の3状態で、各模型船について抵抗 および自航試験を実施した。摩擦抵抗の算定にはシェ ンヘルの摩擦抵抗算式を使用し、実船に対する粗度修 正量4CFは-0.0003とした。また,乱流発生装置としては,当研究所慣用の高さ1mmの梯形スタッドを10mm間隔で,全模型船の9½横截面の位置に植えつけた。

3. 船首形状シリーズ

M. S. No. 1771, 1772, 1773 および1774 で, それ

(165)

図 3 船首形状シリーズの模型船の船首形状

ぞれ船首形状を図3に示すように変化させた。図から 分るように, M. S. 1773 は 普通型船首, M. S. 1771 は若干バルブが F. P より前に出ているバルブ船首, M. S. 1772 はバルブ先端が F. P. と一致している旧 式のバルブ船首, M. S. 1774は円筒型船首を有してい る。船首バルブおよび円筒の大きさは,いずれもその 断面積が船の中央横断面積 A₄ の6%となっている。

抵抗試験の結果は図4に示されているが、満載状態 で M. S. 1773, 半載状能で M. S. 1772 がきわだって 悪いほか,他は余り大きな抵抗の差を示していない。 殊に,バラスト状態の Fn=0.18~0.21 位では4 船型 とも殆んど同一の抵抗値を示している。3 状態を通し て眺めると,抵抗上からは M.S. 1771 が最も良く, M.S. 1773 が最も悪い。

抵抗試験と自航試験の結果から求めた自航要素を図 5,6,7 に示す。それぞれ、満載、半載、バラスト状態に 対応する。船首形状を変化させただけで、船の大部分は 同一であるにもかかわらず、自航要素はかなり変化し

(167)

ている。概して, M. S. No. 1771 は t, wおよび γ_{R} が小さくなっている。

推進係数を求めてみると、一般に バルブ船型の M. S. No. 1771および 1772が良く、円筒型船首と普通型 船首が劣る。抵抗と合せ考えて優劣を考えると、 M. S. No. 1771が最も良く、M. S. No. 1772, 1774, 1773 の順に悪くなっていく。 4. バルブの大きさシリーズ

母型のM. S. No. 1771のバルブの大きさ6% Amを もとにして,形状をなるべく近く保ちながら大きさを 10%,14% Amと拡大させて,M. S. No. 1775 およ び1776を作った。その比較を図8に示す。図に示した ように,バルブの幅をバルブの大きさの比で増加して ある。

図8 バルブの大きさシリーズの模型船の船首形状

1776

MARKJ; MODEL SHI

% A.

抵抗試験および自航試験の結果を図9および図10~12 に示す。これらの図によってもバルブの大きさによる 抵抗および自航要素の変化の模様は推察できるが、バ ルブの大きさの影響を一そう分り易くするために、満 載およびバラストの両状態に対してクロス・カーブを 作って、図13および図14に示した。満載状態における

rR の値は6% Am~14% Am のバルブの大きさの範囲 では, バルブが大きくなるにしたがい小さくなる傾向 を示し, バラスト状態の rR については, フルード数 によって変化するバルブの大きさの最適値がある。

1-t, 1-wrの変化の様子は載貨状態によって異 なるが、大体の傾向としては、バルブが大きくなるに 従って漸減して行く。殊に1-wrについてはそれがは っきりしている。 η_R の値は満載ではバルブが大きく なるに従い増大して行き、バラスト状態では、バルブ の大きさであまり変化しない。ただし、バラスト状態 における以上の傾向はトリムの変化でかなり変ってく るものと思われる。

バルブの大きさの影響は満載状態におけるよりも, バラスト状態において著しく,殊に大型バルブが低速 で非常に大きな抵抗値を示していることから,バルブ の大きさとしては,船によって適当な値をとらねばな らない。 $F_n=0.15\sim0.18$ 位を考えれば,この種の船 の最適のバルブの大きさは8% Am 位と考えられる。

5. バルブ形状シリーズ

このシリーズの模型船はM. S. No. 1771, 1777, 1778

および1779の4隻で, バルブ形状を図15に示す。バル ブの大きさはすべて6%Amであって, M. S. No. 1777 はバルブの容積を上方へ, M. S. 1778は下方へ移動さ せたものである。また, M. S. 1779はバルブの容積を

図14 バルブの大きさの自航要素に及ぼす影響

下方に集中させるとともに若干前方に突出させたもの である。

試験の結果求められた rR を図16に,自航要素を図 17~19 に示す。バルブの形状を定量的に表わす 要素 としてバルブのF.P.における横載面積の重心位置と満 載喫水線との距離をとることにし,これと満載喫水と

