AI 流電陽極を用いた電気防食法がチタンクラッド鋼の水素吸収に及ぼす影響について

高井 隆三*、植松 進**、若林 徹***、審良 善和****

The Influence of Cathodic Protection using Aluminum Galvanic Anode on Hydrogen Absorption of Titanium- Clad Steel

by

Ryuzo TAKAI、Susumu UEMATSU、Tohru WAKABAYASHI Yoshikazu AKIRA

Abstract

As a measure against corrosion of a large sized marine steel structure, a method of covering titanium-clad steel on the part of splash and tidal zones is often applied. In this case, titanium-clad steel is placed under the combined use state with cathodic protection, which uses aluminum anodes under sea water. Under this situation, it is known that the titanium part absorbs hydrogen which generates on the surface of titanium due to the nature of cathodic protection.

On the other hand, when the amount of hydrogen absorption exceeds about 300 ppm, it is know that hydrogen embrittlement may occur due to titanium hydride formation. In order to elucidate how to treat this matter, we carried out exposure tests of cathodically protect titanium-clad steel to simulate existing structure of this kind.

In this paper, we introduce the examination results. Also, we tried the long-term forecast of the amount of hydrogen absorbed in titanium through the present experimental result. We demonstrated the predicted amount of hydrogen absorbed in titanium using the finite difference method for 100 years.

 * 海洋部門 ** 構造材料部門
 *** (株) ナカボーテック
 **** (独) 港湾空港技術研究所 原稿受付 平成 19 年 3 月 12 日 審 査 済 平成 19 年 9 月 25 日

目 次

1. 緒言 ····· 84
2. クラッド鋼の概要 84
3. 水素の発生とチタン内部への進展拡散機構
4 宝流试试验
4. 天体吸い候 05 4. 1 試験の日的と調査項・・・・・・・・・・・・・・・・・ 85
4 2 試験の概要・・・・・・・・・・・・・・・・・ 85
4.2.1 試験フィールドと海水環境 85
4.2.2 試験装置および計測方法・・・・・ 86
4.2.3 カソード分極曲線の測定 ************************************
4.3 試験結果と考察 ************************************
4.3.1 カソード電位と電流密度の経時変化
4.3.2 水素吸収量の経時変化・・・・・.89
4.3.3 水素吸収量に差違が生じた要因・・・89
4.4 チタンの機械的性質・・・・・ 92
4.4.1 引張試験用試料の概要・・・・・92
4.4.2 引張試驗結果・・・・・ 92
4.5 チタン表面の組成分析と生成した TiH2-x
の観察・・・・・95
4.5.1 チタン表面の組成分析・・・・・95
4.5.2 TiH _{2-x} の生成と進展過程の観察····97
5. 安全性評価 · · · · · · · · · · · · · · · 98
5.1 電気化学反応を用いた水素吸収量予測
5.2 Fick の第2法則を用いた水素吸収量予測
5.3 TiH _{2-x} の最大進展深さ予測・・・・・ 102
5.3.1 TiH2-x 層進展の理論計算・・・・・・ 102
5.3.2 水素化深さの測定・・・・・103
5.3.3 TiH _{2-x} 進展の考察・・・・・・・・・・・・104
6. 結言

参考文献

1. 緒言

上五島や白島に設置された石油貯蔵船¹⁾等で 見られるように、海洋鋼構造物の海面下部におけ る防食対策にはこれまでの防食技術の蓄積や施工 実績および費用等の面から塗装とAI流電陽極を 用いた電気防食法(以後、電気防食と称す)との 併用が一般的な防食工法として用いられている。 一方、海洋鋼構造物では、腐食環境が特に厳し い上に電気防食が十分に機能し難い飛沫帯や干満 帯が存在している。近年、腐食環境の厳しい箇所 に対する防食対策の一つとして、海水環境下で優 れた耐食性を示すチタンを利用したチタンクラッ ド鋼(以後、Ti Clad と称す)を被覆する工法が 考案されている。この工法は東京湾横断道路橋脚 部²⁾の一部等において用いられている。

この工法では、海面下において電気防食と Ti Clad とが併用した状態に置かれる。この場合、Ti Clad のチタン表面では電気防食により電気化学反 応が起こり原子状の水素(以後、水素と称す)が 発生する。発生した水素の一部はチタン内部へと 進展拡散していくことが知られている。チタン部 に進展拡散した水素が水素の状態でチタン部に保 持できる限界(以後、固溶限と称す)は、約10~ 20ppm 程度である。これを越えて増加し続けると、 水素の一部はチタン部においてチタンの水素化物 (以後、TiH₂x と称す)を生成する。チタン部に吸 収された水素量が約300ppmを越えてさらに増加 し続けると、チタンの機械的性質である伸びを急 速に低下させてチタンの水素脆化を引き起こす危 険性のあることが指摘されている。^{3)、4)、5)}

