プログラム開発に使用された電子計算機の概要

夫

菅 井 和

現在,船舶技術研究所において共通言語を使用しプ ログラム開発に利用されている電子計算機組織は次の 3組織である。

- (1) 共用電子計算機組織 FACOM 270-20
- (2) 原子力船の安全対策研究用電子計算機組織 NEAC-2206
- (3) 三鷹第二船舶試験水槽データ処理用電子計算機 組織 TOSBAC-3300

本号に集録された電子計算機プログラムは、すべて 上記の3組織によって開発されたものである。これら のプログラムを一般の利用に供する場合の一助とし て、ここでは上記各組織の概要について説明すること にする。

共用電子計算機組織は,船舶技術研究所の各部の研 究員が共通してその科学演算およびデータ処理に利用 するために設置されたものである。FACOM 270-20 を主体とし、これに FACOM 230-10 およびその周 辺機器を有機的に配置している。導入が昭和 43 年と 比較的新しく、コアメモリ 16 kW という小型機なが ら、演算速度が速く周辺機器も最低限ながら一応完備 しているので、プログラム開発にはきわめて便利で活 発に利用されている。機器構成は表-1 に示すごとく である。ここで一語長は 17 ビット、サイクルタイム は 2µs である。使用される共通言語は FACOM FO-RTRAN で、これは JIS FORTRAN 5000 のレベル を超えている。

原子力船の安全対策研究用電子計算機組織は,昭和 36年に導入されたもので,船舶技術研究所では最も歴 史が古く,周辺機器や外部メモリーなども豊富である。 しかしながら,現在ではやや旧式化している。機器構 成は表-2 に示すごとくである。ここで一語長は符号 +12 桁,アクセスタイムは 5µs である。使用される

機器名	型名	台 数	備考		
FACOM 270-20					
中央処理装置	F7200A	1	ドラム 131 kW		
記憶装置	F7220A	4	4 kW		
浮動小数点演算機構	F7211A	1			
データチャンネル装置	F7232B1	1	MTC×1		
磁気テープ装置	F 603B	1	42 KC		
紙テープ読取装置	F 749A	1	400/200 字/秒		
紙テープせん孔装置	F 767A	1	100 字/秒		
ラインプリンタ装置	F 643C	1	240 行/分 50 種 136 桁		
ファコムライタ	F 801A	1	15 字/秒		
FACOM 230-10			·		
中央処理装置	F 2100 A	1	4KB ドラム 65KB		
記憶装置	F 2120 A	1	4 KB		
紙テープ読取装置	F 749A	1	400/200 字/秒		
ファコムライタ	F 801A	1	15 字/秒		
データライタ	F 516A	1			
自動電圧調整装置	F 964B	2	1ø 1KVA		

表-1 共用電子計算機機器構成表

1

(135)

表-2	原子力船の安全対策研究用電子計算機機器構成表

機 器 名	型名	台 数	備考	
中央処理装置	NEAC-2206	1	コア 10 kW	
外部磁気ドラム装置	522	1	10 kW	
磁気テープ制御装置	6403A	- 1	1 チャンネル/台 max 10 台接続	
磁気テープ装置	543 B	5	45000 桁/秒	
入出力制御装置	6601	1		
高速制表装置	402-1	1	350 行/分 48 文字 120 桁	
テープさん孔タイプライタ	304	3	500 字/秒	
光電式テープ読取機	104	2	100/200 字/秒	
高速テープさん孔機	381	1,	50 字/秒	

表-3 三鷹第二船舶試験水槽データ処理用電子計算機機器構成表

機器名	型名	台 数	備考
本 体	TOSBAC-3300		コア 8kW 命令数 60
	(DK-1856 B)		Cycle time $10\mu s$ $1W=24+1$ (P)
磁気ドラム装置	D P -1044 B		14 kW
紙テープさん孔器	東芝 4B-16		100 字/秒
万能入出力装置 Friden: model SPD			読:571 字/秒,印字 588 字/分
	F S-9790C		さん孔 1000 字/分
紙テープ読取器			200/400 字/秒
磁気テープ装置	D P -1195 A		1インチ 14 トラック
X-Y プロッタ	D P -1196 A		5プロット/秒 X, Yとも 1024 pos.
			0.2 mm/Pulse

共通言語は 06 NARC で, これは JIS FORTRAN 5000 のレベルを超えている。またチェンオペレーションができるのが特徴となっている。

三鷹第二船舶試験水槽データ処理用電子計算機組織 は,試験水槽の曳航台車よりデータ伝送を受け,これ をオンライン処理するために設置されたものである。

しかし,上記の業務に使用する時間以外は,一般の 科学演算にも使用できる。昭和 41 年に導入されたも ので,小型で演算速度もおそいため,プログラム開発 の主役ではない。機器構成を表-3 に示す。 ここで一 語長は 24 ビット+1 パリテイで,サイクルタイムは 10µs である。使用される共通言語は ALPS で,こ れは ALGOL 60 を基礎として作られたものである。

上述のごとく,船舶技術研究所においてプログラム 開発に使用されている電子計算機組織は,いずれもコ アーメモリの少ない小型機に属するものである。した がって,本号に特集されたプログラムが一般に利用さ れる場合を考えると,少なくとも上述の計算機よりは 上級機が使用されることになろう。そこで、こうした 上級機に移行することを前提として、プログラム利用 上の一般的注意を述べてみたいと思う。使用言語は、 FACOM 270-20 ならびに NEAC 2206 の場合には JIS FORTRAN 規格であるため、ほとんど変更なく そのままプログラムをかけることができる。また、組 まれたプログラムが小型機を対象としているから、大 型機に移行しても容量的にあふれる心配は全くない。 むしろ、大型機では、それなりに計算規模を大型化す ることが考えられるから、演算能率の面で大型機に向 いたプログラムに若干手直しをすることが望ましい場 合が生じるであろう。

本特集号のプログラム開発に利用された計算機は, S1~8 が FACOM 270-20, S9~S10 が TOSBAC-3300, N1~18 が NEAC-2206 である。

なお,本号に特集された電子計算機プログラムの個 々についての詳細は,船舶技術研究所調査室まで照会 されたい。

2

(136)

運動性能部 菅 井 和 夫

1. プログラムの目的および概要

近年,電子計算機を利用した舶用プロペラの揚力面 理論の計算が盛んに行なわれるようになってきた。し かしながら、そのほとんどがあらかじめ翼面上の揚力 分布が設計状態に対し与えられた場合、キャンバーや ピッチの分布をどう決めたらよいかを求めるいわゆる 最適プロペラの設計に対象が置かれており、逆にプロ ペラの幾何学的形状が与えられた場合、ある作動状態 に対し翼面上の揚力分布を求めるという問題は、積分 方程式を解かねばならないという難しさもあって, ほ とんど手がつけられていないのが現状である。本プロ グラムは,プロペラの幾何学的形状をすべて与えると, いろいろの作動状態に対し,積分方程式を解くことに より推力常数、トルク常数、効率等はもとより翼面上 の揚力分布、圧力分布等の流力的諸量をすべて面とし て求めるものである。これにより, プロペラの幾何学 的形状とキャビテーションも含めた流力的諸性能との 間の関係が適確に求められるようになり、プロペラの 設計に資するところが多いと考えられる。

2. プログラムの内容

44-051

An Application of Collocation Method to Propeller Lifting Surface Theory

2.2 製作者

運動性能部 菅井和夫

2.3 製作年月

昭和 44 年 11 月

2.4 計算の基礎となる理論の概要

プロペラ揚力面理論の積分方程式は次のように表わ される¹⁾。

$$K(\theta_{0}; \mu, \mu') = \sum_{M=0}^{N-1} \int_{\theta_{0}}^{\infty} \{\{\mu\mu' + \cos(\theta'' + 2\pi M/N)\}/R^{3} - 3\{\mu\theta'' - \mu'\sin(\theta'' + 2\pi M/N)\}\{\mu'\theta''\}$$

 $-\mu\sin(\theta'' + 2\pi M/N) \}/R^{5} d\theta''$(2) $R = \sqrt{\theta''^{2} + \mu^{2} + \mu'^{2} - 2\mu\mu'\cos(\theta'' + 2\pi M/N)}$

·····(3)

記号はすべて無次元量を用いており、u は翼面に対 し法線方向の速度、 $\bar{\theta}$ は翼の半幅、g は循環分布、Kは核関数をあらわす。また、 ζ' 、 ξ' はそれぞれ翼弦方 向および半径方向の座標、 θ 。は標点間の距離の角度 表示、N は翼数、 μ はビッチで無次元化した半径方 向の座標である。

(1)の積分方程式を解くことにより,循環分布が求め られ、これからプロペラの流力的諸性能が求められる。 積分方程式の解き方としては,まず循環分布の形を Birnbaum の級数で表わすことにし,標点をコロケー ション法にしたがってとり代数方程式の形に変換して 数値的に解いた。

本プログラムの特徴とするところは次のごとくであ る。

- (1) コロケーション法にしたがって標点をきめた。
- (2) 対数特異点を完全に処理した。
- (3) 定ピッチ非線型境界条件を採用した。
- (4) 翼の厚みを考慮に入れた。
- (5) 粘性流体としての影響を実験値から適当に取り 入れた。
- 2.5 計算の手順

計算の手順は, 図-1 フローチャートに示すごとく である。

2.6 入 力

必要な入力データーは次のごとくである。 整数は 13, 実数は F8.5 とする。

13, 天奴は 10.0 とりる。

 分割数 N……半径方向分割数

MM……翼弦方向分割数

- (2) プロペラの幾何学的形状と作動状態
 - N P …… 翼 数
 - **BR…**ボス比

PR……ピッチ比

KR……レーキ角 A J ……前准常数 I番目の翼断面位置で ード BM(I).....ミッドコ <u>ب</u> ا **PRD(I)**……ピッチ比 分布 翼断面形について BL……前縁のオージネ イト SFU(IR)バック のオー ジネイ ኑ スのオ ージネ

イト

- I番目の翼断面位置で CK(I)……循環減少係数 CDV(I)……抵抗係数
- 2.7 出 カ
- (1) 各翼断面位置につき G………半径方向無次元循環分布 CL……断面揚力係数
 - HC……空力中心
 - AL……迎角

A(I)……Birnbaum 級数の第1項

- (2) 各断面形につき CD……循環密度分布 CC……相当キャンバー
 - PU……ハックの圧力
 - PL……フエースの圧力
- (3) プロペラの性能
 - KT……推力常数

KQ……トルク常数

ET……効 率

3. プログラムの検定

3.1 計算誤差,精度

計算精度は,最終結果が有効数字4桁まで得られる ことを目標とした。このため、一般の演算は約7桁、 連立方程式を解くときだけ倍長精度とした。

3.2 演算時間

分割数を N=11, MM=7 とした場合, 実行を ¥ MPXEQ として約 100 分である。

3.3 適用範囲,制限事項

分割数は,ある程度以下だと正確な答が得られない。 少なくとも N=9, MM=5 以上は必要である。 適用 範囲は, 最適作動状態を中心とし前進常数で ±20% の範囲である。この範囲では実験点に対し±3%以内 の相違しか生じない。

4. プログラムの使用について

4.1 オペレート

プログラムの実行は, ¥ BATCH で PT よりで も、また ¥ MPXEO_MTO (44051 PROP. GL) で MT よりでも実行できる。

4.2 プログラムの応用

サブルーチンの中に倍長精度,ドラム使用で100元 まで解ける連立一次方程式の解法(ガウス--ヨルダン 法)が含まれており汎用できる。

4.3 他機種への移行

コアー 32kW 以上の計算機を使用するときは, DRUM DIMENSION をコアー上の DIMENSION に 変えると演算は非常に速くなる。

5. あとがき

プロペラ揚力面理論の積分方程式を解くことによ り, プロペラの幾何学的形状および作動状態と流力的 諸性能との関係を求めた最初のプログラムである。プ ロペラの実際の設計にかなり役立てることができるで あろう。

参考文献

1) 菅井和夫「プロペラ揚力面理論の新展開」(第 1報)造船協会論文集第119号(1966).

