船舶技術研究所報告 第37卷 第3号 (平成12年)研究調查資料 67

中型内航高速船の船型改良

菅井 信夫*、柳原 健*、山口 眞裕**、鈴木 尚也***

An Improvement of Ship Hull Form for Medium Sized Coast-Going Liners

by

Nobuo SUGAI , Tuyoshi YANAGIHARA Masahiro YAMAGUCHI , Naoya SUZUKI

Abstract

This paper describes the experimental results for improvement of the ship hull form for domestic transportation.

The improvement method used here is a statistical method on wave making theory compiled from many model ship tank test results.

The optimum frame line form was pursued by a transformation of the section form. As an initial hull form, a conventional coastal ship (A type) with a bulbous bow and transom stern was selected. The series of ship models were created by systematically changing the sectional area curves.

The principal results are:

- (1) It was confirmed that the resistance coefficients, which were estimated by the statistical method, were similar to the results obtained from the tank tests.
- (2) The C type model had a 10% lower residuary resistance coefficient than the initial model (A type) and the DHP was lower by about 7%.
- (3) The improvement of the ship form (D type) using the wave profile measurement results was smaller than expected. Further improvement is necessary not only for experimental techniques but also for data analysis of the wave profile measurements.
- (4) The form factors, K, which were calculated by CFD, were 4% higher than the experimental results.
- (5) The ship models of the D type and E type, which had parallel bodies at the midships, had higher resistance coefficients than estimated by the statistical method.

^{*}推進性能部 **氷海技術部

^{***}元推進性能部 原稿受付 平成11年7月12日

審 查 済 平成12年5月31日

	2		-
ı	-	3	-
r		10	-
•		τ	

目次

1. 緒言•••••
2.経緯及び研究の目的目的・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 対象船型••••••
4. 船型改良法•••••
4.1 造波抵抗理論に基づいた
統計解析法•••••••••••••••
4.2 波形解析結果を利用した方法 •••••••
4.3 CFD計算 **********************
5. 模型船••••••
5.1 基本船型(A船型)•••••••••••••
5.2 船体前半部の横切面積曲線を
変化させた船型(B船型)・・・・・・・・
5.3 船体全長にわたって横切面積
曲線を変化させた船型(C船型)••••
5.4 船体中央に平行部を有する
船型(D船型、E船型)•••••••••
5.5 波形解析結果を利用して
横切面積曲線を求めた船型
(F船型) •••••••••••••••••••
6. 水槽試験•••••
6.1 抵抗試験•••••
6.2 自航試験************************************
6.3 波形計測••••••
7.CFD計算•••••
8.まとめ及び考察・・・・・・・・・・・・・・・・・・・・・・・・
9. 結言•••••
参考文献 •••••

1. 緒言

環境問題(地球温暖化防止、大気汚染対策など)の観 点から陸上から海上へのモーダルシフトが重要な課題 となっている。特に単位輸送量当たりのエネルギー効率 が高く環境に対する負荷が低い内航海運はその受け皿 として大きく期待されている。内航海運はトンキロベー スでは国内輸送量の約42%を占めている1)ものの、ト ンベースでは僅か8%であり自動車輸送が90%強を占 めている。近年は内航船は運航形態の合理化および顧客 のニーズからの一層の高速化が望まれている。これらの 状況に応じるためには省エネルギー化を図った船型の 開発が不可欠であり、日本中型造船工業会や昭和54年 度からは船舶整備公団(現運輸施設整備事業団)との共 同研究を通じて内航船舶の船型開発を行ってきた2)3) 4) 。平成6年度からは船舶技術研究所(以下、船研と 呼ぶ)で4年間にわたり、船型改良と併せて従来より高 速な船の船型試験データの蓄積を行うことを目的とし て内航高速船の水槽試験5)6)7)を実施してきたので、

ここに報告する。

高速域では船の抵抗は造波抵抗成分が大部分を占め ており、高速船の船型改良の主要な目的は造波抵抗を減 少させることである。造波抵抗の減少を目的とした船型 改良の手法として大きく分けると、極小造波抵抗理論、 流線追跡法、ランキンソース法、CFD計算などの理論 計算による方法と、模型船による水槽試験結果を利用す る方法の二つがある。本報告では、数多くの模型船によ る水槽試験結果を造波抵抗理論に基づいた統計解析法 で解析した結果を用いる方法を使用した。これは水槽試 験法と理論的方法の両者を利用したものである。この方 法は造波抵抗のより小さい横切面積曲線を比較的簡単 に求められるという利便性、及びデータベースの領域内 では比較的精度の良い推定結果が得られる反面、データ ベースの領域外の要目を有する船型を考えた場合には 推定精度が劣るという短所がある。今回の作業ではこの 短所を補うために船型データベースの拡充を図ること も一つの目的とした。

