船体に働く風圧力に関する模型試験

辻 豊治* 高石敬史* 菅 信* 佐藤辰二*

Model Test about Wind Forces Acting on the Ships

by

Toyoji Tsuji, Yoshifumi Takaishi, Makoto Kan and Tatsuji Sato

In the manoeuvrability of ships operating under relatively strong wind as such cases, for example, that a mammoth tanker or a car carrier is approaching to a harbour with slow speed, or that a fishing boat is resisting against storm, the aerodynamic forces of wind play an important role.

In this paper, the aerodynamic coefficients of wind forces acting on the ship's structure above water-line are presented for mammoth tankers, car carrier, container ship and fishing boats which were measured on the model of the ships by means of a wind blower installed on an experimental towing-tank.

		目 次
1.		まえがき
2.		供試模型船
3.		実 験 方 法
	3.	1 風洞における実験
	3.	2 送風装置つき水槽における実験
		3.2.1 送風装置の構造と風速分布
		3.2.2 天秤装置
		3.2.3 测定方法
4.		実験結果の表示法
5.		実験 結果
	5.	1 風圧力の測定結果
	5.	2 風圧傾斜モーメントの測定結果

1. まえがき

船体運動におよぼす風の影響については、古くから 多くの人々によって研究されている。¹¹²¹³¹⁴¹⁵¹

最近船舶の運動性能の研究が進むにしたがい,抵抗 推進の而からのみならず,船体運動全般に対する風の 影響が注目されるようになった。

たとえば,最近数多く建造されている貨物専用船の 中には,自動車運搬船のように上部構造物の極端に大

* 運動性能部 原稿受付 昭和45年7月16日 きいものがある。このような船舶では風圧影響は大で あり、運航の安全を計るためにも、操縦性能、安定性 能に関して船型と風圧影響の関係を明らかにする必要 がある。

著者らは以上の観点から,種々の船型についてこの 問題の調査研究を行ない,そのつど発表して来た⁶¹⁷¹⁸¹。 本報告はそれぞれの資料をまとめて集録したものであ る。

2. 供試模型船

実験は Table 1 に示す種類の船について行なった。 実験に使用した模型船は総て木製で、その大きさは、

Table.	1
--------	---

	Equipment
Mammoth Tanker (Aft Bridge Type)	Towing Tank with Wind Blower
Mammoth Tanker (Mid Bridge Type)	"
Container ship	"
Car Carrier	"
Bonito-Tuna Fishing Boat	Wind Tunnel
Drift Netter	Towing Tank with Wind Blower
Two-Boat Stern-Trawler	"

Principal Dimensions

1		Full Load	Condition	Ballasted	Condition
		Ship	Model	Ship	Model
Length bet P.P.	Lpp (m)	290.00	1.500		
Breadth Mld.	\mathbf{B}_{o} (m)	47.50	0.2457		
Depth Mld.	D (m)	24.00	0.1241		
Draft Designed	df (m)	16.20	0.0838	7.40	0. 0383
5	dm (m)	16.08	0.0832	9. 33	0. 0484
	da (m)	15.90	0.0823	11.25	0. 0581
Trim		-0.1%	-0.1%	+1.33%	+1.33%
Displacement		183, 200 ton	24. 15 kg	96, 713 ton	12.10 kg
Св		0.8054	0.8054		
Projected Area ab	ove Water-Line	}			1
Front View	(m^2)	1,030	0.0275	1,280	0.0343
Side View	(m ²)	3, 212	0.0859	5, 180	0.1386

Fig. 1 Mammoth Tanker T Maru

Principal Dimensions

	·····	Full Load	Condition	Ballasted	Condition
		Ship	Model	Ship	Model
Length bet P.P.	Lpp (m)	304.000	2.000		
Breadth Mld.	$\overline{B_0}$ (m)	44.000	0.289		
Depth Mld.	D (m)	24.200	0.159		
Draft Designed	df (m)	16.034	0.105	7.94	0.052
0	dm (m)	16.034	0.105	9.02	0.059
	da (m)	16.034	0.105	10.07	0.066
Trim		0	0	0.7%	0.7%
Displacement		174, 410 ton	49.550 kg	93, 340 ton	26, 510 kg
Св		0.793	0.793	0.760	0.760
Projected Area above	Water-Line	1			
Front View	A (m^2)	993.5	0.0430	1, 363. 1	0.0590
Side View	$B(m^2)$	4, 135. 6	0. 1794	6, 27 0. 4	0.2714

Fig. 21 Mammoth Tanker M Maru (Aft Bridge type)

14

Principal Dimensions

		Full Load	Condition	Ballasted	Condition
		Ship	Model	Ship	Model
Length bet. P.P.	Lpp (m)	304.000	2.000	<u> </u>	1
Breadth Mld.	$\mathbf{B}_{0}(\mathbf{m})$	44.000	0.289		
Depth Mld.	D (m)	24.200	0.159		
Draft Designed	df (m)	16.034	0.105	7.94	0.052
	dm (m)	16.034	0.105	9.02	0.059
	da (m)	16.034	0.105	10.07	0.066
Trim		0	0	0.7%	0.7%
Displacement		174, 410 ton	49.550 kg	93, 340 ton	26.510 kg
CB		0.793	0.793	0.760	0.760
Projected Area above	Water-Line				
Front View	$A (m^2)$	861.8	0.0373	1, 215. 3	0.0526
Side View	$B(m^2)$	3, 719. 7	0.161	5,845.3	0. 253

Fig. 3 Mammoth Tanker M Maru (Mid Bridge type)

Principal Dimensions

		Full Load	Condition	Ballasted	Condition
		Ship www	····· Model	Ship	Model
Length bet. P.P.	Lpp (m)	175.000	2.000		
Breadth Mld.	$B_0(m)$	25.000	0.286		
Depth Mld.	D (m)	15.400	0. 170		
Draft Designed	df (m)	9.500	0.109	6.000	0.0686
, C	dm (m)	9.500	0.109	6.500	0.0743
	da (m)	9. 500	0.109	7.000	0.0800
Trim		0	0	0.570%	0.570%
Св		0.5808	0.5808		
Projected Area above	Water-Line				
Front View	$A(m^2)$	522.2	0.0682	609.4	0.0796
Side View	B (m²)	2, 310. 7	0. 3018	2, 376. 5	0.3104