(138)

S-2 定常造波理論に基づく波動関数の数値計算プログラム

運動性能部 安 藤 定 雄

1. プログラムの目的および概要

本プログラムは波動関数の数値表を作成するもので ある。したがって、どのプログラムも数値積分が主体 となっている。

しかし,数値表は1回作成して,MTに格納してし まえば,あとは利用する場合に,内挿によって必要な 値を得ればよいのである。

では,波動関数を用いて,計算できるものは,船側 流速,船側波形,復原力と強制力などが求められるの である。一方,この関数が計算可能になったというこ とは,現在ほとんど計算されていない,非定常造波理 論に基づく3次元流場の波動関数が可能になり,3次 元理論での船体運動などの計算が簡単化されるもので ある。したがって,今後の発展には最も重要な基礎プ ログラムである。

- 2. プログラムの内容
 - プログラムの番号および名称
 Uniform Theory Wave Function
 (W 11 (P, Q), W₃ (P, Q), W₄ (P, Q))
 - 2.2 製作者

運動性能部 安藤定雄

- 2.3 製作年月
 - 昭和 44 年 12 月
- 2.4 計算の基礎となる理論の概要

船長および喫水が L, T である船が x 軸の負の方 向に一定速度 V で直進している場合の理想流場につ いて考えるときの Michell 型の速度ポテンシャル¹⁾に, 船体がその中心線面に吹出し分布を持って, その分布 が x 軸方向に閉じたものと考えるなどを導入すると, x, z 軸方向の流速 φ_x , φ_z は

ここで, $W_1(p, q)$, $W_2(p, q)$, $W_3(p, q)$, $W_4(p, q)$,

q), *W*₁₂(*p*, *q*), *W*₂₂(*p*, *q*) を波動関数と呼び, その 関数は次のように表示される。

$$\begin{split} W_{1}(p, q) &= \frac{1}{\pi^{2}} \int_{0}^{\infty} d\mu \int_{0}^{\infty} \frac{\mu^{2} \cos(q\chi + 2\varepsilon) \cos p\mu}{\sqrt{\mu^{2} + \chi^{2}}} d\chi \\ W_{2}(p, q) &= \frac{1}{\pi^{2}} \int_{0}^{\infty} d\mu \int_{0}^{\infty} \frac{\mu^{2} \cos q\chi \cos p\mu}{\sqrt{\mu^{2} + \chi^{2}}} d\chi \\ W_{3}(p, q) &= \frac{2}{\pi} \int_{0}^{1} \frac{\mu_{3} \cos p\mu e^{q\mu^{2}}}{\sqrt{1 - \mu^{2}}} d\mu \\ W_{4}(p, q) &= \frac{2}{\pi} \int_{1}^{\infty} \frac{\mu^{3} \sin p\mu e^{q\mu^{2}}}{\sqrt{\mu^{2} - 1}} d\mu \\ W_{1z}(p, q) &= \frac{1}{\pi^{2}} \int_{0}^{\infty} d\mu \int_{0}^{\infty} \frac{\chi \sin(q\chi + 2\varepsilon) \cos p\mu}{\sqrt{\mu^{2} + \chi^{2}}} d\chi \\ W_{1z}(p, q) &= \frac{1}{\pi^{2}} \int_{0}^{\infty} d\mu \int_{0}^{\infty} \frac{\chi \sin(q\chi + 2\varepsilon) \cos p\mu}{\sqrt{\mu^{2} + \chi^{2}}} d\chi \end{split}$$

$$W_{2z}(p, q) = \frac{1}{\pi^2} \int_0^\infty d\mu \int_0^\infty \frac{\chi \sin q \chi \cos p \mu}{\sqrt{\mu^2 + \chi^2}} d\chi$$

上記の関数はそのままでは数値積分は不可能である ので、変形して、総ての $p \ge q$ について計算できる プログラムである。

2.5 計算の手順

すべてのプログラムは、GAUSS の 10 点法の係数 の SUBROUTINE に行き、次に分割数を自動的に決 めて、波動関数の倍長演算で積分を行なうものであ る。

2.6 入 力

各プログラムとも入力データは不必要である。

2.7 出 力

 $p \ge q$ と波動関数名を LP に出力し,次に,計算 された波動関数を一点の p について q が 11 点につ き $LP \ge MT$ に出力する。

3. プログラムの検定

3.1 計算精度および誤差

各プログラムとも自動的に有効数字が5桁以上ある ようになっている。

3.2 計算所要時間

1点の *p* で, *q* が 11 点計算するに 3 秒から 20 分 の間である。

3.3 適用範囲と制限事項

 $W_4(p, q)$ は q が -0.05 以上なればよい。 $W_4(p, q)$ と $W_{11}(p, q)$ とは q が零の場合は別の計算である。

(139)

6

本プログラムでは p が 0~10.0 までを 0.1 間隔 について, q が 0~-0.5 までを 0.05 間隔について, 計算することができる。

また,このプログラムに付加すれば,非定常の波動 関数に適用できる。

4. プログラムの使用法と応用

4.1 プログラムのオペレート

実行は BATCH 処理による。SUBROUTINE は MT に RB で入っているものを使用する。

4.2 応 用

MT に RB で格納してある SUBROUTINE

44-CONST GAUSS の係数 (10 点法) と π

44-NEUMAN Neumann 関数の $Y_0(z)$, $Y_1(z)$ を 計算する 44-STRUVE Struve's 関数の **H**₀(z), **H**₁(z) を 計算する

があり,これらは一般に利用可能なプログラムである。

4.3 他機種への移行

上記プログラムは総てコアー上で演算されているの で,使用可能なコアーが 8 kW 以上ある計算機なれば 移行は可能である。

参考文献

1) 花岡達郎 "定常造波抵抗理論の基礎問題",第
 90 号,造船協会論文集.

S-3 細長体理論による船体まわりの流れの計算プログラム

運動性能部 菅

1. プログラムの目的および概要

任意の3次元物体のまわりの非揚力ボテンシャル流 を数値的に解くには,1000元程度の連立1次方程式 を解ける大型の計算機が必要である。あるいはこの連 立方程式は係数行列の対角元が大きいので行列をいく つかに分けて部分的に解く方法を使えるとしてもやは り数100元までは解けなくてはならず当所の計算機の 能力を超える。そこで船体が細長い物体であることを 考慮し,いわゆる細長体理論を使うと3次元の問題を 2次元の平面問題として扱えばよいことになり,問題 はきわめて簡単になる。連立方程式も20元程度が解 ければよいので,中小型計算機で十分まに合う。ここ に述べるプログラムは,この細長体理論により,直進, 斜航を含めた定常旋回中の船体表面上の速度分布を求 めるものである。ただし造波現象は考えない。

2. プログラムの内容

2.1 プログラムの番号,名称

44-041

Potential Flow about a Ship Hull (Arbitrary Sectional Shape)

2.2 製作者

運動性能部 菅 信

信

2.3 製作年月

昭和 44 年 9 月

2.4 計算の基礎となる理論の概要

細長体理論では,船体表面上の吹出し分布 q を求め る積分方程式は次のように表わされる。

$$\sum C = K_{A}(\mathbf{r} \cdot \boldsymbol{\theta}, \boldsymbol{\theta}') = 2R^{*}[\{R^{*}\cos(\boldsymbol{\theta} - \boldsymbol{\theta}') - R\}$$

$$p(x, \theta) = F \cdot q(x, \theta) \qquad \dots \dots \dots (6)$$

であり、Vor は一般流の法線速度成分である。 次に攪乱流の各速度成分は船体表面上で次のように 表わされる。

(140)

$$K_{5} = ln (R_{M} \cdot R_{p}) \qquad \dots \dots (11)$$

$$K_{7} = \{R - R^{*} \cos(\theta - \theta')\}/R_{M} + \{R - R^{*} \cos(\theta + \theta')\}/R_{p} \qquad \dots \dots (12)$$

$$K_{\theta} = \sin(\theta - \theta')/R_{M} + \sin(\theta + \theta')/R_{p} \qquad \dots \dots (13)$$
である。(7)の $p_{x^{*}}$ は次の積分方程式を解いて求める

$$p_{x}(x, \theta) = -2\bar{V}_{ONx}(x, \theta) + \frac{1}{2\pi} \int_{0}^{\pi} p(x, \theta') \cdot K_{0x}(x; \theta, \theta') d\theta' + \frac{1}{2\pi} \int_{0}^{\pi} p_{x}(x, \theta') \cdot K_{0}(x; \theta, \theta') d\theta'$$
.....(4)

積分方程式(1)および(4)は、核関数に特異性がないの でそのまま M+1 元の代数方程式に直して解く。数 値積分公式としては梯形則を使った。また特異積分に ついては Cauchy の主値または Hadamard の主値を 取ればよいことは明らかなのでプログラム上もそのよ うに処理してある。

