FRP 積層T型継手における隅肉の有効性

山 崎 福太郎* 青 木 義 則*

Effectiveness of Matting-in T-Type Connections of FRP Laminates

By

Fukutaro YAMAZAKI and Yoshinori AOKI

Abstract

The FRP laying-up of matting-in connection forming T-type is to be secondary bonds depending on the reinforcement each other.

These matting-in angles are simplified by built-in I-beams formed flange and web, and thickness of web and width of fillet-leg are varied.

The results obtained from these experiments can be summerized as follows:

(1) The dimensional offect on a leg of fillet depends on σ_m/σ_0 (stress diminution factor).

Where σ_0 gives maximum bending stress at the top of flanges in the solid I-beam, and σ_m gives decrease of stress owing to adherent matting-in angles.

The values 0. $4 \sim 0.6$ of this factor σ_m/σ_0 are suitable and conditions are obtained in 0. $5 \sim 0.6$ of the factor $a/(h_1/2)$.

Where a represents the leg of fillet and h_1 is the effective web height.

 σ_m becomes excessive in case of below 0.5, and σ_m decreases, in above 0.7, but these are not of practical use.

(2) It is proved that the legs of fillets are to be reasonable dimensions when they are $35 \sim 50$ millimetres.

1. まえがき

F R P板によって構成される I 型組立ばりはリベッ トによる結合が実用性に乏しく,また鋼構造のように 完全な溶接もできない。したがって**F R P**板による直 交組立継手はジョイント部を積層隅肉(マットイン) によって結合し,この部分の補強と樹脂同士の硬化に 頼らざるを得ない。

このような結合継手はFRP構造物,例えばFRP 小型船舶(救命艇を含む)等における部材構成にしば しば用いられている。艇側外板と空気箱サイドベン チ,外板と肋板等の直交接合箇所は、すべてこのマッ トインによって結合されている。

われわれは隅肉を有する継手様式を**FRP**フランジ およびウエブから成るI型ばりに単純模型化し,ウエ

* 大阪支所 原稿受付:昭和47年6月7日

ブの板厚および隅肉の脚長・板厚を変えた試験体によ り,隅肉の寸法効果を調べるため,曲げ試験による研 究を行なった。

これらの実験結果から,**FRP板組**立ばりにおける 積層隅肉の適正寸法,強度および,その有効性を求め た。

2. 試験体の形状および変数

試験体の形状は**FRP**板の組立**I**型ばりとして,便 宜上断面の高さ h,幅 b およびフランジ板厚 t_f を一 定にし,次のような寸法のものを用いた。

 ウェブの板厚 b₁ は5mmおよび7mmとし、 5mm厚のものはM-605×3枚の積層、および7mm 厚はM-455×1枚+M-605×4枚でともにハンドレ イアップによるFRP積層板である。

	Sha	$\begin{array}{c c} & & & & & \\ \hline & & & & \\ \hline & & & & \\ \hline & & & &$											in mm									
Items Kindness				Both Faces Fillets											one side Fillet							
Const.	Flange	b		75										75								
	Height	h		150											150							
	Thick. Flange	t_f	5 (M600+M600)											5 (as left)								
	Effect. Height	h_1		140										140								
Vari.	Thick. Web	<i>b</i> ₁		5 (M6	00 + M	600 + M	600)		7 $(M450 + M600 + M600 + M600 + M600)$						as left							
	T. Fillet	ta	3			5			3			5			7			3-7				
	Leg Fillet	a	25	35	45	25	35	45	25	35	45	25	35	45	25	35	45	25	35		35	45
		<i>a</i> ′	"	"	35	"	"	35	"	34	"	"	34	"	"	34	34	"	"		34	34
SI	pecimen No.	F-2	F-3	F -4	F-5	F-6	F-7	F-8	F-9	F-10	F-11	F-12	F—13	F-14	F-15	F-16	F—17	F-18		F30	F-31	

