推進性能部 田 中 拓

1. プログラムの目的および概要

高速の海上輸送を目的とした新型式船舶研究の一部 として、半潜水船の推進性能の研究がすすめられてい る。このプログラムは、半潜水船の主船体として想定 した扁平没水体の船型(流線)を流線追跡の手法によ って求め、Lines および off-set になおして排水量等 の計算をおこない、諸力計算の入力データを作るもの で,流線追跡の条件としては、水面を固定壁近似、非 揚力体としており、今後自由表面をもつものに拡張す るよう計画されている。本プログラムは半潜水船主船 体設計に関連した具体的な目的をもって作成したもの であるが、水面を含む扁平没水体の性質を知る上には 一般的なプログラムとして使用できる。

プログラムは次の4つの要素で構成されている(図 -1 参照)

図-1 プログラムの構成

(1) プログラム名, FSL3

与えられた Source 分布と没水深度による流 線を求めて, X, Y, Z 方向の各速度成分を計算 し,流線の座標を計算する。計算結果は,次の 計算入力となるよう磁気テープ (MT-1) に記 録されるほか,作表することもできる。

- (2) プログラム名, MTCVMT 排水量等計算のプログラム FOH2 の入力磁 気テープ (MT-3) を MT-1 から編集するプロ グラム。
- (3) プログラム名, FOH2
 MT-3 を入力データとして, FSL3 で得られた流線から20本を指定して(計算機の容量による), off-setおよび排水量等を計算する。
- (4) プログラム名, MTTOMT MT-1 では各流線ごとに流線の起点から Runge-Kuttaの分割点における速度成分,座標 点が記録されている。諸力等の計算では各 section ごとにまとまっている方が扱いやすい ので, MT-1 を編集して MT-2 とし,以後の 科学計算の入力とする。

2. プログラムの内容

2.1 製作者等
 昭和48年3月
 推進性能部 田中 拓

日本ビジネスオートメーション 白木 孝宏 他 2.2 計算の基礎となる理論の概要

本プログラムで使用している座標軸および扁平没水 体の幾何学的な関連を 図-2 に示す。

船体は前後および左右に対称と考え, source 分布面 を水面と幅方向が平行で長さ方向に二次の camber を もった矩形板 (長さ ±1, 幅 ±b) とする。

$$m(x', y', z') = \sum_{j=0}^{3} \sum_{i=1}^{3} a_{ij}x^{i}y^{j}\cdots\cdots(1)$$
$$|x'| \le 1, |y'| \le b, z' = z'_{0} - c(1 - x'^{2})$$

このような source 分布を,速度 U=-1 の一様流中 においた時に生ずる流線は,適当な流線の出発点を与

1

(1)

図-2 扁平没水体と座標

えて, Runge-Kutta 法を用いて次の流線方程式を解け ばよい。

$$\frac{dx}{-1+u} = \frac{dy}{v} = \frac{dz}{w} \qquad \dots (2)$$

ただし,水面を固定壁近似とすれば,分速度は次式 で示される。

$$\begin{split} u &= \frac{1}{4\pi} \int_{-1}^{1} \int_{0}^{b} m(x', y', z')(x - x') \sum_{n=1}^{4} \frac{1}{r_{n}^{3}} dy' dx' \\ v &= \frac{1}{4\pi} \int_{-1}^{1} \int_{0}^{b} m(x', y', z') \Big[(y - y') \Big(\frac{1}{r_{1}^{3}} + \frac{1}{r_{3}^{3}} \Big) \\ &+ (y + y') \Big(\frac{1}{r_{2}^{3}} + \frac{1}{r_{4}^{3}} \Big) \Big] dy' dx' \\ w &= \frac{1}{4\pi} \int_{-1}^{1} \int_{0}^{b} m(x', y', z') \Big[(z - z') \Big(\frac{1}{r_{1}^{3}} + \frac{1}{r_{2}^{3}} \Big) \\ &+ (z + z') \Big(\frac{1}{r_{3}^{3}} + \frac{1}{r_{4}^{3}} \Big) \Big] dy' dx' \\ r_{2}^{2} \Big] &= (x - x')^{2} + \Big\{ (y - y')^{2} \\ (y + y')^{2} \Big\} + (z - z')^{2} \\ r_{4}^{2} \Big\} = (x - x')^{2} + \Big\{ (y - y')^{2} \\ (y + y')^{2} \Big\} + (z + z')^{2} \cdots (3) \end{split}$$

(3)式の計算は、y'の積分だけ解析的に行ない、x'の積分は simpson の数値積分によった。

流線の出発点 $p_n(x_0, y_0, z_0)$ は、没水深度が充分に 大きい場合は非揚力体であるから、 $z_0=z_0'$ として、 $|y_0| \le b$ で適当な x_0 から出発すればよい。水面に近 づくと流線は対称でなくなるので、 stagnation point の近傍を通る上下一対の流線を探す必要がある。この ため任意の $p_n(x_0, y_0, z_0)$ を与え、 $p_n(x_0, y_0, z_0-\varepsilon)$ の流線と x=1.0における w の符号を比較して、異 符号なら目的とする流線と考えている。 ε としては、 小さくとり過ぎると船体の外形の精度は上るが、時間 がかかるので常用 $\varepsilon=0.0025$ としている(全長=2.0)。 分速度 (u, v, w)および流線の座標 $p_n(x, y, z)$

が計算されると、MT-1 と LP に記録される。流線の

計算は,前後対称の場合は midship までで充分であ るが,将来自由表面条件のもとで計算することを予想 して船尾までの計算が選択できるようになっている。 計算分割点は常用のものを midship までで 45 点とし ている。

FOH2 における計算内容は次のとおりである。

- (1) 流線テーブルから off-set を求め作表する。
- (2) *L*, *B*, *D* を求める。

(3) 各 station (10点)の sectional area を求め,

(2)

排水容積を算出する。

- (4) 各 station (10点)の girth length を求め、 浸水表面積を算出する。
- (5) C_B, C_M, C_P を計算する。

流線を計算する本数は任意であるが, FOH2 の計 算には計算機容量の都合で流線20本以下に限定されて いる。この調整は, MT-3 の作成の際に MTCVMT で行なわれる。

磁気テープの format を 図-3 に示す。

2.3 プログラム用語および計算機種
 計算機種 TOSBAC 3400-30 (16 kW)
 オペレーションシステム TOPS 11 version 3,
 用語 FORTRAN

3. プログラムの検定

がある。

3.1 計算精度および誤差

解析的な計算結果との比較を行なっていないので完 全な計算精度の検定は現状では不明である。しかし,

- (1) 船首側から船尾端に至る流線の追跡を行ない,前後対称性からRunge-Kutta数値計算法の累積する誤差を調べたところ,流線の座標点は5桁以上,分速度に関しては6桁前後の精度
- (2) 前項で述べた, stagnation point を探す精度
 上の制限は,船体の外形に対しほぼ一様な誤差

を与える。時間を掛けることにより制度の向上 は期待できるが,長さ2mの外形に対し通常の 方法では 1mm 以下の精度をだすことは難し い。

(3) 従来の同種のプログラムによる計算結果との 比較では,実用上問題を生じていない。

3.2 計算所要時間

流線20本で船首から midship までの流線追跡では, 約3時間の計算時間を要す。 FOH2 および磁気テー プ編集プログラムは,オペレートが主要な時間となる。

4. プログラムの使用法について

本プログラムは,流線追跡法を主とした扁平没水体 の設計システムの基礎をなすもので,扁平没水体に加 わる諸力,圧力分布の計算,水面を自由表面条件とし た場合等への応用が可能なようになっており,一部を 計画している。

5. あとがき

本プログラムは,原子力試験研究費,「半潜水船の 推進性能の研究 01-4511」の一部として実施されたも のである。

また流線が 20本まででよい場合は,中間に MT を 介さず, FSL3 と FOH2 を一貫させたプログラムも 用意されている。

2. 変分法による造波抵抗極小の特異点分布の 計算プログラム

推進性能部 山 口 真 裕

1. プログラムの目的および概要

本プログラムは「特異点分布による造波抵抗係数の 中間積分表の計算プログラム」によって出力された造 波抵抗係数 Cw の中間積分表を使用して,ある条件の 下で造波抵抗が極小となるような特異点分布を求める プログラムの一つであり,船型を平底とするように加 えられる Bottom Doublet を付加条件として与えたと きの,最適の Side Source を求めるものである。

2. プログラムの内容

2.1 プログラムの番号および名称

Calculation of Optimum Source Distribution By Variational Method (Bottom Doublet)

- 2.2 製作者 推進性能部山口真裕
- 2.3 製作年月 昭和47年7月

2.4 計算の基礎となる理論の概要

ー様流れ V 中の特異点分布による C_W の中間積分 表 I_{ij} が用意されていれば,ある特異点分布——Side Source $m(\xi)$ と Bottom Doublet $b(\xi)$ が,

$$m(\xi) = \sum_{i=0}^{N} a_i \xi^i; \text{ S.S., } b(\xi) = \sum_{i=0}^{M} b_i \xi^i; \text{ B.D.}$$

で与えられたとき、Cw は

$$Cw = \sum_{i} \sum_{j} a_{i}a_{j}I_{SiSj} + 2\sum_{i} \sum_{j} a_{i}b_{j}I_{SiBj} + \sum_{i} \sum_{j} a_{i}b_{j}I_{SiBj}$$
ここに I_{SiSj} : S.S. と S.S. の I_{ij}
 I_{BiBj} : B.D. と B.D. の I_{ij}
 I_{SiBj} : S.S. と B.D. の I_{ij}

と表わすことができ、 C_W は容易に計算することができる。

そこで, 船型の排水容積 p や中央横切面積 A_{M} な どの幾何的条件に相当するものが, Side Source の分 布に与えられ, しかも, 船型を平底にする Bottom Doublet の分布 $b(\xi)$ が与えられているとき, 極小抵 抗を与える Side Source 分布は,

$$\frac{\partial F}{\partial a_i} = 0 \quad (i = 1, 2, \dots, m)$$
$$\frac{\partial F}{\partial \lambda_k} = 0 \quad (k = 1, 2, \dots, l)$$
$$\sum \sum K \quad F = C_W + \sum_k \lambda_k g_k$$
$$g_k = \sum_i a_i K_{ik} - h_k = 0 \quad (k = 1, \dots, l)$$

