波浪中における伴流の実験的研究

武井幸雄*・門井弘行*・岡本三千朗*・堀 利文*・牧野雅彦*

Experimental Study on the Ship Stern Wake in Waves

By

Yukio TAKEI, Hiroyuki KADOI, Michio OKAMOTO, Toshifumi HORI, and Masahiko MAKINO

Abstract

The studies on the ship stern wake in regular head waves were performed by three methods mentioned below ;

- 1) Wake survey by using ring velocimeter.
- 2) Wake survey by using 5 holes Pitot tube.
- 3) Visualization of flow on the after body using surface tufts.

Pure car carrier modéls whose length are 4.5m and 6m were tested in the conditions as follows ;

Froude number : 0.180, Wave height/Model length : 1/66.7, Wave length/Model length : 0.67, 1.0 and 1.33.

The results are ;

- 1) From the measuremnts by using ring velocimeter and 5 holes Pitot tube, it was found that the velocity in the propeller disk in waves is larger than that in still water.
- 2) Time variation of the velocity distribution in the propeller disk was obtained in detail.
- 3) The influence of the working propeller to the flow field in the after body was made clear by means of surface tufts.

目 次

*推進性能部

原稿受付:昭和62年4月24日

4.	円	環	充速	計に。	にる	計測	<u>ا</u>	•••••	••••	••••	••••	••••	$\cdots 70$
5.	5	孔	ピト	一管に	こよ	る言	十測・	••••	•••••	••••	•••••	•••••	72
6.	表	面:	タフ	ト法に	こよ	る船	尾	充れ	の可	視	' <u></u> ተ	•••••	73
7.	あ	とフ	がき	•••••	••••	••••	•••••	•••••	••••	••••	••••	•••••	79
参考	文	献·	•••••	•••••	••••	••••	••••	•••••	•••••	••••	••••	••••	79
付鋗	k 1	F	円環	流速言	†の	特性	ŧ	••••	••••	••••	•••••	••••	79
1	•	1	構	造	••••	•••••	•••••	•••••	••••	••••	•••••	••••	79
1	•	2	較	正法・	••••	••••	••••	••••	•••••	••••	•••••	••••	79

70

1.	3	波浪中における単独性能80
1.	4	不均一な流れの中の抗力80
付録 2		船体運動81

記号表

a	比例常数(円環に働く力)
В	船の型幅
Св	方形係数
d	喫水の深さ
F	円環に働く力
ΔF	円環に働く変動力
F_{N}	フルード数
$F_{ m o}$	均一流中で円環に働く力
F'	不均一流中で円環に働く力
f	関数
H _w	波高
k	比例常数(変動流速)
L	船長
L_{PP}	垂線間長さ
Þ	圧力
<i>r</i> ₀	プロペラの半径
$r/r_{\rm o}$	プロペラ面内の半径位置
S	面積
t	時間
V	流速
$V_{\mathfrak{m}}$	模型船の速度
Vo	一定流速
V'	仮想した流速分布
W	伴流係数
1-W	プロペラ円内の流速比(=V/Vm)
$(1 - W)_{s}$	平水中のプロペラ円内の流速比
$(1-W)_{\mathbf{w}}$	波浪中のプロペラ円内の流速比
X_{a}	前後揺量(片振幅)
Za	上下揺量(片振幅)
ζa	波の片振幅
θ	角度
$ heta_{ m a}$	縦揺角(片振幅)
x	波数
λ	波長
π	円周率
ω	角速度

1. まえがき

近年、自動車専用運搬船などに装備されたプロペラ の損傷事故が報告されている。それらの事故解析の結 (454)

果から、プロペラの損傷は偶発的な大きな力が加わっ て生じたものではなく、繰り返し荷重がプロペラ翼に 加わって生じた疲労破壊であると推定されているい。

即ち、波浪中を航行する船舶のプロペラ翼には、平 水中の場合と異なり、波浪、船体運動および船尾伴流 分布の変化によるプロペラ流入速度の時間的変化が生 じ、それに起因する負荷変動が加わると考えられる。

従って、プロペラの負荷変動を推定するためには波 浪中の船尾伴流分布の時間的変化について知る必要が ある。いままで波浪中の伴流について行われた研究を 挙げると、中村らはコンテナー船体のプロペラ位置に 円環型伴流計を取付けて、規則波中におけるプロペラ 面内の公称伴流の半径方向の分布を求めた²⁾。A.B. Aalfersらはレーザー流速計により規則波中のプロペ ラ面内の流速変動を計測した3)。姫野らは翼車型流速 計により、船体を強制ピッチングさせた場合と規則波 中の伴流を計測した4)。