				FRP laminates						
Iter	ns	nomen-	Thick.	3 m m	5 mm	$\begin{array}{r} 7 \text{ mm} \\ M450 + M600 + M600 \\ + M600 + M600 \end{array}$				
		ciat.	comps. Unit	M600+M600	M600 + M600 + M600					
Tensile str	ength	σ_t	kg/mm ²	· 6.4	6. 8	8.0				
compressio	n St.	σ_c	kg/mm ²							
Bending St		σ_b	kg/mm ²	12.4	12.8	15. 2				
Elastic	Tension	E_t	kg/mm ²	940	940	940				
modulus	Bending	E_b	kg/mm ²	622	607	653				
Shearing S (Double	trength shear)	τ_d	kg/mm²	6. 25	6. 24	6. 29				
Poisson's r	atio	r		0. 30	0. 30	0. 38				
Glass conte	ent	G	%	26-27	26—27	28—29				

Table 2 Compositions of FRP laying-up plates and strength, elastic constants

Remarks; (1) Tests of the material carried out according to JIS K 6911.

(2) Above values are test-results of which test-pieces cut off from testing bodys.

 (2) 隅肉の板厚 ta は、3、5および7mmとし、 3mm厚はM-605×2枚で構成し、5および7mm のものは(1)と同じ構成にした。

(3) 隅肉の脚長 a は25, 35および 45mm の 3 種類 とし、これらを変数にとった試験片の個々の形状と計 画寸法は Table 1 に示すとおりである。

また,実際のFRP工作物(構造物)によっては直 交継手が片面に限る(ボックス型断面における内面の 隅肉等)場合もあるので,これらを対象とした試験片 についても実験を行なった。

3. **FRP**板素材の機械的性質

組立ばりを構成しているFRP板の各種材料試験を 行なった結果, Table 2 の成績が得られた。

4. 継手部分の接着面応力

いま, リベットによって結合されている I 型ばりを 曲げた場合, フランジがウェブにそって滑ると, リベ ットがフランジからウェブに伝える力は,

$S = \frac{\Delta M}{L} \int y \, dA$

ここで 4M は例えばリベット心距 e の両端面での 曲げモーメントの差を表わし, I_z は中立軸に対する 断面 2次モーメント, 積分はフランジ面積の中立軸に 対するモーメントである。またリベット断面のせん断 力を V とすると,

 $\Delta M = Ve$

となり、フランジがウエブにそって滑ると、リベット はウエブの両側面でせん断力を受けることになるか ら、せん断力がこの両面に等分して働くとすると、リ ベットのせん断応力は、

$$\tau_{R} = \frac{S}{2\frac{\pi d^{2}}{4}} = \frac{2Ve}{\pi d^{2}I_{z}} \int y \, dA^{1}$$
(1)

しかし**F R P**の接着継手はリベット ではなく,積 層,隅肉によって結合されているため,隅肉接着シャ ーにおきかえねばならない。そこでこの場合,上記 *e* を接着面の単位長さ当たりにおきかえれば,

 $S = 2ea\tau_f$ (2)

ここで a は隅肉脚長とし、 $sc \tau_f$ は隅肉とウエ ブ層間の曲げによって生じる平均接着せん断応力と見 做した (仮定・1)。ただし、この層間に起るシャーは 接着界面にのみ起るものとし、 F R Pの層間剝離の影 響等は無視した (仮定・2)。

そこで,(1)式に,(2)式を代入して, てfを求めれば,

$$\tau_f = \frac{V}{2aI_z} \int y \, dA \tag{3}$$

このようにして、曲げによる接着面での隅肉せん断 応力の平均値は上式によって与えられると仮定した。 ウェブがフランジと隅肉を介して滑るに要する最大力 は、ウェブ板に対して隅肉が両面(または片面)から ストラップされているダブルシャーとシングルシャー に対応するはずである。つまりフランジー隅肉一ウェ ブに伝えることのできるせん断力の限度と見做せるか

(289)

Fig. 1 Ratio of τ_f/τ_D or τ_f/τ_S versus leg of fillet (a)

ら、このせん断力の限界値(平均応力 で τp または τs)を実験的に求め、計算による τf と比較し、とく に、隅肉の厚みおよび脚長によってその関係がどのよ うに影響するかを調べた。