Fig. 4 Container Ship

Principal Dim	ensions
---------------	---------

		Full Load Condition		Ballasted Condition (Standard)	
		Ship	Model	Ship	Model
Length bet. P.P.	Lpp (m)	150.000	1.800	90 91 91 91	
Breadth Mld.	B_0 (m)	23. 400	0.281		
Depth Mld.	D (m)	20.400	0.245		
Draft Designed	df (m)	7.000	0.0840	4.76	0.0571
	dm (m)	7.000	0.0840	5.44	0. 0653
	da (m)	7.000	0.0840	6.12	0.0734
Trim		0	0	+1.0%	+1.0%
Displacement		14, 633 ton	24.00 kg	10, 828 ton	18. 250 kg
Св		0.580	0.580	0.552	0. 552
Projected Area abov	e Water-Line				
Front View	A (m ²)	447.2	0.0644	499.3	0.0719
Side View	B (m ²)	2,351.4	0.3386	2, 589. 6	0.3729

		Ballasted Condition (Trim by Stern)		Ballasted Condition (increase two Deck)	
		Ship	Model	Ship	Model
Length bet. P.P.	Lpp (m)				
Breadth Mld.	B_{o} (m)				
Depth Mld.	D (m)				
Draft Designed	df (m)	5.00	0.0600	4.76	0.0571
	d m (m)	6.00	0.0720	5.44	0.0653
	da (m)	7.00	0.0840	6.12	0.0734
Trim		+1.3%	+1.3%	+1.0%	+1.0%
Displacement		12, 259 ton	21. 220 kg	10, 828 ton	18.250 kg
Св		0.567	0.567	0.552	0.552
Projected Area above	e Water-Line				
Front View	A (m^2)	493. 7	0.0711	596.0	0.0851
Side view	B (m ²)	2, 501. 4	0.3602	3, 138. 9	0.4520

Fig. 5 Car Carrier

Principal Dimensions

		Full Load (Depa	Full Load Condition (Departure)		Conditi ^o n ival)
		Ship	Model	Ship	Model
Length bet. P.P.	Lpp (m)	29.000	2.000	29.000	2.000
Breadth Mld.	B ₀ (m)	6.360	0. 439	6. 360	0. 439
Depth Mld.	D (m)	2.820	0. 194	2.820	0. 194
Draft Designed	df (m)	1.70	0.117	1.70	0. 117
	d m (m)	2.55	0.176	2.32	0.160
	da (m)	3. 41	0. 235	2.93	0.202
Trim		+5.9%	+5.9%	+4.2%	+4.2%
Projected Area above	Water-Line				
Front View	A (m ²)	31.6	0. 150	32.6	0. 155
Side View	B (m ²)	101.0	0. 479	109. 0	0.518

		Ballasted Condition		Ballasted Condition			Condition
		Ship	Model	Ship	Model		
Length bet. P.P.	Lpp (m)	29.000	2.000				
Breadth Mld.	B_o (m)	6.36	0. 439				
Depth Mld.	D (m)	2.82	0.194				
Draft Designed	df (m)	0.54	0.037				
	dm (m)	1.70	0. 117				
	da (m)	2.86	0.197				
Trim		+8.0%	+8.0%				
Projected Area above	e Water-Line						
Front View	A (m²)	38.1	0. 181				
Side View	B (m ²)	126.0	0.600				

Fig. 6 Tow-Boat Stern-Trawler

Principal Dimensions

		Condi	tion			Cond	lition
		Ship	Model			Ship	Model
Length bet. P. P.	Lpp(m)	29.500	1.000	Trim		+4.0%	+4.0%
Breadth Mld.	$B_0(m)$	6.3	0.214	Projected Area	above	-,-	,-
Depth Mld.	D(m)	3.1	0.105	Water-Line			
Draft Designed	df(m)	2.188	0.0742	Front View	$A(m^2)$	34.3	0.0364
	dm(m)	2.777	0.0941	Side View	$B(m^2)$	100.0	0.1149
	da(m)	3.366	0.114				

Fig. 7 Bonito-Tuna Fishing Boat

Principal Dimensions

	Cond	ition			Cond	ition
	Ship	Model			Ship	Model
Length bet. P. P, Lpp(m)	27.800	2.000	Trim		+6.7%	+6.7%
Breadth Mld. $B_0(m)$	6.10	0.439	Projected Area	above	,-	,.
Depth Mld. D(m)	2.70	0.194	Water-Line			
Draft Designed df(m)	1.37	0.0985	Front View	$A(m^2)$	31.76	0.165
dm(m)	2.31	0.166	Side View	$B(m^2)$	90.20	0.467
da(m)	3.24	0.233				

Fig. 8 Drift Netter

風洞では長さ1mのものを、送風装置つき水槽(以下風洞水槽と呼ぶ)では長さ2mを基準とした。

なお模型船には手摺,索具,漁船のオーニング等は つけていない。

Fig. 1~8 に供試船の正面および側面投影図と主要 目を示す。

3. 実験方法

3.1 風洞における実験

実験は当所所属の Göttingen 型楕円風洞(吹口,

Fig.11 Wind Blower

Fig. 15 Four Component Ballance (Detail)

Fig. 12 Uniformity of the Wind Velocity

長径1.5m, 短径1.0m)を使用し, 鏡像模型法によって行なった。

水線上模型の風洞での吊り方は,鏡像模型を取りつ けた直径 1.5 m の木製円板を,ピアノ線を使用し水 平3分力吊りの方法で風洞天秤に吊った。Fig. 9 に 吊り方を示す。模型船に対する風向は反時計回りに 0°~180°の範囲で,5°~10° おきにかえた。なお, 試験時の風速は 18m/sec が基準でレイノルズ数(Re) は, 1.24×10⁶ に相当する。

3.2 送風装置つき水槽における実験

当所に所属する船舶性能試験水槽には、側壁をまた がって走行する曳航台車(最高速度 2.5 m/sec)と送 風装置が設備されている。

水槽の概要を Fig. 10 に示す。

3.2.1 送風装置の構造と風速分布

送風装置は Fig. 11 に示すように本体は貫流式送風 機で、吹出口は幅 3 m, 高さ 0.45 m, 風速は 6 m/sec から 17.2 m/sec の範囲に可変である。 送風機本体は,専用の移動台車上に塔載されてお り、曳航台車と連結して模型船と一定の間隔を保持し ながら送風できるようになっており、本装置により水 面上の或る範囲に一定の風速域を造ることができる。 風速分布は Fig. 12 に示すように、高さ方向では吹 出口の約 80% の範囲で大体均一であるが、水面の近 く 50 mm 程度から下方で風速に勾配が現れている。 幅方向の風速分布が均一なのは貫流式送風機の利点で ある。