として得られる連立方程式を解くことによって求めら れる。

すなわち

 $[A] \cdot X = B$

$$\begin{bmatrix} \mathbf{A} \end{bmatrix} = \begin{pmatrix} 2I_{S_{1}S_{1}} & 2I_{S_{1}S_{2}} \cdots K_{11} & K_{12} \cdots \\ 2I_{S_{2}S_{1}} & 2I_{S_{2}S_{2}} \cdots K_{21} & K_{22} \cdots \\ \vdots & \vdots & \vdots & \vdots \\ K_{11} & K_{21} & \cdots & 0 & \cdots \\ K_{12} & K_{22} & \cdots & 0 & \cdots \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{X} = \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ \lambda_{1} \\ \lambda_{2} \\ \vdots \\ \end{pmatrix}, \quad \mathbf{B} = \begin{pmatrix} -2 \sum b_{j}I_{S_{1}B_{j}} \\ -2 \sum b_{j}I_{S_{2}B_{j}} \\ \vdots \\ h_{1} \\ h_{2} \\ \vdots \\ \end{pmatrix}$$
$$\therefore \quad \mathbf{X} = \begin{bmatrix} \mathbf{A}^{-1} \end{bmatrix} \cdot \mathbf{B} \\ = \begin{bmatrix} \mathbf{A}^{-1} \end{bmatrix} \cdot \mathbf{B} \\ = \begin{bmatrix} \mathbf{A}^{-1} \end{bmatrix} \cdot \mathbf{B}_{1} + \begin{bmatrix} \mathbf{A}^{-1} \end{bmatrix} \cdot \mathbf{B}_{2} \\ \mathbb{C} \subset \mathbb{K} \\ \mathbf{B}_{1} = \begin{pmatrix} 0 \\ 0 \\ \vdots \\ h_{1} \\ h_{2} \\ \vdots \\ \end{pmatrix}, \quad \mathbf{B}_{2} = \begin{pmatrix} -2 \sum b_{j}I_{S_{1}B_{j}} \\ -2 \sum b_{j}I_{S_{2}B_{j}} \\ \vdots \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ \vdots \\ \end{pmatrix}$$

(4)

[A-1]: [A] の逆行列

よって、極小造波抵抗を与える Side Source 分布 は、付帯条件の Bottom Doublet の係数 b_J と束縛条 件の h_k の一次式で表わされ、したがって、造波抵抗 はそれらの二次形式で表現される。

2.5 計算の手順

計算の手順は, 図-1 フローチャートに示すとおり である。

2.6 プログラム用語および計算機種 プログラム用語は FORTRAN IV で、利用機種は、 FACOM 270-20 である。 2.7 入 カ MAXXF, YYF(I) ……Side Source の分布面 ηs の ξ の最高次数およびその係 数 TFS.S. の分布深さ XFLL, YFLLS.S. の分布面 ns の平行部 の端部座標 (ξ_0 , η_0) MAXSXF, MXSZFW…S.S. の分布 $m(\xi, \zeta)$ の ξ , くの最高次数 FSLSS.S. の分布の肩部の *ξ*座標 MXBDXF, YBF(I).....Bottom Doublet の分布面 **η** B の ξ の最高次数および その係数 TBFB.D. の分布深さ MAXBXF, MXBYFW B.D. の分布 $b(\xi, \eta)$ の ξ , η の最高次数 FBS1, FBS2.....B.D. の & の分布範囲 =1: 前後対称 +1: 船体前半部のみ FK K_0L (=1/ F_n^2) DE1, DE2 ……………Cw の中間積分表計算の 0 の領域 TAB(K, K1)······Cw の中間積分表 AM, BM ……S.S. および B.D. の μ 修 正の値 μs, μв NW1, NW2………束縛条件の中の水線面およ び排水容積関係の条件 NW2, NW4………束縛条件の NW1, NW2 のそれぞれ拡張した条件 AV1(I), AV2(I), AV3(I)束縛条件 NW1, NW2 の ξ,ζの次数 AV4(I), AV5(I), AV6(I)束縛条件 NW3, NW4 の

ξ,ζの次数 NZW, NX(I), NZ(I)…求める S.S. の項数と ξ, ζ の次数 MBXF, MBYW ………付帯条件として与える B.D. の *ξ*, *n* の最高次数 FBD(J, I) ……その与える B.D. の係数 bi IGO………再計算か否か 2.8 出 力 入力データと FRNフルード数 Fn T(I, J) …………[A] の係数 E(I) ……**X**の係数 G(I), B(I) ………… の座標およびそこでの S.S. の分布 $m(\xi, \zeta)$ CW ………全体の Cw CWSS, CWSB, CWBB S.S. のみ, S.S. と B.D., および, B.D. のみの Cw

3. プログラムの検定

3.1 計算精度および誤差

連立方程式を解くときに倍長計算として計算を行なっているが、*Cw*の中間積分表にそれほどの精度がないので、4~5桁の精度と考えられる。

3.2 計算所要時間 10ケースで約5分。

4. プログラムの使用法について

4.1 オペレート 実行は BATCH 処理による。
4.2 プログラムの応用 付帯条件として与える Bottom Doublet の代わり
に、バルブを表わす Vertical Line Singularity を入れ
て計算することもできる。
4.3 他機種への移行 FACOM 270-20 より大型のものであれば、移行可 能である。

5

3. 特異点分布による造波抵抗係数の 中間積分表の計算プログラム

推進性能部 山 口 真 裕

1. プログラムの目的および概要

船型を特異点の多項式で表示できるものとして、そ の特異点多項式の各項による造波抵抗係数 Cw の中間 積分表を作成することを目的とする。このプログラム では前後対称の船型を想定した Cw 計算である。(す なわち, 船体中央を原点としたときの Sine 波成分の みを計算する。)この計算結果を使用して,ある与えら れた特異点分布に対応する Cw 計算ももちろん可能で あるが、「変分法による造波抵抗極小の特異点分布の 計算プログラム」の入力データとして使用される。

2. プログラムの内容

- 2.1 プログラムの番号および名称 Calculation of *C_W* Integral Table
- 2.2 製作者推進性能部山口真裕
- 2.3 製作年月 昭和47年9月
- 2.4 計算の基礎となる理論の概要

一様流れ V 中におかれた点吹き出し $m(x_0, y_0, z_0)$ による自由波 ζ_f は Havelock によれば次式で与えら れる。

$$\zeta_{f} = \frac{mK_{0}}{\pi V} \int_{-\pi/2}^{\theta - \pi/2} \sec^{3}\theta \exp(K_{0} \sec^{2}\theta z_{0})$$

$$\times \cos(K_{0} \sec^{2}\theta p)d\theta$$

$$\subset \subset \mathcal{K} \qquad p = (x - x_{0}) \cos\theta + (y - y_{0}) \sin\theta$$

$$\theta = \frac{\pi}{2} - \tan^{-1}\left(\frac{x - x_{0}}{y - y_{0}}\right)$$

$$K_{0} = g/V^{2}, \quad z_{0} = l\zeta_{0}$$

$$y - y_{0} > 0, \quad l; \quad \forall \hat{H} \} \downarrow \downarrow$$

$$\therefore \quad \frac{\zeta_{f}}{2l} = \frac{m}{Vl^{2}} \frac{K_{0}l}{2\pi} \int_{-\pi/2}^{\theta - \pi/2} \sec^{3}\theta \exp(K_{0}l \sec^{2}\theta\zeta_{0})$$

$$\times \cos(K_{0}l \sec^{2}\theta \omega')d\theta$$

$$= \frac{m}{Vl^{2}} \frac{K_{0}l}{2\pi} \int_{-\pi/2}^{\theta - \pi/2} \sec^{3}\theta \exp(K_{0}l \sec^{2}\theta\zeta_{0})$$

$$\times \cos(K_{0}l \sec^{2}\theta \omega) d\theta$$

$$+ \frac{m}{Vl^2} \frac{K_0 l}{2\pi} \int_{-\pi/2}^{\theta-\pi/2} \sec^2\theta \exp(K_0 l \sec^2\theta \zeta_0) \\ \times \sin(K_0 l \sec^2\theta \omega_0) \sin(K_0 l \sec^2\theta \omega) d\theta \\ \gtrsim \lesssim \omega' = (\xi - \xi_0) \cos\theta + (\eta - \eta_0) \sin\theta \\ \omega = \xi \cos\theta + \eta \sin\theta \\ \omega_0 = \xi_0 \cos\theta + \eta_0 \sin\theta$$

前後対称な船型となるには、 $(-x_0, y_0, z_0)$ に -mの吸いこみが必要となり、それを加えると、結局、自由波は

$$\frac{\zeta_{I}}{L} \approx \frac{m}{Vl^{2}} \frac{K_{0}l}{2\pi} \int_{-\pi/2}^{\pi/2} \sec^{3}\theta \exp(K_{0}l \sec^{2}\theta\zeta_{0}) \\ \times 2\sin(K_{0}l \sec\theta\xi_{0})\sin(K_{0}l \sec^{2}\theta\omega)d\theta \\ ただし \quad y_{0} = \eta_{0} = 0, \ L = 2l \\ \geq \lambda \zeta_{0} \lesssim 0$$

吹出しが線上あるいは面上に分布しているときは,

それぞれその積分を行なえばよい。

さて,後続自由波 **ζ_f/L** が

$$\frac{\zeta_f}{L} \approx \int_{-\pi/2}^{\pi/2} \left\{ S(\theta) \sin\left(K_0 l \sec^2 \theta \omega\right) \right\}$$

 $+C(\theta)\cos(K_0l\,\sec^2\theta)\}d\theta$

と表わされるとき, 造波抵抗係数 Cw は次式で与えられる。

$$C_{W} = \frac{R_{W}}{\frac{1}{2}\rho V^{2}L^{2}}$$

= $2\pi \int_{0}^{\pi/2} [\{S(\theta)\}^{2} + \{C(\theta)\}^{2}] \cos^{3}\theta d\theta$
= $\int_{0}^{\pi/2} [\{\sqrt{2\pi} S^{*}(\theta)\}^{2} + \{\sqrt{2\pi} C^{*}(\theta)\}^{2}] d\theta$
 $t \ge t^{2} \cup, S^{*}(\theta) = S(\theta) \cos^{3/2}\theta$
 $C^{*}(\theta) = C(\theta) \cos^{3/2}\theta$

よって、 $\sqrt{2\pi} S^*(\theta)$ あるいは $\sqrt{2\pi} C^*(\theta)$ を計算す れば C_W が求まる。

本プログラムでは特異点の多項式の各項による $\sqrt{2\pi} S^*(\theta)$ を計算し、 C_W の中間積分表を作成している。

2.5 計算の手順

計算の手順は、 図-1 フローチャートに示すとおり

(6)

である。

 2.6 プログラム用語および計算機種 プログラム用語は FORTRAN IV で,利用機種は, FACOM 270-20 である。

2.7 入 力

必要な入力データは次のとおりである。整数は16, 実数 F12.0 とする。

NGA, CGA(I), TGA(I) 数値積分の個数およびその
座標・重率
KLMAX, FKL(1) $K_0L(=1/F_n^2)$ の個数および
その値
IDEG , DEG (I)角度 θ の個数およびその角
度(0°~90°)
MAXXF, YYF(I)Side Source の分布面 ys の
ξ の最高次数およびその係
• 数
TFS.S. の分布深さ
XFLL, YFLLS.S. の分布面 ns の平行部
の端部座標(ξο, ηο)
MAXSXF, MAXSZF …S.S. の分布 m(ξ, ζ) のξ,
くの最高次数

FSLSS.S. の分布の肩部の <i>ξ</i> 座標
IBD, IP, IVLS, IVLD) Bottom Doublet, Point
IHLS, IHLD Singularity, Vertical Line
Source & Doublet および
Horizontal Line Source &
Doublet の有無
(≦0: なし, =1: あり)
MXBDXF, YBF(I)B.D. の分布面 η _B の ξ の
最高次数およびその係数
TBFB.D. の分布深さ
MAXBXF, MAXBYF…B.D. の分布 $b(\xi, \eta)$ の ξ ,
ηの最高次数
FBS1, FBS2B.D. の & の分布範囲
XPSF, ZPSF)
XPDF, ZPDF) 、 、 、 、 と P.D. の分布座標
(ξ, ζ)
MZVLSF, MZVLDF …V.L.S. と V.L.D. の分相
XVLSF, ZVLSF I, ZVLSF 2
V.L.S. の分布座標
XVLDF, ZVLDF I, ZVLDF 2
V.L.D. の分布座標
MAHLSF, MAHLDF H.L.S. & H.L.D. Off
の よの よの よの よの よの よの よの な 高次数
XHLSF 1, XHLSF 2, ZHLSF
H.L.S. の分布座標
XHLDF 1, XHLDF 2, ZHLDF
H.L.D. の分布座標
IS1, IS2計算を始める Singularity
の種類
=1; S.S. =2; B.D.
=3; P.S. & P.D.
=4; V.L.S. =5; V.L.D.
=6; H.L.S. $=7;$ H.L.D.
J1S.S. あるいは B.D. から計
算を始めるときの, ζ ある
いはηの最初の次数
II計算を始める Singularity
の最初の ξ または η の次
数。ただし, P.S. は =1
で, P.D. は =2
2.7 出 力
入力データのすべてと、
R(J, I) <i>Cw</i> の中間積分表

.