2.5 計算の手順

	•	
	計算の手順は, 図-4 フロ	ーチャ
START	ートに示すごとくである。	
INPUT DATA	2.6 入 力	
二巻酒と区数	必要な入力データーは次の	ごとく
行列の計算	である。	
アについての連立	(1) 旋回角速度,偏角	Key
1次方程式を解く	Board より	
定数項と係数	$OM = \Omega$ ····無次元旋回角通	速度
行列の計算		F6.3
R-についての連立 1次ち程すを解く	AL=α…偏角 (度)	F7.2
	(2) 分割数,断面の位置…	····PTR
速度成分の 計 算	より	
	考えている船体横断面で	\$
OUT PUT	M…θ が0から 180° ま	での円
STOP	周方向の分割数 I	3
ステートメント数	X…その断面の <i>x</i> 座標	F7.4
約 250	(3) 船体表面の幾何学的形	/状およ
図-4 フロー チェー	び勾配…PTRより	
יד	考えている船体横断面で	ă.
R(I) = R	I = 1 からM+1 まで	F8.5
$RX(I) = \partial R / \partial A$	<i>x "</i>	F6.3
RXX(I) $\partial^2 R/\partial$	x^2 "	F6.2
$RT(\mathbf{I}) = \partial R / \partial t$	θ "	F8.5
$RTX(\mathbf{I}) = \partial^2 R$	$/\partial \partial \partial x$ "	F6.3
$RTT(\mathbf{I}) = \partial^2 R$	/∂θ² ″	F6.3
RTTX(I) = ∂^3	$R/\partial heta^2 \partial x$ "	F6.2
添字 I は θ =	=(I-1)π/M での値であるこ	とを示
		(1.41)

7

8

す。
2.7 出 力
考えている横断面位置の各
$$\theta = (I-1)\pi/M$$
 で
VX…軸方向速度成分 $(V_x + v_x)/V_0$
VR…半径方向速度成分 $(V_r + v_r)/V_0$
VT…円周方向速度成分 $(V_{\theta} + v_{\theta})/V_0$
 $V = \sqrt{(V_x + v_x)^2 + (V_r + v_r)^2 + (V_{\theta} + v_{\theta})^2/V_0}$
VON…一般流法線速度成分 V_{0N}/V_0
SVN…攪乱流法線速度成分 v_n/V_0
Q…吹出しの強さ q/V_0
ここで V_x , V_r , V_θ は一般流の各速度成分で次の

ように表わされる。

$V_x = V_0 \cdot (\cos \alpha - \Omega R \cos \theta)$)	
$V_r = V_0 \cdot (\sin \alpha + \Omega x) \cos \theta$	} ·	(15)
$V_{\theta} = -V_{\theta} \cdot (\sin \alpha + \Omega x) \sin \theta$	J	

3. プログラムの検定

3.1 計算誤差,精度

計算精度は、入力データーがせいぜい3桁しかない ので、 v_x 、 v_r 、 v_{θ} 、q がそれぞれ有効数字3桁まで得 られることを目標とした。演算は連立方程式を含めす べて単語長(約7桁)で行なった。

3.2 演算時間

分割数 M=18 とした場合,ひとつの断面位置について約2分。あるひとつの運動状態で船体表面全体を計算するのは,20 の断面位置で計算するとして約40分かかる。直進の場合は約20分でできる。

3.3 適用範囲,制限事項

分割数はある程度細かくなくてはならないが,あまり細かくしても入力データーをつくる労力が大変なだけでむしろ精度が落ちる危険もあり, *M*=18 ぐらいが適当と思われる。

3次元計算との差は、軸長比が実際の船と同程度の 楕円体の場合、局所的な圧力で最大数 % しか違わな いのに、実際の普通船型の場合にはこれが数 10% に もなることがある。これは主に v_x によるのであって v_r , v_θ の方はあまり問題はない。また圧力の方も船体 表面全体の平均値は 3次元計算とあまり違わないから 船体沈下等の計算には十分使える。比較的単純な形の 3次元的数式船型の場合には、実際の船型よりはずっ とよい結果が得られるはずである。

4. プログラムの使用について

4.1 オペレート

プログラムの実行は、¥ BATCH で PT より行なう。

4.2 プログラムの応用

浅水影響,側壁影響を計算できるプログラムに発展 させることは近い将来に可能である。そのときに船体 沈下,トリム等を計算するプログラムを同時に組み込 みたい。

5. あとがき

当所の計算機能力の制限から,船体まわりの流れを 計算するのに細長体理論を用いたプログラムをつくっ たが,実際の船型については3次元計算との一致は十 分満足すべきものとはいえず,局所的な圧力の計算に はさらに工夫を要する。一方,流れの方向をみたり, 船体沈下を計算したりするのには十分実用性がある。

参考文献

菅 信「船体まわりの流れの計算」(その 2, 任意
 断面形)」第 14 回船研研究発表会講演概要, 1969.
 11.

S-4 ストリップ法による規則波中の船の縦運動計算プログラム

運動性能部	安	藤	定	雄
推准性能部	小	山	鴻	

1. プログラムの目的および概要

最近,電子計算機の発達にともない船体運動の計算 が盛んに行なわれるようになってきた。それらは2次 元物体に働く流体力から船体運動を計算する。一般に いわれるストリップ法に基づくものである。この理論 によって計算された結果と水槽試験結果が非常によく 一致することが得られているので^{1),2)},最近では,ス トリップ法で縦運動の推定を行なうし,実験をある程

(142)

度省略できるので,船の運動を求める重要な一つの手 法として普通よく用いられている。そこで,FACOM 230-10 で計算していたプログラムを FACOM 270-20 用に改良したプログラムである。

- プログラムの内容
 - 2.1 プログラムの番号,名称

44-060

Ship Motion In Regular Wave By Strip Method (pitch, heave, relative bow motion)

2.2 製作者

運動性能部 安藤定雄

- 推進性能部 小山鴻一
- 2.3 製作年月

昭和 44 年 12 月

2.4 計算の基礎となる理論の概要

船をいくつかの Strip に分けて,その水面下の図形 を等角写像で単位円に写像する場合の写像関数の二つ の係数 *a*1, *a*3 を求める。(Lewis form)

そして, Laplace の方程式を満足し, 自由表面条件 を満足させ,速度ポテンシャルとこれに共軛な流れ関 数から付加質量および減衰係数を求める。

そこで,固定座標系に関する船体の縦運動方程式は 次のように表わされる。

(1)の連立方程式の各係数は船の主要目と各 Strip の 付加質量および減衰係数を船の艏から艉まで積分して 求める。そして,連立方程式を解けば縦揺と上下揺と 位相が得られる。それから相対水位,縦揺と上下揺の 周期も得られる。

本プログラムの特徴としては次のとおりである。

- 1) 船のオフセットを入れると船体運動まで計算される。
- 波との出会う角度は 0°~180° までを 30° 間 隔で計算し,速度は F_n=0~0.3 まで 0.1 間隔 を自動的に計算する。
- 付加質量と減衰係数はMTに入っているので、 あとは必要な個所における値を内外挿で求めるか ら、演算速度が非常に速くなっている。
 - 2.5 計算の手順

計算の手順は, 図-5 のフローチャートに示すごと くである。

図-5 フローチャート

2.6 入 力 必要な入力データは次のごとくである。 NW (I4) ……波の種類の数 RBL (F5.2) …… √*L*/λ 船長─波長比 NOS (I4) ……船の番号 SL (E14.7) ……船の垂線間長 SWL (E14.7) …船の喫水線の全長 TMO (E14.7) … 喫 水 BMO (E14.7) …船 幅 SKI (E13.6) ……環動半径 DSR (E13.6) ······A. P 以後の分割した長さ DSH (E13.6)……Base Line 部の Keel 幅 DHH(E13.6) raise of flower TN (F6.3) ……各断面の喫水 BI (F6.3) ……各断面の各喫水での船幅 NS (I2) ·······- 各断面の番号 NCO (I2) …… 各断面の条件 (-1 は Base Line まで喫水がない場合, 1は Keel 幅が DSH を小さい場合, その他は0) 2.7 出 力 入力データの総てと,

10

- ALF (F10.3)……船幅——喫水比 BET (F8.3) ……断面積係数 AS (F10.3) ……断面積 AA (F10.3) ……Lewis form 変換の a1 BB (F9.3) a_3 " CB (F7.4) $\dots C_b$ $CP (F7.4) \cdots C_p$ DIS (F10.3) ……△ CW (F7.4) $\cdots C_w$ XLB (F13.4)····· l_{cb} Y (F13.4)……各断面の付加質量と減衰係数 船体運動については, CWI……波との出会角 FN速 度 WLB ……波 長 FAIO ……pitch の無次元値 BETA …… 〃 の波との位相差 TETAO …heave の無次元値 ALPHA … 〃 の波との位相差 TEFApitch と heave との位相差 ZRO.....Relative bow motion の無次元値 GAM ……Relative bow motion の波との位相差 VB ………pitching の固有周期 VA ……heaving の 3. プログラムの検定
- 3.1 計算精度

計算精度は,最終結果が有効数字で 3~4 桁以上あることを倍長演算や他機種との比較で検討してある。

3.2 演算時間

SUBROUTINE LEWIS が35秒であり,SUBROU TINE INTOA が3分である。したがって,初期の演 算に3分35秒を必要とし,以後は方向,速度と波長 が決まった,1点につき約4秒であるので1隻につい て考えれば方向を7種類,速度を4種類で波長を15 点とした場合はコンパイル時間を除外すれば,総計演 算時間は,10分35秒である。

3.3 適用範囲,制限事項

計算は方向を 0°~180° まで 30°間隔であり,速 度は F_n で 0~0.3 までを 0.1 間隔であり,波長は 最大 20 点までとなっているので,これ以外で計算し たい場合はメインを簡単に改良すればよい。また,船 の各位置での相対水位,上下加速度,Bending モーメ ントもこれにほんの少しの SUBROUTINE を増加す れば得ることも可能になる。

4. プログラムの使用法と応用

4.1 オペレート

実行は BATCH 処理による。

4.2 応 用

このプログラムと類似な方法によって,船体の横運 動計算のプログラムを作ることができる。

4.3 他機種への移行

本プログラムはメイントと小さな SUBROUTINE 3 つが COMMON であり,他の主要な SUBROUTI NE は SEGMENET で,普通ドラム上にあり,他に DRUM DIMENSION も使用しているので,大型計 算機には少々の修正で可能であるが,小型には一度に 計算できるプログラムには,不可能である。

5. あとがき

本プログラムを用いて,当部で行なった波浪中の試 験船については皆計算することにした。また,今後, 実験を行なう前に計算をすることにする。

一方,横運動の計算用プログラムも作成する予定で あり,2次元理論で終らずに3次元理論についても考 えている。

参考文献

- 1) Y. Yamanouchi and S. Ando; "Experiments on a Series 60, $C_b=0.70$ ship Model in Oblipue Regular Waves", No. 26, Papers of Ship Reserch Institute.
- Y. Yamanouchi and S. Ando; Comparison of Computer program results for ship behaviour in Oblique Regular waves", No. 26, Papers of Ship Reserch Institute.
- 3) 福田淳一: "規則波中の船の縦曲げモーメント" 第 110 号,第 111 号,造船協会論文集.