図16 バルブ形状シリーズのYR

図15 バルブ形状シリーズの模型船の船首形状

(170)

図17 バルブ形状シリーズの自航要素(満載状態)

図19 バルブ形状シリーズの自航要素(バラスト状態)

図18 バルブ形状シリーズの自航要素(半載状態)

の比を%で表わしたものをfとする。fを横軸として rRと自航要素のクロス・カーブを作り、図20および図 21に示す。ただし、満載およびバラストの2状態に対 してであり、M. S. No. 1779の点はクロス・カーブに はのせず、参考点として示してある。図20によると、 満載状態においてはf=60%前後に rR の極小値があ

り、バラスト状態においてはfが小となる程小さくなっている。バラスト状態における抵抗の大小は船首喫水の位置とバルブ膨大部との関係位置に大いに関係するものと思われる。図21によると、1-tがバルブの上下位置によってかなり大きく変化し、しかも、f=60%のあたりの1-tが満載で極小、バラストで極大とな

(171)

っている。このことは r_R の満載における良さ, バラ ストにおける悪さをキャンセルする方向になってい る。どうしてこのようになるかについては更に検討の 必要があるものと思われる。また, M. S. No. 1779の r_R は,満載状態ではM. S. No. 1771より若干大きいが, バラスト状態では非常に低い値をとっている。

図21 バルブ形状の自航要素に及ぼす影響

MARKS

自航要素を考慮に入れると多少差は縮まるが, M. S. No. 1779 がバラスト状態ですぐれていることに変り はない。すなわち, バルブの位置を極めて低くし, し かも FP. より前に突出させることはバラスト状態の 成績を良くする。

6. 船体前半部フレームライン・シリーズ

M. S. No. 1771, 1780 および1781の3隻で, 主として バルブ後方のフレーム・ライン形状を変化させたもの で, その比較を図22に示す。図に見られるように, M. S. 1780 は 1771 のバルブのすぐ後方のフレーム・ライ ンをやや局所的にやせさせたものであり, M. S. 1781 はフレーム・ラインの下方部を比較的長い範囲にわた って削り落したものである。

図23に示した抵抗試験の結果によれば、満載状態で は M. S. No. 1781が良く, M. S. No. 1780はバラスト 状態の高速範囲で良いだけで、他の状態では最も悪く なっている。自航要素は載貨状態別に図24~26に示さ れているが、バラスト状態を除けば、バルブの後方を やせさせたことは 1-t の値を大きくするのに役立っ ているようである。rkと自航要素との両方から綜合的 の判断を下せば、バルブ直後の船首形状はどちらかと いえばやせ気味の方が良いが、やせさせるにしてもあ まり局部的でなく、広い範囲にやせさせた方がよいも のと思われる。

7. 船体前半部プリズマチック・カーブ・シリーズ

M.S. No. 1771, 1782 および1783の3隻で船体前半部

(172)

図23 船体前半部フレームラインシリーズのr_R

図24 船体前半部フレームラインシリーズの自航 要素(満載状態)

図26 船体前半部フレームラインシリーズの 自航要素(バラスト状態)

のプリズマチック・カーブを図27のように3種に変化 させた。すなわち, M. S. No. 1771を中にして, M. S. No. 1782 は肩が張り船首端でやせており, M. S. No. 1783は肩落ちで船首端で太っている。

抵抗試験の結果を図28に示す。満載状態では M.S. No. 1783が、半載状態では. M.S. No. 1771が、バラ スト状態ではM. S. No. 1782が, この試験の全速度範囲を通じて低い抵抗値を示している。自航要素を図29~31に載貨状態別に示す。3船型とも大差がないことが示されているが、しいていえば、満載状態では肩張りの1-t, 肩落ちの 7_R が小さく、半載では原型の1-tが小さく、バラスト状態では肩張りで 7_R , 1-t が小さ

(174)

く, 原型で1-wrが大きい。満載およびバラストの両 状態でクロス・カーブにしたraを図32に, 自航要素を 図33に示す。図32中には第1水槽で得られた原型のra の値も置点しておいた。満載状態では抵抗値は良く一