(7)

8

3. プログラムの検定

3.1 計算精度および誤差

計算精度は入力データによって多少変化するが,通 常,有効数字で5桁あることを検討してある。

3.2 計算所要時間

Singularity の種類を増すと時間がかかるのは当然であるが、多項式の項数10でおよそ2時間かかる。

4. プログラムの使用法について

4.1 オペレート

実行は BATCH 処理による。

4.2 プログラムの応用

SUBROUTINE のプログラムを利用して, 与えら れた特異点分布による後続自由波の振幅関数および造 波抵抗係数 *Cw* を求めることができる。

4.3 他機種への移行

FACOM 270-20 よりも大型のものであれば,移行 可能である。

4. 揚力線理論を応用したプロペラ揚力面 の逐次近似計算プログラム

推進性能部 小 山 鴻 一

1. プログラムの目的および概要

与えられた形状のプロペラが与えられた前進係数で 作動する時の流体力学的性能を調べるには,プロペラ 揚力面の積分方程式を解かねばならないが,そのため には莫大な計算量を必要とする。一方,この問題を揚 力線理論によって解くならば少ない計算量ですむが, 舶用プロペラの場合この理論では精度の高い解が得ら れない。本プログラムの計算法は,揚力線を解く過程に おいて揚力面補正を施すことによりこの問題を解く。 計算の過程は逐次近似計算となり,それを続ければ揚 力面理論による解に近づくはずである。展開面積比の 大きなプロペラの場合には解が収束しないが,その場 合でも第1近似値に対してかなり良好な値が得られ る。

2. プログラムの内容

2.1 プログラムの番号および名称
 45-049

An asymptotic approximation of propeller lifting surface by the lifting line theory

- 2.2 製作者
 推進性能部小山鴻一
- 2.3 製作年月 昭和47年4月
- 2.4 計算の基礎となる理論の概要

プロペラ揚力面の積分方程式を変形すると

$$\tilde{\alpha}_g = \frac{1}{2\pi} \int_{-1}^{1} \frac{\gamma/W^*}{\xi - \xi'} d\xi' + \alpha_i + \chi \quad \dots \dots (1)$$

となる。ただし, \tilde{a}_{g} は翼面の局所的迎角, γ は循環 分布密度, W^* は翼素への流入速度, ξ は半翼弦長を 単位とする翼弦方向の座標, α_i は揚力線による誘導 迎角, χ は揚力面補正項である。この式を γ/W^* に ついて解くと,

これを翼弦全体に積分すると

となる。ただし、 c^* は半翼弦長、h は hydrodynamic pitch μ は半径方向の座標 γ/h であり、また、

$$\Gamma = \int_{-1}^{1} \gamma c^{*} d\xi \qquad \dots \dots (4)$$

$$\alpha_{i} = \frac{2}{h} \int_{\mu_{h}}^{\mu_{0}} \frac{\Gamma}{W^{*}} \frac{1}{\sqrt{1+\mu^{2}}} K(0; \mu, \mu') d\mu' \quad (5)$$

を用いた。 $K(0; \mu, \mu')$ は揚力面積分方程式の核関数 である。(3) 式で $\chi=0$ とおくとよく知られた揚力線 の積分方程式となる。そこで χ は \bar{a}_{g} に対する補正と して次の様に逐次近似計算をする。初め $\chi=0$ として

(8)

(3)式を解くと Γ が得られる。それを用いると(5)式 から α_i が得られ,従って(2)式から γ が得られる。 この γ を用いて χ を計算すると高次近似の χ が得られ るので,前と同様にして高次近似の Γ , α_i , γ が計算 される。 χ は揚力面の積分を必要とするので最も手間 のかかる計算である。また、上述の逐次近似計算と同 時に hydrodynamic pitch の逐次近似計算をする。

2.5 計算の手順

計算の手順は,図-1 フローチャートに示すとおり である。

2.6 プログラム用語および計算機種
 FORTRAN, FACOM 270-20

2.7 入 力

必要な入力データは次のとおりである。

9 IP(I2) 半径方向の標点数(≤7) JJB (I2) Birnbaum 級数の項数 (≤4) RO (**F7.4**) プロペラの半径 RB (F7.4) ボスの半径 BM(M)(F9.5) M番目の翼素のハーフコード BC(M)(F9.5) M番目の翼素のミッドコード ZF(M, J) (F9.5) M番目の翼素の平均矢高曲線 を4次式で表わした時の係数 佰 RH (F7.4) ピッチ比 RJ (F7.4) 前進係数 LL (I2) 翼数 AKAP 1 (F7.4) 揚力係数勾配の修正係数 (F7.4) " (Prandtl 法の時は1と AKAP 2 する)

2.8 出 力

揚力面補正を施された平均矢高曲線およびその係 数,全循環,循環分布密度,Birnbaum 級数の係数, hydrodynamic pitch 等の値を各翼素ごとに出力する。

3. プログラムの検定

3.1 計算精度および誤差

一般の演算は約7桁,連立方程式を解くときだけ倍 長精度とした。逐次近似計算の性質上,収束性の良悪 によって第1近似値の精度は多少異なるが,翼素の全 循環の値の場合,直接揚力面積分方程式を解いた値に 比べて翼根部で10%,他で3%程度の誤差となる。

3.2 計算所要時間

標点数を IP=7, JJB=4 として, 第1近似の解を 得るまで約10分である。

3.3 適用範囲,制限事項

展開面積比の小さな(30%以下)プロペラ以外に 対しては第1近似より高次近似の計算をしても意味が ない。

4. プログラムの使用法について

4.1 オペレート

実行は BATCH 処理による。

4.2 プログラムの応用

翼素の全循環の値の精度はさほど悪くないから,プ ロペラのスラスト,トルク等の計算には応用できる。

5. あとがき

展開面積比の特に小さなプロペラ以外に対しては,

(9)

逐次計算の収束性が悪く,局所的な循環分布密度の値 特に翼根の値には問題が残されているが,プロペラ全 体のスラストやトルクの値を求める場合にはかなり実 用性のあるものと考えられる。

参考文献

5. 定常プロペラ揚力面の計算プログラム

推進性能部 小山 鸿 一

1. プログラムの目的および概要

与えられた形状のプロペラが与えられた前進係数で 作動する時の流体力学的性能を調べるには、プロペラ 揚力面の積分方程式を解かねばならない。揚力面積分 方程式の数値解法は幾つかあるが、いずれも多量な計 算量を必要とする。舶用プロペラ翼の平均矢高曲線は 比較的単純な形をしているので、それをべき級数で表 示することにすると四次式位で近似することができ る。このことから、揚力面の積分方程式の両辺をべき 級数に展開し、その係数関数を等置して連立積分方程 式を立てそれを解くことにすると、比較的少ない計算 量で解を得ることができる。

2. プログラムの内容

2.1 プログラムの番号および名称

47-021

The calculation of propeller lifting surface by Hanaoka's method

2.2 製作者 推進性能部小山鴻一

2.3 製作年月 昭和48年3月

2.4 計算の基礎となる理論の概要

プロペラ揚力面の積分方程式は

$$\bar{\alpha}_{g} = \int_{-1}^{1} d\eta' \int_{-1}^{1} \frac{\gamma}{W^{*}} \bar{\mu}\bar{\tau}' \sqrt{\frac{1+{\mu'}^{2}}{1+{\mu'}^{2}}} K(v; \ \mu, \ \mu') d\xi' \dots \dots (1)$$

と表わされる。ただし、 \hat{a}_{g} は翼面の局所的迎角、rは 循環分布密度、 W^* は翼素への流入速度、 ξ, η は各翼 弦方向および半径方向の座標、 また μ も半径方向の 座標で r/h (h: hydrodynamic pitch) である。 $\bar{\mu}$ は翼 根から翼端までの距離を表わす係数であり、 $\bar{\epsilon}'$ は μ' における翼弦長を表わす係数である。また核関数は

$$K(v; \mu, \mu') = -\frac{\sqrt{1+{\mu'}^2}}{8\pi \sqrt{1+{\mu'}^2}} \sum_{m=0}^{l-1} \int_{-\infty}^{v} \left\{ \frac{\mu\mu' + \cos v'_m}{\bar{R}^3} -\frac{3(\mu v' - \mu' \sin v'_m)(\mu' v' - \mu \sin v'_m)}{\bar{R}^5} \right\} dv'$$

$$\bar{R} = \sqrt{v'^2 + \mu^2 + {\mu'}^2 - 2\mu\mu' \cos v'_m}$$

$$v = (\tau - \tau')/2, \quad v'_m = v' - 2m\pi/l$$
.....(2)

で与えられる。ただし、 τ 、 τ' は翼弦方向の螺旋座標 で $\mathfrak{s}, \mathfrak{s}'$ に対応し、lは翼数である。

まず,未知数である循環分布密度を

$$\frac{\gamma}{W^*} = \sum_{N=0}^{n-1} A^{(N)}(\eta) \lambda_N(\xi) \qquad \cdots \cdots (3)$$