3.2.2 天秤装置

船体模型に加わる水圧力および風圧力を測定するに は天秤兼運動測定装置を用いた。これの機構は平面図 を Fig. 13 に、側面図を Fig. 14 に示すようなもの である。

天秤の自由度の1つを力を測定するバネで固定すれ ば,他の自由度の動きを許しながら力を測定できる。 力の測定が可能な方向は,ローリング・ヨーイング, スウエイイングおよびサージングの4方向である。ピ

Fig. 13 Four Component Ballance (plan)

Fig. 14 Four Component Ballance (profile)

ッチングおよびヒービングの2方向は常に拘束されな いで、その変位をポテンシオメーターで測定するよう になっている。天秤の主要部は回転枠の中で水平面内 360°にわたって回転可能で、模型船の曳航方向や相 対風向を自由に変えることができる。ヨーイングモー メントは抵抗線ひずみ計で測定されるが、その他の3 つの力は差動トランスで測定される。天秤と船体中央 部とは垂直な一本の連結棒で連結されている。棒の下 端には Fig. 15 に示すような ローリング、ピッチン グおよびヨーイングの回転運動に関する機構と力の測 定装置があり、上部にはヒービング、サージングおよ びスウエイイングの直線運動のガイド装置と力の測定 装置がある。

3.2.3 測定方法

模型船の天秤への取りつけは、模型船の重心位置, 或いは船体中央と,天秤の下端にある,ピッチング, ローリング用ジンバルの中心とを一致させて固定す る。 天秤の連結棒は船体上部構造を貫通して船体内部に 入ることになるから、これが船体の風圧に影響しない よう、開口部の大きさを極力小さくした。また、連結 棒に働く風圧力は別途計測して差引いた。

模型船のトリム, 喫水, ヒールを容易に変化させて 実験できるのが,本方法が普通の風洞による風圧測定 試験にくらべてすぐれた点である。

風圧力の測定では,模型船を或る風向角に固定し3 分力を測定するが,ヒールを固定して風圧による傾斜 偶力も測定することが可能であるし,風圧による傾斜 を自由にした状態で,水平面内の3分力の測定も可能 である。

試験時の風速は, Re=1.30×10⁶ 程度となるよう, 模型船の長さによってきめた。

天秤に模型船を取りつけ た状態を Fig. 16 に,計 測器の配置を Fig. 17 に,送風機を運転して風圧力 を測定している状態を Fig. 18 に それ ぞれ写真で示 す。

22

Fig. 16

Fig. 17

4. 実験結果の表示法

計測した実験結果は次式により無次元化した風圧合 力係数 C_R , 横力係数 C_Y , ミドシップ回りのモーメ ント係数 C_M , すなわち

$$C_{R} = \frac{R}{\frac{1}{2}\rho V^{2}(A \cos^{2}\varphi + B \sin^{2}\varphi)}$$
$$C_{Y} = \frac{Y}{\frac{1}{2}\rho V^{2}B}$$
$$C_{M}\phi = \frac{M\phi}{\frac{1}{2}\rho V^{2}BL}$$

および風圧合力角 $a(\alpha = \tan^{-1}Y/x)$,風圧中心 a/L, 風向影響係数 $k(k=x/x_0)$ をそれぞれ風向角 φ の関 数として表示した。風圧による傾斜モーメント M_{Ra} は風圧横力 Y と,この力の上下方向の着力点の水面 よりの高さ ha の積であるとし、これらの値を下式に よって無次元化して示した。

$$C_{M_{Ra}} = \frac{M_{Ra}}{\frac{1}{2}\rho V^2 B\left(\frac{B_o}{2}\right)}$$
$$ha/\left(\frac{B_o}{2}\right) = \frac{C_{M_{Ra}}}{C_Y}$$

ここに

V	;	風	速		(m/sec)
ρ	;	空気の密	密度	(kg•	sec ² /m ⁴)
R	;	風圧合	・力		(kg)
X	;	風圧合力	りの接	線分力	(kg)
Y	;	"	法	線分力	(kg)
Mø	;	ミドシッ	,プ回	りのモーメント	(kg-m)
		(Fig. 1	19 K	おいて反時計回	りを正とす
		る)			
φ	;	風 向	角		(deg)
α	;	風圧合力	り角		(deg)
A	;	水線上音	移分の	正面投影面積	(m²)
B	;	"		側面投影面積	(m²)
a	;	風圧合力	りの船	体縦截面におけ	る
		作用点@	D船首	からの距離	(m)
X_o	;	$\varphi = 0^{\circ} k$	こおけ	る X の値	(kg)
L	;	模型船0	D垂線	間長さ	(m)
Bo	;	船	幅		(m)

5. 実験結果

5.1 風圧力の測定結果

計測結果を前節の表示法に従い Fig. 20~25 に示 す。Fig. 20 は巨大タンカーの満載状態, Fig. 21 は 同軽荷状態での実験結果でM丸については,船橋位置 が風圧力におよぼす影響を調べた結果も含んでいる。

最近建造される貨物専用船のうち,コンテナー船は, 積荷の関係から満載,軽荷状態で甲板上の形態が極端 にかわる。また、自動車運搬船は全長にわたり水線上 構造物の高さが、喫水の約2.5倍にも達し、風圧面積 の増大により,従来の船型にくらべ風による影響を受 けやすい。

Fig. 22 は前記コンテナー船と自動車運搬船の一船 型についての満載状態, Fig. 23 は同軽荷状態での実 験結果である。Fig. 23 の軽荷状態では自動車運搬船 でトリムをつけた場合と,積載甲板を二層増加した場 合の実験結果も併記してある。

Fig. 24 は以西底引網漁船の満載, 軽荷両状態での 実験結果を, Fig. 25 は鰹, 鮪漁船および北洋鮭, 鱒 漁船の満載状態についての実験結果を示すもので、そ のうち鰹, 鮪漁船については風洞試験によるものであ る。

風洞試験では種々の制約により、風向角 (φ)が 0°

と 180°の計測ができなかった。このため風向影響係数 k を求めるにあたって、 X_o は $\varphi \sim C_R$ 曲線を $\varphi = 0^\circ$ まで曲線の傾向そのままに延長し、縦軸との交 点の読みを C_{Ro} とした。