この問題を調査するために、実際の現場で用いられ ている電気防食と Ti Clad とが併用された状態を模擬 した試験装置を構築し、平成 13 年度から5年計画で実 海域試験を実施した。本文では、今回実施した実海 域試験の概要および試験結果について紹介する。

一方、この試験結果を基にして 100 年間にチタン部で吸収される水素量を、チタン表面で起こる 電気化学反応から推算する方法と拡散方程式を用 いた理論計算とにより推算した。また、理論計算 では TiH2-x への進展過程を考慮した推算法により TiH2-x の最大進展深さについても調査した。これ らの結果も併せて紹介する。

2. クラッド鋼の概要

クラッド鋼とは、異種金属を重ね合わせて一枚 の板に形成することで、両方の金属が有する優れ た特性を合わせ持たせた複合材の総称である。

Ti Clad は、海水に対して耐食性に優れたチタンと海洋鋼構造物母材との溶接が容易な上に強度等の面において優れた特性をもつ鋼とを組み合わせた複合材である。製造法の概要を次に示す。

チタン材と鋼材との界面に、両者を接着させる 役目の銅板を挿入した状態で 850 ℃~ 900 ℃に加 熱圧延しながら両者を圧着する。その際、加熱工 程において界面ではチタンと銅とが固相反応を起 こして溶融金属間化合物 (TiCu³) を生成する。 この溶融液は圧延工程において絞り出されると 同時に、界面で生じた酸化物や残存気泡をも除去 しながらチタンと鋼との新生金属面同士を圧着さ せて Ti Clad に仕上げる接着剤の役目をする^の。

海洋鋼構造物への施工例としては、東京湾横断 道路の橋脚部や紋別港の氷海展望塔下部構造物お よび大阪港埋立地の夢洲-舞洲連絡橋の浮体部分 等がある。また、羽田空港拡張事業工法評価選定 会議では、浮体工法に対する防食対策として Ti Clad ライニングが検討された。その結果、長期間 の耐久性に対しては適切な点検と維持管理を行う ことで 100 年間の使用は可能である。また、使用 時に生じる問題も解決できるとの提言が示されて いる⁷⁾。

3. 水素の発生とチタン内部への進展拡散機構

電気防食と Ti Clad とが併用された海洋鋼構造 物では、海面下のチタン表面でのカソード電位は 通常-850 ~-1,000mVvs.SSE (SSE は飽和KCl銀塩化 銀電極型照合電極を示す)程度に保持されている。

このカソード電位状態に置かれると、電気防食 の作用による電気化学反応で、チタン表面には原 子状の水素(Had で表記)が発生する。この反応 過程を次に示す。

$H_{2}O + e^{-} \rightarrow Had + OH^{-}$

Had \rightarrow 1/2H₂

発生した水素は、チタン表面の金属原子との間 で化学結合を起して吸着する。水素がチタン表面 で隣接した金属原子上に2個生成すると結合して 水素分子(H2で表記)となる。チタン表面で発 生した H2 は海水中や大気中へと離散していく。

一方、チタン表面に吸着した水素の一部はチタン内部へと進展拡散していく。その様子を示した 概念図を図-1に示す。

図-1 水素の発生と進展拡散機構の概念図⁸⁾

一般に、金属のように結晶が凝集した密な固体 の中を拡散原子が進展していく過程には幾つかの 仕組みが見られる。多くの軽元素の場合、軽元素 の原子が金属の結晶格子の間をすり抜けていく格 子間機構と呼ばれる仕組みで拡散していくと考え られている。その際、金属中を移動する軽元素原 子の拡散は活性化エネルギーが桁違いに小さいの で、拡散係数は非常に大きく拡散速度も速いこと が知られている⁹。今回取り上げた水素の場合も この仕組みにより進展拡散したと考えられる。

進展拡散した水素が固溶限を越えてさらに多く の水素がチタン内部に拡散すると、固溶体状態(水 素がチタン金属原子に比べ極めて小さいために、 チタン金属原子の間に割り込んだ形態で水素が入 り込み固溶する)を生じ、TiH2xが生成する。こ のTiH2-xの蓄積がチタンに水素脆化を引き起こす 要因になると指摘されている¹⁰。