と仮定する。 $\lambda_{\mathbf{N}}(\boldsymbol{\xi})$ は Birnbaum の級数であり, $A^{(\mathbf{N})}(\boldsymbol{\eta})$ が未知数となる。(3)を(1)に代入し,その両 辺を $\boldsymbol{\xi}$ について Taylor 展開し係数関数を等置すると

$$\begin{pmatrix} \frac{\partial}{\partial \xi} \end{pmatrix}^{M} \tilde{\alpha}_{g} \Big|_{\xi=0} = \frac{1}{2\pi} \sum_{N=0}^{n-1} \int_{-1}^{1} A^{(N)}(\eta') \sqrt{\frac{1+\mu'^{2}}{1+\mu^{2}}} \\ \times K^{(MN)} d\eta' \quad M=0, 1, \cdots, n-1 \quad \cdots \cdots (4) \\ K^{(MN)} = 2\pi \bar{\mu} \bar{\tau}' \int_{-1}^{1} \lambda_{N}(\xi') \left(\frac{\partial}{\partial \xi}\right)^{M} K(v; \mu, \mu') \Big|_{\xi=0} \\ \times d\xi' \qquad \cdots \cdots (5)$$

となる。*K*^(MN) の特異性に注意して積分すると(4)は 連立一次方程式に変換される。 それから *A*^(N)(η') を 解くと(3)から循環分布密度が得られ,プロペラに働 く流力特性が求められる。

2.5 計算の手順
計算の手順は、図-1 フローチャートに示すとおり
である。
2.6 プログラム用語および計算機種
FORTRAN, FACOM 270-20
2.7 入 力
必要な入力データは次のとおりである。
IP (I2) 半径方向の標点数 (≤7)
IJB (I2) Birnbaum 級数の項数 (≤4)

 ¹⁾ 花岡達郎, プロペラの基礎理論, 船研報告, 第5 巻第6号, (1968)

RO	(F7.4)	プロペラの半径
RB	(F7.4)	ボスの半径
BM(M)	(F9.5)	M番目の翼素のハーフコード
BC(M)	(F9.5)	M番目の翼素のミッドコード
ZF(M, J)	(F9.5)	M番目の翼素の平均矢高曲線

を四次式で表わした時の係数

Ł
1

Birnbaum 級数の係数,循環分布密度,翼素の全循 環 hydrodynamic pitch,相当平均矢高曲線,推力,ト ルク,効率を出力する。

3. プログラムの検定

3.1 計算精度および誤差

計算精度は、半径方向の標点数,核関数の積分精度, 翼弦方向の積分精度,hydrodynamic pitch の値,連立 一次方程式の計算等に影響されるが,翼素の全循環の 値にして 1%, Birnbaum 級数の係数の値にして 4% 以上の精度を目標とし,一般の演算は約7桁,連立方 程式を解くときだけ倍長精度とした。

3.2 計算所要時間

標点数を IP=7, JJB=4 として, h の1回の繰り 返しに約10分かかる。繰り返しの回数はプロペラの作 動状態によって異なるが,設計点においてはほぼ2回 の繰り返しで充分である。

4. プログラムの使用法について

4.1 オペレート

実行は BATCH 処理による。

4.2 プログラムの応用

本プログラムを拡張すると,非定常プロペラ揚力面 の計算も可能となる。

5. あとがき

本プログラムの計算実績は必ずしも充分なものとは いえず,またプロペラ揚力面の計算例も未だ数少ない ものであるから今後の使用にあたって改良すべき点が 現われたなら改良して発展させて行くつもりである。

参考文献

1) 小山鴻一,新しい方法によるプロペラ揚力面の数 値的解析,造船学会論文集,第132号,(1972)

(11)

6. 三次元軸対称物体に働く流体力の計算プログラム

海洋開発工学部 大 川 豊

1. プログラムの目的および概要

海洋構造物の基本部材となっている circular dock については、これらの多くが三次元軸対称物体である ため"別所の変分表式"を利用すれば、簡単な形状の 物体については数個の特異点を中心線上に置くだけで 汎関数としての流体力を求めることができる。

ここでは circular dock および, 球形 footing のつ いた circular dock について, 上下揺れの場合の付加 質量係数・減衰係数・波強制力およびその位相を求め るプログラムについて述べる。

2. プログラムの内容

2.1 プログラムの番号および名称

- 47-002-1 Hydrodynamical Forces for Heaving Circular Docks
- 47-002-2 Hydrodynamical Forces for Heaving Circular Docks with Spherical Footing
- 2.2 製作者 海洋開発工学部大川 豊

2.3 製作年月 昭和48年3月

2.4 計算の基礎となる理論の概要

別所の変分表式といわれるものは次のような汎関数 である。

$$J[\phi] = \int_{S} \phi \left(\frac{\partial \phi}{\partial \nu} + 2f \right) ds = J_{c}[\phi] + iJ_{s}[\phi]$$
.....(1)

ここで ϕ は連続の条件,自由表面条件,無限遠条 件,Radiation 条件を満たす速度ポテンシャル,s は 物体表面を表わし,f は物体表面の境界条件を表わ す。

この $J[\phi]$ を極値とするような停留関数 $\bar{\phi}$ が求まると,

$$J[\phi] = -\int \bar{\phi} \frac{\partial \bar{\phi}}{\partial \nu} ds \qquad \dots (2)$$

となって,これは直接流体力を表わしている。 近似関数 Ø を次のような物体内部に分布させた特 異点による速度ポテンシャルの線型結合で表わす。

$$\phi = \sum_{m=1}^{N} a_m \phi_m \qquad \dots (3)$$

但し
$$a_m = \alpha_m + i\beta_m$$

$$\phi_m = \phi_{m,c} + i \phi_{m,s}$$

ここで ϕ_m は物体表面の境界条件以外の条件を満足す る三次元 Green 関数, α_m , β_m は求めるべき未定係数 である。この ϕ を (1) に代入して

$$\frac{\partial f_0[\phi]}{\partial \alpha_m} = 0, \quad \frac{\partial f_s[\phi]}{\partial \beta_m} = 0 \quad \dots \dots (4)$$

for $m = 1, \dots, N$

とすれば 2N 元連立一次方程式に帰着される。

特異点としては source を用いているが, その場合 の Green 関数およびその導関数の計算には次の式を 用いている。

$$\begin{split} \phi_{m, c} &= \frac{1}{R} + \frac{1}{R^*} - \pi K e^{K(z+z_m)} [H_0(KR_\infty) + N(KR_\infty)] \\ &- 2K e^{K(z+z_m)} \int_0^{-(z+z_m)} \frac{e^{Kv}}{\sqrt{v^2 + R_\infty^2}} dv \quad (5) \\ \phi_{m, s} &= -2\pi K e^{K(z+z_m)} J_0(KR_\infty) \qquad \dots \dots (6) \\ \frac{\partial \phi_{m, c}}{\partial x} &= -(x-x_m) \left\{ \frac{1}{R^3} + \frac{1}{R^{*3}} + \frac{\pi K^2}{R_\infty} e^{K(z+z_m)} \right. \\ &\times [H_{-1}(KR_\infty) - N_1(KR_\infty)] \\ &- 2K e^{K(z+z_m)} \int_0^{-(z+z_m)} \frac{e^{Kv}}{(v^2 + R_\infty^2)^{3/2}} dv \right\} \\ &\qquad \dots \dots (7) \\ \frac{\partial \phi_{m, s}}{\partial x} &= \frac{(x-x_m)2\pi K^2}{R_\infty} e^{K(z+z_m)} J_1(KR_\infty) \dots (8) \\ \frac{\partial \phi_{m, c}}{\partial z} &= -\frac{z-z_m}{R^3} - \frac{z+z_m}{R^{*3}} - \pi K^2 e^{K(z+z_m)} \\ &\times [H_0(KR_\infty) + N_0(KR_\infty)] \end{split}$$

$$\frac{\partial \phi_{m,s}}{\partial \phi_{m,s}} = -2\pi K^2 \rho K(z+z_m) I_0(KR_m) \qquad \dots \dots (10)$$

2.5 計算の手順
計算の手順を 図-1 フローチャートに示す。
2.6 プログラム用語および計算機種

(12)

FORTRAN, FACOM 270-20

2.7 入 力

必要な入力データは次のとおりである(図-2 参照) 47-002-1

- (1) 物体形状
 半径·······RS2
 喫水······T
 (2F5.0)
- (2)分割数
 吹き出しの数……NN(≦10) 積分代表点の数…MM(≦60)
- (3) 波数······AK(F10.0)

波数は必要なだけ入れることができる。計算打ち切 りのため最後に負数を入れる。

47-002-2

(1) 物体形状

- 2.8 出 力
- まず,物体形状を示すパラメータ,吹き出しを置い
 - (13)

14

た点の座標,積分代表点の座標が出力される。続いて 各波数について,波数,連立方程式の係数および右辺 の値,方程式の解が出力され,最終結果は次のように 示される。

EC, ES	波強制力の実部・虚部
EF	波強制力の絶対値
PHE, PHED	波強制力の位相 (rad. および deg.)
AKZ	付加質量係数
ANZ	減衰係数
FZK	Haskind-Newmann の関係から求め
	た波強制力

3. プログラムの検定

3.1 計算精度および誤差

球形 footing のついた場合では MM=60 の場合に 吹き出しの数を10個から6個にしても3桁の精度が保 たれ, MM=30 の場合は吹き出しの数に関係なく1 桁精度が落ちた。

3.2 計算所要時間

吹き出しの数6個,積分代表点の数60点で1波数に 対して約6分である。

3.3 適用範囲,制限事項

Circular dock では係数行列の性質から若干精度が 悪くなり, T/D の小さいところでは特に顕著であるの で改善の必要があり,検討中である。

4. プログラムの使用法について

4.1 オペレート

プログラムの実行は BATCH 処理で PTR より行なう。

4.2 プログラムの応用

自由表面条件を満たす三次元 Point Source による 速度ポテンシャル (Green 関数) およびその導関数を 求めるサプルーチンは, (5)~(10) 式に現われる特殊 関数を求める関数副プログラムとともに1セットにな っているので,一般に利用可能である。

5. あとがき

当部では海洋構造物に働く外力に関する研究の一環 として Cylinder 型 footing のついた Circular dock の流体力の実験を行なっている。今後この型について も実験結果と比較しうるようなプログラムの開発を進 める予定である。また,同じ手法で水深有限の場合へ の適用も興味あるものと思われる。

参考文献

- Bessho, M; Variational Approach to Steady Ship Wave Problem, 8th Symp. on Naval Hydro. at Pasadena, (1970)
- 佐尾,前田,黄;軸対称柱体の上下揺れについて 造船学会論文集, Vol. 130, (1971)

7. 平水中で調和振動する二次元柱状体に働く 変動圧力の計算プログラム

運動性能部 菅

2. プログラムの内容

信

1. プログラムの目的および概要

平水中に浮かぶ二次元物体が調和振動しているとき のポテンシャル流場を,物体表面に連続分布させた吹 出しによって表わし,この吹出しの分布を速度ポテン シャルに関する Neumann 問題の解として積分方程式 を数値的に解くことによって求め,次にこの吹出し分 布を利用して物体表面上の変動圧力,附加質量,減衰 力等を数値積分により計算するためのプログラムであ る。 2.1 プログラムの番号および名称 47-011 Potential Flow about a Oscillating Cylinder in Still Water

- 2.2 製 作 者
 運動性能部 菅 信
- 2.3 製作年月 昭和47年8月

(14)