運動性能部 安 藤 定 雄

1. プログラムの目的および概要

時間とともに、そのとる値が変動していく現象の研 究は、電気通信工学で入出力としての電圧とか電流の 取り扱いに、経済学では経済量の変動に、あるいは船 舶とか飛行機とか自動車の振動の問題に、その他非常 に多くの部門において必要である。この問題の数学的 取り扱いについては、数多くの文献があるので、ここ では省略しプログラム自体について述べる。

プログラムは自己相関および相互相関の場合の応答 とその評価等が得られるものである。また,実験から 解析まで, ON-LINE で解析可能になっている。

2. プログラムの内容

2.1 プログラムの番号および名称
44-018-1
Auto Spectrum
44-053
Auto Spectrum (作図用)
44-018-2
Cross Correlogram
44-018-3

The Response Function of A System Having Multiple Input

2.2 製 作 者運動性能部 安藤定雄

- 2.3 製作年月
 - 昭和 44 年 10 月

2.4 計算の基礎となる理論と概要

ここで,基礎となる理論を述べることは省略する。 そこで,多入力の場合についての実際の計算順を赤 池氏¹⁾の方法にしたがって述べる。

データは $\{x_0(n\Delta t), x_1(n\Delta t), \dots, x_k(n\Delta t); n=1, 2, \dots, M\}$ で与えられている。

1)
$$\exists \lor \exists \lor \exists \lor \exists \land C_{jl}(m)$$

 $(m=0, \pm 1, \pm 2, \dots, \pm h; j, l=0, 1, 2, \dots, k)$
 $C_{jl}(m) = \frac{1}{M} \sum_{n=1}^{M-m} \tilde{x}_{j}(m+n) \tilde{x}_{l}(n) \quad (h>m>0)$

Partial Coherence

(145)

$$\hat{\tau}_{0j}^{2}, \quad {}_{12} \cdots \cdots {}_{j} \cdots {}_{k}(r) = \frac{|\alpha_{j}|^{2}}{|\varepsilon| \tau_{jj} + |\alpha_{j}|^{2}}$$

Retative Error

$$R_{j}, \quad \delta(r) = \left(\frac{1}{N-k} - \frac{\varepsilon \widetilde{\gamma}_{jj}}{|\alpha_j|^2} F(2, 2(N-k)), \\ \delta)\right)^{1/2}$$

以上を計算する。

本プログラムの特長

1) 当部の A-D 変換器より ON-LINE で, 計測 されたデータが計算機のドラムに転送することが可能 である。したがって,必要な入力データ(計測項目, サンプル時間々隔,キリプレーション定数など)をA -D 変換器の最後の部分に入れて置くと,自動的に計 算される。

2) 各プログラムの最大解析容量

44-018-1 と 44-053

チャンネル数	8項目
データ数	1,000 個(各項目)
ラグ数	120 個
44-018-2	
チャンネル数	8項目
データ数	1,000 個(各項目)
ラグ数	100 個
シフト数	土10 個

このプログラムでは,任意のチャンネル間の相互相 関を計算できるように,毎回キーからチャンネルを指 定する。これを何回でも可能になっている。

44-018-3

チャンネル数	6項目
データ数	1,000 個(各項目)
ラグ数	100 個

2.5 計算の手順

入力は決まっているが、出力はセンススイッチで如 何ようにも変化する。また、初期値も毎回入れる必要 なし、また、A-D 変換器と ON-LINE の場合のプ ログラムもあれば、OFF-LINE のもあるので、フロ ーチャートは省略する。

2.6 入力 (OFF-LINE の場合)

チャンネル数	ICH	I 4
模型番号	IMNO	I 4
ラグ数	LAG	I 4
サンプル時間間隔	DELT	F5.3
項目名	AITEM,	BITEM
	А	8(16 字まで)

キャリブレーション定数 ACAL E11.4 テスト番号 ITEST I4 データ IX I4 以上は共通である。

IN PUT チャンネル数 ICHA I1 OUT PUT " ICHB I1 以上は相互相関の場合に必要である。

 OUT PUT チャンネル数
 IOUT
 I 4

 これは、多入力の場合に必要である。
 14

2.7 出 力

入力データのすべてを出力するほか,データ数,コ レログラム,スペクトラム,分散,スペクトラムの面 積積分と分散の比,位相と 2.4 で述べたものすべて が,ラインプリンターに出力させることもできる。

3. プログラムの検定

3.1 計算誤差,精度

計算精度は、最終結果では伊藤忠のCDCと比較し た範囲では 4~5 桁であったが、すべてを 16 桁で計 算したものとは 3~4 桁であったことから、精度は有 効数字 3 桁以上であるといえる。計算はシングルであ る。

3.2 演算時間

オートスペクトラムの場合には 15 秒から1分の間 であり,作図は一つのスペクトラムにつき 30 秒であ る。一例を図-6 に示す。 2入力の場合は 20 秒から 1分で1つの相互相関が得られる。多入力では2分か ら10分である。これらはコンパイル時間を含まない。

3.3 適用範囲,制限事項

このプログラムを使用すれば,不規則的に変動して いる現象の応答などは如何なる場合でも得られるが, 統計解析を行なった場合の意義については,利用者の 思慮によるものである。

プログラムの解析可能な容量はで述べてあるとおり である。

4. プログラムの使用について

4.1 オペレート

実行は BATCH 処理による。

4.2 応 用

多入力までの解析を行なえば、統計論的には完了し たと思われるが、超大型の計算機があれば、高次スペ クトラム、ベクトル的スペクトラムや条件つきスペク トラムに進展することは可能である。

4.3 他機種への移行

(146)

			0.0 0	0.1200 0	.2400 0	.3600 0	.4800 0.6000
LAG	SPECTRUM	OMEGA					
0	0.02170	0.000	DDDDD	1	1	1	
2	0.01900	0.1/5	0010	1	1	1	1 1
2	-0.00011	0.547	00	1	1	1	1
4	0.00165	0.698	D	1	i	i	i i
5	0.00143	0.873	D	i	i	i	i i
6	0.00152	1.047	Ď	1	i	i	i i
7	0.00147	1.222	ő	i	1	i	1 1
8	0.00193	1.396	D	I	1	I	i i
9	0.00102	1.571	D	1	1	1	1 1
10	0.00043	1.745	D	-1			·[l
11	0.00067	1.920	D	1	1	1	1 1
12	0.01611	2.094	DDDD	I	1	l l	1 1
13	0.07391	2.269	DDDDDDDDDDDDDD	1	1	1	1
14	0.14486	2.443	DDDDDDDDDDDDDDDDDDDDDDD	DDDDDD	ļ	-	! !
15	0.23677	2.618	DDDDDDDDDDDDDDDDDDDDD	DEPENDENDEDEPENDEDEPENDEDE		1	ļ ļ
16	0.29905	2.193	DDDDDDDDDDDDDDDDDDDDDD	וניעטממטעטמטטממטני	00000000	1	
10	0.20019	2.142	000000000000000000000000000000000000000		1	1	
19	0 43157	3 316	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000	i i
20	0.45735	3.491	000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000000000000000000000000000000000000		
21	0.34403	3.665	DDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD		000000000000000000000000000000000000000	1	i i
22	0.27682	3.840	DODDDDDDDDDDDDDDDDDDDD	DODDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	DDDDDDD	1	1
23	0.22386	4.014	DDDDDDDDDDDDDDDDDDDDDDD	DUDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDDD	1	1	1 1
24	0.13261	4.189	DDDDDDDDDDDDDDDDDDDDDDDD	DDDD	1	1	1 1
25	0.09608	4.363	DDDDDDDDDDDDDDDDDDD	I	1	1	1 1
26	0.08090	4.538	DDDDDDDDDDDDDD	I	1	1	1 1
27	0.05466	4.712	DDDDDDDDDD	I	1	I	1
28	0.05101	4.887	DDDDDDDDDD	1	1	1	1
29	0.05450	5.061	DDDDDDDDDDD	!	1	!	1
30	0.03317	5.236	000000				1
32	0.01544	5.5411	0000	1		1	
33	0.01787	5.760	0000	1	1	1	1 1
34	0.01766	5.934	DODD	i	i	i	i i
35	0.01187	6.109	DDD	i	i	i	i i
36	0.00561	6.283	DD	ī	1	ī	1
37	0.00441	6.458	DD	1	i	i	i i
38	0.00702	6.632	00	I.	L	1	1 1
39	0.00637	6.807	DD	1	1	1	1 1
40	0.00379	6.981	DD		1	1	
41	0.00424	7.156	DD	1	I	1	1 1
42	0.00291	7.330	D	1	1	1	1 1
43	0.00290	7.505	D	1	1	1	ļ [
44	0.00257	7.679	D	1	1	1	1
45	0.00125	1.824	D D	1	1	1	
40	0.00184	0.027	D	1	;	1	1 1
48	0.00222	8.378	D	1	i	1	1 1
49	0.00148	8.552	0	1	i	i	i
50	0.00165	8.727	0				ii
51	0.00102	8.901	D	i	1	i i	i i
52	0.00026	9.076	ā	I	1	i	i i
53	0.00026	9.250	D	1	1	1	1 1
54	0.00024	9.425	D	I	1	1	1 1
5.5	0.00032	9.599	D	1	I	1	1 1
2							

1

図-6 打出し結果の一例

上記の各プログラムとも, コアー (8kW) をフルに 使用している上に, ドラムを使用しているので, この 点に注意を要する。

参考文献

 HIROTUGU AKAIKE; "On the statistical estimation of the frequency response function on a system having multiple input", Ann. Inst. Stat. Math. Vol. 17, No. 2, 1965.