本稿では、円環流速計と5孔ピトー管による伴流分 布の計測および表面タフト法による船尾流れの可視化 など、今までにない新しい計測法を用いて波浪中の伴 流の挙動の解明を試みた結果について報告する。

本研究は波浪中における自動車専門運搬船の推進性 能の研究5/~10)の一環として行ったものであるが、波浪 中の伴流についての研究成果は少なく11)、本稿も今後 の研究の資料として役立つものと信ずる。

2. 供試模型船

実験に使用した模型船は、垂線間長さLpp=6m (M.S.No.0408) およびL_{PP}=4.5m (M.S.No.0434) の自動車専用運搬船の木製相似模型船である。 それらの主要目と実験時の状態をTable 1に示す。

3.実験項目と条件

実験は下記の3種類について行った。また、それら の実験条件をまとめてTable2に示す。

- (1) 円環流速計による波浪中船尾伴流計測
- (2) 5 孔ピトー管による波浪中船尾伴流計測
- (3) 表面タフト法による波浪中船尾流れの可視化

上記の(1)および(2)は船長6mの模型船を用い、(3)に ついては使用したビデオカメラの視野が大きくとれな かったので、船長4.5mの小さい模型船を用いて実験を 行った。

4. 円環流速計による計測

円環流速計はFig.1に示すように、流れをできるだ

Model Ship and Conditions Table 1

1.Principal p	articulars of ship m	odels	
Model ship no	0408	0434	
Length Lpp	[m]	6.0000	4.5000
Breadth B	[m]	1.1034	0.8276
Draft d	[m]	0.3103	0.2327
Block coeffic	0.51	44	
Propeller dia	meter [m]	0.2014	0.1510
Boss ratio	0.180		
Pitch ratio		0.97	7
Expanded are	ea ratio	0.69	0
Number of bl	ades	5	
Blade section	n	MAU	-M
2.Test condi	tion (Fully loaded)		
Draft	[m]	0.3103	0.2327
Trim	[m]	0	0
Displacement	1.0585	0.4466	
Wetted surfa	6.9366	3.9018	

け乱すことがないように、直径4mm の黄銅のパイプ によって製作した。また、支柱は厚さ2mmの黄銅板で 製作した。

円環流速計には#No.120のカーボランダムを塗布して, 較正時における実験点の再現性を改良した。なお、円 環流速計の特性については付録1に記載した。

較正は平水状態の水槽で、各円環流速計を3分力計 に取りつけて単独に曳航して, 曳航速度と円環流速計 に働く抵抗力との関係を求めた。従って、流れが均一

Ring Velocimeters Fig.1

流中の較正である。

伴流計測は、各円環流速計を船尾に設置した3分力 計に取付けて、はじめ平水中を航走して、ついで波浪 中を航走して行った。円環流速計の軸方向の取付け位 置はプロペラ位置である。

模型は L_{PP} が6mで, 波高は9cm ($H_w/L=1/66.7$) 波長は6m(λ/L=1.0)である。波浪中において、円 環流速計に働く抵抗力は船体運動にほぼ等しい周期で 変動したが、その平均値を読みとり、その値と較正曲 線から流速を求めた。

Fig.2に半径方向の平均流速分布(1-W)を示す。 実線は後で述べる5孔ピトー管により計測した波浪中 の半径方向の流速分布を示している。△印,○印はそ れぞれ円環流速計による波浪中、平水中における実験 値を示す。半径が大きいところでは円環流速計と5孔 ピトー管による計測結果が一致しているが、半径の小 さいところでは円環流速計による計測値のほうが小さ い。この相違については、円環流速計の特性を調べた

	Table 2 Test	Condition	
	Measuring by Ring Velocimeter	Measuring by 5 Holes Pitot Tube	Flow Visualization by Tufts
Model Ship No	0408	0408	0434
Model Length (m)	6.000	6.000	4.500
Ship Speed (m/s)	1.398	1.398	1.211
Froude No.	0.180	0.180	0.180
Wave Height (cm)	9.0	9.0	6.75
Wave Length (m)	6	6	3, 4.5, 6
Wave Length/ Model Length	1	1	0.67, 1, 1.33
Number of Prop. Revelution (rps)	_		12.1
Surging	Free	Fixed	Fixed
Wave Height/Model Length	ı	1/66.7 all	

(455)