2.4 計算の基礎となる理論の概要

吹出しおよび速度ポテンシャルをそれぞれ、 $fe^{i\imath t}$ = $(f_r+if_i)e^{i\imath t}$ 、 $\varPhi e^{i\imath t}=(\varPhi q_r+i\varPhi q_i)e^{i\imath t}$ の実数部で表わ す。吹出し分布を決める連立積分方程式は次の様に書 ける。

$$\left. \begin{array}{l} q_{\mathbf{r}}(\theta) + \frac{1}{\pi} \int_{0}^{\pi/2} \left\{ q_{\mathbf{r}}(\theta') K_{\mathbf{r}}(\theta, \ \theta') \\ - q_{i}(\theta') K_{i}(\theta, \ \theta') \right\} R(\theta') d\theta' = 2 V_{\mathbf{n}}(\theta) \\ q_{i}(\theta) + \frac{1}{\pi} \int_{0}^{\pi/2} \left\{ q_{\mathbf{r}}(\theta') K_{i}(\theta, \ \theta') \\ + q_{i}(\theta') K_{\mathbf{r}}(\theta, \ \theta') \right\} R(\theta') d\theta' = 0 \end{array} \right\} (1)$$

但し $K_{r,i}(\theta, \theta') = H_{r,i}(\theta, \theta') \pm H_{r,i}(\theta, \pi - \theta')$ であり, 複号は上下動のとき正,左右動,横揺のとき負をとる。 ここで

$$H_{r,i}\left(\theta, \frac{\theta'}{\pi - \theta'}\right) = l\frac{\partial}{\partial x}G_{r,i}(x, y; \pm \xi, \eta)$$
$$+ m\frac{\partial}{\partial y}G_{r,i}(x, y; \pm \xi, \eta)$$

とおくと

$$-\ln|x-\xi| + \frac{\pi}{2}\sin K|x-\xi| - K \int_{-(y+\eta)}^{0} e^{-K_{/'}} \times \ln[(x-\xi)^2 + \mu^2]^{1/2} d\mu + i\pi \cos K(x-\xi) \Big\}$$

 $-K \ln [(x-\xi)^2 + (y+\eta)^2]$ (3) To b, $\sharp \gtrsim R_1 = [(x-\xi)^2 + (y-\eta)^2]^{1/2}, R_2 = [(x-\xi)^2 + (y+\eta)^2]^{1/2},$

$$\begin{split} & l = \cos \theta + \sin \theta \cdot R_{\theta}/R, \ m = \sin \theta - \cos \theta \cdot R_{\theta}/R, \\ & q_{r,i} = F \cdot f_{r,i}, \ F = [1 + (R_{\theta}/R)^2]^{1/2}, \ x = R \cos \theta, \\ & y = R \sin \theta, \ \xi = R' \cos \theta', \ \eta = R' \sin \theta', \ R_{\theta} = dR/d\theta, \\ & R' = R(\theta'), \ V_{n}(\theta) = m \ (\bot \bar{T} \ba$$

 $mx - l(y - y_0)$ (横揺, y_0 は横揺中心)等である。 但し,長さの次元を持つ量は物体の半幅 B/2 (=R(0)) で無次元化し,f(または q) と ϕ はそれぞれ $\nu\bar{\delta}$, $\nu\bar{\delta}B/2$ ($\bar{\delta}$ は振動の線変位の振幅) で無次元化してあ る。なお $K = \nu^2 B/(2g)$ である。

この積分方程式の核関数には特異性がないので、数 値的に解くことは容易である。本プログラムでは、変 数 θ , θ' を $0 \sim \pi/2$ で M 等分し、数値積分公式とし て Simpson の公式を使って 2(M+1) 元の連立一次方 程式に直して解く方法を使った。

次に変動圧力を $pe^{i_{tt}}=(p_r+ip_i)e^{i_{tt}}$ の実数部で表 わすと $p/\rho g\bar{\delta}=K \Phi_i - i(K \Phi_r + \bar{p}_s)=c_p e^{i_t}$ である。但し \bar{p}_s は静水圧の変動の振幅を表わすもので $\bar{p}_s=1$ (上 下動), $\bar{p}_s=0$ (左右動, 横播)である。

$$\begin{split} \Phi_{\mathbf{r}}(\theta) &= \frac{1}{2\pi} \int_{0}^{\pi/2} \left\{ q_{\mathbf{r}}(\theta') [G_{\mathbf{r}}(\theta, \, \theta') \pm G_{\mathbf{r}}(\theta, \, \pi - \theta')] \right\} \\ &- q_{i}(\theta') [G_{i}(\theta, \, \theta') \pm G_{i}(\theta, \, \pi - \theta')] \} \\ &\times R(\theta') d\theta' \\ \Phi_{i}(\theta) &= \frac{1}{2\pi} \int_{0}^{\pi/2} \left\{ q_{\mathbf{r}}(\theta') [G_{i}(\theta, \, \theta') \pm G_{i}(\theta, \, \pi - \theta')] \right\} \\ &+ q_{i}(\theta') [G_{\mathbf{r}}(\theta, \, \theta') \pm G_{\mathbf{r}}(\theta, \, \pi - \theta')] \} \\ &\times R(\theta') d\theta' \\ &\cdots (4) \end{split}$$

但し、複号は上下動のとき正、左右動、横揺のとき負 をとるものとし、また、 $G_{r,i}(\theta, \pi - \theta') = G_{r,i}(x, y; -\xi, \eta)$ 、および

(15)

である。ここで(4)の被積分関数は対数特異性を持っ ているが,それらの数値積分(Simpsonの公式を使用) にあたっては完全に処理してある。

次に附加質量係数 K_4 (上下動), K_x (左右動) およ び減衰係数 \overline{A} は、それぞれ次式で計算する。

$$K_{4,x} = \frac{1}{c\pi} \int_{0}^{\pi/2} \Phi_{r}(\theta') V_{n}(\theta') R(\theta') d\theta',$$

$$\bar{A} = K \left[2 \int_{0}^{\pi/2} \Phi_{i}(\theta') V_{n}(\theta') R(\theta') d\theta' \right]^{1/2} (6)$$

但し、上下動のとき $C=C_0$ ($K \rightarrow \infty$ のときの附加質量 係数) 左右動のとき C=[R(π/2)]² である。 2.5 計算の手順 計算の手順は 図-2 フローチャートに示すとおりで ある。 2.6 プログラム用語および計算機種 FACOM FORTRAN, FACOM 270-20 2.7 入 カ 必要な入力データは次のとおりである。 (1) KB より M……分割数(偶数) I 3 KIND ……動揺の種類 KIND=1 (上下動), 2 (左右動), 3 (橫摇) I 2 (2) PTR より 任意船型の場合 SHIPNO …船体番号 I 5 SSNO ……断面番号 F6.3 R(I) = RF7.4 $RT(I) = \partial R / \partial \theta$ F7.4 $RTT(I) = \partial^2 R / \partial \theta^2$ F8.4 添字 I は $\theta = (I-1)\pi/M$ での値であることを示 し、I=1 から M+1 までの値をこの順に入れる。 $\mathbf{B}\mathbf{K} = \mathbf{K} = \mathbf{v}^2 B / (2g)$ F7.4 ② Lewis Form の場合 A1, A3……Lewis Form の係数 各F7.4 F7.4 $\mathbf{B}\mathbf{K} = \mathbf{K} = \nu^2 B/(2g)$ 2.8 出 カ タイトル, 船体番号, 断面番号 (Lewis Form の場 合はその形状係数), $K = \nu^2 B/(2g)$ を印字したあと, 各θについて $FR = f_r$ ……吹出しの cos 成分 $FI = f_i$ ……吹出しの sin 成分 PHR= ϕ_r ……速度ポテンシャルの cos 成分 $PHI = \phi_i \cdots \vdots$ 速度ポテンシャルの sin 成分 $CP = C_p$ … 変動圧力係数 **EPS=ε** ……変動圧力の運動変位との位相差 を出力し、次に附加質量係数 K4 または KX, 減衰係 数 AO を出力する。

3. プログラムの検定

3.1 計算精度および誤差

計算精度は、物体の形状および無次元振動率 K の 値によって異なる。一般に K の値が大きくなるほど 計算精度が落ちるため分割数 M を増さなくてはなら

(16)

ない。また物体形状については、V型船のように水面 と直角に交わらない物体では水面附近で計算精度が落 ち,船首部のように深さ方向に細長い物体では船底附 近で精度が悪くなるため、分割数 Mを増す必要があ る。しかし通常の船体動揺と考える限りでは、大ざっ ばに云って M=10~12 程度を取れば実用的には充分 であろう。計算精度の検定の詳細は参考文献 1)、2) を参照されたい。なお、試計算により倍精度にする必 要のないことを確認し、計算はすべて単語長(7~8 桁)で行なっている。

3.2 計算所要時間

ある断面形状で,あるひとつの K の値についての 計算所要時間は, M=6 で 17 秒, M=12 で 43 秒, M=24 で 164 秒, M=30 で 255 秒等である。

3.3 適用範囲,制限事項

 $R(\theta), \partial R(\theta)/\partial \theta, \partial^2 R(\theta)/\partial \theta^2$ の θ に対する変化が緩か な物体ほど良い結果が得られる。これらの変化の激し いものほど分割数を増さなくてはならない。また、こ れらの変化が不連続になる物体は、厳密には計算でき ないが、工学的には、物体の形状を僅かに変えて不連 続部をなくすようにまるめてしまえば計算できる。し かしこの場合の計算精度は少し悪くなるようである。 また $R(\theta)$ が θ の多価関数になるような物体は、この プログラムでは計算できない。次に、このプログラム は、第2種の Fredholm 型積分方程式を解いているた め、パラメーター K が核関数の固有値になるところ (いわゆる irregular frequency のところ) では計算が できないこととなる。またその附近では狭い範囲では あるが計算精度が悪くなる。

4. プログラムの使用法について

4.1 オペレート

プログラムの実行は、¥BATCH で PT より行なう。

4.2 プログラムの応用

規則波中に固定して置かれた物体まわりの流場を解 く、いわゆる Diffraction 問題を扱うプログラムに変 更することは容易である。

5. あとがき

表題のような二次元波動問題を計算するプログラム はすでにいくつか開発されている。特に流れ関数に関 する Dirichlet 問題の解として積分方程式を解いて吹 出し分布を求める前田の方法は任意形状の物体につい ての計算が容易にできる利点がある。ここに新たに開 発した方法は,前田の方法より少ない分割数で精度の 良い計算結果を得ることができるほか,比較的任意な 形状の物体についても計算することができるもので応 用価値は高いものと考えられる。

参考文献

- 菅信,平水中で調和振動する2次元柱状体に働く変動圧力の計算,第20回船研研究発表会講演概要,(1972)
- 日本造船研究協会,第131研究部会,波浪外力に 関する水槽試験報告書,造研研究資料第176号, (1973)