S-6 風と流れの中の船の操縦運動の計算プログラム

運動性能部 小 川 陽 弘

1. 緒 言

船の操縦性能に関する研究は,制御理論の応用によ って近年急速に進歩してきたが,この方法では一般に 船の運動を線型化して取り扱うために,応用の範囲が 自ら限定されてしまう難点がある。そこで基本となる 船体の運動方程式に立ちかえって,これを非線型のま まで解くことができれば,一般に船体運動を計算する ことができ,以後の応用への道が開けることになる。 幸い船体に働らく流体力に関しては,旋回水槽,風洞, あるいは最近の強制偏揺法等の各種の実験によって, 14

相当詳しいデータが入手できるようになってきてい る。本報告ではこれらのデータを活用して,船の操縦 運動,針路安定性等の計算を行なったもののうち,一 様な風と流れの中で直進状態から操舵した後の船体運 動を計算するプログラムを示し,他の応用プログラム についても解説する。

2. プログラムの内容

2.1 プログラムの番号,名称

44-007-4

Steered Motion in Wind and Flow

2.2 製作者

運動性能部 小川陽弘

- 2.3 製作年月
- 昭和 44 年7月

2.4 計算の基礎となる理論の概要

固定座標系に関する船体運動方程式は次の(1)式のように表わされる¹⁾。

```
(m+m_x)u_x = E_H + E_W + E_T(1-t)+ [(m+m_y)v_y- (m+m_x)U_F \sin (\Psi_F - \phi)]r(m+m_y)u_y - F_r \dot{r} = F_H + F_W
```

$$-[(m+m_x)v_x \qquad \cdots \cdots (1)$$

$$-(m+m_y)U_F \cos (\Psi_F - \phi)]r$$

$$(I_z + I_{zz})\dot{r} - G_v u_y = G_H + G_W$$

$$-G_v U_F \cos(\Psi_F - \phi)r$$

ただし座標系および記号は図-7,表-4 に示すもの である。

船体運動は(1)式から加速度および角加速度を求め, これを順次数値積分することにより速度および角速 度,位置および方位角,偏角および転心等を計算して 得られる。

船体に働らく流体力のうち,船体抵抗成分 E_{II} はフルード数の関数として,風の力とモーメント E_{W} , F_{W} , G_{W} は風向角の関数として数値で与えて内挿により求め,他は微係数を用いて数式的に計算する。

これらに関しては 1)に詳細に記述されている。

数値積分の方法としては,船の操縦運動のように加 速度が小さい場合には逐次積分法で十分であり,計算 機の容量,計算速度等を考慮すれば,むしろこの方が ルンゲ・クッタ等の方法によるよりもすぐれているこ とが知られている^{2),3)}。

2.5 計算の手順

表-4 記 号

0-X, Y	Coordinate system fixed in space
Xo, Yo	Position of C. G. of ship referred to $O-X$, Y
00-x, y	Coordinate system fixed in ship, origin at C. G.
U_F , Ψ_F	Absolute speed and direction of uniform flow
U_B , Ψ_B	Absolute speed and direction of uniform wind
U , β	Apparent speed and drift angle of ship
u_x, u_y	x-and y-components of $U (= U \cos \beta, -U \sin \beta)$
r	Turning rate of ship $(=\dot{\phi})$
ϕ	Heading angle
V , β_V	Relative ship speed and drift angle to water
v_x, v_y	x-and y-components of V (= $V\cos\beta_V$, $-V\sin\beta_V$)
W, β_W	Relative ship speed and angle to air
Ψ	Course angle $(=\phi - \beta)$
σ	Rudder angle
m, I_z	Ship's mass and mass moment of inertia
m_x, m_y, I_{zz}	Added mass components and added moment of inertia
E, F, G	x-and y -components of force and moment on ship
$E_{\mathcal{H}}, F_{\mathcal{H}}, G_{\mathcal{H}}$	Hydrodynamic forces and moment below waterline
E_W , F_W , G_W	Aerodynamic forces and moment above waterline
E_T , t	Propeller thrust and thrust deduction coefficient
Þ	Distance of pivoting point before C. G.

(148)

図-7座標系

計算の手順の概略を図-8 の流れ図に示す。多くの サブプログラムは他の同種のプログラムと共用する目 的で作ってあるので,一見無用と思われるような部分 もある。データの配列についても同様である。

2.6 入 力

入力データは紙テープおよびキーボードから与えら れる。紙テープには次のデータを与える。

- 風の力の成分およびモーメント(無次元値)。た だし風の力を考慮しない時は0とすることもでき る。
- 水の力の y 成分およびモーメントの微係数(無 次元値)。 舵角, 横速度成分, 回頭角速度の3次ま での組合わせの関数として定めたもの。
- 付加質量係数,付加環動半径,船の長さ,船体の環動半径,排水量等。
- 4) 船体抵抗係数。
- 5) 初速等。
- 6) 操舵速度,最大舵角。
- 位置, 方位等の計算終了条件, 限界舵角および 偏角, 計算時間間隔, 出力時間間隔等。
- 8) 標示用文字。
- キー入力は流速,流向,風速,風向の初期値を与える。 2.7 出 力

出力はラインプリンターに打出される。実船の運動 について指定時間々隔ごとの時刻(分), 舵角(度), 見かけの偏角(度), 対水偏角(度),回頭角速度(無 次元),見かけの転心(無次元),速度(初速に対する 比),時刻(秒),縦距(船長比),横距(船長比),船 首方位角(度)が印刷され,最後に計算終了条件を打 出して1状態を終る。終了条件とはあらかじめ与えた 位置,方位,時間等を過ぎたとき,あるいは速度が抵抗 曲線の範囲から外れた場合,偏角が極端に大きくなっ てしまう場合等を文字によって標示するものである。

3. プログラムの検定

3.1 計算精度

このプログラムの場合,誤差の大半は計算時間々隔 に依存する。運動が非定常な範囲ではこれは短かいほ ど良いが,巨大船で1秒位にとれば十分である。定常 状態に入ると(一様に流される場合も含めて)5秒でも 実用上差は出ない。入力データの精度を考慮すれば, これ以上計算精度を上げても意味がないと思われる。 なお計算はすべて単語長で行なっている。

3.2 演算時間

入力条件,終了条件によって全く異なるが,1状態 につき最大3分程度である。

3.3 制限事項

計算は無次元値を入力として,実船の実時間で行な っているから,船の種類によってはプログラムを一部 変更する必要がある。また風や流れの条件についても プログラムで変更する必要のある部分もある。

4. プログラムの使用について

4.1 オペレート

実行は BATCH 処理による。サブルーチンは MT に RB で入っているものを使用する。

4.2 応 用

このプログラムと類似の方法で,船の操縦運動に関 する他のプログラムを作ることができる。現在までに 次の3種が一応完成している。サブルーチンはいずれ も共通のものを多く使用するので,同一MTを用いて いる。

- (a) 44-007-1 初期外乱を受けた船の運動
- (b) 44-007-2 風と流れの中で直進可能な速度範囲 およびその最低速度における針路安定性
- (c) 44-007-3 Z 操舵による風と流れの中の操縦性 指数の計算

(a), (c)の中には,運動の各要素をLPで図化して直 視できるようにするためのサブルーチンも使用してお

(149)

り,これはXYプロッターほどの精度を要求しない場 合には,そのまま結果のグラフとして用いることもで きるので,一般に利用可能である。Z操舵の例を図-9 に示す。

4.3 他機種への移行

上記各プログラムとも,現在コアー 16 kW をフル に使用しているので(ドラムには多少余裕があるが), さらに進んだ計算を行なうためにはコアー容量を増大 させることが望ましい。

5. 結 言

操舵にともなう船の運動をある程度正確に Simulate できることがわかった。現在はまだプログラム開発を 始めて間もないので不備な点も多く,しばしば書き直 しながら使っているような実状である。

さらに多くのデータが得られれば、細かい点の計算 法を改良して精度を向上させることもできるし、外力 についても風や流れの他に波の力, 曳船による力, オ ートパイロットの動作などを計算に入れることも可能 である。これらについては電子計算機による数値計算

(150)

(151)

法の利点を活かしてさらに多くのプログラムを作る予 定である。

参考文献

 小川陽弘:外力を受ける船の操縦運動の計算 (その1),日本造船学会論文集,第126号, 1969.

- J. Strom-Tejsen: A Digital Computer Technique for Prediction of Standard Maneuvers of Surface Ships, DTMB Report 2130, 1965.
- Hsao-Hsin Chen: Some Aspects of Ship Maneuverability, JSR, Vol. 13, No. 2, 1969.

S-7 軸力をうける梁の塑性モーメントに関する計算プログラム

船体構造部 有 田 喜 久 雄

1. プログラムの目的および概要

船の甲板や船底の構造要素である縦通部材は,船体 縦曲げによる軸力と同時に甲板荷重あるいは水圧等に よる横荷重をうける。このような板つき防撓材の塑性 強度を求めるには,軸力と塑性モーメントの関係を計 算する必要がある。

軸力―塑性モーメントの相関曲線については、板付 き形鋼を含めた各種の形鋼について図表であらわされ たものがある¹⁾。しかし、高張力鋼を使用した場合の 混用梁あるいは組立て桁については実際に計算する必 要があるので、任意のI形梁の相関曲線を求める電子 計算機用プログラムを作成した。

2. プログラムの内容

2.1	プロ	グラ	ムの番号,	名称
-----	----	----	-------	----

44-008

Calculation of Plastic Moment

- 2.2 製作者
 - 船体構造部 有田喜久雄
- 2.3 製作年月
 - 昭和 44 年 3 月
- 2.4 計算の基礎となる理論の概要

最も簡単な例として,図-10 に示すような対称混用 梁については,全断面積を A,ウエブの面積を A₈ と

し、全断面が降伏するときの軸力を N_p とすると、軸 力Nがあるときの梁の断面の図心まわりの塑性モー メントMと軸力がない場合の塑性モーメント M_p と の比 M/M_p は次式により求められる。

(a)
$$0 \le \frac{N}{N_p} \le \frac{A_3}{A'}$$
 の場合
 $\frac{M}{M_p} = 1 - \frac{\sigma_3 A'^2}{4\omega M_p} \left(\frac{N}{N_p}\right)^2$ (1)
(b) $\frac{A_3}{A'} \le \frac{N}{M} \le 1$ の場合

となる。

ここで, σ₁, σ₈ はそれぞれフランジおよび ウェブ 部材の降伏応力で

$$\eta = \sigma_1 / \sigma_3$$

$$A' = 2bt\eta + A_3$$

$$M_p = \sigma_3 \left\{ bt(d+t)\eta + \frac{1}{4}\omega d^2 \right\}$$

任意の I 形梁については,断面の図心の位置が動く ことを考慮して(1),(2)式を拡張することにより求めら れる。

2.5 計算の手順

図-11 のフローチャートに計算の手順を示す。ステ ートメントの数は約 80 である。

2.6 入 力

すべて実数形式としF7.1 とする。

図-12 において

(152)

Y……断面の図心の位置 (mm)

IX……X' 軸のまわりの断面 2 次モーメント (mm⁴)

IY……*Y* 軸のまわりの断面 2 次モーメント (mm⁴)

M……塑性モーメント (kg·mm)

M/Mp…軸力がある場合の塑性モーメントと軸力 がない場合の塑性モーメントとの比

PNA……塑性中立軸の位置 (mm)

3. プログラムの検定

3.1 計算誤差,精度

計算精度は, IX, IY, M および M/M_p について は有効数字 4 桁, Y および PNA については小数点 以下 2 位までとする。

3.2 演算時間

計算時間は秒以下の order なので, LINE PRINT-ER の速さできまる。

3.3 適用範囲,制限事項

本プログラムは I 形梁について適用される。 I 形梁 以外の梁に使用すると, *IY* は不正確となる。

4. プログラムの使用について

4.1 オペレート

プログラムの実行は ¥ BATCH で PT よりできる。

4.2 プログラムの応用

I 形梁の塑性モーメントだけでなく,断面2次モー メント等の断面の性質を計算できるプログラムが含ま れている。

5. あとがき

本プログラムによって,断面の図心の位置,断面2 次モーメントの値および塑性中立軸の位置もあわせて 求められるので,設計の基礎資料を得るのに役立つと 思われる。

参考文献

1) 日本溶接協会塑性設計研究委員会,軸力小委員 会編:塑性設計資料集 (その1)「形鋼および 板付形鋼の塑性断面係数」(1962).