最近では船型改良手法としてCFD計算を利用する ことが始まりつつあり、本報告では船型を決めた後で性 能予測精度の調査を目的としてCFD計算を実施した。 基本船型は船首バルブ付き、トランサム型船尾を有す る一般的な内航高速船型とした。具体的な船型変更では 上記の横切面積曲線は統計解析法で検討し、フレームラ イン形状は基本船型をもとにセクション移動法によっ て求めた。横切面積曲線の変更を主として行ったシリー ズ船型を4隻、波形計測結果を利用した船型改良法の有 効性を確認した船型を1隻、波浪中の性能を考慮した船 首フレアなし船型を1隻、合計6隻の水槽試験を実施し た。

2. 経緯及び研究の目的

近年、自動車輸送に対抗するため、関東〜北海道航路 等にみられるようなデイリー運航(1便/日)が可能な 高速で航行出来る船舶の開発が望まれている。内航船舶 の性能向上を目指し、高速かつ省エネルギー化を図った 船型の開発として、昭和40年代から日本中型造船工業 会と船舶整備公団(現運輸施設事業団)等と共同研究を 実施してきた。また、テクノスーパーライナーなどの国 家プロジェクトが遂行された。これらの経緯を踏まえ、 平成6年度から4年間にわたり、次に示す目的で内航高 速船の船型改良を検討し、水槽試験を実施した。

(1) 内航高速船型の船型改良を目指す。

(2)水槽試験データ(特に高速域)の拡充を図る。 (3)内航高速船のCFD計算による結果と水槽試験結 果との間の定性的、定量的な比較を行う。

3. 対象船型

対象船型は次のような点に留意して決めた。

(1)最近の物流の変化により高速の貨物船が要望されている。(フルード数;Fn=V/√gLが0.33より大きい)
 (2)フルード数が0.33を超えるような船型試験データの公表が少ない。

(3)比較対象となる母船型の水槽試験データが公表されている。

これらの状況から対象船型の主要目はL/B=6、B/d=3. 33、方形係数 C_B =0.53、Fn=0.33とし、実船長は120m を想定し、計画速力は22.2/ットとした。ここで、Lは 垂線間長さ、Bは幅、dは満載喫水、Vは船速、gは重力 加速度を表している。

4. 船型改良法

高速域で航走する船の抵抗は速度の増加に伴って造 波抵抗成分の占める割合が高くなり、高速船の船型改良 の目的は造波抵抗を減少させることが主となる。造波抵 抗を減少させる船型改良に本報告で利用した手法は以 下のものである。

4.1 造波抵抗理論に基づいた統計解析法

本報告では船型改良手法として、水槽試験結果と造波 抵抗理論を組み合わせた統計解析法(以下、単純に統計 解析法と呼ぶ)を採用した。この統計解析法は造波抵抗 理論をベースにして重回帰方程式による多賀野の方法 ⁸⁾を基本にしており、多賀野法では重み付きで評価さ れているので、ここでは重み付きを外した、すなわち基 準化した造波抵抗係数 r w^Nを目的関数とする山口の方 法⁹⁾を採用した。

すなわち、造波抵抗係数 r_w は次式の様に r_w ^Nとhの 積で表され、hと表示される係数によって r_w ^Nを分離す ることにより主要目等の幾何学的条件が表面的に除去 され、横切面積曲線の値だけで表示される、いわゆる基 準化された形で表される。

$$\mathbf{r}_{W} = \mathbf{r}_{W}^{N} \times \mathbf{h}$$
(1)
$$\mathbf{r}_{W}^{N} = \sum \sum \mathbf{a}_{i} \mathbf{a}_{j} \mathbf{f}_{ij}$$
(2)

ここに、 a_i, a_j は横切面積曲線のSquare Station i, jにおける値であり、 $f_{i,j}$ は回帰式で得られる係数である。 なお、hは次式で示される。

$$h = \frac{C_{M}^{2}}{\Pi} \left(\frac{1}{C_{B}} \frac{B}{L} \frac{B}{d} \right)^{2/3} \times (1 - e^{KoL\frac{B}{L}\frac{d}{B}})^{2}$$
(3)

この統計解析法では多数のデータが必要であり、今回 使用した水槽試験データについて船型のL/BとC_B及び B/dの関係を図4.1、図4.2に示す。また、フルード数に 対するデータの個数(隻数)を図4.3に示す。

今回使用したデータはフルード数(Fn)が0.34迄で、そ れ以上の高速のデータはない。さらに横切面積曲線につ いてその分布を図4.4に示す。なお、データベースには 船首バルブなし船型が26隻含まれている。

統計解析法は造波抵抗がより少ない横切面積曲線を 簡単に求められるという利便性、及びデータの領域内で は比較的精度の良い推定結果が得られる反面、この領域 外の要目を有する船型を考えた場合は推定精度が悪く なるという短所があり、データの領域の外側に対しては 性能等を推定する際には注意を要する。

図4.5に本報告で行った水槽試験結果も含め、Fn= 0.33のときのrw^Nの推定値と実験値の比較を示す。推定 値の誤差の範囲を±15%としたときの線を図に示して いるが、データの大部分はこの範囲に入っている。