引張せん断 (ダブルシャーまたはシングルシャー) と隅肉接着面シャーの関係を Fig. 1 に示す,即ち接 着が両面の場合,脚長 a のときの計算による τ_f は 幅 a で長さ l の接着面を有する引張試験片 (Fig. 1) でのダブルシャーのせん断応力 τ_D より小さくなって いる。もし逆の場合は,隅肉の用をなさないことにな る。

 t_a (脚長の板厚)=5mmおよび b_1 =5mm の試験片 についていえば、a=35mm では τ_f/τ_D =0.6、a= 45mm では τ_f/τ_D =0.3 に近い値となる。この比は a=25mm では 0.8~0.9 となり、 τ_f に近づくので 望ましくないといえる。また、片面接着の場合は、 Fig. 1 の左図に示すように、 τ_f に対する τ_s の比が 全般に、両面の場合より1に近い値になるので、片面 のみによる接着はなるべく避けた方が良い。

5. 曲げによる I 型断面の応力

曲げは、両端支持、中央集中荷重(3点曲げ)とし て、すべての試験片に対して曲げモーメントを一定に し,曲げ条件は,梁の最大曲げモーメント $M_0=0.52$ t-m,スパン=700 mm,最大荷重=3 tonとした。

この程度の I 型ばり曲げ実験では、深理論が適用さ れるものとして、深に生ずる最大曲げ 応力 σ_m とウ エブの最大せん断応力 τ_m および 平均せん断応力 τ_a 等を計算により求め、応力は抵抗線歪計によって計測 した。とくに断面のせん断応力を求めるため直角 3 軸 ロゼットタイプ²⁾ も併用し、各断面の応力分布を求令 た。

両面接着隅肉の代表的なもの3種類につき,応力分 布を Fig. 3 に,また片面隅肉のもの3種の応力分布 を Fig. 4 にそれぞれ示した。また一例として中央集 中荷重による曲げ試験における測定歪と荷重との関係 の一例を Fig. 2 に示した。

中央集中荷重、3 ton ($M_0=0.52 t-m$)の場合, 梁の応力分布は計算値とほぼ一致する。ただしせん断 力はウェブの幅がフランジの幅に較べて小さいときは せん断応力の最大値と最小値はあまり大差がなく,ウ ェブのせん断応力は近似的に等分布することになる。 ウェブの最大せん断応力を近似的に求めるにはウェブ に分布するせん断応力の合力が大体Vに等しく,ウェ ブがほぼせん断力を負担するものとしてとりあつかえ

(290)

Fig. 2 Load-strain curve

る。したがってせん断力をウエブだけの断面積で割っ た平均応力 τ_a も図に併記した。

6. 実験結果

6.1 ダブルシャー(またはシングルシャー)と隅肉シャーとの関係

隅肉の板厚 t_a を増し、脚長 a が大きければ、隅 肉接着シャー τ_f はダブルシャー τ_D と比較して小さ い。(Fig. 1 参照) a=35mm および $t_a=b_1=5$ mm ならば, τ_f はダ ブルシャーの 0.6 程度になり, a=45mm ならば, $\tau_f=0.3$ に近づく, a=25mm では接着力が充分でな いと考えられる。また片面隅肉はシングルシャー τ_s と対応するが, τ_f に余裕が少ないため、片面のみの 接着はなるべく避けた方が良い。

6.2 最大曲げ応力 *σ_m* と脚長 *a* の関係

Fig. 5 において, σ_0 とは 隅肉のない, 一体の理想的 I 型ばりにおける最大応力を意味し, また σ_m と

(291)

Where au_a represent a mean shearing stress.

Fig. 4 Distributions of bending stress and shearing stress (one side fillet)