Fig. 26 はこれらの実験結果のうち、正面抵抗係数 C_{Ro} を他の多くの船型の C_{Ro} と比較したものであ る。以上の実験値は、風洞においては風速 18 m/sec を基準として、 $Re=1.24 \times 10^6$ で行なったものである。 Fig. 27 は風速による影響を風洞で調べた結果であ る。それによると実験時の風速の範囲内では、風圧力 係数にほとんど変化は認められない。このことから、 風洞水槽における実験についても、風速 10 m/sec を

Fig. 29 Height of Center of Pressure

26

基準とし、Re=1.30×106 付近で行なった。

Table 2~19 は各計測結果の数値を取りまとめたも ので, Table 2~7 は巨大タンカー, Table 8~13 は コンテナー船, 自動車運搬船, Table 14~19 は漁船 についてのそれぞれの値を示す。

5.2 風圧傾斜モーメントの測定結果

Fig. 28 は漁船の傾斜モーメント, Fig. 29 は風圧 中心高さの各計測結果を前節の表示法に従い示したも のである。

終りに,この研究の中には、日本海難防止協会,日 本鉄道建設公団,三井造船㈱,田崎重工業㈱からの受 託によるものも含まれていることを付記する。

謝辞 本研究に用いた送風装置の製作にあたり,当 所機関開発部第一部の村尾麟一空力研究室長から,貫 流式送風機の採用を御教示いただいた。ここに同氏に 対し著者の感謝の意を表する次第である。

参考文献

1) G. Hughes "Model Experiments on the wind

Resistance of Ships" T. I. N. A. Vol. LXXII. 1930.

- 2) 荒木, 花岡 "鉄道連絡船の風洞実験" 造船協会論 文集. Vol. 84, 1952. 2.
- 3) 木下, 花岡, 中島 "鰹鮪漁船の操縦性に及ぼす風 匠の影響について"造船協会論文集, Vol. 86, 1954.
 3.
- 国田"小型船舶に対する風圧による傾斜モーメン トについて"造船協会論文集, Vol.92 1957, 4.
- 5) B.Wagner. "Windkräfte an Überwassershiffen" Schiff und Hafen. 1967, 12.
- 6) 辻, 菅 "漁船模型の風洞試験"船舶技術研究所研 究発表会概要, (第7回) 1966, 11.
- 7) 辻, 菅, 岩井, 久々宮 "巨大船の風圧力および斜 航時の水圧力について"船舶技術研究所研究発表 会概要.(第9回)1967, 11.
- 8) 辻, 佐藤 "貨物専用船の風圧力について"船舶技 術研究所研究発表会概要,(第14回)1969,11.

(223)

28

(225)

Fig. 24 Wind Force Coefficient of Two-Boat Stern-Trawler

(228)

Table. 2 Wind Force Coefficient of Mammoth Tanker T Maru (Full Load Condition)

$arphi^\circ$	C_R	C_Y	См	α°	a_L	k
0	1.060	0.000	0.000	0.00		1.000
5	1.011	0.028	0.008	5.73	0,201	0,966
10	1.024	0.060	0.010	9.83	0.327	1.010
15	0.970	0.092	0.014	19.11	0.340	0.988
20	1.022	0.140	0.011	37,53	0,420	0.955
25	1.008	0.187	0.014	46.62	0.424	0.900
30	1.016	0.250	0.014	50.95	0.443	0.922
35	1.094	0.342	0.011	55.83	0.467	0.983
4 0	0.948	0.366	0.006	60.04	0.482	0.838
45	0.977	0.457	0.009	62.84	0.480	0.866
50	0.973	0.536	0.007	67.71	0.487	0.783
60	0.941	0.676	-0.005	74.41	0.508	0.611
70	0.972	0.842	-0.023	81.27	0.528	0.400
80	0.959	0,925	-0.042	87.35	0.546	0,128
90	0.963	0.963	-0.023	88.21	0.524	0.088
100	0.928	0.896	-0.071	92.97	0.580	-0.139
110	0.959	0.830	-0.089	102.59	0.608	-0.566
120	1.019	0.732	-0.093	104.47	0,628	-0.622
130	0.999	0.550	-0.110	115.77	0.700	-0.922
135	1.094	0.512	-0.106	113.88	0.707	-0.861
140	1.137	0.439	-0.092	122.36	0.711	-1.080
145	1.210	0.379	-0.084	125.39	0.722	-1.122
150	1.261	0,310	-0.065	133.38	0.710	-1.250
155	1.249	0.232	-0.072	138.35	0.812	-1.218
160	1.262	0.173	-0.054	145.00	0.817	-1.218
165	1.261	0.120	-0.042	153.43	0.851	-1.218
170	1.133	0.067	-0.021	156.44	0.819	-1.045
175	0.979	0.027	-0.008	164.20	0.814	-0.905
180	0.984	0.000	0.000	180.00		-0.927

Table. 4 Wind Force Coefficient of Mammoth Tanker M Maru (Mid Bridge type) (Full Load Condition)

φ°	C_R	C_Y	C_M	a"	^a 1.	k
0	1.32	0.000	0.000	0.0		1.000
5	1.315	0.031	0.009	5.7	0.205	1.021
10	1.312	0.087	0.017	15.0	0.315	1.061
15	1.087	0.112	0.024	21.0	0.321	0.959
20	1.000	0.156	0.019	28.5	0.385	0.939
30	0.971	0.306	0.026	47.4	0.415	0.918
40	0,909	0.444	0.029	61.8	0.437	0,776
50	0.853	0.543	0.016	69.8	0.469	0,653
60	0.837	0.656	0.020	76.1	0.468	0.531
70	0.847	0.756	-0.000	81.5	0.498	0.367
80	0.782	0.762	-0.015	84.4	0.519	0.245
90	0.838	0.837	-0.029	81.4	0.535	0.122
100	0.885	0.863	-0.038	88.7	0.546	0.029
110	0.826	0.743	-0.035	102.7	0.570	-0.265
120	0.915	0.718	-0.079	103.7	0.610	~0.571
130	0.991	0.624	-0.078	110 6	0.628	-0.816
140	1.011	0.494	-0.078	121 0	0.662	-0.918
150	1.088	0.350	-0.054	146 0	0.699	-1.021
160	1.077	0.194	-0.046	159.0	0.782	-0.939
100	1.087	0.144	-0.035	164 3	0.823	-1.163
170	1.439	0.099	-0.018	175 0	0.835	-1 021
175	1.310	0.020	0.000	180.0		-1.000
100	1.524	0.000				1.000