4.2 波形解析結果を利用した方法

波形計測結果を船型改良に利用する方法は幾つかみ られる¹⁰が、本報告で採用した方法は船研発表会⁷⁾ で報告したものである。

大きく違わない2つの船型の波形と横切面積曲線を 直接、線形的に関連づけ、2隻の波形計測結果から最小 の造波抵抗を示す横切面積曲線を得ようとするもので ある。

図4.6 A船型とC船型の波形計測結果 から得られた波形造波抵抗係数

図4.6に後述するA船型とC船型を組み合わせた場合の例を示している。横軸にC船型の波形を100%としたとき、A船型の波形との比(%)を横軸にとり、左端にA船型、右端にC船型とした。この間の25%、50%、75%の割合の波形を直線補間で求めて波形解析を行い、縦軸に波形解析結果の波形造波抵抗係数 rwpを示している。この2隻の組み合わせの場合、C船型の方に約60%寄ったところに波形造波抵抗の最小値があることから、横切面積曲線もA船型とC船型の間で、60%C船型寄りの値を直線補間で求めている。

4.3 CFD計算

使用したコードは船研で開発された自由表面なしの NICEコード¹¹⁾を使用した。乱流モデルはBaldwin-Lo maxモデルを用いている。

5. 模型船

基本船型は船首バルブ付き、トランサム型船尾を有 する一般的な内航高速船を選んだ。造波抵抗のより小さ い横切面積曲線を統計解析法を利用して求め、またフレ ームライン形状は基本船型(A船型)をもとにセクショ ン移動法によって求める船型シリーズを計画した。

5.1 基本船型(A船型)

基本船型は文献¹²⁾のオランダの報告書で最大横断面 積係数 C_x を0.89,0.93,0.97の3種に変化させたシリー ズ試験データの中で、最も成績が良かった C_x =0.93を母 船型とし、L/B=6、B/d=3.33、 C_B =0.53とした。主要目 及び試験状態を表5.1、表5.2に、基本船型を図5.1に実 線で示す。船尾形状はB/dの変更に伴い、プロペラ直径 との関係から母船型よりA.P.位置で船底を満載喫水の 約8%上げている。図5.2に縦軸を最大横切面積に対する 各セクションの面積の比であるA/Axをとり、横切面積 曲線を示す。

5.2 船体前半部の横切面積曲線を変化させた船型 (B船型)

第2船目のB船型は、船体後半部は変えずに船体前半 部をバルブを含めて変化させた。これは、船体後半部を 一定に保って前半部だけを変化させた場合の影響を評 価するためである。船首バルブ形状は最近の傾向を取入 れて薄型のものに変更した。

横切面積曲線は統計解析法を使い、以下のような手順 で求めた。

(1)データベース上の 0.4<C_P<0.6 (C_P;柱形係数) の範囲にある水槽試験データを抽出する。

(2) この中から r w[™]の値に注目し、この値が比較的 小さいと思われる船型を選択する。

(3) 排水量、C_P等の条件を満足させるように、(2)

の結果からこの横切面積曲線を数通りに変更させて rw^Nの変化をみる。

B船型は図5.2(点線)に示す横切面積曲線としたとき、 r_w ^NはA船型より約17%小さく推定される結果が得ら れた。船体後半部の影響は前半部の変化に比べ小さい計 算結果であった。この横切面積曲線が船体主要目、設計 速度に対して必ずしも最適のものであるとは言えない が、本研究の目的である造波抵抗の低減には沿うものと 考え、この横切面積曲線をもとに 図5.1(点線)に示す B船型を作成した。

5.3 船体全長にわたって横切面積曲線を変化させた船型(C船型)

C船型は次の特徴を持たせた。

(1)変更の範囲を船体前半部のみのB船型から船体全 体とした。

(2)船首バルブ・エリアはB船型では6.4%としたが、

C船型ではB船型の形状的傾向を保ちながらA船型より若干大き目(バルブ面積,f=10%から11.1%へ、突出量は同一)とした。

(3)船尾形状は比較的ファインな船尾バルブ形状付き とした。

(4)浮心位置lcbは約1%とし、基本船型より約40% 前へ移動した。

横切面積曲線はB船型をもとに統計解析法により修 正を加えながら図5.2(C船型は以下破線で表す)に示 すような値とした。正面線図を図5.1に示す。

5.4 船体中央部に平行部を有する船型(D船型、E 船型)

D船型及びE船型の要目については以下のような見 直しを行った。

(1) C_Pは0.572から0.586に大きくし、C_Bを一定(0.53) とするため、C_xは0.930から0.900へ変更した。

(2) 横切面積曲線には平行部を採用し、船体の S.S. 4 1/2 ~5の範囲を平行部とした。これは積み荷、接岸 等において使用しやすいとの考えからである。この種の 船型試験データは当データベースには極めて少ないた めあえて実施した。

横切面積曲線は、極小造波抵抗理論¹³⁾を基に作成したものに船型の要目等の修正を行い求めた。その結果を図5.2に示す。統計解析法による抵抗性能の推定結果はFn=0.33で、B船型の試験結果のrw[№]=0.094より約20%低い値である。フレームラインはA船型からセクション移動法で求めた。

波浪中性能を考慮して船首フレアなし船型の報告¹⁴⁾ ¹⁵⁾が幾つかみられ、内航高速船の速度域での推進性能 のデータをとることを目的として図5.1に示す船首フレ アなし船型をE船型とした。