Fig. 5 Maximum bending stress (σ_m/σ_0) versus leg of fillet $a/(h_1/2)$

は隅肉が付加された場合の最大曲げ応力である。つま り隅肉のない一体構成の Io に対して隅肉分だけ断面 を増した Im に対する曲げ応力を意味する。したがっ $\tau \sigma_m / \sigma_0$ の比は隅肉の増分による応力減少率を与え ている。横軸の h₁/2 はウエブ有効高さの 1/2 を示し、 $a/(h_1/2)$ は脚長との 比を示したものである。計算値 曲線と実験点がほぼ一致していることは、隅肉が重ね 接着ででき上ったものは一体ものとしてとりあつかえ ることの証左であろう。Fig. 5 は縦軸の σ_m/σ_0 なる 応力減少率に対する, 脚長 a の効果を示したもので, a/(h₁/2)が0.5程度が最も効果があると考えられ、0.5 以下では(h₁に対して a が小さい,即ち脚長が短か い場合) σ_m/σ_0 はかなり大となる。いま $h_1/2$ を一 定にして、脚長 a を 増せば、それは 隅肉の増分とな り、 **σ**m の減少につながる。しかしこれらは直線的に 下るものではなく, Fig. 5 に示すように, 初め急激 に下って、以後はかんまんになる。一方隅肉板厚とウ エブ板厚の比 t_a/b_1 をパラメーターとして、 σ_m/σ_0 の 変化を求めてみると,

> $t_a=2.1\sim3$ $b_1=7$ の組合せは、 σ_m/σ_0 が比較的大 きい。

> $t_{a}=5\sim7$ $b_{1}=7$ } の組合せは、 σ_{m}/σ_{0} が比較的小 さい。

これらの結果は隅肉の寸法をきめる場合の一つの指針 を与えることになる。 $a/(h_1/2)$ が0.7以上では応力は小さくなるが、減り 方が緩まんかつ脚長が長すぎて実用的でない。(もし この比=1では隅肉でなくウエブ全体のダブリングに なってしまうから無意味)したがって $a/(h_1/2)$ は0.5 ~0.7 が合理的で、適正寸法としては、この実験に関 する限り、 $a=35\sim50$ mm が良く、この場合 t_a/b_1 の 比は、0.7~1.0となり、 $t_a=5$ 、5mmに対して $b_1=5$ 、 7mm の組合せが良い、そして応力減少率は0.4~0.6 が期待できる。一方 $t_a=3$ 、3mmに対して、 $b_1=5$ 、 7mm の組合せ、つまりウエブの厚いものに薄い脚長 のものを組合せる場合、応力が大きくなることに留意 しなければならない。

また以上の関係を片面隅肉のものについても併記 (Fig. 5 の右側のグラフ)したが、同じ隅肉寸法に 対して応力減少率が0.7~0.8となり、応力の増加が目 立つ、したがって片面のみの隅肉接着はなるべく避け ることが望ましい。

6.3 せん断力 *τ*a と脚長の関係

6.2 の傾向とほぼ同じで、やはり $a=35\sim50$ mmが 適正であることが解る。ただし τ_a はせん断力をウエ ブだけの断面積で除した値である。

6.4
$$\sigma_m \geq \frac{\boldsymbol{t}_a \cdot \boldsymbol{a}(隅肉の断面積)}{\boldsymbol{b}_1 \cdot \frac{\boldsymbol{h}_1}{2}($$
ウェブの断面積)

Fig. 7 は応力減少率と面積比の関係を示したもの

Fig. 6 Mean shearing stress (τ_a/τ_0) versus leg of fillet $a/(h_1/2)$

Fig. 7 Maximum bending stress (σ_m/σ_0) versus ratio of cross section $(t_a \cdot a)/(b_1 \cdot h_1/2)$

で、隅肉の断面積は ウエブ断面積の 0.5~0.7 が 適当 で、この場合応力減少率は 0.4~0.6 となる。また、 b_1 (ウエブの板厚) による影響は少なく、 b_1 =3、5 そ して7mmに対してほぼ同じ傾向を示した。

7. 結 言

FRPT型積層継手における隅肉の有効性を要約すれば、次のとおりとなる。

28

(294)

(2) しかし隅肉マットインが厚ければ良いと言うものではなく,隅肉のエンドに大きな段付きができれば 局部的応力集中等が無視できなくなり,問題が残る。

(3) また、板厚の大きいウエブに薄い隅肉を接着したものは、 σ_m はあまり減らない。

(4) 本実験結果の範囲内で, 隅肉寸法決定の指針を 与えるとすれば, 脚長板厚 *t*a=5mm に対して *b*1 の 板厚は5mmおよび7mmが良く,この場合脚長aは 35mm~50mmが適当である。

参考文献

- S. Timoshenko: Strength of materials [(Part 1, Elementary theory and problems), [3rd edition, D. Van Nostrand co., (1955)
- 渡辺 理:ひずみゲージとその応用,日刊工業新 間社,(1968)