Fig. 2 Results by Using The Ring Velocimeter

結果(付録1)からはっきりした原因をつかめなかった。

Fig.3に円環流速計による計測結果として波浪中お よび平水中の流速(1-W)の比,すなわち $(1-W)_w/$ $(1-W)_s$ を示す。半径が小さいところでは $(1-W)_w/(1-W)_s$ の値が1より大きくなっている。即 ち,波浪中では平均流速がプロペラ軸に近いところで 平水中より早くなっている。

文献(2)によると、波浪中でプロペラ面内の速度変動 の時間的平均値は平水中での速度より大きく、特にプ ロペラ中心ほど、また船体運動が大きいほど大きい値 となっている。この傾向は、Fig.3についても言えるこ とである。文献(2)の場合はコンテナー船による実験結 果で、 $\lambda/L=1.1$ の条件でr/r₀=0.3の(1-W)_w/(1-W)₅が1.43となっていて、本実験の結果の値に近い。

Fig.3 $(1-W)_{w}/(1-W)_{s}$ Distribution

5.5孔ピトー管による計測

計測装置は5 孔ピトー管,YZトラバース装置,圧力 計,増幅器およびデータレコーダで構成されている。 5 孔ピトー管は直径が12mmの球形で,アペックスアン グルは25℃ある。また,圧力計は半導体ダイアフラム 型である。トラバース装置および圧力計は模型船に登 載した。圧力計の較正は圧力計にかかる水頭を変化さ (456) せて行った。

本計測系の周波数応答については、全く同様な計測 系による圧力応答試験の結果¹²⁾から、およそ2Hzまで は利得および位相おくれは無視できることがわかった。 本実験における船体運動の周期はおよそ2秒(0.5Hz) であるので、5孔ピトー管からの圧力信号の位相のお くれはないと考えられる。計測位置はFig.4が示すよ うに右舷のプロペラ面を格子状におよそ100点につい て計測した。

5 孔ピトー管の各孔の圧力をデータレコーダに記録 して、それらの記録をAD変換して最少自乗法とニュ ートン・ラフソン法により5 孔ピトー管の各孔の圧力 信号を正弦波に近似した。その結果をFig.5に示す。ピ ッチングの信号と共に5 孔管の圧力信号が示してある が、その近似の程度はかなりよいと考える。以下に示 す結果はこの近似値を用いて求めた。

Table 3に各半径位置における平均の(1-W)を示 した。(1-W)wはフルード数が0.180の場合の波浪中 の時間的平均値である。(1-W)sは平水中における計 測結果で,それぞれフルード数が0.156および0.223で ある。平水中でこの程度の船速の違いが伴流にたいし

Fig. 4 Measured Points by Using 5 Holes Pitot Tube

r/r _o	A (1-W) _w Fn=0.180	B (1-W) _s Fn=0.156	ratio A/B	C (1-W)s Fn=0.223	ratio A/C
1.0	0.790	0.777	1.02	0.782	1.01
0.9	0.774	0.755	1.03	0.760	1.03
0.8	0.742	0.721	1.03	0.731	1.02
0.7	0.694	0.667	1.04	0.688	1.01
0.6	0.641	0.594	1.08	0.623	1.03
0.5	0.577	0.504	1.15	0.527	1.09
0.4	0.473	0.391	1.21	0.398	1.19
0.3	0.252	0.192	1.31	0.193	1.31

Table 3 1-W Measured by 5 Holes Pitot Tube

Fig.5 Fittng of Recorded Signal for analysis

て与える影響は極めて小さいことを確認しているので,¹⁰⁾ここでは異なったフルード数における計測結果の比A/BおよびA/Cをとった。

この結果をみると、平水中のFn=0.156, Fn=0.223 のいずれの場合に対しても比は1より大きく、プロペ ラの中心に近づくに従ってその値が大きくなる。この 傾向は前述の円環流速計による測定結果と一致する。 その値は円環流速計による結果よりやや小さい。

公称伴流は,平水中のFn=0.156で0.327,Fn=0.233 で0.317, 波浪中のFn=0.180で0.298である。

Fig.6に(1-W)の分布とプロペラ面内の速度ベク トルの分布を示す。Fig.6(a)は平水中の5孔ピトー管 による計測結果(Fn=0.223)で,Fig.6(b)は波浪中の 時間的平均(Fn=0.180)である。両者を比較すると波 浪中の時間的平均値のほうがプロペラ円中心部付近の 等速度線が左に寄り,やや密になっている部分が見ら れるが,大略のパターンはよく似た分布になっている といえる。 Fig.7(a), (b)に波浪中における (1-W) および速度 ベクトルの時間的変化を示す。Fig.7(a), (b)には、ピッ チングの信号が船首を上げる方向に 0 を横切った時刻 を 0°として、1 周期 (2π) を12等分して、時間経過に 従って変化する様子を示している。