8. 二次元物体まわりの変動圧計算プログラム

運動性能部 渡 辺 巖

1. プログラムの目的および概要

波浪中にある二次元物体に働く圧力分布を計算する プログラムである。二次元物体としては通常 Lewis form と呼ばれる円の等角写像で得られる形状を用い る。波浪中で運動する物体まわりのポテンシャルを求 める方法としては、数値計算で級数解を求める方法に 拠っている。すなわち、物体表面の境界条件以外のラ プラスの方程式その他の条件を満たす形のポテンシャ ルを未知係数を含んだ級数であらわし,これが物体表 面の境界条件を最小二乗法的に満足するよう係数を定 めるものである。物体の運動は調和振動なら任意であ るが振幅および各運動間の位相関係は既知のものとし て入力で与える必要がある。

2. プログラムの内容

2.1 プログラムの番号および名称
 46-039

(17)

Calculation of Pressure Distribution around a Lewis form Cylinder

巖

2.2 製作者

運動性能部 渡 辺

2.3 製作年月 昭和47年12月

2.4 計算の基礎となる理論の概要

物体表面での境界条件は線型な問題であれば,左右 対称な条件と反対称な条件に分けて考える事ができ る。物体表面条件を流れ関数で表示すれば,

 $\psi = F^{H} + F^{S}$

ただし F[#]: 対称な条件, F^s: 反対称な条件

ラプラスの方程式その他の条件を満足する速度ポテ ンシャル,流れ関数は上と同様に対称成分,反対称成 分に分離できて次のように定義される。

$$\begin{split} \phi &= \phi^{\mathbf{H}} + \phi^{\mathbf{S}} \\ \psi &= \phi^{\mathbf{H}} + \phi^{\mathbf{S}} \\ \phi^{\mathbf{H}} &= \sum_{i=0}^{N} A_{i}^{H} \phi_{i}^{H}(\mathbf{r}, \theta, H_{0}, \sigma, \xi_{B}) \\ \psi^{\mathbf{H}} &= \sum_{i=0}^{N} A_{i}^{H} \phi_{i}^{H}(\mathbf{r}, \theta, H_{0}, \sigma, \xi_{B}) \end{split}$$

(H_0 , σ は半幅喫水比, 面積比で Lewis form を特 徴付ける諸量である。 $\xi_B = \frac{\omega^2 B}{2g}$ で波数の無次元量で ある。r, θ は写像する円の座標である。)

この ϕ^{μ} を物体表面の境界条件式に入れ, F^{μ} を最 小二乗法的に満足するように A_{*}^{μ} を定める。反対称 な成分に関しても全く同様に A_{*}^{g} を求める事ができ る。 これら A_{*}^{μ} , A_{*}^{g} を使えばポテンシャル ϕ^{μ} , ϕ^{g} が定まり, 全体のポテンシャルは $\phi = \phi^{\mu} + \phi^{g}$ で与え られる。これより動的な変動圧は簡単に求める事がで きる。

 $p = -i\omega^{\rho}\phi$

または Real part, Imaginary Part に分解すれば

$$p_r = + \omega^{\rho} \phi_i$$

$p_i = -\omega^{\rho} \phi_r$

となる。これが変動圧力の位相成分を示す。全変動圧 はこれに静的な変動圧(喫水変化分または入射波によ る成分)を加えたものとなる。

2.5 計算の手順

省略

2.6 プログラム用語および計算機種 FORTRAN, FACOM 270-20

カ

- 2.7 入
 - 1) 物体形状,半幅喫水比 (H₀),面積比 (σ)
 - 2) 入射波,運動状態
 入射波の有無,入射波または運動の周波数
 (*ξ*_B),運動の振幅,位相差
 - ポテンシャルの項数,最小二乗法を適用する 標点数

2.8 出 力

水面下の物体表面を15°毎に選び,各点毎の変動圧 を *pr*, *pi* の形で出力する。ただし、圧力は入射波振 幅,または運動振幅で無次元化した値である。

3. プログラムの検定

3.1 計算精度および誤差

計算精度は最小二乗法で作られる連立一次方程式の 計算精度に依存する。このプログラムでは,この部分 のみ倍精度である。

3.2 計算所要時間

1 つの物体につき近似項数 8 項,標点 12 点で 15 秒 程度である。

4. プログラムの使用法について

4.1 オペレート

Batch 処理による。

4.2 プログラムの応用

ストリップ法の運動計算と組合わせて船体まわりの 変動圧計算に適している。

5. あとがき

積分方程式の解法と比較して,計算時間が僅かで精 度の良い結果が得られる。

参考文献

 渡辺 嚴;二次元物体まわりの変動圧計算法,造 船学会論文集,第133号,(1973)

18

(18)

9. 実船の耐航性実験のデータ解析プログラム

運動性能部 小川陽弘・渡辺 巌・福田由美子

1. プログラムの目的および概要

耐航性に関する実船試験では, ビッチ, ロール等の 船体運動, 船体や積荷に生ずる加速度, 舵角等をアナ ログのデータレコーダに収録して持ち帰るのが普通で あり, この記録を AD 変換して解析する。本プログラ ムはこれらのディジタル記録を統計解析するもので, 結果はラインプリンターによる表および 図, 並びに XY プロッタ用の紙テープとして出力される。

2. プログラムの内容

- プログラムの番号および名称 SPECm および STATn m および n はプログラムの改良に応じて変更 して行く番号で,現在はそれぞれ SPEC 5, STAT
 2 となっている。
- 2.2 製作者 運動性能部小川陽弘,渡辺巌,福田由美子 海洋開発工学部安藤定雄
- 2.3 製作年月

昭和46年5月

2.4 計算の基礎となる理論の概要

SPECm は前記ディジタルデータをスペクトラム解 析するもので、基本的には第1集に安藤によって報告 されたもの¹⁾と同一である。

STATn は一連のデータから統計的諸量を計算する ものである。従ってデータの処理法は算術的演算で処 理される部分が大部分であり,改めて述べる必要はな いと思われる。ただプログラム中,データが狭帯域と 仮定した時の理論値を主に両振幅について計算してい る。それらを以下に示す。

入力波形が狭帯域だとすれば、両振幅の分布は Rayleigh 分布で表わされる。両振幅の平均を Hm と すれば

分布密度 f(H) は

$$f(H)dH = \frac{\pi H}{2H_m} \exp\left(-\frac{\pi H^2}{4H_m^2}\right) dH$$

また累積分布は F(0)=1 とした時,

$$F(H) = \exp\left(-\frac{\pi H^2}{4H_m^2}\right).$$

この分布形状での 1/3 Highest Mean, 1/10 Highest Mean を H_{1/3}, H_{1/10} とすれば

 $H_{1/3} = 1.598 H_m$

$$H_{1/10} = 2.032 H_m$$

以上の式にデータから得られた Hm を与えて計算 する。

2.5 計算の手順

大略の計算順序を 図-1 (SPEC 5) および 図-2 (STAT 2) に示す。

(19)

2.6 入 力

入力データは紙テープで与え、SPECm、STATn と もに共通のデータテープを使用する。データの形式は 次のとおりである。

- 1) データのチャンネル数
- 2) 試験分類番号, ラグ数, サンプリングタイム
- 各チャンネルの項目名、キャリブレーションコンスタント
- 4) 実験番号
- 5) データ
- 2.7 出 力
 - 2.7.1 SPEC 5 の場合
 - スペクトラムの概略図 (LP 上) ラグ数55 まで
 - 2) 解析值
 - (a) 振幅解析值——分散,標準偏差のそれぞれ ωの全範囲積分値および有限範囲積分値(積 分周波数範囲はスペクトラムの形および面積

から自動的に決定)

- (b) 平均周波数および周期――スペクトラムの ビーク値,一次モーメントによる値, zerocross の値, peak-to-peak の値
- (c) バンド幅パラメター ε および E_0
- (d) 1/n 最高平均値→ ε=0 および ε= √2/3
 に対する最大値,有義値, 1/10 最高平均値
- (e) 条件---データ数, ラグ数, サンプリング タイム, ウインドウ (W2)
- (f) 自己相関関数值
- 3) XYプロッタ用紙テープ

プロッタにはスペクトラムとコレログラム, 分散(または標準偏差)の値,積分周波数範囲, スペクトラムのビーク等が画かれる。スペクト ラムの横軸は ω=1.6 まで,縦軸のスケールは 自動的に決められる。図の大きさは4チャンネ ルの場合に丁度 A4の大きさに入るようになっ ている。この出力例を 図-3 に示す。

- 2.7.2 STAT 2 の場合
- 入力データおよび極値 各々の平均,最大,最小,分散。この他に,

平均周期 (zero cross, peak to peak) を2種類。 2) 両振幅

(a) データ解析値

1)と同じものを計算する他に以下の値を求 める。最大値から 1/10 および 1/3 までの平 均値,二乗平均値,ヒストグラム,累積ヒス トグラム。

(b) 理論值

2.4 に述べた理論式に(a)で求めた平均値を 代入して計算した値。 すなわち, 1/10 平均 値, 1/3 平均値, 分布密度, 累積分布等を予 測値として計算する。

(c) XYプロッター用紙テープ

以上,2)の(b)迄は LP 上に出力する。両振幅 ヒストグラムの解析値,理論値をXYプロッター で作図するための紙テープを作成する。作図例は 図-4 に示すが,4チャンネルで A4のサイズに収 まるスケールである。

3. プログラムの検定

3.1 計算精度および誤差
 計測値の精度に較べて充分である。
 3.2 計算所要時間

(20)

データ数, チャンネル数等によって異なるが, 1000
データ×6チャンネルの場合, SPEC 5 が約11分,
STAT 2 が約6分程度である。
3.3 適用範囲,制限事項

チャンネル数 6 以下
 データ数 1000 以下
 ラグ数 90 以下
 ただし、まだ多少拡張の余地はある。

21

(21)

4. プログラムの使用法について

4.1 オペレート

Instant 処理による。 プログラムは AB で MT に 入れてあり, (SPECm) または (STATn) の名前で呼 び出す。 4.2 プログラムの応用

一部に手を加えれば、一般のスペクトラム解析、統計解析に転用できる。
4.3 他機種への移行

同級以上の機種ならば可能。

(22)

5. あとがき

運動性能部で実船の耐航性実験の解析にスペクトラ ム解析を適用し始めてから約10年になる。本プログラ ムの完成によって、データ解析はほとんど自動化され ることになったが、AD 変換、キャリブレーションコ ンスタントの計算等でまだ多くの人手を要する部分が 残っている。これらの部分を改良したいものである。

参考文献

1) 安藤定雄;不規則振動の統計解析用プログラム, 船研報告第7巻第4号(プログラム特集第1集), (1970)

有限要素法による座屈解析プログラム 10.