Table. 3 Wind Force Coefficient of Mammoth Tanker M Maru (Aft Bridge type)

(Full Load Condition)

$arphi^\circ$	C_R	C_Y	C_M	α°	$^{\prime\prime}L$	k
0	1.404	0.011	0.000	1.9		1.000
5	1.320	0.076	0.006	13.4	0.401	0.936
10	1.287	0.109	0.019	18.7	0.320	0.950
20	1.143	0.220	0.032	35.6	0.349	0.903
-30	1.086	0.368	0.020	51.6	0.444	0.845
40	1.093	0.553	0.024	65.4	0.455	0.758
50	1.065	0.701	0.001	73.4	0.499	0.609
60	0.999	0.790	-0.007	77.2	0.510	0.530
70	1.035	0.938	-0.020	83.9	0.522	0.299
80	1.033	1.008	-0.030	86.7	0.530	0.171
90	1.021	1.020	-0.041	91.6	0.541	-0.085
100	1.034	1.008	-0.068	93.6	0.568	-0.193
110	0.989	0.894	-0.087	97.3	0.598	-0.343
120	1.050	0.829	-0.103	103.0	0.625	-0.583
130	1.153	0.762	-0.117	105.9	0.654	-0.653
140	1.230	0.630	-0.115	112.8	0.684	-0.793
150	1.422	0.519	-0.103	122.3	0.700	-0.967
160	1.514	0.331	-0.078	138.7	0.738	-1.132
170	1.429	0.145	-0.006	157.5	0.549	-1.048
175	1.440	0.078	-0.020	167.2	0.757	-1.022
180	1.513	0.009	-0.000	178.5		~1.074

Table. 5 Wind Force Coefficient of Mammoth Tanker T Maru (Ballasted Condition)

$arphi^\circ$	C_R	C_Y	См	$lpha^{\circ}$	a_L	k
0	0.815	0.000	0.000	0.0		1.000
5	0.703	0.015	0.003	16.0	0.282	0.853
10	0.833	0.039	0.006	28.7	0.344	0.978
15	0.968	0.074	0.009	47.8	0.384	0.959
20	0.984	0.113	0.014	54.9	0.371	0.945
25	1.094	0.176	0.018	62.2	0.396	1.010
30	1,151	0.251	0.027	62.5	0.391	1.148
35	1.149	0.326	0.028	72.6	0.412	0.840
40	1.228	0.441	0.033	73.2	0.424	0.984
45	1.152	0.509	0.034	76.5	0.433	0.828
50	1.134	0.599	0.039	76.7	0.434	0.884
60	1.064	0.748	0.031	82.1	0.458	0.589
70	1.020	0.875	0.016	83.6	0.481	0.509
80	0.973	0.936	0.001	87.6	0.499	0.192
90	0.998	0.998	-0.025	90.2	0.525	-0.010
100	0.970	0.933	-0.042	90.7	0.546	-0.047
110	0.989	0.849	-0.046	92.7	0.555	-0.214
120	0.961	0.676	-0.068	97.2	0.601	-0.480
130		0.550	-0.073	92.2	0.634	
135	0.998	0.441	-0.063	102.0	0.643	-0.648
140	1.094	0.393	-0.064	103.7	0.664	-0.713
145	1.076	0.306	-0.064	106.2	0.711	-0.774
150	1.126	0.245	-0.057	110.3	0.735	-0.846
155	1.134	0.183	-0.034	114.7	0.686	-0.899
160	1.113	0.128	-0.028	123.3	0.725	-1.026
165	1.038	0.080	-0.017	135.2	0.711	-1.081
170	0.733	0.034	-0.011	145.5	0.819	-0.822
175	0.721	0.015	-0.003	156.5	0.726	-0.837
180	0.578	0.000	0.000	180.0		-0.709

Table. 6 Wind Force Coefficient of Mammoth Tanker M Maru (Aft Bridge type)

(Ballasted Condition)

$arphi^\circ$	C_R	C_Y	C_M	α°	^{a}L	k
0	1.091	0.017	0.000	4.2		1.000
10	1.110	0.117	0.024	26.0	0.289	1.004
20	1.183	0.266	0.046	46.8.	0.324	1.038
30	1.178	0.428	0.049	61.8	0.384	0.970
40	1.167	0.596	0.052	71.0	0.411	0.868
50	1.133	0.748	0.051	77.4	0.430	0.717
60	1.056	0.836	0.036	79.9	0.456	0.622
70	1.019	0.920	0.019	83.8	0.478	0.415
80	1.015	0.989	-0.004	86.4	0.505	0.252
90	1.030	1.030	-0.032	89.2	0.532	0.060
100	1.019	0.995	-0.071	92.0	0.572	-0.147
110	1.064	0.963	-0.092	95.0	0.596	-0.356
120	1.067	0.843	-0.115	100.8	0.637	-0.669
130	1.178	0.781	-0.140	101.4	0.679	-0.670
140	1.209	0.630	-0.140	105.5	0.723	-0.738
150	1.314	0.495	-0.117	114.0	0.737	-0.931
160	1.362	0.336	-0.103	126.8	0.765	-1.049
170	1.201	0.145	-0.043	149.8	0.803	-1.057
180	1.152	0.031	-0.009	172.7		-1.045

Table. 8 Wind Force Coefficient of Container Ship (Full Load Condition)

k $C_{R'}$ C_Y C_M α ^{a}L φ' 0 0.810 0.005 -0.000 1.6 1.000 0.357 23.2 0.973 5 0.840 9.0760.010 10 0.919 0.140 0.016 37.7 0.383 0.995 0.020 15 1.052 0.218 48.20.400 1.086 20 0.03258.6 1.1940.3220.398 1.106 30 1.364 0.534 0.030 69.0 0.441 1.136 0.649 35 0.033 72.3 0.447 1.189 1.417 76.1 .40 1.394 0.7380.0340.452 1.036 50 1.414 0.949 0.037 0.459 0.863 80.7 1.052 60 1.317 0.02782.3 0.473 0.786 701.178 1.067 0.01184.9 0.489 0.527 80 1.179 1.148 -0.019 0.516 0.510 85.4 90 -0.0441.176 0.538 0.298 1.175 87.4 100 1.154 1.127 -0.07789.6 0,568 0.037 1.037 -0.096 1101.142 93.10.593 -0.318 1200.917 -0.1090.620 -0.601 1.146 96.9 130 1.260 0.843 -0.134100.3 0.659 -0.8740.715 -0.128 1401.355 104.8 0,679 -1.038 0.641 145 1.398-0.120107.40.689 -1.1171501.402 0.548-0.107111.1 0.696 -1.195160 1.365 0.374 -0.080 120.0 0.715 -1.193 1651.183 0.254-0.060 129.2 0.747-1.167 1701,061 0.174~0.045 138.8 0.765 ~1.057 0.898 0.092 -0.028 175153.6 0.815 -1.099180 0.760 0.0140.000 -0.977175.1