平水中の(1-W)のパターンと異なるところは, 下方に波浪の影響によると思われる(1-W)>1.0の 流速の高い領域が見られることである。(6/6) πから (9/6)πにかけて,(1-W)>0.6の領域でパターンの 変化が大きい。また,(8/6)πから(10/6)πにかけて 速度ベクトルの一部の方向が大きく変化をしている。 この時刻に,模型船は船体運動によって船尾が最も上 がった状態にある。従って,波浪の影響を受けやすい と言える。

なお,船体運動量については付録2に記載した。

また, Fig.7(a), (b)で, 等速度線のパターンの変化を 定量的に把握するために (1-W)=0.6の等速度線を 選び (1-W)<0.6の領域の変化を調べた。

Fig.8に示すように, (1 - W) = 0.6の等速度線とプロ ペラ円との交点と円の中心を通る線を描き, その延長 とプロペラ円と $\theta = 0$ °との交点Pからの水平線の交点 をQとする。さらに, (1 - W) = 0.6の線と $\theta = 90$ °の線 と交わる点をRとする。

こうして、OPQRで囲まれた面積とプロペラ円の1/2の面積との比を求めてみるとTable 4 のようになる。 Table 4 の面積比Sの値は0.29から0.35の間で周期的に変化をしている。大雑把ではあるが、(1-W) < 0.6である速度の低い領域の変化の程度を知ることができる。

6.表面タフト法による船尾流れの可視化

Fig.9が示すように、アルミニューム製支柱にVTR (457)

(a) In Still Water (Fn = 0.223)

Velocity Distribution at Propeller Disk Fig.6

カメラ、波よけ、のぞき窓およびミラーをつけた撮影 装置を,船体中心よりおよそ2.6m離れたところに設置 して、模型船とともに走行させた。

照明は写真ランプ (500W) をカメラのすこし後方に 3ケ設置した。

模型船はM.S.No.0434で長さ4.5mである。

流れの可視化のための表面タフトには中細の黄色の 毛糸を用いた。タフトの長さは30mmで、赤色のポリエ ステル粘着テープにより船尾左舷側に取付けた。取付 け位置はFig.10およびFig.11に示すように、ステーシ ョンナンバー (S.S.) で, A.P.から1/4おきである。 タフトはポリエステル粘着テープに50mm間隔にあらか じめはっておき、船体表面に沿って取りつけた。 Fig.10で点線は各ステーションにおける断面を示し ており、カメラから見たタフトの位置は黒丸で示すよ うになる。

船体の表面は緑色で塗装されていて、黄色のタフト に対してはコントラストが弱いため、タフトの背景に あたる部分に赤色のポリエステル粘着テープを張り付 けて、コントラストを強めた。

実験は曳航状態および自航状態について行った。実 験状態はTable2に示すように船速1.211m/s (Fn= (458)

0.180)で、自航状態におけるプロペラの回転数は12.1 rpsである。また、波高は6.75cmで、波長は3m、4.5 m. および6mの3種である。

模型船は抵抗動力計で曳航されて、ヒービングおよ びピッチングが自由で、サージングおよびローリング は固定されている。

各状態でVTRに録画された画像を再生し,スケッチ した結果をFig.12に示す。左側は曳航状態を、右側に 自航状態の結果を示す。また、図の上から、平水中, 波長3m, 4.5m, および6mにおける結果を示す。

タフトの動きを最大のふれ幅で描いてその間に斜線 を書き込んだ。しかし、このスケッチはそれほど厳密 に描いたものではなく見取りスケッチをしたものであ る。また、タフトが早く振動する場合と船体運動に同 期してふれる場合を区別して描いていない。

曳航状態と自航状態を比較するとプロペラの直上の タフトを除いて、全体に曳航状態のほうがタフトのふ れが大きい。特に、自航状態でプロペラ前方のタフト のふれが曳航状態より小さい。プロペラ前方域の流れ がプロペラにより加速されるのでその影響が現れたも のと思われる。プロペラによる加速の影響はステーシ ョンNo.3/4から1まで及んでいることが分かる。

Fig. 7(a) Velocity Distribution in Waves

(459)