船体構造部 溒 藤 久 芳

1. プログラムの目的および概要

板構造の最終強度を検討すると、しばしば、局部的 あるいは全体的な座屈が、その崩壊の直接の基因とな っている。本プログラムは、骨付き板構造物について 有限要素法による二次元解析を行ない、座屈による面 外変形モードと固有値(座屈荷重)を求めるものであ る。なお、本計算の前に 「FEM」 により面内応力計 算を行ない、その結果を MT にとり、 データとして 用いる。

2. プログラムの内容

2.1 プログラムの番号および名称 46-042 BUCK 応力ひずみ関係式 $\{M\} = [D]\{\varepsilon\}$ 2.2 製作者 Et^2 $=\frac{12}{12(1-\nu^2)}$ 船体構造部 遠藤久芳 2.3 製作年月 昭和47年6月 2.4 計算の基礎となる理論の概要 1) 平板の面外変形基礎式 $\times \{\varepsilon\}$ 三角形要素の3節点を1,2,3とすると 三次の変位関数 [N] を導入して次のように定義する。 要素の変位ベクトル $\{\delta^e\}^T \equiv [\delta_1, \delta_2, \delta_3] \cdots (1)$ $\{\omega\} = [N]\{\delta^e\}$ $\{\delta_i\}^T \equiv [\omega_i, \theta_{xi}, \theta_{yi}]$ 筋点変位ベクトル (3), (5), (7) より [N] を微分することにより $\equiv \left[\omega_i, \ -\frac{\partial \omega}{\partial y_i}, \ \frac{\partial \omega}{\partial x_i} \right]$ $\{\varepsilon\} = [C]\{\delta^e\}$ $\{\alpha\} = [G]\{\delta^e\}$ $\mathcal{V} \stackrel{\text{def}}{=} \mathcal{J}_{\mathcal{V}} \stackrel{\text{def}}{=} \mathcal{I} \left[-\frac{\partial^2 \omega}{\partial x^{2}}, -\frac{\partial^2 \omega}{\partial y^{2}}, 2 \frac{\partial^2 \omega}{\partial x \partial y} \right]$ よって要素のひずみエネルギー *dV*p は $\Delta V_{p} = \frac{1}{2} \int \{M\}^{T} \{\varepsilon\} dA$ $\dots (3)$ 応力ベクトル $\{M\}^T \equiv [M_x, M_y, M_{xy}]$ $=\frac{1}{2}\int \{\delta^e\}^T[C]^T[D][C]\{\delta^e\} dA$(4)

23

(23)

START ΜT FEM 読 込 剛性 マトリックス K バート数くり返し 作製 外力 マトリックス*K*g パート数くり返し 作製 K^{-1} 計 算 パート 数くり返し 固有値計算 No 固有值収束 Yes OUT PUT STOP 図-2 フローチャート

π=∑(*dU_p*+*dU_s*)-*λ*∑(*dW_p*+*dW_s*)...(18)
(18)の変分をとり、{*d*^e} が0でない解を持つ条件から [*K*]{*d*^e} =*λ*[*K_g*]{*d*^e}(19)
(19) を Stodola の方法により解き固有値 *λ* と固有ベ クトル {*d*^e} を得る。
2.5 計算の手順(図-2 参照)
2.6 プログラム用語および計算機種 FORTRAN IV, FACOM 270-20
2.7 入 力 別プログラム「F EM」により作成されたMTのデ
- タと以下の P Tのデータを用いる。
1) NPT, NN 1, NN 2, NBOUN......「FEM」で扱 かう全パート数,「Buck」で扱かう最初と最後のパー ト番号,拘束点数

NFI, NB1, NB2, NB3……拘束節点番号と拘
 東条件 (NB1=0→ω 拘束, NB2=0→θ_x 拘束,

NB3=0→θy 拘束)

3) TH, NN……そのパートの板厚, 1パート内部 材数

4) XI, XJ, N1, N2, N3……部材曲げ剛性, 捩り 剛性, 部材両端および要素の残りの節点の節点番号

3)~4)パート数くり返し

MT データには、「FEM」で計算された、要素および部材の応力と、要素データが入っている。

2.8 出 力

1) 固有値の計算途中結果とその誤差

 2) 収束した固有値と各節点の変位ベクトル {ω_i, θ_{xi}, θ_{yi}}

3. プログラムの点検

3.1 計算精度および誤差

固有値演算上は、くり返し法により誤差0.3% 以内 にしている。計算結果を簡単な模型につき解析解と比 較すると 2~5% 程度座屈荷重が低くでる。複雑な模 型では実験値と比較すると、非常に良く一致するもの から 20% 程度座屈荷重が低くでるものまである。

3.2 計算所要時間

「FEM」による応力計算に比較すると、同じ模型に つき数倍の時間がかかる。一例としてウィングタンク ・ストラット部模型の場合(6パート,要素数175, 節点数117)で70分かかる。

3.3 適用範囲,制限事項

本プログラムでは、二次元構造物の弾性座屈しか扱 かえない。また計算機のメモリー上から以下の制限が ある。

- 1) パート数 12 以下
- 1パート内にては,要素数 50 以下,部材数 30 以下,節点数 22 以下
- 3) 荷重条件1つだけ
- 4) 総節点数 258 以下

「FEM」にて本プログラム用のデータ作製する際, 「FEM」の入力データも上記の制限を優先させなけれ ばならない。

4. プログラムの使用法について

4.1 オペレート

まず,別プログラム「FEM」で作成した MT のデ ータを用意する。プログラムは, AB で MT に入っ ているので,¥MPXEQ (BUCK) でロードする。

4.2 プログラムの応用

材料特性が非線型となる塑性状態をも扱かえるよう に拡張できるが,その場合より高レベルの計算機シス テムが必要である。

5. あとがき

本計算において計算されるのは,最低次の固有値と 固有ベクトルのみである。すなわち,一番早い荷重段 階で生ずる局部的なあるいは全体的な座屈が解析でき る。

また対称構造物の一部のみをとり出して,その局部 的な座屈解析のみ扱かうこともできる。

11. 有限要素法による平面応力計算プログラム

船体構造部 遠 藤 久 芳

1. プログラムの目的および概要

一般に船体は,骨付きの板構造物であるといえる。 本プログラムは,骨付き板構造物について,有限要素 法による二次元解析を行ない,各部のX-Y方向応力 ・主応力とその方向・骨部材の軸応力・各節点の変位 を求めると共に,BUCK(座屈計算プログラム)のデ ータを作製することもできるものである。なお,現在 の共用計算機システムにおいてできるだけ多くの節点 がとれ,大型の構造物を精度良く計算できるように工 夫してある。

2. プログラムの内容

- 2.1 プログラムの番号および名称
 45-046 FEM
- 2.2 製作者
 船体構造部 遠藤久芳
- 2.3 製作年月 昭和46年11月
- 2.4 計算の基礎となる理論の概要

三角形要素の3節点をi, j, mとすると,要素内の 任意の点のx方向,y方向の変位u, vを次のよう に表わす。

$$\{f\} = \left\{ \begin{array}{c} \boldsymbol{u} \\ \boldsymbol{v} \end{array} \right\} = \left[\begin{array}{ccc} N_i & 0 & N_j & 0 & N_m & 0 \\ 0 & N_i & 0 & N_j & 0 & N_m \end{array} \right] \{\delta^e\}$$

$$\cdots \cdots (1)$$

ただし

$$\{\delta^e\} = \begin{cases} u_i \\ v_i \\ u_j \\ v_j \\ v_m \\ v_m \end{cases}, \begin{array}{l} N_i = (a_i + b_i x + c_i y)/2 \Delta \\ N_j = (a_j + b_j x + c_j y)/2 \Delta \\ N_m = (a_m + b_m x + c_m y)/2 \Delta \\ a_i = x_j y_m - x_m y_j \\ b_i = y_i - y_m \\ c_i = x_m - x_j \\ 2\Delta = \det \begin{vmatrix} 1 & x_i & y_i \\ 1 & x_j & y_j \\ 1 & x_m & y_m \end{vmatrix}$$

(*x_i*, *y_i*), (*x_j*, *y_j*), (*x_m*, *y_m*)……各節点の座標
(*u_i*, *v_i*), (*u_j*, *v_j*), (*u_m*, *v_m*)……各節点の変位
1) 平板の剛性マトリックス, *K_p*(1) より要素内のひずみ, 応力は, 次のように表わせる。

$$\{\varepsilon\} = \left\{ \begin{array}{c} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{array} \right\} = \left\{ \begin{array}{c} \frac{\partial u}{\partial x} \\ \frac{\partial v}{\partial y} \\ \frac{\partial u}{\partial y} + \frac{\partial v}{\partial x} \end{array} \right\} = \frac{1}{2\Delta}$$
$$\times \left[\begin{array}{c} b_i , 0, b_j , 0, b_m, 0 \\ 0, c_i , 0, c_j , 0, c_m \\ c_i , b_i , c_j , b_j , c_m , b_m \end{array} \right]$$

$$\times \{\delta^{e}\} = [C]\{\delta^{e}\} \qquad \dots \dots (2)$$

$$\{\sigma\} = \begin{cases} \sigma_{x} \\ \sigma_{y} \\ \tau_{xy} \end{cases} = \frac{E}{1 - \nu^{2}} \begin{bmatrix} 1 & \nu & 0 \\ \nu & 1 & 0 \\ 0 & 0 & (1 - \nu)/2 \end{bmatrix}$$

$$\times \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases} = [D] \begin{cases} \varepsilon_{x} \\ \varepsilon_{y} \\ \gamma_{xy} \end{cases} = [D] [B]\{\delta^{e}\}$$

$$\dots \dots (3)$$

要素のひずみエネルギー *4Up* は

$$\begin{aligned} dU_{\mathbf{p}} &= \frac{1}{2} \int \{\sigma\}^{T} \{\varepsilon\} dA \\ &= \frac{1}{2} \int \{\delta^{e}\}^{T} [C]^{T} [D] [C] \{\delta^{e}\} dA \\ &= \frac{1}{2} \{\delta^{e}\} [K_{\mathbf{p}}] \{\delta^{e}\} \qquad \dots \dots (4) \end{aligned}$$

 2) 節点外力ベクトルを {F^e} とすると、外力のな す仕事 *4W* は

$$\Delta W = \{F^e\}^T \{\delta^e\} \qquad \dots \dots (5)$$

3) 補強材(骨)の剛性マトリックス, Ks

- {**σ**s} 補強材の軸応力ベクトル
- [D_s] 補強材の剛性 ([D_s]=[EA])

[Ts] 座標変換マトリックス

$$\{\sigma_s\} = [D_s]\{\varepsilon_s\} \qquad \cdots \cdots (6)$$

(2)より

$$\{\varepsilon_s\} = [T_s] \left\{ \begin{array}{c} \varepsilon_x \\ \varepsilon_y \\ \gamma_{xy} \end{array} \right\} = [T_s] [B](\delta)^e \quad \dots (7)$$

補強材のひずみエネルギー AUs は

$$\begin{aligned} \mathcal{\Delta}U_{s} &= \frac{1}{2} \int \{\sigma_{s}\}^{T} \{\varepsilon_{s}\} ds \\ &= \frac{1}{2} \int \{\delta^{e}\}^{T} [C]^{T} [T_{s}]^{T} [D_{s}] [T_{s}] [C] \{\delta^{e}\} ds \\ &= \frac{1}{2} \{\delta^{e}\}^{T} [K_{s}] \{\delta^{e}\} \qquad \dots \dots (8) \end{aligned}$$

