

図2-13 偏析した元素分布の比較; (a) 試料 B, (b) 試料 N, (c) 試料 R

船舶技術研究所報告 第35巻第2号(平成10年)研究調査資料 67

(117)

偏析している元素(Cr、Ni、Cu)について、図2-13に参照材のEPMA分析結果と比較した結果を示す。 未使用フック(試料 N)の先端部を使用したため、破 損フック(試料 B)もここでは先端部から得た試料を 用いたため図2-12とは少しパターンが異なっている。 試料 N には Cr 等の偏析パターンがわずかにみられた が、試料 B に比較すると均一分布といえる。また、 試料 R(非鍛造材)では Ni、Cr、Cu に格別の偏析は みられず、均一な分布をしている。なお、破損フック とペアであったフック(試料 P)には試料 B とほぼ同 様の偏析があった。したがって、この偏析は、破損品 と同一ロットの製品に特有のものと考えられる。

図2-14は、偏析相の形態の分布を調べるために、 Niの面分析を断面各部で比較したものである。Niの 偏析領域のパターン(パターンはCr、Cuも同様であ る)は、断面の位置によって異なり、概ね型鍛造(フッ ク形状への最終的な鍛造)時の物質移動の流れに沿っ ている。それ以前の加工・処理による偏析であれば、 固溶化熱処理温度以上に加熱される型鍛造時に再度均 質化されるはずであることから、この偏析は型鍛造加 工時に形成されたものと推定される。

図2-14 Niの分布パターンの場所による違い(試料B)

(3) X線回折による分析

EPMA による元素分布から、Fe-Cr 化合物等の存 在も推測されたので、X 線回折による同定を試みた。 図2-15はその回折パターンである。SUS630の回折パ ターンは登録されていないが、参照材である棒材(試 料P)のパターンとも同一であり、格別の問題はなかっ た。ただし、微細な析出物や偏析相等を正確に同定す るためには、焦点を絞ってX線を照射できる微小領域 分析装置による詳細な測定が必要である。

3. 考察

3.1 破断の原因

鋼材の脆性破壊は、切欠きなどの応力集中部のある 材料が低温で高速の変形(衝撃的な荷重)を受ける場 合に起きる。初期き裂は脆性破壊の起点となるほどの 大きさではなく、また使用条件(温度、荷重)にも特 に異常はなかったと報告されている。一方、硬さ測定 とシャルピ衝撃試験結果から、材料自身が所定の靭性 値を有せず、脆化していることは明らかで、これが破 断の直接的原因と考えられる。

材料の低靭性化の原因としては、水素脆化の可能性 も否定できないが明確な特徴がみられない。SUS 630 は、固溶化熱処理において Cu を固溶させ、析出硬化 熱処理によって微細な Cu-rich の析出相を形成させて 強化をはかっているが、Cu量が多すぎると靭性を低 下させるといわれる。また、Fe-Cr 相で形成される可 能性のある Fe-Cr 金属間化合物(シグマ相)もまた 靭性低下の原因となると考えられている。Cu の偏析 は Cu 量過剰の部分を局所的に生成し、Cr 過剰領域で は Fe-Cr 化合物の形成の可能性も考えられることか ら、EPMA 分析で明らかになった Ni、Cr、Cu の偏 析による脆化の可能性が強く示唆される。

偏析の形成原因としては、組成分布のパターンから、 偏析が型鍛造時に形成されたと推測される。鍛造時の 温度管理は重要で、低すぎる温度での鍛造は割れ発生 や低靭性相の析出の可能性があるとされる。図1-1に 示される製造方法を検討すると、固溶化熱処理工程が なく、鍛造時の加熱を固溶化熱処理としている。鍛造 時の加熱により固溶化処理を行う場合には注意深い温 度管理が必要である。鍛造温度が低すぎたり加工速度 が速すぎると、所要の熱処理条件が満たされず、均質

(118)

な固溶化組織が得られなくなるとともに、2.1で述べ たように割れが発生しやすくなる。また、冷却速度が 遅すぎると固溶限を越えた元素の析出による偏析が起 きる可能性がある。製造手順によれば、鍛造時の加熱 温度は1150℃で十分高いことになっているが、実際に 鍛造が施工されるときの温度は記録されていない。型 鍛造時の温度管理に問題があったことは、材料内部の 欠陥(図2-2のV部及び図2-6)及び初期き裂の存在 からも示唆される。これらを総合すると、型鍛造時の 温度管理が適切でなく、偏析による低靭性相の生成及 び応力集中の原因となる鍛造欠陥の形成が脆性破壊の 根本的な原因と考えられる。