Table. 7 Wind Force Coefficient of Mammoth Tanker M Maru (Mid Bridge type)

(Ballasted Condition)

C^{*}	C_R	C_Y	C_M	α°	^{a}L	k
0	1.113	0.000	0.00	0.0		1.000
10	0.966	0,090	0.033	23.8	0.187	0.881
20	1.012	0.233	0.058	49.2	0.254	0.864
30	1.030	0.363	0.071	62.9	0.304	0.797
40	0.933	0.461	0.073	68.9	0.339	0.780
50	0,942	0.617	0.066	76.0	0.390	0.661
60	0.946	0.747	0.053	77.8	0.428	0.661
70	0.909	0.822	0.034	83.7	0.458	0.390
80	0.923	0.897	0.008	86.7	0.491	0.220
90	0.949	0.960	-0.022	86.9	0.524	0,220
100	0.915	0.893	-0.053	88.2	0.559	0.119
10^{-1}	0.935	0.850	-0.072	94.0	0.584	-0.259
20	1.030	0.814	-0.105	100.2	0.629	-0.627
30	1.111	0.731	-0.123	103.1	0.671	-0.729
40	1.089	0.546	-0.120	111.0	0,723	-0.898
50	1.131	0.377	-0.100	123.1	0.774	-1.051
60	1.101	0.241	-0.069	131.5	0.794	-1.017
70	1.085	0.067	-0.048	155.9	0.949	-0.983
80	1.264	0.000	0.000	180.0		-1.136

Table. 9 Wind Force Coefficient of Car Carrier

(Full Load Condition)

$arphi^\circ$	C_R	C_Y	C_M	α	^{a}L	k
- 0	0.937	0.010	0.000	3.3		1.000
5	1.015	0.093	0.014	27.9	0.340	0.971
10	1.169	0.173	0.032	43.6	0.307	1.000
20	1.536	0.391	0.067	63.4	0.327	1.099
25	1.666	0.522	0.085	69.4	0.336	1.105
30	1.712	0.646	0.097	73.9	0.349	1.049
35	1.800	0.803	0.125	77.8	0.344	0,983
40	1.796	0.926	0.143	79.4	0.345	0.998
45	1.692	0.995	0.135	81.2	0.363	0.869
50	1.482	0.977	0.128	82.3	0.368	0.698
55	1.570	1.035	0.136	82.2	0.367	-0.810
60	1.452	1.151	0.106	83.7	0.407	0.710
70	1.394	1.257	0.077	85.3	0.438	0.592
-80	1.224	1.191	0.041	86.2	0.465	0.417
-90	1.343	1.341	0.014	87.2	0.489	0.380
100	1.263	1.231	-0.005	88.5	0.504	0.184
110	1.206	1.092	-0.053	89.5	0.549	-0.047
120	1.262	1.005	-0.081	92.4	0.581	-0.246
130	1.346	0.893	-0.110	94.8	0.624	-0.412
140	1.420	0.737	-0.101	98.2	0.639	-0.552
145	1.477	0.663	-0.095	100.5	0.645	-0.648
150	1.516	0.580	-0.084	103.1	0.646	-0.696
155	1.562	0.502	-0.074	106.2	0.650	~0.763
160	1.504	0.396	-0.044	112.4	0.615	-0.863
170	0.946	0.124	-0.022	142.2	0.687	-0.827
175	0.948	0.084	-0.013	152.9	0.658	-0.859
180	0.791	0.011	0.000	175.4		-0.773

Table. 10 Wind Force Coefficient of Container Ship (Ballasted Condition)

$ \varphi^{2} $	C_R	C_Y	C_M	α^{2}	"L	k
0	0.778	0.004	-0.005	1.4		1.000
10	0.838	0.145	0.020	38.5	0.352	0.876
20	1.171	0.331	0.040	55.3	0.378	1.137
30	1.331	0,540	0.044	66.6	0.415	1,159
40	1.365	0.739	0.039	74.0	0.445	1.066
50	1.310	0.891	0.038	79.2	0.455	0.814
60	1.200	0.966	0.035	81.2	0.462	0.713
70	1.160	1.049	0.025	82.1	0.475	0.687
80	1.131	1.099	0.006	84.2	0.493	0.539
90	1.097	1.095	-0.016	86.4	0.515	0.318
100	1.119	1.093	-0.045	88.5	0.541	0.135
110	1.099	1.002	-0.068	93.3	0.568	-0.268
120	1.197	0.970	-0.103	95.5	0.607	-0.441
130	1.289	0.886	-0.131	97.0	0.648	-0.501
140	1.382	0.758	-0.132	103.4	0.674	-0.865
150	1.489	0.623	-0.112	108.8	0.680	-1.024
160	1.417	0.434	-0.084	116.8	0.696	-1.040
170	1.049	0,205	-0.046	135.3	0.725	-0.960
180	0.705	0.015	-0.004	175.0		-0.849

Table. 11 Wind Force Coefficient of Car Carrier

(Ballasted Condition-Standerd)

$arphi^\circ$	C_R	C_Y	C_M	$lpha^{\circ}$	^{a}L	k
0	0.684	0.014	-0.004	6.1		1.000
10	1.017	0.163	0.033	47.8	0.289	1.146
20	1.374	0.365	0.065	67.7	0.318	1.159
30	1.596	0.610	0.102	75.8	0.331	1.253
40	1.599	0.830	0.143	80.6	0.327	1.075
50	1.417	0.936	0.126	82.4	0.363	0.983
60	1.355	1.075	0.101	83.6	0.405	0.947
70	1.279	1.154	0.074	85.1	0.435	0.778
80	1.234	1.201	0.043	86.1	0.462	0.640
90	1.267	1.265	0.010	87.1	0.491	0.499
100	1.231	1.200	-0.021	87.9	0.517	0.346
110	1.241	1.124	-0.051	89.8	0.546	0.017
120	1.306	1.042	-0.087	92.1	0.584	-0.300
130	1.456	0.969	-0.113	93.3	0.617	-0.438
140	1.525	0.796	-0.109	97.3	0.637	-0.797
150	1.518	0.583	-0.085	103.3	0.648	-1.066
160	1.494	0.400	-0.069	111.2	0.673	-1,202
170	1.089	0.178	-0.036	130.9	0.706	-1.185
180	0.721	0.015	0.000	173.5		-1.036