表5.1 模型船主要目及び試験状態 (満載状態)

			()実船						
		母船型	A船型	B船型	C 船型	D船型	E船型	F船型	
M.S	S.No.		0578	0582	0612	0609	0599	0619	
L _P	, (m)	5.7143	6.0000 (120.00)						
L _{Dν}	_{VL} (m)	5.8404	6.1324						
В	(m)	0.9218	1.0000 (20.00)						
d	(m)	0.3268	0.3000 (6.00)						
Trii	<u>m (m)</u>	0.0	0.0						
L/B		6.20	6.00						
B/d		2.82		3.333					
Displ	acement ∇	0.91103	0.95811	0.95691	0.95235	0.94879		0.95125	
	(m ³)								
Wetted	Surface Area	6.05740	6.37732	6.35213	6.33766	6.31049		6.33966	
	(m ²)								
	Сва		0.5911	0.5913	0.5648	0.5381		0.5786	
(C _{BF}		0.4735	0.4718	0.4934	0.5161 0.4784		0.4784	
	C _B	0.5292	0.5323	0.5316	0.5291	0.5271 0.5285			
	C _{PA}		0.6355	0.6359	0.6273	0.59	78	0.6427	
	C _{PF}		0.5090	0.5074	0.5481	0.5733 0.5314			
	C _P	0.5691	0.5723	0.5716	0.5877	0.5856 0.5871			
	C _x	0.930	0.9300	0.9300	0.9002	0.9002 0.900		0.9002	
(Cw	0.661	0.6807	0.6730	0.6834	0.6803 0.6820			
l _{св} (9	% of L _{P P})		1.971	2.387	1.187	0.117		1.753	
Bulb	Area (% of A _M)	10.0	10.0	6.4	11.1	8.2		10.7	
	Length (% of L _{PP})	2.5	2.5	3.0	3.0	3.0		3.0	
	Immersion (% of d _{FULL})	75.0	75.0	58.0	50.0	66.	7	50.0	
Ren	narks	文献 ¹²⁾	基本船型	船体前半 部変更	船尾 バルブ	平行部 あり	船首7レア なし	波形計測 結果利用	

表5.2 試験状態(バラスト)

	A船型	B船型	C船型	E船型	F船型			
M.S.No.	0578	0582	0612	0599	0619			
L _{PP} (m)	6.0000 (120.00)							
L_{DWL} (m)	6.1324							
B (m)	1.0000 (20.00)							
T _A (m)	0.2349	0.2352	0.2371	0.2382	0.2356			
$T_{\rm F}$ (m)	0.2119	0.2122	0.2141	0.2152	0.2126			
Trim (m)	0.0230	0.0230	0.0230	0.0230	0.0230			
L/B	6.00							
B/d	4.476	4.470	4.433	4.411	4.462			
Disp. (m^3)	0.67046	0.66959	0.66959	0.66959	0.66588			
W. S. A.(m ²)	5.25004	5.21794	5.20294	5.20589	5.18555			
C _{BA}	0.5549	0.5553	0.5260	0.5021	0.5411			
CBF	0.4452	0.4443	0.4633	0.4885	0.4490			
CB	0.5001	0.4998	0.4947	0.4953	0.4951			
C _{PA}	0.6123	0.6126	0.6025	0.5748	0.6202			
C _P	0.5518	0.5514	0.5666	0.5670	0.5678			
Cx	0.9064	0.9064	0.8731	0.8735	0.8720			
Cw	0.6076	0.6073	0.6126	0.6114	0.6129			
l _{CB} (% of L _{PP})	1.441	1.892	0.719	·0.416	1.303			

図 5.2 横切面積曲線

5.5 波形計測結果を利用して横切面積曲線を求め た船型(F船型)

F船型は2隻の波形計測結果を利用して船型を改良 する方法を試みた場合の船型である。図4.6にA船型と C船型を組み合わせたときの結果を示しているように、 2隻間の波形は直線補間で求めその比率を横軸にとり、 各々の波形の波形造波抵抗を縦軸に示している。この2 隻の組み合わせではC船型の方に約60%寄ったところ に波形造波抵抗係数 rwpの最小値があるよう見える。 当シリーズの他の組み合わせについて検討した結果を 次に示す。

A船型	B船型	A船型
- C 船型	- C 船型	- B 船型
r _{wp} ,波形計測結果より		
0.0015	0.0017	0.0018
rw ⁿ ,統計解析法で計算		
0.0784	0.0912	0.1059

以上の3つのケースの中では、2隻の波形から直線補 間によって求めた rwpとそこから得られた横切面積曲 線の統計解析法の結果共にA船型-C船型の組み合わせ が良いという結果が得られた。他の組み合わせについて も船首バルブの大きさをA船型-C船型の組み合わせの 場合に合わせる(大きくする)などの修正を加えれば統 計解析法による計算上はこれより良くなる可能性はあ る。以上の検討の結果、F船型の横切面積曲線はA船型 -C船型の組み合わせによって得られたものとしたが、 排水量を調整するために船体後半部は多少変更してい る。フレームライン形状はC船型からセクション移動法 で求めた。船型を図5.1(一点鎖線)に示す。