S-8 荷役フックの強度計算プログラム

蟻 装 部 翁 長 − 彦・福 井 正 洋

1. プログラムの目的および概要

艤装品に限らず荷重を受ける鋼構造部材に対して合 理的な安全使用荷重を定めることは、一般に困難な問 題である。荷役フックのように曲りの大きい金具の場 合には,局部的に塑性域が生じても,部材全体として, 何ら使用上支障はないので、弾性理論に基づく材料力 学的計算による最大応力を許容応力以内におさえると いう通常の方法で部材の寸法を定めると、その強度は 過大となる。また一方、これら艤装金具に対する諸規 則は Proof test を要求しているものが多く, 試験荷 重の下で、大きな永久変形、亀裂、破壊等の異常のな いことを条件としている。このように部材に異常を生 ぜしめる荷重を基準として安全係数を定めることは実 際的ではあるが、この基準となる荷重を決定するには 弾性的強度計算では不可能であり、一般には実験を行 なうか, 弾塑性的検討を行なわねばならない。

荷役フックの強度に対する弾塑性理論からの検討の 例は1,2あるが、断面形状の種々の変化を考えると、 実用上不十分であると思われる。本プログラムは梁の 断面形状を3つの連続する2次曲線に近似することに 始まり,弾性域,片側塑性域,両側塑性域の3段階に 渡って,荷重,断面各部の応力,歪,中性軸の位置, 塑性域の範囲等を算出するものである。

この計算は部材の合理的安全使用荷重の決定に対し て重要な指針を与えるものと思われる。

- 2. プログラムの内容
 - 2.1 プログラムの番号,名称

荷役フックの強度計算について

2.2 製作者

44-024

- 艤装部 福井正洋
- 2.3 製作年月
- 昭和 44 年 3 月
- 2.4 計算の基礎となる理論の概要

計算は完全弾性範囲内にある状態、内側に塑性域が 生じた状態, さらに外側にも塑性域が生じた状態の3 段階に分けて行なった。

両側に塑性域が生じた状態では、釣合いの方程式は

少々の変形の後

$$\int_{Ae} \frac{(x-e) (x+r)/(R+x) dA}{+ \{Ap_1(x_6-r) + Ap_2(x_5+r)\}} \\ \times (x_2+e)/(R-x_2) = 0 \\ e = (2x_1x_2+x_2R-x_1R)/(x_2-x_1-2R)$$

となる。

ここで x_2 を定めると, Ap_1 , x_6 が決まり, Ap_2 , x_5 , A_e が x_1 の関数となるので, 上 2 式を e と x_1 について"はさみうち法"を使って解いた。求められ た e および x1 により荷重, 断面各部の応力, 歪等 が算出される。

2.5 計算の手順

計算の手順は、図-14 フローチャートに示すごとく である。

2.6 入 力

主に必要な入力データーは次のごとくである。整数 はI2, 実数はF8.3 とする。

フックの幾何学的形状

XX (I), YY (I)……断面形状を表す座標 TH ………断面の傾斜 *R*………曲率半径

20

(154)

RR ………断面図心と 荷重方向との 垂直距離

(2) 材料の機械的性質

CY	降伏応力

Y				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•			•	•	•	•	•	•	•	•	•	•	•	+	1	Ç	/	2	グ		僗		ŧ	k	
---	--	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	--	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	--	---	--	---	---	--

(3) その他

<i>H</i> 積分のきざみ
<i>HO</i>
<i>XO</i> "はさみうち法"における
初期値
<i>DE</i> "はさみうち法"の精度
<i>X</i> 2 <i>LX</i> 2 の増加打切り指令数
2.7 出 力
<i>EX</i> 断面各部の歪
<i>CX</i> 断面各部の応力
P荷 重

<i>E</i>	図心と中性軸との距離
<i>A</i>	断面の面積
XG	断面の図心位置
Ap_1, x_6	内側塑性域の面積とその
	図心
Ap_2, x_5	外側塑性域の面積とその
	図心
A _e	·弾性域の面積

3. プログラムの検定

3.1 計算誤差,精度

計算精度は,最終結果が有効数字3桁まで得られる ことを目標とした。

3.2 演算時間

H=0.01 とし"はさみうち法"に対して適切な初期 値を入れた場合,実行を ¥ BATCH として,1断面 に対して約 15 分である。

3.3 適用範囲,制限事項

積分のきざみは H=0.01 を要する。また"はさみ うち法"に使用する $e \ge x_1$ の初期値をできるだけ正 確に予測しておくことが必要である。

4.1 プログラムの応用

他のサブルーチンを引数とする"はさみうち法"の サブルーチンが含まれており汎用できる。

4.2 他機種への移行

5. あとがき

本プログラムを使用して荷重とフック断面の最大歪 との関係を調べることにより,適切な安全使用荷重の 推定ができる。これはフックに限らず曲り梁とみなさ れるような種々の断面形状を持つ部材についても応用 でき,それらの合理的な安全使用荷重ならびに安全率 の決定に役立つものと思われる。

参考文献

荷役フックの疲れ強さについて,金山正博:日立造 船技報 44 年1月.

S-9 Newman-Sharma 法による造波抵抗計算プログラム

推進性能部 足 達 宏 之

1. プログラムの目的および概要

船の造る波から直接造波抵抗を計算しようとする方

法がいくつか考えられている。 Newman-Sharma 法 は, 船の進行方向に平行な線上での波形記録を Fourier 変換し, Energy Spectrum を求めるという法によ り, 船の造波抵抗を求めるものである。本プログラム は試験水槽で, 船型試験を行なう際に波形を計測し, Newman-Sharma 法により造波抵抗を求め, 船型試験 解析に役立たせる目的で作られた。なお, 本プログラ ムは TOSBAC 3300 を使用した波形解析システムの 一部をなすもので, 波形の記録, サンプリング, 平滑 化, また他機種の計算機用入出力としてのデータを求 める等の一連のプログラムの内の一部である。

プログラムの内容

2.1 プログラムの名称

Fourier Transform of Wave Pattern and Calculation of P-Q Functions (FWPQ)

2.2 製作者

推進性能部 足達宏之

2.3 製作年月

昭和 43 年6月

2.4 計算の基礎となる理論の概要

造波抵抗理論によると、一定速度で進む波源の造波 特性を表わす *P-Q* 関数と、進行軸より一定な距離 *Y* だけ離れた線上の波の Fourier 変換との間には次のよ うな関係があることが Newman によって示されてい る。

 $P(\theta) + iQ(\theta) \simeq -c\sin\theta \cdot \cos\theta \cdot e^{ik_0Y\sec^2\theta \cdot \sin\theta}$

ここで $k_0 = -\frac{g}{c^2}$, c は波源の速度, g は重力加速度, θ は素成波の角度, $\zeta(X, Y)$ は波高を表わす。

造波抵抗 R は P-Q を使って次のように表わすこ とができる。

$$R = \frac{-16\rho k_0^2}{\pi} \int_0^{\pi/2} \sec^3\theta \left[P^2(\theta) + Q^2(\theta) \right] d\theta$$
$$= \frac{\rho g k_0}{\pi} \int_0^{\pi/2} \sin^2\theta \cdot \sec\theta \left| \right|$$
.....(2)

$$\int_{-\infty}^{\infty} \zeta(X, Y) e^{ik_0 X \sec \theta} dX \Big|^2 d\theta \cdots (3)$$

(3)式を計算すれば良いのであるが,計測される波は 有限なので波高 ζ(*X*, *Y*) を次のように分け て考え る。船の前方では波高はゼロ,船の後方では波の漸近 的な性質を利用する。

$$\zeta(X, Y) = 0 \qquad X \le N \\ = \zeta(X, Y) \text{ measured } N \le X \le M \\ = \frac{\zeta_0 \cos(k_0 X - \varepsilon)}{\sqrt{k_0 X}} \qquad M \le X$$

·····(4)

(4) 式の ζ₀, ε は実験データから求める。(4) 式の ζ を使うと(3)式が計算される。

2.5 計算の手順	
省略	
2.6 入 力	
入力データ	
MNO I	模型船番号
TNO I	実験番号
QLL	船の長さ
VM	船の速度
Y	計測位置
DX	データのサンプリング間隔
$NF N \leq X \leq 0 I$	X=0 を中心としたデータ
$NA \ 0 \leq X \leq M \ I$	数 (X=0 は船体のどこに定め
	ても良い)
$F(I)$ $I=1\sim NF$	Y+NA 波形データ
DT_1 , DT_2	heta について計算間隔
HXM, EPS	打ち切り点定数 ((4) 式の, ζ₀,
	(3

Iと書いてあるデータは整数型データ,他は全て実 数型のデータである。

2.7 出 力

素成波の角度 θ について 0°から 80°まで,計測 波形の Fourier spectrum, P-Q 関数,振幅関数を出 力する,造波抵抗 R は振幅関数の積分として出力さ れる。

3. プログラムの検定

3.1 計算精度および誤差

計算精度は入力の波形記録,定数 ζ₀, ε の計測精度 によるが,演算は約 10 桁精度で行なっている。抵抗 の値について,他で求めたものとの比較では3桁位の 精度は十分あると考えられる。

3.2 計算所要時間

波形記録データ数 400 で約 100 分位である。

4. プログラムの使用法と応用

4.1 プログラムのオペレート

推進部 TOSBAC-3300 ALPS のオペレートに従っ て行なう。

4.2 プログラムの応用 (メインの発展, サブルー チンの応用)

水面および水中を一定速度で航走する物体の作る波 の Fourier Spectrum の計算であるから, 船の波に限 らず,他の物にも応用できる。

サブルーチンに有限フーリエ変換の計算法 (Filon

(156)

4.3 他機種への移行

Facom 270-30 用プログラム, CDC-3600 用プログ ラムがある。CDC 用プログラムでは(3)式をさらに変 形した

$$R = \frac{\rho g k_0}{\pi} \int_{-\infty}^{\infty} \zeta(X, Y)$$
$$\int_{-\infty}^{\infty} \zeta(\xi, Y) K(K_0 X - K_0 \xi) d\xi dX$$
$$K(Z) = \int_{0}^{\pi/2} \sin^2 \theta \cdot \sec \theta \cdot \cos (Z \sec \theta) d\theta$$

の形でも造波抵抗 R を計算できるようにしてある。

波形データは TOSBAC 用のデータから直接 FAC OM 用のデータに変換できるようになっている。

5. あとがき

抵抗分離計測の一手段として,船型試験解析に十分 役立つものと考えられる。

参考文献

 J. N. Newman "The Determination of Wave Resistance from Wave Measurements along a Parallel Cut", International Seminar on Theoretical Wave Resistance Ann Arbor (1963).