Table. 12 Wind Force Coefficient of Car Carrier (Ballasted Condition-Trim by Stern)

Table. 13 Wind Force Coefficient of Car Carrier (Ballasted Condition-increased Two-Deck)

φ°	$C_{\mathcal{K}}$	C_Y	C_M	α	<i>a</i> I.	k
0	0,702	0.002	0.000	0.9		1.000
15	1.121	0.233	0.053	56.0	0.269	1.129
30	1.538	0.593	0.104	75.8	0.324	1.118
45	1.504	0.891	().140	81.8	0.341	0.942
60	1.342	1.066	0.111	83.8	0.395	0.876
75	1.233	1.163	0.073	85.5	0.436	0.678
90	1.269	1.267	0.021	87.1	0.482	0.473
100	1.226	1.195	-0.020	87.8	0.517	0.332
105	1.249	1.182	-().()36	88.4	0.531	0.234
120	1.317	1.052	-0.083	92.5	0.580	-0.339
135	1.497	0.892	-0.107	95.5	0.621	-0.611
150	1.582	0.613	-0.083	103.2	0.636	-1.026
165	1.348	0.290	-0.053	121.1	0.679	-1.247
180	0.742	0.016	0.000	173.3		-1.047

$ arphi ^2$	C_R	C_Y	C_M	α	^{d}L	k
0	0.627	-0.002	-0.002	-1.0		1.000
10	1.053	0.175	0.037	51.4	0.284	1.182
20	1.508	0.395	0.075	67.7	0.303	1.388
30	1.682	0.640	0.105	76.8	0.335	1.260
.10	1.657	0.857	0.144	81.3	0.330	1.116
-50	1.513	0.997	0.124	82.6	0.374	1.126
60	1.343	1.065	0.096	84.3	0.409	0.949
70	1,260	1.138	0.070	86.0	0.438	0.671
80	1.307	1.273	0.038	87.1	0.469	0.562
-90	1.243	1.242	0.014	87.8	0.488	-0.410
1(0)	1.260	1.229	-0.025	88.7	0.521	0.224
110	1.251	1.133	-0.055	90.9	0.550	-0.158
120	1.363	1.086	-0.081	92.3	0.575	-0.367
130	1.493	().990	-0.108	94.2	0.610	-0.613
140	1.618	0.840	-0.101	97.4	0.627	-0.915
150	1.748	0.670	-0.089	101.7	0.635	-1.150
160	1.635	0.434	~0.068	110.5	0.659	-1.318
170	1.214	0.200	-0.039	129.2	0.697	-1.334
180	0.707	0.009	0.000	176.1		-1.066

Table. 14 Wind Force Coefficient of Two-Boat Stern-Trawler (Full Load Deperture)

ç	C_k	C_Y	C_M	α°	^{a}L	k
0	0.867	-0.033	-0.014	-7.0		1.000
5	0.941	0.103	0.007	20.0	0.427	1.047
10	1.062	0.230	0.034	40.0	0.349	1.015
20	1.323	0.461	0.078	61.9	0.331	0,915
30	1.588	0.749	0.111	76.1	0,352	0.690
40	1.741	1.023	0.121	79.3	0.382	0.706
45	1.686	1.109	0.102	78.7	0.408	0.822
50	1.673	1.175	0.089	79.2	0.424	0.831
60	1.599	1.311	0.073	81.2	0.444	0.750
70	1.506	1.376	0.052	82.9	0.462	0.635
80	1.404	1.363	0.018	81.9	0.487	0.721
85	1.372	1.353	0.000	82.9	0.500	0.622
90	1.418	1.412	-().()11	84.4	0.508	0.515
95	1.431	1.438	-0.025	85.8	0.518	0.392
100	1.443	1.415	-0.042	88.5	0.530	0.136
110	1.458	1.340	-0.093	94.4	0.570	-0.381
120	1.562	1.280	-0.140	98.3	0.609	-0.692
130	1.638	1.138	-0.143	104.3	0.626	- 1.078
140^{-}	1.675	0.927	-0.129	112.0	0.639	-1.380
150	1.657	0.704	-0.117	119.0	0.666	-1.450
160	1.455	0.461	-0.083	126.4	0.682	-1.264
170	1.292	0.284	-0.040	139.1	0.613	-1.217
175	1.124	0.125	-0.018	159.7	0.647	-1.248
180	0.987	0.032	-0.006	173.9		-1.140

Table. 15 Wind Force Coefficient of Two-Boat Stern-Trawter (Full Load Arrival)

$arphi^{'}$	C_R	C_Y	C_M	α°	^{a}L	k
0	0.897	-0.047	-0.011	-10.1		1.000
5	0.920	0.104	0.011	21.2	0.387	1.015
10	1.108	0.234	0.043	41.1	0.314	1.015
20	1.409	0.479	0.086	63.5	0.319	0.934
30	1.663	0.768	0.121	76.6	0.342	0.693
40	1.718	0.994	0.125	79.1	0.374	0.723
50	1.663	1.162	0.103	79.2	0.411	0.839
60	1.570	1.282	0.080	81.0	0.437	0.766
70	1.513	1.380	0.053	83.5	0.461	0.597
80	1.428	1.388	0.015	83.2	0.489	0.622
90	1.409	1.405	-0.028	85.3	0.520	0.432
100	1.398	1.369	-0.071	89.5	0.552	0.047
110	1.439	1.319	-0.120	94.3	0.591	-0.376
120	1.509	1.191	-0.163	99.4	0.637	-0.766
130	1.603	1.098	-0.172	105.3	0.657	-1.138
140	1.689	0.923	-0.158	111.9	0.671	-1.402
150	1.642	0.687	-0.135	118.1	0.697	-1.387
160	1.338	0.403	~0.094	127.9	0.734	-1.190
170	1.151	0.234	-0.048	140.7	0.706	-1.080
175	1.031	0.116	-0.022	158.9	0.697	-1.138
180	0.923	0.031	-0.006	173.4		-1.036