6. 水槽試験

水槽試験は三鷹第2船舶試験水槽(400m水槽)で実施した。乱流促進としてS.S.9 1/2とF.P.の前方75mmの2ケ所に高さ2mm、10mm間隔で台形スタッドを取

M. P. No.	1358
直径 (m)	0. 240
ボス比	0. 180
ピッチ比(一定)	1. 067
展開面積比	0.650
翼厚比	0. 050
翼数	5
翼断面形状	AU

表6.2 模型プロペラ主要目

り付けた。水槽試験時の水温は各模型船間で最大14°C の差がみられ、水槽試験の実施時期の違いから水温が比 較的大きく異なる状況での解析となった。速度は残流計 測用流速計による対水速度を採用した(波形計測時は対 地速度)。抵抗計測用のセンサーの容量は20kgである。 自航試験に使用した模型プロペラは代用プロペラ(M.P. NO.1357)であり、表6.2に要目を示す。

波形計測はLongitudinal Cut Methodにより、船体 中心から1/2船長(3m)離れた位置で容量型波高計を使っ て計測した。波形計測時は流速計を曳引車上に引き上げ かつ、計測時間間隔を十分に大きくするなど注意を払っ て実施した。計測速度は計画速力(Fn=0.33)を中心とし たFn=0.29からFn=0.37までの5速度とした。

バラスト状態は、基本船型(A船型)の検討の中で引用 した文献¹²⁾に合わせて、排水量を満載時の70%、トリ ムを実船(垂線間長さ L_{PPS} =120m)で0.46m(0.383% of L_{PP})とした。バラスト状態の試験状態を表5.2に示 す。

解析にあたっては流速計と模型船間の干渉の影響は 考慮していない。また、今回実施した6隻の水槽試験は 実施時期が異なるため水温の違いが大きい。剰余抵抗係 数r_Rに粘性成分を含むと考える場合には水温影響を考 慮する必要があるため、水温差による剰余抵抗係数の補 正量 △C_Rを次式¹⁶⁾で試算してみた。

 $\Delta C_{R} = 0.0043 \text{K} \circ \Delta t \circ (\text{S}/\nabla^{2/3})$

ここで、Kは形状影響係数、⊿tは水温差、Sは浸水表面 積、∇は排水体積である。この方法で修正を行った例を 図6.1に示す。

中速域では修正値と実験値は比較的よく合っているが 高速域では修正量が若干大きい傾向がみられる。以下の データにはこの水温の修正は行っていない。

図6.1 剰余抵抗係数の水温影響(C船型)

図6.3 全抵抗係数 CTM

×

(151)

	FULL LOAD			BALLAST		
	1	2	3	1	2	3
	低速接線法	Prohaskaの方法	1/2 %	低速接線法	Prohaskaの方法	1)2
A船型(M.S.No. 0578)	1. 14	1. 14	0.0	1. 19	1. 18	0.
B船型(M.S.No.0582)	1. 12	1. 11	0.9	1.15	1. 15	0.
C船型(M.S.No.0612)	1.13	1. 13	0.0	1. 13	1. 13	0.
D船型(M.S.No.0609)	1. 13	1. 12	0.9			1

1.12

1.13

表 6.1 形状影響係数, 1+K

0.9

0.0

1.15

1.30

形状影響係数Kは、Prohaskaの方法¹⁷⁾あるいはそれ を改良した白勢の方法¹⁸⁾などによって決められること が多いが、低速域のデータにばらつきがある場合は一義 的にKを決めることは難しい。本報告ではProhaskaの 方法による値は参考にとどめ低速接線法でKを決めた。

1.13

1.13

6.1 抵抗試験

E船型(M.S.No. 0599)

F船型(M.S.No.0619)

5隻の航走中の船体沈下量、トリム等を図6.2に示した。

これらの主な特徴は次のようなものである。

(1) 船体平均沈下量は5隻間でほとんど差はない。

(2)船体中央部に平行部を有するD船型は他の船型に 比べ、船首沈下量が約0.2%大きく、船尾沈下量は約0. 2%小さいため航走トリムが大きい。

全抵抗係数C_{TM}を図6.3に、Schoenherrの摩擦抵抗式¹⁽⁹⁾を使用して求めた形状影響係数1+Kの値を表6.1に示している。1+Kは低速接線法とProhaskaの方法による値では約半数のケースが一致し、他のケースは低速接線法による値の方が0.01大きい傾向となった。

剰余抵抗係数r_Rを図6.4に示す。図中に基本船型(A船型)の元となった母船型¹²⁾の値を示す。主要目変化の影響は多少見られるが、オランダと船研の水槽が異なることも考慮する必要がある。r_Rは計画速度ではC、F、 B、A、D船型の順で高くなっており、C船型はA船型より約11%の低下である。船体中央部に平行部を有する D船型の抵抗性能は統計解析法による推定計算では比較的よい結果であったが、計画速度まではA船型とほぼ 同じ結果となった。A船型とC船型の2隻の波形計測結 果を利用して横切面積曲線を決めたF船型のr_RはC船 型より若干高めとなった。同図中に統計計算による推定 から得たr_Wから求めたA船型のr_Rを示しているが、 実験値と良い一致を示している。