Fig.7(b) Velocity Distribution in Waves

(460)

Fig. 8 Difinition of Low Velocity Region

rable 4 Change of Low velocity Regit	Table 4	Change	of	Low	Velocity	Regio
--------------------------------------	---------	--------	----	-----	----------	-------

Phase		$ heta^\circ$	d1/r	S
0		32	0.36	0.29
(1/6)	π	31	0.40	0.29
(2/6)	π	32	0.44	0.31
(3/6)	π	30	0.46	0.30
(4/6)	π	33	0.50	0.33
(5/6)	π	37	0.50	0.35
(6/6)	π	37	0.40	0.35
(7/6)	π	37	0.40	0.32
(8/6)	π	37	0.44	0.32
(9/6)	π	36	0.40	0.33
(10/6)	π	34	0.38	0.31
(11/6)	π	33	0.38	0.29
s	=0P	QR/ (1	$1/2) \pi r^2$	

Fig.11 The Tufts Fitted on The Ship Model

このプロペラ前方のタフトのふれ幅の差は、平水中 より波浪中におけるほうが大きい。特に波長船長比 (λ/L) が1.0と1.33の場合にその差が大きい。

つぎに,波長による影響を検討する。波長3mにおけ る状態では,船体運動が小さいために,タフトのふれ は小さい。波長4.5mにおける状態では,船長と波長の 比が1となり,船体運動が大きくなるため,タフトの (461)

Fig.12 Results of Flow Visualization

(462)

ふれは多くなる。船体運動の周期に同期して揺れるタ フトが多くなり、特に曳航状態におけるプロペラ位置 直前のタフトのふれが大きい。波長6mの状態では、 4.5mの状態同様に船体運動に同期して揺れるタフト が大きくなる。また、船底に近いタフトのふれが大き くなる。

7. あとがき

自動車専用運搬船の模型船について,円環流速計と 5 孔ピトー管による伴流計測および表面タフト法によ る船尾流れの可視化を行って,波浪中における伴流の 挙動を調べた。

結果はつぎのとおりである。

- (1) 円環流速計および5孔ピトー管による計測の結果から、波浪中においてはプロペラ面内の流速が加速される。そしてプロペラの中心に近いほど加速が大きい。
- (2) 波浪中におけるプロペラ円内の流速分布および速 度ベクトルの時間的変化を得ることができた。
- (3) 流れの可視化実験から,波浪中の船尾の流場への プロペラの影響を知ることができた。

また,波浪中の伴流に関する実験例はまだ少なく, 本実験結果も今後の研究の発展のためのデータの蓄積 をはかるという点からは有意義であると考える。

おわりに、本実験を遂行する上に多くの助言を頂い た、当時海洋開発工学部、足達宏之安全性能研究室長 (現在,世界海事大学)に感謝します。

また、本研究は関日本海事協会技術研究所との共同 研究の一部である。ご協力をいただいた関係者の皆様 に厚くお礼申しあげる。

参考文献

- 2) 中村彰一他;コンテナ船の波浪中推進性能に関する研究,第3報~第5報,関西造船協会誌,158号,159号,162号,(1975~1976)
- A.B.Aalbers et.al.; Unsteady Wake Velocities Due To Waves And Motions Measured On A Ship In Head Waves, Proceedings Of 15th Symposium On Naval Hydrodynamics, (1984)
- 4) 姫野洋司他;非定常船尾伴流の計測,関西造船協 会誌,第201号,(1986)
- 5) 堀 利文他:プロペラ荷重度変更法による波浪中 船型試験システム,第44回船研研究発表会講演集,

(1984)

- 6) 門井弘行他;波浪中における自動車専用運搬船の プロペラ負荷変動,第44回船研研究発表会講演集, (1984)
- (7) 武井幸雄他:波浪中における船尾流れの可視化, 流れの可視化, Vol.5, Suppl. (1985)
- 8) 門井弘行他;自動車専用運搬船の波浪中試験結果, 第46回船研研究発表会講演集,(1985)
- 3) 武井幸雄他;波浪中における船尾伴流の実験的研究,第46回船研研究発表会講演集,(1985)
- 門井弘行他;自動車専用運搬船の波浪中における 推進性能に関する模型試験,船舶技術研究所報告, 第23巻,第4号,(1986)
- 11) 姫野洋司:波浪中推進性能に対する粘性影響,日本造船学会,運動性能研究委員会第1回シンポジウムテキスト(1984)
- 12) 神蔵輝男他;船体表面圧力の計測法とその応用, 第34回船研研究発表会講演集,(1979)