形状のrRに及ぼす影響

致しているが、バラスト状態ではかなり異っている。 断面積の大きい第1水槽でのバラスト状態の抵抗値が 高いということであり、しかもこのシリーズの3隻の 値の比較としては合理的な結果が得られているので、 このシリーズの試験実施中の特異現象か、第2水槽の この時期のカレントに多少異常があったものとも思わ れるが、カレントの測定、水質の検査等をしていない のではっきりしたことは分らない。

載貨状態によって成績が異なるので船型の優劣**をつ** け難いが低速の方で全体的に考慮をすると, 肩落ち船 型の方が良いように思われる。

8. 浮心位置シリーズ

M. S. No. 1771, 1784, 1785および1786の4隻で母型 の *lcB*-2.5% L2P を挟んで,それぞれ-1.5%L2P, 3.5%L2P および-4.0% *L2P*の *lcB* を有する船型で, 浮心の縦位置の推進性能に及ぼす影響を調べた。この シリーズの模型船の中 M. S. 1786 のみは第1 水槽で, 他は第2水槽で試験を行なっているので,この点注意を

要する。模型船の概略を図34に抵抗試験の結果得られ たr_Rを図35に、自航試験の結果得られた自航要素を図 $36 \sim 38$ に示す。図35によれば、 F_n によって最良の船型 が変っていること、および最適浮心の位置は速度が高 くなるほど後ろへずれることなどが分るが、その模様 はクロス・カーブにした図39によれば一そうはっきり する。満載とバラストの2状態のみについて示してあ るが、半載状態に対するものも図35より容易に導くこ とができる。図39によれば、満載状態の $F_n=0.17$ 付近 では最適 lc_B は約3%であり、バラスト状態の $F_n=0$. 18~0.19付近では約-3.5%である。ただし、この最適 浮心位置は模型試験の結果を示すものであって、実船 の最適浮心位置を考える時には外挿法の如何によって かなり変ってくるので注意を要する。これは何も lcB シリーズについてだけ言えることではなく、模型試験 成績の比較に当っては常に注意しなければならないこ とであるが、特に F_n を横軸にして表わした r_R の曲線 が模型船同志で交叉している時は、実船で交叉点が移 動するので問題である。試験速度のほぼ全範囲にわた って2つの模型船の優劣が分れている時には、実船に おいてもその優劣は変らないものと考えられる。

図40には満載およびバラスト状態の自航要素がクロ ス・カーブとして示されている。M. S. No. 1786 の点 を除けば1-t,1-wrとも浮心が船首の方へ移るにした がって大となっている。1-t,⁷RにおいてM. S. No. 17 86の値が小さくなっているのは、極端に浮心が前に移 ったためであるか、試験した水槽が異なるためのもの かはっきりしない。これらの点については将来さらに

(176)

図34(b) *lc* B シリーズの模型船の船尾形状

図35 l_{CB} シリーズの $r_{\rm R}$

図36 *lcB* シリーズの自航要素(満載状態)

詳く調べる必要があるものと思われる。

9. B/dシリーズ

M. S. No. 1771, 1787 でB/d=2.76とB/d=3.06の船型の比較をした。図41にrRの比較を、図42~44に自航要素の比較を示す。rRについては、全載貨状態を通じてB/dの小さい M. S. No. 1771の値が小さい。自航要素においても,rRの場合と同様に一様の傾向がみられ、

ほぼ全載貨状態を通じ、またほぼ全試験速度範囲において、M.S. No. 1771は M.S. No. 1787より大きな1 ーt, $1-w_{T}$, η_{R} をもつ。抵抗および自航要素の両方を 考慮に入れて比較した結果,この位の船型速度を有するものについては, B/dの小さい方が推進性能が良いことが分った。

(178)

図42 B/dシリーズの自航要素(満載状態)

10. 原型の成績について

この研究のための試験はかなり長期にわたることが 予定されたので、各シリーズごとに原型の試験を繰返

し行なった。また,なるべく期間を短かくするために, シリーズによっては第2水槽を使用して試験した。な お,模型製作の簡便のために原型を2隻作った。このよ うなことが原型同志の試験成績に多少の不一致をもた らした。すなわち,満載状態においては,模型の違い, 水槽の違いにも拘わらず,成績は殆んど一致したが, バラスト状態においては,水漕の違いによる成績の違 いが大きかった。違いの原因をつきとめる事はできな かったので,問題は将来に残されるが,各シリーズご

とに原型の試験をして比較をしたので、各船型変化の 推進性能に及ぼす影響としては大きな誤りはないもの と思われる。なお、クロス・カーブにして表わしたも のについては各計測値を15°Cの標準状態に換算して ある。また、換算に当ってはシエンヘルの式を用い、 形状影響係数の影響も考慮に入れてある。