造波抵抗係数r_wを図6.5に示す。この値から船型の主

1.15

1.28

%

0.0

1.5

図6.4 剰余抵抗係数 r_R(満載状態)

図6.5 造波抵抗係数 rw(満載状態)

要目で決まるhを計算して得られる基準化された造波抵 抗係数 r_w^{N} を図6.6に示した。 r_w^{N} は主要目等の幾何学 的条件を表面的に排除した形であるが、母船型とも多少 の違いがある。また、船型間でhの値が異なるため

 r_w とは異なった傾向を示している。A、B、C船型 の r_w ^Nは推定値と実験値が比較的よく合っているが、 平行部を設けたD船型と波形計測結果を利用したF船 型の一致度はよくない。

船首フレアなしのE船型に対してはフレアの影響が 現れる満載状態で実施した。図6.7に船首フレアあり、 なしの2隻の航走姿勢を示す。船首沈下量はFn=0.25付 近より高い速度でE船型が若干大きい。船尾側の沈下量 は船首フレアの有無の影響はあまり見られない。航走ト リムは船首フレアなしとすることで約0.1%Lpp増加し た。r_RはFn=0.34位までは船首フレアの影響は見られず、 これより高い速度でE船型の方が若干高い。船首フレア あり、なしのD船型とE船型の C_{TM}を図6.8に、r_R及 びr_wを図6.9に示す。r_Rと r_Wは図に示している範囲 では船首フレアなしのE船型の方が一様に僅かに高い。

D、E船型の航走姿勢と抵抗性能の関係をみるために、 D船型の満載状態で3種類の初期トリムをつけて抵抗 試験を行った。初期トリムは航走トリムが小さくなるよ うに、船尾喫水を大きくとり船尾トリムとした。試験結 果を図6.10に示す。図下側の横軸にイニシアルトリムを、 図上側に航走トリムをとり r_R を示した。今回の試験結 果ではイニシアルトリムを大きく(航走トリムは小さ く)とると r_R は減少の傾向を示し、イニシアルトリムが ゼロのときよりも r_R は約4%(Fn=0.33)から11%(Fn=0.31)減少した。

波浪中性能については著者等が報告している文献²⁰⁾ によれば、船首フレアなしの船型の方が上下揺れ振幅が 若干大きく、抵抗増加量も若干大きい計測結果が得られ ており、波浪中性能を意識した今回の船首フレアなしの 船首形状の有効性は今後検討する必要があると思われ る。

120mの実船を想定した有効馬力(図6.11)は、計画 速度でB船型、C船型、D船型の3隻はほとんど差はな く、これらはA船型より約5%の低下となった。

次に、バラスト状態の抵抗試験結果を以下に述べる。 試験状態を表5.2に示している。試験状態は舵付きとし たが、A船型のみ舵なしのため、以下の図には参考とし てA船型の計測結果を示している。航走姿勢を図6.12 に示す。平均沈下量は満載状態と同様に4隻間では大き な差はみられない。船尾沈下量もFn<0.35では大きな差 はみられない。また船首沈下量もB船型が若干大きめで はあるが大きな差はみられない。航走トリムは船尾トリ ムとなっている。

図6.13に C_{TM} を示す。1+Kの値を表6.1に示している が、満載状態の傾向と同様の傾向を示している。F船型 の1+Kは他の4隻より大きい。図6.14に r_R を示す。 r_R が一番低い値を示している船型は速度領域で異なり、航 行速度と思われる0.33<Fn<0.37位の速度領域ではC船 型が一番低い抵抗値を示している。図6.11にバラスト状 態でのEHPも示しているが、計画速度を満載時と同一 とした場合、C船型が一番低い値を示し、A船型より約 10%の低下となった。

(154)

図6.14 剰余抵抗係数 r_B(バラスト状態)

6.2 自航試験

自航試験に使用した模型プロペラの主要目を表6.2 に、単独性能曲線を図6.15に示す。自航試験から得られ た自航要素を図6.16に示す。船体後半部形状が同一であ るA船型とB船型を比較(Fn=0.33)すると、特に推力減 少率1-tに比較的大きな差がみられた。C船型はA船型 に比べて伴流係数1-wrは約2%改善され、1+は約1%低 下し、推進効率ηは約2%の改善となった。基本船型の A船型を決める際に参考にした母船型¹²⁾の値を同図に 示す。今回使用した模型と母船型とは船体主要目と共に 船尾形状が若干異なることやプロペラ要目が異なるた めと思われるが、自航要素等に違いが見られる。

所要馬力BHP(図6.17)は、計画速度ではA、B、 F、C船型の順に良くなっており、C船型はA船型より 約7%の改善となった。

図6.17 所要馬力曲線等(満載状態)