Table. 16 Wind Force Coefficient of Two-Boat Stern-Trawler (Ballasted Condition)

¢°	C_R	C_Y	C_M	α^{2}	^{a}L	k
5	0.811	0.100	0.017	23.5		1.000
10	0.948	0.210	0.047	44.6	0.281	0.950
20	1.200	0.413	0.090	61.0	0.282	0.878
-30	1.483	0.693	0.128	78.3	0.315	0.623
40	1.593	0.920	0.141	78.4	0.347	0.819
50	1.534	1.065	0.124	77.1	0.384	1.059
55	1.449	1.090	0.113	77.2	0.396	1.073
59	1.408	1.122	0.100	78.6	0.411	0.987
80	1.208	1.163	0.045	80.2	0.462	0.878
95	1.151	1.140	-0.020	86.1	0.518	0.340
100^{-1}	1.208	1.180	-0.035	87.7	0.530	0.196
120	1.278	1.044	-0.139	97.8	0.633	-0.619
130	1.321	0.912	-0.152	104.3	0.667	-1.008
1.40	1.381	0.758	-0.145	111.4	0.691	-1.290
150	1.395	0.585	-0.125	118.3	0.714	-1.370
160	1.217	0.380	-0.085	125.5	0.724	-1.182
165	1.134	0.303	-0.062	129.9	0.707	-1.102
170	1.031	0.230	-0.039	136.4	0.673	-1.051
175	0.892	0.107	-0.019	157.1	0.679	-1.094
180	0.762	0.011	-0.005	179.7		-1.000

Table. 17 Wind Force Coefficient of Bonito-Tuna Fishing Boat (Full Load Condition)

φ^{*}	C_R	C_Y	C_M	α°	^a 1.	k
7.5	0.716	0.106	0.033	26.9	0.195	0.928
10	0.719	0.133	0.044	33.5	0.168	0.893
15	0.826	0.190	0.052	40.2	0.225	1.002
20	0.916	0.287	0.060	54.2	0.290	0.921
25	0.955	0.357	0.060	61.7	0.331	0.855
30	1.088	0.463	0.056	64.7	0.378	0.975
35	1.129	0.534	0.048	66.9	0.410	1.014
40	1.153	0.608	0.044	68.5	0.427	1.062
45	1.080	0.632	0.040	70.9	0.436	0.975
50	1.093	0.682	0.034	71.7	0.442	1.025
60	1.031	0.769	0.028	75.5	0.463	0.887
70	1.011	0.848	0.008	80.4	0.490	0.641
80	0.947	0.849	-0.003	83.0	0.504	0.162
90	0.937	0.862	-0.036	86.5	0.541	0.237
100	0,916	0.827	-0.092	89.6	0.611	0.026
110	0.965	0.813	~0.128	94.2	0.656	~0.303
120	1.057	0.806	-0.160	98.5	0,699	-0.539
130	1.063	0.689	-0.168	104.0	0.744	~0.821
140	1.108	0.580	-0.160	112.6	0.776	-1,062
150	1.040	0.398	-0.132	125.4	0.832	-1.269
160	0.968	0.283	-0.100	130.2	0.853	-1.087
168.5	0.825	0.163	-0.064	144.6	0.893	-1.016

36

2	7
υ	1

k

1.000

0.953

0.837

0.867

0.936

1.184 1.146

1.019

0.736

0.536

0.303

-1,287

"*I*.

14 0.285

26 0.239

46 0.274

57 0.322

59 0.391

64 0.424

75 0.461

79 0.489

83 0.513

0.448

 $\begin{array}{c} 90 \\ 90 \\ 90 \\ 0.535 \\ -0.018 \\ 99 \\ 0.570 \\ -0.366 \end{array}$

108 0.603 -0.703

116 0.637 -0.909 127 0.667 -1.212

149 0.740 -1.520

162 0.790 -1.492

0.701 -1.450

Table. 18 Wind Force Coefficient of Drift Table. 19 Wind Force Coefficient of Drift Netter (A type)

0.000 180

180 1.275 0.000

	•••											
φ "	C_R	C_Y	C_M	ά	"L	k	$arphi^{\circ}$	C_R	C_Y	C_M	, α [`]	
0	0.998	0.000	0.000	- 0		0.998	0	1.020	0.000	0.000	0	
5	1.005	0.083	0.019	13	0.276	0.992	5	0.989	0.087	0.018	14	(
10	0.867	0.155	0.034	28	0.283	0.802	10	0.908	0.153	0.039	26	(
20	1.027	0.327	0.065	47	0.300	0.834	20	1.053	0.326	0.073	46	(
30	1.266	0.542	0.094	56	0.327	1.025	30	1.226	0.533	0.094	57	(
40	1.330	0.700	0.082	57	0.383	1.239	40	1.343	0.716	0.078	59	(
50	1.292	0.877	0.068	67	0.422	1.008	50	1.323	0.877	0.066	64	(
60	1.232	0.971	0.054	70	0.444	0.997	60	1.287	1.015	0.052	70	(
70	1.140	1.025	0.042	76	0.459	0.686	70	1.148	1.027	0.040	75	4
80	1.024	0.994	0.015	81	0.485	0.409	80	1.039	1,000	0.011	79	(
90	1.009	1.004	-0.018	83	0.518	0.306	90	0.981	0.975	-0.012	83	(
100	0.941	0.923	-0.057	89	0.562	0.007	100	0.916	0.898	-0.031	90	(
110	1.033	0.946	-0.069	97	0.573	-0.349	110	0.899	0.820	~0.057	99	,
120	1.068	0.863	-0.098	105	0.613	-0.681	120	0.958	0.762	-0.078	108	,
130	1.116	0.722	-0.109	117	0.651	-1.085	130	1.012	0.665	-0.091	116	1
140	1.289	0.630	-0.118	128	0.687	-1.395	140	1.151	0.565	-0.094	127	(
150	1.487	0.468	-0.096	142	0.705	-1.716	150	1.342	0.452	-0.090	139	
160	1.558	0.314	-0.085	151	0.771	-1.670	160	1.477	0.318	-0.076	149	
170	1.542	0.183	-0.048	161	0.762	-1.543	170	1.512	0.168	-0.048	162	

-1.275

Netter (B type)

(注) aL は a/L とする。

180

0.000

180 1.313 0.000