11. プロペラ単独試験結果について

すでにのべたように,このシリーズのすべての模型 船に対して M. P. No. 1551を使用したが,その単独試 験の成績を図45に示す。

第2部 L/B=6.5, C_B=0.82の船型

1. 模型船および模型プロペラ

L/B=6.5, $C_B=0.82$ の船型に対し船首形状の変化が 推進性能に及ぼす影響を調べるために下記 $3 \sim y - x$ 合計6隻の模型について系統的模型試験を行なった。

(1) バルブ突出量変化のシリーズ

M. S. No. 1747, 1748, 1749

図45 M. P. No. 1551 の単独試験成績図

-									
	M. 5. NO.	1747	1748	1749	1750	1751	1752		
	LPP (M)		6.0000						
	LOWL (m)		6.1404						
	B (m)		0.9230						
NO	∇ (m^3	1.5689	1.5666	1.5649	1.5665	1.5648	1.5690		
Ĕ	<u> </u>	8.381	8.376	8.376	8.355	8.367	8.395		
Q	<u>d</u> (m)			0.34	<i>49</i>				
0	TRIM (% OFL)	9P)		0					
0	C _B	0.821	0.820	0.819	0.820	0.819	0,822		
90	Ср	0.825	0.824	0.823	0.824	0.823	0.826		
0	CM		0.995						
Z) CB (90 DFL;	P) -2.54	-2.50	-1.14	-2.50	-2.44	-2.56		
77	BId		2.68						
2	LPP/B		6.500						
\sim	V/LPP3 X10-	7.261	7.253	7.245	7.252	7.245	7.264		
	AREA (% OF A	1) 9.0	9.0	9.0	9.0	6.0	12.0		
Ľ	BUL B LENGTH(40 OF L,	P) 1.0	1.5	2.0	1.5	1.0	2.0		
_	IMMERSION(400F	druce)	<u>uu) 70.0</u>						
100	∇ (m ³)	0.8565	0.8553	0.8592	0.8521	0.8540	0.8570		
10	<u>5</u> (m [*]) 6.462	6.461	6.460	6.938	6.449	6.476		
6	d (m.)	0.1948						
12	TRIM (%OFLP	0	1.0						
LOV	∇ (M^3)	0.6941	0.6930	0.6922	0.6915	0.6923	0.6941		
50	<u> </u>) 6.051	6.047	6.043	6.022	6.038	6.059		
176	<u>d</u> (m))	0.1614						
ng C	TRIM (%) OFLP	p)		2.0					

表 3 模型船要目表 (L/B=6.5, CB=0.82)

- (2) 船首フレームライン・シリーズM. S. No. 1748, 1750
- (3) バルブの大きさシリーズ
 - M. S. No. 1748, 1751, 1752

これらの 模型船は 全部木製で, 第1部の 場合と 同 様, 船体の前の方を脱着可能のものとし, 船首部をと りかえて試験した。その模型船の要目および各載貨状 態等を一括して表3に示す。また図46および図47にそ れぞれ原型の正面線図,船首尾輪廓およびプリズマチ ック曲線,満載喫水線形状を示す。表3に対応する実船 としては、LPP=247m,B=38m,d=14.2m,主機関23, 000BHP×114RPM を仮定した。模型プロペラとして は全模型船に対して M. P. No. 1567 を使用した。表 4にその要目を示す。なお、これを対応実船に換算す ると、その直径は 7.08mとなる。

表 4 M. P. NO. 1567 の主要目

M. P. NO.	1567
Diameter	0.172
Boss Ratio	0.180
Pitch Ratio (Const.)	0.745
Max. Width Ratio	0.303
Exp. Area Ratio	0.670
Blade Thickness Ratio	0.050
Angle of Rake	10
Number of Blades	5
Blade Section	MAU

図46 M. S. NO. 1741の正面線図及び船首尾輪郭

図47 M.S.NO.1748のプリズマチックカーブ及び満載喫水線形状

2. 試験状態

試験状態は満載状態(イーブン・キール),半載状態(満載時の約55%の排水量,1% Lpp船尾トリム) およびバラスト状態(満載時の約45%の排水量,2% Lpp 船尾トリム)の3状態で,全部のシリーズとも試 験は第2水槽で行なわれた。乱流発生装置その他の事 項に関しては第1部の場合と全く同様である。