3.2 対策と検査方法の提言

(1) 製造方法の見直し

材質の変化が疑われるにもかかわらず、同時期に製 作された他のフックに問題が発生しておらず、また、 事故時にも同様の材質変化のみられるペアのフックが 破断しなかった。これらは、破断面の変色部(初期き 裂)のような欠陥がなければ、材質の脆化があっても 直ちには脆性破壊を引き起こすとは限らないことを示 唆する。本事故発生後、同種のフックについてき裂の 検査がなされたが、発見されたものはなかった。しか しながら、鍛造時の材質変化がどの範囲に及んでいる かは不明であるため、特に同一ロットの製品の取り扱 いには十分に注意するとともに、たとえば再度固溶化 熱処理を行う等、何らかの対策が必要である。今後の 製作にあたっては、製造過程の見直し、特に鍛造時を 含む温度管理の見直しが必要と思われる。鍛造開始と 終了時の温度を規定し、鍛造後再度固溶化熱処理を行 うことが推奨される。

(2) 超音波による損傷評価の試み

最後に、不適切な熱処理による材質変化の非破壊検 査について検討する。材料の超音波特性は弾性的性質 と関係があり、材質変化を検査できる可能性がある。 特に、超音波の材料内部での減衰は、結晶粒界のほか 元素の偏析の影響を受けることから、フックにみられ た偏析を非破壊的に検査できる可能性が考えられる。 そこで、フックの内部での超音波減衰特性を調べた。 破損フック(試料 B)のほか、参照材として未使用 フック(試料 N)を試料とした。図3-1は、超音波減 衰特性の計測法の模式図である。フックの破断位置に 近い側面に広帯域探触子を置き、表面に超音波を入射 したときの底面(裏面)からの反射波を採取した。試 料の表面粗さに起因する超音波の伝達損失の影響を除 くため、最大粗さ(Rmax)が5μm程度になるよう表 面を研磨した。

得られた結果を図3-2に示す。上の2つの図は受信波 形でありほぼ中央に底面エコー波形が検出されている。

図3-1 超音波減衰特性計測の模式図

右側に示す試料Bの方が試料Nより振幅は大きかった。 下の図は底面エコー波形の周波数分析(FFT 処理) により得たスペクトルである。試料 Bの方が全周波 数で積分した値(面積)は大きくエネルギー損失が小 さかった。また、低周波成分は試料 Bの方が高く、 高周波成分(5 MHz 以上)では試料Nの方が高い。 試料 Bと試料 Nの差は大きくなく、確度の高い方法 とするためにはデータの蓄積と系統的な実験に基づく 検討が必要ではあるが、両者の間に定性的・定量的違 いが存在し、非破壊検査法としての可能性は示唆され た。

4. まとめ

析出硬化型ステンレス鋼製のフックの破断事故の原

(119)

因の調査を行った。破面観察結果は脆性的な破壊を示 唆し、硬さとシャルピ衝撃試験結果から、材料が低靭 性であったことが明らかになった。元素分析により、 クロム等の偏析がわかり、鍛造時の温度管理が不適切 であったために低靭性相を形成したという結論を得た。 今後の製作にあたっては、鍛造時の温度管理等の製造 工程の見直しが推奨される。

謝辞

SUS 630の諸性質、加工(特に鍛造)についてご教 示をいただいた羽田晋介氏(神戸製鋼所)及び小賀正 樹氏(明電舎)に謝意を表します。

[参考文献]

- 1) JIS G 4303.
- ステンレス協会編、ステンレス鋼便覧、pp.642-645、日刊工業新聞社。
- 日本鉄鋼協会編、鉄鋼便覧第3版; IV 鉄鋼材料、 試験・分析、pp.165-167、丸善。
- 4) 塚本富士夫、松木巌、矢ヶ崎汎:金属学会報、3
 巻、11号、pp.615-621 (1964)。
- 5) 川畑正夫、藤田輝夫、江波戸和男:金属学会報、 3巻、11号、pp.649-671 (1964)。