S-10 任意翼型の圧力分布の計算プログラム

井

推進性能部 荒

与えられた任意翼型が2次元流中にあるとき,その 迎角を与えて翼表面上の任意の点の圧力分布と,翼に 働く揚力を守屋教授の第1近似式により計算する。な お,このプログラムは推進性能部 TOSBAC-3300 用 ALPS (ALGOL 60 相当)で書いてある。

2. プログラムの内容

- 2.1 プログラムの名称
 任意翼型の圧力分布の計算プログラム
 2.2 製 作 者
 - 推進性能部 荒井 能
- 2.3 製作年月
 - 昭和 43 年 4 月
- 2.4 計算の基礎となる理論の概要

守屋富次郎著 空気力学序論¹⁾ p. 109, 第 2 章, 翼型 理論 § 22, 翼型の特性, (22・28) 式および (22・29) 式によって翼表面の圧力分布を計算する。

$$\frac{p-p_0}{\frac{1}{2}\rho V^2} = 1 - \left[\sin\alpha \left\{-\frac{1}{2} - \sum_{1}^{k} nB_n + \frac{1}{2}\cos\theta - \sum_{1}^{k} nA_n\sin n\theta + \sum_{1}^{k} nB_n\cos n\theta\right\} + \cos\alpha \left\{\sum_{1}^{k} nA_n - \frac{1}{2}-\sin\theta - \sum_{1}^{k} nA_n\cos n\theta - \sum_{1}^{k} nB_n\sin n\theta\right\}\right]^2$$
$$+ \left[\frac{1}{4}\sin^2\theta + \left\{-\sum_{1}^{k} nA_n\sin n\theta\right\}\right]^2$$

$$+\sum_{1}^{k} n B_n \cos n \theta \Big\}^2 \Big]$$

また揚力は同著 p. 104, (22・5) 式で計算する。

$$C_L = 4\pi \left\{ \sin \alpha \left(\frac{1}{2} + \sum_{1}^k n B_n \right) - \cos \alpha \sum_{1}^k n A_n \right\}$$

ここに

23

(157)

k ………・・・守屋教授の式では∞であるがこのプロ グラムでは翼型の分割数の1/4にとっ ている。

2.5 計算の手順

図-15 に示すように、翼型の最長点を結ぶ直線の長 さを 1.0 としこの弦を x 軸にとる。この弦を直径と する円周を4の倍数等分し、点 A から始めて反時計 方向に、円周上の等分点より x 軸に下した垂線と翼 型との交点の y 座標の数列を作る。A から始めてひ とまわりして再び A にもどるまで続け、この数列を フーリエ係数に変換すると前述の A_n , B_n を得る。 また翼表面の任意の点 P は、図-15 の円を y 軸に接 するようにとり、このときの x 座標を与えると前述 の θ を計算する。迎角の種類は任意の個数計算する。

なお,計算のフローチャートを図-16 に示す。

2.6 入 力

最初に翼型の分割数を整数で示し、続いて前項の数 列を実数で示す。なお数列は必らず 図-15 の始点 *A* の値(=0.0)を両端に含み、その数は 4 の倍数+1 個でなければならない。つぎに計算する翼表面の点の

alpha= .19	1999999998x 1 degree	
xn	(p/q)b	(p/q)f
1	9871691229x 0	9871690809x ()
2	6498561306x 0	.5407832853x 0
3	5857372992x ()	. 37628751 38x- 0
4	5388253478x ()	.2578885065x- 0
5	4670978207x = 0	.2171734960x- 0
6	4812887667x- ()	.1831813282x- 0
7	4999731299x- ()	.1888487546x- 0
8	4895201055x = 0	.1910177456x- 0
9	4759452583x- ()	1685870254x = 0
10	465374557ix-0	.1506746660x- 0
11	4193887040x- 0	.1376998218x- 0
12	3159342187x-0	.1174729076x- 0
13	1535523839x- 0	.1111945608x- 0
14	.8825276745x- 3	.1355110612x- 0
15	-7354150724x- ĭ	.1297371654x- 0
16	·99999948772x ()	•99999948727x ()

cl= .6037881304x 0

図-17 出力の一例

個数を整数で示し,点の x 座標を実数で示す。つぎ に計算する迎角の種類の個数を整数で示し,ついでそ れぞれの迎角の度数を示す。以上の入力の FORMAT は ALPS の標準型式である。

2.7 出 力

図-17 の例に示す FORMAT で出力する。ここに 記号を以下に示す。

alpha……迎 角

xn......翼表面の点を入力した順の番号

(p/q)b.....back 面の圧力 (無次元値)

(*p/q*)*f*……face 面の圧力 (無次元値)

cl ……揚力 (無次元値)

なお,出力数値の FORMAT は ALPS の標準型 式である。

3. プログラムの検定

3.1 計算精度および誤差

実数の演算はすべて 2 進 33 桁+指数 2 進 12 桁(約 10 進 10 桁)の浮動小数点で行なっている。また風胴 による翼型の圧力分布の計測値と本プログラムによる 計算値はかなりよく一致した(文献 2)参照。

3.2 計算所要時間

compile : 3'30''

object run: 3'30''(翼型数列 97 点表面圧力 16 点)

out put : 2'30'' (同上の条件で1つの揚力につ き)

3.3 適用範囲,制限事項

翼の分割数は400分割まで,翼表面の点の数は100 点までであれば現在のプログラム処理できる。迎角の 種類はほとんど任意である。翼の分割数が1,500点, 翼表面の点が375点程度まではプログラムを改定すれ ば可能である。しかし式の性質上これ以上に拡張して も無意味と考えられる。

4. プログラムの使用法と応用

(158)

TOSBAC 3300 ALPS I, Is または II でプログラ ムテープを コンパイル *l*, Phase L: に AS テープと 外部プログラム foco を入力し, ついでデータテープ を入力すれば flexowriter に出力する。

4.2 プログラムの応用

このプログラムは外部プログラムとしてアセンブラ 語で書かれたフーリエ変換サブルーチン foco を使用 している。このサブルーチンは 4n+1 個のデータよ り n 次までのフーリエ級数を計算するもので,他に も応用できる。

参考文献

- 守屋富次郎:空気力学序論,初版,培風館, 1659, pp. 95~111.
- 伊藤達郎他:MAUプロペラ翼断面の圧力測 定,第14回船舶技術研究所研究発表会講演概 要,1969.

E-1 差分法による回転円板の熱弾塑性応力解析プログラム

機関開発部第2部 天 田 重 庚

1. プログラムの目的および概要

高出力化の著しいガスタービンではそれにともなっ て回転数の増大,ガス入口温度の上昇が見られる。ガ スタービンの重要な構成要素であるディスクでは大き な遠心力と熱負荷を受けることになり,この結果材料 の弾性限を越えた応力状態になることが考えられる。 塑性域では材料の応力一ひずみ曲線が非線形となり, 系を支配する方程式が非線形となって解析的に解くこ とが困難であり,そのため次の方法がとられる。

- 実際の材料の応力一ひずみ曲線を用いて数値計 算により弾性領域と塑性領域の境界で応力成分が 等しいという条件で解く方法。
- 非線形な応力一ひずみ曲線を近似式,すなわち, Ramberg-Osgood [1] 則, *n* 乗則 (σ=f(εⁿ))を 用いて数値計算による方法。
- 上記の近似式を用いて Perturbation Method に よる方法。
- 4) 材料を完全塑性体として辷り線場を解く方法。

回転円板の熱弾塑性応力解析には若干の理論的研 究^{2,3)}があるが、複雑さと得られる精度の点で問題が あり、温度分布が応力ひずみ成分に与える影響もあま り明瞭でない。このため白鳥によって導入された等温 問題における方法⁴⁾を温度場に適用できるように変形 し、上記の方法 1)に基づく手順を確立する。

2. プログラムの内容

2.1 プログラムの番号,名称

44-003

Elasto-Plastic Stress Analysis of Rotating Disc

2.2 製作者

機関開発部第2部 天田重庚

- 2.3 製作年月
- 昭和 44 年5月
- 2.4 プログラムの大きさ
 - 構成…メインプログラム +6× サブプログラム ステートメント数……528
- 2.5 計算の基礎となる理論の概要

降伏条件として Von Mieses の条件, 塑性域では Deformation Theory が使用できると仮定して, 外径 b, 内径 a なる円板を考える。加えられる温度分布は

円板が ω なる角速度で回転している場合,弾塑性境 界が C なる位置に発生したとすると次の式が得られ る⁵⁾。

i) 弾性式 (c≤r≤b)

$$\sigma_{r} = \frac{3+\nu}{8} \rho \omega^{2} (b^{2}-r^{2}) + B\left(\frac{1}{r^{2}} - \frac{1}{b^{2}}\right) \\ + E\alpha\left[\frac{1}{b^{2}}\int_{a}^{b} (rT) dr - \frac{1}{r^{2}}\int_{a}^{r} (rT) dr\right] \\ \sigma_{\theta} = \frac{\rho \omega^{2}}{8}\left[(3+\nu)b^{2} - (1+3\nu)r^{2}\right] \\ - B\left(\frac{1}{r^{2}} + \frac{1}{b^{2}}\right) \\ + E\alpha\left[\frac{1}{r^{2}}\int_{a}^{r} (rT) dr \\ + \frac{1}{b^{2}}\int_{a}^{b} (rT) dr\right] - E\alpha T$$
.