3. バルブ突出量変化シリーズ

M. S. No. 1747, 1748 および 1749の3 隻で, バルブ の最大突出長さをそれぞれF. P. より前方へ1.0%, 1.5 %および 2.0% Lpp と変化したもので, その船首形状 の比較を図48に示す。抵抗および自航試験の結果をrg, 自航要素の形で図49~52に示す。図49によれば, 3 船 のrgは互に交叉していて, 載貨状態, 速度によって異

図48 バルブ突出量変化シリーズの模型船の船首形状

(満載状態)

BALLAST CONDITION

0.7

なる 最適の 突出量が 存在すること、排水量が 小とな り、速度が高くなるほど突出量の大きい方が低いrRを 与えることが分る。バルブ突出量の影響をもっとはっ きり分るようにするために, F. P. からバルブの先端 までの距離をLppの%で表わしたもの1を横軸とした クロス・カーブを図53および図54に示す。これによれ ば、満載状態においては Fn =0.18前後で l =1.5付近 バラスト状態においては $F_n = 0.19$ 前後で l = 1.6付近 にrRの最小になる所がある。期待されるように自航要

図54 バルブ突出量の自航要素に及ぼす影響

素にはワR以外余り大きな変化がない。^ŋRの差がこれだ けあり、しかも最大値が1=1.5位の所にある理由は不

明であり、むしろ実験誤差とも思われる。

4. 船首フレームライン・シリーズ

M. S. No. 1748と1750 の2 隻で船体前半部のフレー ムライン形状を同一の大きさのバルブを持たせながら 比較したもので、その形状の比較を図55に示す。試験 結果をraおよび自航要素の比較図として、図56~59に 示す。これによれば余り大きな差は得られなかった が、満載の低速で M. S. No. 1750、半載とバラストの 低速では M. S. No. 1748が低い抵抗値を示している。

図55 船首フレームラインシリーズの模型船の形状

図56 船首フレームラインシリーズのrR

MARKS; MODEL SHIP NO. 1748 1 1750

FULL LOAD CONDITION

Fr = 1/8 LOWL

図60 バルブの大きさシリーズの模型船の船首形状

5. バルブの大きさシリーズ

M. S. No. 1748, 1751 および1752でバルブの大きさ と突出長さを変化させたもので,その比較図を図60に 示す。その試験結果を *F*ⁿ を横軸に示したものを図61 ~64に, バルブの大きさを横軸としてクロス・カーブ に示したものを図65および図66に示す。これらの図に よれば, 試験結果は第1部のバルブの大きさシリーズ

MARKS, BULB SIZE MODEL SHIP NO, 1748. — 9.0 % OF An 1751. — 6.0 % OF An 1752. — 12.0 %

FULL LOAD CONDITION

図62 バルブの大きさシリーズの自航要素(満載状態)

の場合と類似している。すなわち、満載状態における r_R はバルブの大きさが大となる程小さくなり、半載およ びバラスト状態においては F_n によって異なるバルブ の大きさの最適値がある。l—tおよびl— w_T は9%A_M の大きさのバルブ位の所に最大値があり、 η_R はバル ブの大きさともに増大している。結局バルブの最適

(186)

大きさは、この船型に対して常用速度付近で考えれば、 満載状態で10%、バラスト状態で8%位となる。

図65 バルブの大きさのrRに及ぼす影響

図66 バルブの大きさの自航要素に及ぼす影響

6. プロペラの単独試験結果

この シリーズの 全模型船の 自航試験に 使用された M. P. No. 1567 の単独試験の結果を図67に示す。

図67 M.P. NO. 1567 の単独試験成績図

結 言

本研究では、バルブ付肥大船型の中で最も一般的と 思われる $L/B=6.0, C_B=0.80$ および $L/B=6.5, C_B=$ 0.82の両船型に因して、主として船首形状を系統的に 変化させた水槽試験を行ない、船首形状等が抵抗、馬 力等に及ぼす影響を種々調査した。その結果ほぼ所期 の目的を達成することができたが、なお、 lc_B につい ては推進性能に及ぼす影響が大きく、さらに調査する 必要が認められるので、昭和40年度においては、種々 の C_B に対して lc_B の 影響を調査する予定になってい る。また、そのほかの問題点、例えば尺度影響に関す ること等も次々と調べる予定である。最後に第1部の 研究は石川島播磨重工業、浦賀重工業、川崎重工業、 呉造船および 日本鋼管の5社の共同の受託試験であ り、第2部の研究は三井造船の受託試験であることを 付記する。