6.3 波形計測

A、B、C、D、F船型の満載状態における5隻の 波形の比較を図6.18に示す。5隻の波形はそれぞれ異な るが、それは主に船体前半部の横切面積曲線を変えたこ とによるものと思われる。波形計測結果から得られた波 形造波抵抗係数rwpを図6.19に示す。計画速度におけるr wpにほとんど差はみられない。rwpとrwとを比較してみ ると両者の傾向は概ね合っており、高速域では造波抵抗 成分のかなりの部分が波形造波抵抗として計測されて いる。

F 船型の横切面積曲線はA 船型とC船型の波形計測 結果を利用して、これより抵抗性能が良くなるように決 めたが、 r w、 r w - 共にC 船型より高くなった。

図6.18 波形の比較(満載状態)

図6.19 rwpとrw(満載状態)

図6.20 波形の比較(D船型、E船型)

図6.20に船首フレアあり、なしの2隻の波形を示して いる。この差は僅かなものであるが、航走姿勢が異なる ため船首フレアの有無の影響が直接現れているとは言 えないと思われる。図6.21に2隻の r wpを示す。これら に大きな差は見られず、船首フレアなしの方が若干高目 に現れている。

図6.21 rwpとrw (D船型、E船型)

7. CFD計算

計算は自由表面なしのNICEコードによって行った。 乱流モデルはBaldwin-Lomaxモデルを用いている。計 算領域の格子分割数などの主な計算条件は以下の通り である。格子は舵なしで単一ブロックで生成した。分割 数はx方向 90、y方向 24、z方向 34である。最小格子 間隔はRn(5.00 ×10°)に合わせて 0.447×10^5 とした。 X方向の分割数は船体上流側15、下流側20を含んだ計算 領域全体の数であり、船体上では55で片舷について計算 した。時間ステップ数は層流状態で220、乱流状態で 900である。時間刻みdtは最初は 1×10^{-5} とし、その後 順次大きくして最終的にはdt=0.01で計算した。

図7.1 CFD計算と水槽試験による 形状影響係数の比較

以上の条件で計算した形状影響係数の値を表7.1に実 験値と共に示す。CFD計算値は実験値より一様に約 4%高い。この傾向は肥大船の計算例²¹⁾よりも小さい が、肥大船型より痩せた船型ということを考慮すれば計 算値としてはほぼ妥当なものと思われる。また図7.1に 計算値と実験値の関係を示したが、これらの点はほぼ直 線上にあり船型間の傾向をCFD計算で良く示してい る。CFD計算による1+Kの0.96倍とすれば水槽試験とほ ぼ一致する。なお、図中には肥大船の場合のCFD計 算値と実験値から求めた関係式の線²¹⁾を示した。

8. まとめ及び考察

内航高速船の水槽試験データの蓄積を兼ねて船型改 良を統計解析法を利用して実施した。その主な結果を以 下に述べる。

(1)今回実験を行った模型船に対する統計解析法による推定精度は、従来行った他の模型船と比べて比較的良かった。

(2) 船体中央部に平行部を有する船型(D船型、E船型)の推定精度は良くなかった。それはこの種の船型の データが少ないためである。

(3) 形状影響係数は、本報告では低速接線法とProhaskaの方法による値は約半数のケースが一致し、他の ケースでは低速接線法による値の方が約1%大きめの傾 向となった。

(4)船型改良の観点ではC船型の抵抗(r_R)が基本船型 (A船型)より約10%、所要馬力で約7%の低減化を果た すことが出来た。

(5) 横切面積曲線の検討段階でバラスト状態の性能は 重視しなかったが、バラスト状態での抵抗性能の良い船 型は速度領域で異なり、Fn=0.33付近では満載状態と同 様にC船型が最も良かった。

(6) 横切面積曲線を大きく変更しなかったことと、フ レームライン形状をセクション移動法で作成したため、 自航要素の船型変形による影響はそれほど大きく現れ なかった。これは船型改良の手法として統計解析法を利 用し、造波抵抗の低減化を重視したためと、船尾フレー ムライン形状が自航要素に及ぼす影響をあまり考慮し なかったためである。船体後半部形状が同一のA船型と B船型の1-tの差については再試験で確認した。

(7)2隻の波形計測データを利用する船型改良法(F 船型)では、期待した成果は今回得られなかった。F船 型の性能がC船型より良くなかった原因の一つとして、 波形計測及び解析の精度に問題点があることが考えら れた。波形計測データのA/D変換周波数は20Hzで行っ てきた。このときデータ間隔はVm=2.0m/sで航走し たとき距離に換算すると10 cmであり、2隻の波形差 を求めるときは最大約20 cmの位相のずれを生じてい た可能性がある。この位相差の影響をシミュレーション した結果、大勢に影響はない結果が得られたが、より高 精度の波形計測を行う必要があろう。

(8)満載喫水線下の形状を固定して船首フレアの有無 の抵抗試験を実施した結果、船首造波の様子が異なり航 走姿勢が変化し、船首フレアが抵抗性能に影響を与える ことが分かった。