ただし B は境界条件より求まる定数である。

(159)

ii) 塑性域 (c≥r≥a)

$$\frac{d\beta}{dr} = \frac{F_1}{F_3}, \quad \frac{d\overline{\varepsilon}_p}{dr} = \frac{F_2}{F_3} \qquad \dots \dots (3)$$

ε_p, β と応力成分との関係は

$$\sigma_{r} = H(\bar{\varepsilon}_{p}) \left(\sin \beta - \frac{1}{\sqrt{3}} \cos \beta \right)$$

$$\sigma_{\theta} = H(\bar{\varepsilon}_{p}) \left(\sin \beta + \frac{1}{\sqrt{3}} \cos \beta \right)$$
(4)

境界条件

$$\beta = \pi/6 \quad (r=a)$$

$$\sigma_r | 彈性 = \sigma_r | 塑性 \quad \sigma_\theta | 彈性 = \sigma_\theta | 塑性 \quad (r=c)$$
2.6 計 算 手 順

計算手順のフローチャートを図-18 に示す。入力デ ータを読み込みの後,弾塑性境界値, c を仮定して c 上の応力成分を弾性式で求める。ディスクを同心の環 に分割し(本計算では 40 等分)て(3)式を差分形に変 換してルンゲークッタ法を用いる。c 上で求めた σ_r , σ_{θ} より β を求め,これと $\overline{\epsilon_p}=0$ を初期値として c か ら内部境界に向って計算を行ない, r=a 上で $\beta=\pi/6$ になるまで反復計算がなされる。

2.7 入 カ 必要な入力データは次のごとくである。 A~TA ……半径のきざみ~温度:温度分布 ST~EP ……応力~ひずみの値: 塑性域の応力-ひずみ曲線 V....ポアソン比 *E*·····ヤング率 ROW ……材料の密度 RO ………円板の外径 RI ………円板の内径 SY降伏応力 W ……円板の角速度 *COF*.....*c* の値を変える収束係数 TOLL……収束条件: $\pi/6-\beta \leq TOLL$ 2.8 出 力 分割した各半径上での T ……温度 SIGMAR ····半径方向応力 SIGMAT …周方向応力 SIGPT ……主応力 *EPRR* ………半径方向ひずみ *EPRT*……周方向ひずみ PEP ……主ひずみ 2.9 本プログラムの特徴

- i) 任意の温度分布が与えられるように4次の Lagrange 補間公式を用いて温度分布を近似している。
- ii) 異なる応力--ひずみ曲線についても計算できる ようにまたこれも4次の Lagrange 補間公式にて 近似している。
- iii) 等温問題に適用可能。
- iv) 収束係数を可変にして真の値との差に比例する ように定めた。
- 3. プログラムの検定
 - 3.1 精 度

βの値で小数点以下5桁まで正しく得られるように した。

3.2 演算時間

半径の分割数は弾性域 20, 塑性域 20, 計 40 で, 1 サイクルの計算時間は約 85 秒である。収束までの くり返し数は *c* の初期仮定値により異なるが約 10~ 20 回であり,またコンパイルの時間は約 8 分を要し た。

4. プログラムの使用について

(160)

4.1 オペレート

プログラムの実行は ¥ BATCH で PT より行なう。

4.2 プログラムの応用

サブプログラムとして4次の Lagrange の補間公式 による関数近似,積分範囲の大きさによってきざみ数 を変えられるシンプソン積分,Runge-Kutta 法による 微分方程式の数値解法が含まれている。

5. あとがき

温度分布が応力,ひずみ成分に与える影響,温度分 布の増加に対する塑性域の成長の割合,周方向応力の 塑性域における弾性分布と異なる分布が得られた。

6. 記 号

T:温度, T_0 :外周温度,r:半径,a:内径,b: 外径,c:弾塑性境界値, ρ :材料の密度, ω :角速度, ν :ポアソン比,E:ヤング率, α :線膨張係数, σ_r : 半径方向応力, σ_{θ} :周方向応力, $\overline{\epsilon}_{p}$:相当塑性ひずみ, β : σ_r と σ_θ より得られる値, F_i : $\tilde{\epsilon}_p$, β と材料の機 械的性質の関数, H: 材料の塑性域における応力一ひ ずみ曲線を示す関数。

参考文献

- Walter Ramberg et al. [Description of Stress-Strain by Three Parameters] NACA T. N. NO-902 (1943).
- A. Mendelson et al. [Practical Solution of Plastic Deformation Problems in Elastic-Plastic Range J NASA T. R. R-28 (1959).
- S. Manson et al. [Determination of Stresses in Gas-Turbine Discs subjected to Plastic Flow and Creep.] NACA TR-906 (1948).
- 白鳥「回転円板の塑性計算とその応用」日本機 械学会誌, Vol. 65, No. 519 (1962).
- 5) 天田「回転円板の弾塑性熱応力」第 19 回応用 力学連合講演会論文抄録集 (1969).

E-2 円筒の非定常温度分布および熱応力の計算プログラム

機関開発部第2部 塚田 悠治

1. プログラムの目的および概要

光弾性法による熱応力の測定の精度を確かめるため の基本的な実験として,中空円筒の熱応力の測定を行 ない,理論値との比較を行なった。このプログラムは 比較のための理論値を計算するために作られた単能プ ログラムであり,主要諸元は実験条件に合わせて与え, 変更することはできない。

2. プログラムの内容

2.1 プログラムの番号,名称

44-028

ENTŌ NETSUŌRYOKU

2.2 製作者

機関開発部第2部 塚田悠治

2.3 製作年月

昭和 44 年 7 月

円筒の軸対称温度分布は次式で与えられる。

境界条件は周囲流体温度または供給熱量の条件によ りそれぞれ次式で与えられる。

$$k\left(\frac{\partial T}{\partial r}\right)_i = h\left(T_f - T_i\right) \qquad \dots \dots (2)$$

応力成分は次式により、求められる。

ただし,T;温度,a;温度伝導率,k;熱伝導率,h; 熱伝達率,q;熱量,r;中心からの距離, α ;熱膨張 係数,E;縦弾性係数, ν ;ポアソン比, σ ;応力,t; 時間

添字,1;内周,2;外周,r;半径方向,θ;接線方 向,**f**;周囲流体

温度分布は,(1)の偏微分方程式を差分方程式に変換 して解いた。分割数は 20 とし,境界条件は,実験条 件により,(2)または(3)を選んだ。応力分布は,(4),(5) を数値積分することにより求めた。

また、次式により、光弾性しま次数を求めた。

b; モデルの厚さ, 1/f; 光弾性感度

2.5 計算の手順

図-16 のフローチャートに示す。

2.6 入 力

入力データは、すべて E10.3 で与え、単位は kg, mm, sec, °C, k cal を用いる。

E; 縦弾性係数, AT; モデル厚さ×光弾性感度,
B; 熱膨張係数, AK; 熱伝導率, A; 温度伝導率,
TH; 周囲流体温度, H1; 内周の熱伝達率, H2(I);
外周の熱伝達率(3種類),なお円筒の外径 r₂=40mm,
内径 r₁=20mm など,実験中で固定した条件はプロ
グラム内で与えてある。

2.7 出 力

時間 1 min おきに,温度,応力成分,しま次数お よび外周より与えられる熱量を印刷する。

3. プログラムの検定

実験の性格上,計算値に要求される精度は低いので, 計算精度の検討は行なっていない。演算時間は 10 分 以内である。

4. あとがき

中空円板の非定常熱応力の厳密解はすでに求められ ているが、このプログラムにより、実験条件に合わせ た任意の境界条件を簡単に与えて、計算することがで き、所期の目的を達することができた。なおプログラ ム作製につき当部高田部長に御指導頂いたことを付記 し、謝意を表する次第です。

E-3 曲円管内熱伝達実験データ整理用プログラム

機関開発部第2部 塚 原 茂 司

1. プログラムの目的および概要

このプログラムは曲円管内熱伝達の実験値から各部 の熱伝達率を計算し,また各パラメータを算出して整 理するのに用いられる。このプログラムの適用条件は 内半径 r_1 ,外半径 r_2 をもつ曲率半径 R のテストセ クションで,流体への熱流束はテストセクションの電 気抵抗を利用した電気的直接発熱方式で与えられてい る。測定される量(計算機入力)は電圧 V,電流 I, 流体の流量 G,入口圧力 P_{in} ,入口温度 T_{in} ,そし て管の各部で測定された外壁温度 $T_{2\phi}$ であり,計算 される項目(出力)は,管壁から流体へ移動する熱流 束 q''_{ϕ} ,管内壁温度 $T_{1\phi}$,流体温度 T_{Bz} ,流体飽和 温度 T_{satz} ,そして各部の熱伝達率 $h_{\phi z}$ である。

2. プログラムの内容

2.1 プログラムの番号,名称
 44-039

2.2 製作者機関開発部第2部 塚原茂司

- 2.3 製作年月
- 昭和 44 年 8 月
- 2.4 計算の基礎式

データ整理に使用した計算の基礎式は次の諸式であ るが,モデルはすべて仮定をおいて一次の問題として 取り扱かっている¹⁾。

 1) 熱流束 qⁿ_φ (φ は管断面の円周方向の位置をあ らわすもので 0=内まわり側, 90°=上側, 180°=外 まわり側, 270°=下側である。)

$$q''_{\phi} = \frac{q''_{s}}{(1 - b\cos\phi)^2} \qquad \dots \dots (1)$$

$$q''_s = \frac{0.215}{\pi r_1 (l + \pi R)} \cdot V \cdot I \qquad \dots \dots (2)$$

ただし *b*=(*r*₁+*r*₂)/2*R*, *l*=曲管両端の直管部長さ 2) 管内壁温度 *T*₁₀ 管内壁温度は次の1次元微分 方程式を解いて得られる。

$$\frac{d^2T}{dr^2} + \frac{1}{r} \frac{dT}{dr} + \frac{q^{\prime\prime\prime}}{\lambda} = 0 \qquad \dots \dots (3)$$

境界条件は $r=r_2$ で $T=T_{2\phi}$

$$r=r_2$$
 \mathcal{C} $dT/dr=0$

この境界条件を用いて(3)式を解くと次式が得られる。

$$T_{1\phi} = T_{2\phi} - \Delta T = T_{2\phi} - F(r) \frac{q''\phi}{\lambda_T} \quad \dots \dots (4)$$
$$F(r) = \frac{r_1}{1 - \left(\frac{r_1}{r_2}\right)^2} \left[l_n \left(\frac{r_2}{r_1}\right) - \frac{1 - \left(\frac{r_1}{r_2}\right)^2}{2} \right] \quad \dots \dots (5)$$

$$\lambda_T = 0.01105 T + 13.115^{2}$$
(6)

3) 流体温度 *T_{Bx}*,加熱開始位置から距離 *x* の位置の流体温度 *T_{Bx}* は

$$T_{Bx} = T_{in} + 0.01433 \underbrace{V \cdot I \cdot x}{G \cdot l} \qquad \dots \dots (7)$$

ただし 1 は試験部発熱長さ

4) 流体飽和温度 Tsatx

$$T_{satx} = f(p_x) \qquad \dots \dots (8)$$

 $f(p_x)$ は $p-T_{sat}$ 曲線に適した式を作り、入口圧力 p_{in} と流速 v の関数として求められるようにプログ ラム中に入いている。

5) 各部の熱伝達率 h_{øx}

2.5 計算の手順

計算の手順は図-20 フローチャートに示すとおりで ある。

*T*2 は管外壁4 個所の測定値を *φ*=90, 180, 270, 0 および *x*=1, 2, ……(管軸方向測定位置)の順に入れた。

 2.7 出
 力

 TT2
 ……管外壁温度(°C)

 DELTW
 ……(4)式の AT (deg)

 TWI
 ……管内壁温度(°C)

 TB
 ………流体温度(°C)

 DELTTB
 ……=TWI-TB (deg)

 TSAT
 ……流体跑和温度(°C)

 DELTSU
 ……=TSAT-TB (deg)