付録1 円環流速計の特性

1.1 構造

Fig.2(本文中)が示すように直径4mmの黄銅のパイ プを円形に曲げて、厚さ2mm幅10mmの黄銅板でつくっ た支柱を取付けた。その支柱の端は3分力計に容易に 取付けられるようになっている。

予備的な較正試験において,およそ曳航速度Vが1.2 m/s以上になると実験点のバラツキが大きく再現性が 悪くなったので, #No.120の細かいカーボランダム少量 を接着剤によって円環につけた。その結果実験点のバ ラツキはなくなった。

1.2 較正法

静水中で円環流速計を単独に曳航して、均一流中に おける較正を行った。3分力計に円環流速計を取付け、 曳引車の速度と円環流速計に働く抗力を計測した。使 用した3分力計は日章電機株式会社製LMC-3504-10 である。

支柱にかかる力は、支柱のみを曳航して抗力を計測 して、その分を差し引いて円環にかかる力を求めた。

較正結果の1例をFig.A-1に示す。このとき使用した円環流速計は予備試験用であり,その大きさは直径が106mmである。○印は実験点を示し,点線は円柱の抗力係数を0.98(円柱の長さと直径の比が40の場合)として計算した値である。低速では計算値と一致しているが,高速域では実験値のほうが高くなっている。

(463)

Fig. A-1 Calibration Curve of a Ring Velocimeter

1.3 波浪中における単独特性

波浪中を単独で曳航して抗力の変動分の振幅を計測 した。その結果をFig.A-2に示す。

円環の大きさは直径が106mmである。波は, 波高が 6.75cm, 波長は6mの規則的向かい波である。

円環に曳航速度および波動による周期的に変動する 流速によって生ずる力が加わる。その力は流速の2乗

Fig.A-2 Force Fluctuation in Waves (464)

に比例するので、次の関係がある。

$$F = k (V + a\cos\omega t)^{2}$$
$$= k \{V^{2} + 2Va\cos\omega t + (a\cos\omega t)^{2}\}$$

ここで、*F*は抗力、*k*および*a*は比例常数*w*は出会周 期、*t*は時間である。

上式の右辺の中カッコ内の第3項が他の項に比べて 無視できる範囲では、周期的に変動する成分は2 VacoswとなりVに比例する。

Fig.A-2をみるとV=0.7m/s以下では上に述べた 関係があることが分かる。

1.4 不均一な流れの中の抗力

円環流速計は均一な流れの中で較正して,不均一な 流れを計測するために,不均一な流れの中にある円環 流速計にどのような力が働くか簡単な考察をする。

Fig.A-3で示すように円環を1ケ所で切って展開したもの(AB)を考える。

均一な流れの中で作用する力F₀は次のように求め ることができる。

$$F_0 = 2k \int_0^{\pi} V_0^2 d\theta = 2\pi k V^2$$
 ($V_0 = const$)

ここで, 記号の定義は前述のとおりである。一方,

$$2\int_0^{\pi} V_0 d\theta = 2\int_0^{\pi} V' d\theta$$

を満足する場合、即ち、平均流速が均一流と同じ場合 の1例として簡単な関数

$$V' = \frac{2V}{\pi} \theta$$

を得る。(Fig.A-3, 参照)

このような不均一流中で円環流速計に作用する力F^Yを求めると、

$$F'=2k\int_0^\pi (\frac{2V}{\pi}\theta)^2 d\theta = \frac{4}{3}\pi kV^2$$

 $F' \ge F$ の比を求めると、 $F' / F = 4/3 = 1.3 \ge x = 3$ 。

従って、平均流速が等しい場合でも、不均一な流れ の中にある円環流速計に働く力は均一な流れに比較し

Fig. A-3 Supposed Velocity Distributions around a Ring Velocimeter

Fig. A-6 Surging Motion

て大きいことがわかる。これは円環流速計に働く力が 流速の2乗に比例するためである。

この例は、不均一な流れ場において、円環流速計に 作用する力は、その流速の分布が変化すると、平均し た流速に対応する力が異なることを示唆している。ま た、その程度を示していると考える。

付録 2 船体運動

船体運動の計測結果をFig.A-4, A-5, A-6に示す。 それぞれピッチング, ヒービングおよびサージングの 計測結果である。これは模型船Na0408(L_{PP}=6.0m)の 無次元表示したものである。この結果から船体運動の 無次元値はλ/Lの増加に従って増加する傾向が見られ る。