4) 面内応力解析

系のポテンシャル π は

$$\pi = \sum (\Delta U_p + \Delta U_s) - \sum \Delta W \quad \dots (9)$$

(4), (5), (8)
$$\geq \Delta \pi = 0 \pm \vartheta$$

[K]{ δ }-{F}=0(10)

ただし

 $[K] = \sum [K_p] + \sum [K_s]$ $\{\delta\} = \sum \{\delta^e\}$ $\{F\} = \sum \{F^e\}$

(26)

(10)より節点変位 {ð} が得られ,さらに(3),(6),
(7)より各応力が得られる。

2.5 計算の手順(図-2 参照)

2.6 プログラムの用語および計算機種

FORTRAN IV, FACOM 270-20

2.7 入 力

1) NPART, NBOUN, NLC……全パート数, 拘 束点数, 荷重条件数

NPOIN, NI, NELEM, NNN……1つのパートの全節点数,内部節点数,要素数,部材数

3) NOD1, NOD2, NOD3, TH……1つの要素

の節点番号,板厚

NOD 1, NOD 2, A…… 1 つの部材の両端節点
 番号, 断面積

2)~4) NPART 回くりかえす。

3) NELEM 個必要

4) NNN 個必要

5) I, X, Y……節点番号とその X, Y 座標

6) NFI, NBX, NBY, BVX, BVY......拘束点の
 節点番号,拘束条件(例 NBX=0, BVX=0.0…X方
 向を拘束, NBY=0, BVY=1.0…Y方向強制変位
 1.0mm 与える。)

7) I, UX, UY……外荷重を加える節点番号と,X
 方向,Y方向荷重

2.8 出 力

u, v……各節点のX方向とY方向の変位

X_N, Y_N, σ_{xy}, σ_y, τ_y, σ₁, σ₂, θ……各要素の重心位 置座標とX方向, Y方向応力, 主応力とその方向

σs……各部材の軸応力

また SSWTCH 10 を ON にすれば「BUCK」(座屈 計算プログラム) 用の入力データが MT に OUT PUT される。

SSWTCH 1, 2, 3 を各々 ON にすることにより, 部材軸応力,要素主応力,変位が PTP に OUT PUT される。(別プログラムでXYプロッタに図示できる)

3. プログラムの検定

3.1 計算精度および誤差

逆行列計算において一部倍語長計算を用いている。 自由度数により演算上の精度は異なるが,いっぱいに 使用しても問題にならない程度の誤差しかない。

3.2 計算所要時間

要素分割数,自由度数などにより異なるが,一例と して鉱石運搬船の中央断面の場合(9 PART,要素数 62+65+53+62+50+60+55+47+16,節点数 36+ 36+40+40+35+40+38+31+18, 部材数 23+11+ 21+24+28+20+22+19+11,荷重条件数 2)で 110 分かかる。荷重条件数はそれほど計算時間に影響しな い。

3.3 適用範囲,制限事項

本プログラムは、二次元構造物しか扱えず、また材 料特性は線型でなければならない。計算機のメモリー 量から次の制限がある。パート数は15以下、1パート 内の節点数 40 以下・部材数は 30 以下、荷重条件は 4 以下。

(27)

28

4. プログラムの使用法について

4.1 オペレート

本プログラムは多数のセグメント,サブルーチンを 有し,コンパイルに時間がかかるので MT より, ¥MPXEQ により直接ロードする。所定のSSWTCH を ON にすることによって,各出力データが得られ る。

4.2 プログラムの応用

二次元構造物解析用のプログラムであるが,他プロ グラム(「VFRAN」)と併用すれば,簡易立体計算が 可能である。またこの計算結果を用いて,有限要素法 による座屈計算が可能である。

5. あとがき

本ブログラムによれば、それほど細かい要素分割を しなければ、大多数の船体断面の平面応力解析が可能 である。補助記憶装置としてドラムと MT 2台をい っぱいに使用している上に多数のセグメントサブブロ グラムを有しているので計算能率は悪い。この程度の 計算は本来もっと大型の計算機システムにおいて効率 的に扱かわれるものである。

12. 有限要素法による熱伝導解析プログラム

機関開発部 塚田悠治・天田重庚・町田明正機関性能部 前橋正雄・塩出敬二郎・高井元弘

1. プログラムの目的および概要

形状の複雑な熱機関部品等の熱や強度解析に,有限 要素法は有効であると考えられる。本プログラムは, 当所共用計算機 FACOM 270-20 の使用を前提に,有 限要素法により二次元の熱伝導解析を行なうことを目 的とした汎用プログラムである。

2. プログラムの内容

- 2.1 プログラムの番号および名称
 45-024, SASKE-H
- 2.2 製作者 機関開発部 塚田悠治,天田重庚,町田明正 機関性能部 前橋正雄,塩出敬二郎,高井元弘
- 2.3 製作年月
 昭和48年5月

2.4 計算の基礎となる理論の概要

二次元熱伝導の基礎方程式は,

$$\rho_{c} \frac{\partial T}{\partial t} = k \left(\frac{\partial^{2} T}{\partial x^{2}} + \frac{\partial^{2} T}{\partial y^{2}} \right) + Q \quad \dots \dots (1)$$

境界条件は,

$$T = T_{s} \qquad \text{on } \Gamma_{T}$$

$$-k \frac{\partial T}{\partial n} = q_{n} \qquad \text{on } \Gamma_{q}$$

$$h(T_{\infty} - T) = k \frac{\partial T}{\partial n} \qquad \text{on } \Gamma_{h}$$
.....(2)

で与えられる。

ただし、 ρ : 比重量、c: 比熱、h: 熱伝導率、T: 温度、t: 時間、Q: 単行面積あたりの熱発生量、n: 境界の法線方向、 q_n : 単位長さあたりの熱量、h: 熱 伝達率、 T_{∞} : 境界 Γ_h と接する媒質温度である。

次に, *x-y* 座標系に節点 1(*x*₁, *y*₁), 2(*x*₂, *y*₂), 3(*x*₃, *y*₃)の3節点からなる三角形要素 *e* を考え,三 角形要素内の温度分布を次式で与える。

$$T = \frac{1}{A} (A_1 T_1 + A_2 T_2 + A_3 T_3) \quad \dots \quad (4)$$

全要素についての汎関数の極値条件より次式を得る。

$$[K]{T} + [P]\left\{\frac{\partial T}{\partial t}\right\} + \{B\} = 0 \quad \dots \quad (5)$$

ただし, *T_i*: 節点*i*の温度, {*T*}: 節点温度ベクト ル, {*B*}: 節点に与えられる熱量ベクトル, [*K*]: 定 常項の係数マトリックス, [*P*]: 非定常項の係数マト リックス, {*∂T*/*∂t*}: 節点の温度勾配ベクトルである。

(5)式を用いて、時間刻み *4t* 間の温度変化を求め、 各時間ごとの解を積み重ねて行き温度変化を求める。 このために次のような方式を用いた。

(28)

図-1 SASKE-H3 のフローチャート

$$\frac{\{T\}_{t} - \{T\}_{t-4t}}{4t} = \frac{1}{2} \left(\left\{ \frac{\partial T}{\partial t} \right\}_{t} + \left\{ \frac{\partial T}{\partial t} \right\}_{t-4t} \right)$$

の関係を用い、(5)式、(6)式より
$$[C]\{T\}_{t} = [E]_{t-4t} - \{B\}_{t} \qquad \dots (7)$$
を得る。ただし

$$[C] = \left([K] + \frac{2}{dt} [P] \right)$$
$$[E]_{t-dt} = [P] \left(\frac{2}{dt} \{T\}_{t-dt} + \left\{ \frac{\partial T}{\partial t} \right\}_{t-dt} \right)$$
$$\dots (8)$$

計算は, t=0 の温度 {T}t=0 を初期条件とし, (5)

(29)

式より $\{\partial T/\partial t\}_{t=0}$ を求め, (7) 式より $\{T\}_{t=4t}$ を求 める。以下, くり返して t=24t, 34t, ..., n4t と求め れば良い。

2.5 計算の手順

プログラムは, A, B独立した2つのプログラムか ら成る。図-1 ヘプログラムのフローチャートを示 す。

2.6 プログラム用語および計算機種

FORTRAN IV, FACOM 270-20

2.7 入 力

節点・要素の総数,各節点の座標,各要素を構成す る節点番号の組合せ,材料の熱的特性値,境界条件, 時間間隔の大きさ等。

2.8 出 力

入力データのすべて,および各節点の温度等。

3. プログラムの検定

3.1 計算精度および誤差

計算精度は,計算条件や要素分割法により異なるが, 今迄の計算例では、3~10%程度の誤差であった。

3.2 計算所要時間

節点数によって異なるが、かなり長時間を要する。

ー例をあげると,節点数 256 の定常問題で約 40 分同 節点数の非定常問題では,時間刻みの1ステップごと に約15分を要した。

4. プログラムの使用法について

BATCH 処理にて行なう。

5. あとがき

このプログラムは開発段階に応じて, SASKE-H1 より H3 まで製作したが, ここでは主として H3 に ついて述べた。

参考文献

- 塚田他,有限要素法による熱伝導解析プログラム について (SASKE-H1),船研研究発表会講演概 要,(1972)
- 塚田他,有限要素法プログラム SASKE について
 (熱伝導解析プログラム SASKE-H2),船研研究
 発表会講演概要,(1972)
- 3) 高田他,有限要素法熱伝導解析プログラム SASKE-H1,船研報告,第9巻第5号,(1972)
- O.C. Zienkiewicz, Y.K. Cheung, マトリックス 有限要素法, 培風館

13. 地面に衝突する周辺乱流ジェットの計算プログラム

機関開発部 村 尾 麟 一

1. プログラムの目的および概要

ACV の浮上特性を知るために,周辺ジェットの流 体力学に特別の関心が払われている。従来,等角写像 を用いた非粘性流れの計算が発表されているが,実験 とは良い一致を示していない。実際,ジェットの流れ には,粘性に基づく乱流混合がかなりの役割を果して いると思われる。一方,平面ジェットの研究はかなり 進んでおり,これを修正使用すれば,湾曲ジェットの 良い近似が得られると思われる。本プログラムでは, 乱流混合を考慮した周辺湾曲ジェットの圧力分布,速 度分布等を求める。

2. プログラムの内容

2.1 プログラムの番号および名称

47-008 Peripheral Jet Theory

2.2 製作者

東大:佐々木誠,機関開発部:大屋修司

2.3 製作年月

昭和44年1月 (NEAC 2206 用に) 製作, 昭和47年

7月(FACOM 270-20/30 用に)再編集

2.4 計算の基礎となる理論の概要

図-1 に示すように,周辺湾曲ジェットを便宜的に, 3 領域(初期領域,主領域,衝突領域)に分割して, 以下の仮定の下に,流速・圧力分布の計算を行なう。

① 流れは非圧縮性である。

② クッション圧力は一様である。

初期領域では,

③ ジェットは、ノズル出口面に直角に出て、ポテ ンシャルコア中の流れは、自由渦流れの速度分布

(30)