(9)内航高速船のCFD計算では形状影響係数1+Kは 実験値より一様に約4%高い値となった。フレームライ ン形状、横切面積曲線をそれほど大きな変更しなかった こともあり、CFD計算による1+Kの値と実験値の傾向 は良く一致した。今後は各船種についてもCFD計算を 実施し、実験値と計算値の相関を求めておくことが重要 と思われる。

9. 結言

平成6年度から内航高速船の曳航水槽試験を通して 船研の船型試験データの拡充を図ってきた。船型変更の 手法として造波抵抗理論に基づく統計解析法を利用し

(158)

てきた。これは船体主要目と横切面積曲線が与えられれ ば簡単に造波抵抗を推定することができ、船型改良に利 用することが可能である。しかし、船体中央部に平行部 を有する船型では統計解析法による推定値と水槽試験 結果に差がみられたが、この種の高速船型の水槽試験デ ータが少ないことが大きな要因と考えられる。今後も船 型試験データの拡充は続けて行く必要がある。

今回のシリーズ試験では基本船型を重視して抜本的 な変更はしなかったが、データ領域を拡充する意味では 横切面積曲線をもっと大胆に変更した船型の模型試験 も必要ではなかったかと考えられる。

CFD計算は最近では船型の最適化に応用出来るようになりつつあることから、今後は水槽試験の一層の精度向上を図る必要がある。また本報告の試験隻数及び船型計画は十分なものとは言えないが、近年は水槽試験デ ータが公表されるケースが極めて少ない中で多少とも 参考になれば幸いである。

最後に、本報告の水槽試験にあたり推進性能部の方々 には多くのご協力を頂きました。特に模型船製作では長 田洋氏(三光精密(株)派遣社員)に大変お世話になり ました。ここに厚くお礼申し上げます。

参考文献

- (1)運輸省; "運輸経済年次報告"、平成10年度、 平成10年11月
- (2) 船舶整備公団; "高経済性内航船に関する調査研究
 (999G/T型省エネルギー輸 送船の試設計)"、 昭和55年
- (3) 船舶整備公団; "699G/T型高経済性輸送船(白油) の試設計に関する調査研究"、昭和62年3月
- (4) 船舶整備公団; "高速旅客船の性能改善に関する研究"、平成3年3月
- (5) 菅井信夫、柳原 健、猿田俊彦、飯島尚也、山口眞裕; "内航高速船の水槽試験(その1)"、第64 回船舶技術研究所研究発表会講演集、平成6年 12月
- (6) 菅井信夫、柳原 健、飯島尚也、山口眞裕; "内航 高速船の水槽試験(その2)"、第66回船舶技術 研究所研究発表会講演集、平成7年12月
- (7) 菅井信夫、柳原健、飯島尚也、山口眞裕; "内航 高速船の水槽試験(その3)"、第68回船舶技術 研究所研究発表会講演集、平成8年12月
- (8)多賀野寛; "統計解析による実用船型の造波抵抗推 定法に関する研究"、関西造船協会誌、第147号、 昭和48年3月
- (9) 山口眞裕、角川 明、柳原 健; "C_B=0.65の広幅浅
 喫水船の推進性能に関する水槽試験"、船舶技術研

究所報告、第19巻 第3号 、昭和57年5月

- (10)例えば、松井政博、津田達雄、大久保勝裕、浅野誠一;"波形解析データに基づいた船型計画法について"、日本造船学会論文集、第147号、昭和55年6月
- (11)Kodama,Y.; "Computation of ship's Resistance Using an NS Solver with Global Convention.
 •Flat Plate and Series 60(CB=0.6) Hull-, Jour. Soc. Nav.Archi. .Vol.172,1992
- (12)Muntjewerf,J.J.; "RESISTANCE AND PRO-PULSION OF A HIGH-SPEED SINGLE-SCREW CARGO LINER DESIGN", TNO Report,May 1970
- (13)丸尾 孟、山越康行; "有限喫水を持つ極小造波抵 抗船型の計算"、日本造船学会論文集、第130号、 昭和46年12月
- (14) 宝田直乃助他; "排水量型超高速船の開発研究(その1)"、日本造船学会論文集、第170号、平成3年11月
- (15)Julumstro, E., Leppanen, J., Sirvio, J.; "Performance and Behavior of LargeSlender Monohull", FAST'93, Dec. 1993
- (16)神中竜雄; "抵抗試験法"、抵抗・推進シンポジウム、日本造船学会、昭和43年6月
- (17)Prohaska,C.W.; "A simple method for the evaluation of the form factor and low speed wave resistance,Proceed ings of 11th ITTC, 1966
- (18)白勢 康、広野靖二; "船型試験における形状影響 係数の決定法"、石川島播磨技報、第22巻、第2
 号、昭和57年3月
- (19)Schoenherr,K.E.; "Resistance of Flat Surfce Moving Through a Fluid", Transaction of the Society of Naval Architects and Marine Engineers,Vol.40, 1932
- (20)長谷川純、菅井信夫、飯島尚也; "内航高速船の水 槽試験(その4)-波浪中抵抗増加-"、第68回 船舶技術研究所研究発表会講演集、平成8年12月
- (21)荻原誠功; "CFDの設計ツール化の現状"、日本 造船学会誌、第835号、平成11年1月