4. 実海域試験

4.1 試験の目的と調査項目

防食対策として、電気防食と Ti Clad とが併用 された状態で長期間にわたり設置された場合の問 題点を調査する目的で実海域試験を実施した。調 査した試験の主な項目を次に示す。

1) 試験期間中に試験体表面で流れたカソード電 位の経時変化とカソード電流密度の算定およびチ タン部で吸収された年間水素吸収量(水素吸収量 は、水素の吸収拡散による蓄積分と TiH2-x に変態 した化合物の蓄積分との和を示す)

2) チタン部での水素吸収量がチタンの機械的性 質の一つである伸びに及ぼす影響

3) 電気防食の作用でチタン表面に析出したエレ クトロコーティングの膜厚および組成分析

4) TiH2-x の観察、組成分析およびチタン部破断 面の観察

4.2 試験の概要

4.2.1 試験フィールドと海水環境

実海域試験は、独立行政法人 港湾空港技術研究所 所有の屋外循環水槽において実施した。

試験に用いた水槽は、長さ15m×幅4m×深さ3m の広さを有している。また、久里浜湾の海水を1日 に2回注排水する循環式の水槽である。なお、試験 装置は通常の場合、排水時においても完全に没水し た状態に保持されている。

(1) 水槽内の海水に対する水質調査

平成 13 年 9 月 19 日午前、満水の状態において 海面に近い箇所から採取した海水に対して分析を 行った。その結果を表-1 に示す。この表から採 取時の海水の成分は、各イオン濃度とも通常の実 海水と比較して低い値を示している。但し、久里 浜湾内に流れ込む河川からの水量や海水温度等の 環境変化に伴い、海水の成分は変化すると考えら れる。

 p H
 (22℃)
 7.7
 Mgイオン
 1,048

 抵抗率(22℃)
 25.7 (Ω cm)
 Caイオン
 324

 塩分
 (15℃)
 2.9 (%)
 塩化物イオン
 16,700

 磁酸イオン
 2,060

表-1 水質調査結果

【注】各イオンの単位は、mg/1である。

(2) 気温および海水温度の計測

試験期間中の約 15 ヶ月間に計測された、水槽 内の海水表面直上の気温および直下の海水温度の 経時変化を図-2 に示す。この図から、計測され た気温と海水温度とは良い相関を示している。

一般に、年毎の気温や海水温度はあまり大きく は変動しない。このことから、水槽内の海水温度 は冬季の約 10 ℃から夏季の約 25 ℃程度の範囲内 で毎年周期的に変動していると考えられる。

4.2.2 試験装置および計測方法 (1) 試験装置の概要

試験装置は、長さ 180cm ×幅 40cm ×高さ 50cm の塩化ビニール製の架台に、同じ様式の試験体系 を5組(浸漬後1年毎に1枚の試験体を回収して 経年毎の水素吸収量の分析や引張試験用の試料と して使用)取り付けたものである。

1 組の試験体系は、架台に挟み込んだ 1 枚の試 験体および試験体の中央面から各々約 13cm 離し た位置に直角に配置した直径 2 ° cm ×長さ 25cm のアルミ合金陽極(以後、Al 陽極と称す) 1 本づ つと試験体の左側で中央部から約 5cm の位置に 取り付けた試験体および Al 陽極の電位を計測す るための飽和KC1銀塩化銀型照合電極から構成さ れている。試験装置の全容を図-3 に示す。

(2) 試験体の概要

試験体は、板厚 1mm の純チタン(以後、Ti Plate と称す)と Ti Clad(チタン部板厚 1mm、鋼部板厚 4mm)とがチタン面を互いに海水面と接するよう に配置した状態で、チタン同士を溶接して高さ 30cm ×幅 20cm ×厚さ 1cm の箱形状にしたもので ある。なお、試験時の浸漬防食面積は片面で 504cm² (28cm × 18cm)である。試験体の概要を図-4 に、また試験体に相当する Ti Plate と Ti Clad の化 学成分および機械的性質の概要を表-4 に示す。

(3) 試験方法の概要

試験は実際に用いられている防食工法に合わせるために、試験体と Al 陽極との間に固定抵抗を介して設計カソード電流密度が 100mA/m² になるように調整する方法を用いて実施した。しかしながら、固定抵抗の挿入ミスで試験開始から約 1 年半の間は、設計カソード電流密度を 50mA/m² で実施した。

その後、当初の計画に従い 100mA/m² の設計カ ソード電流密度に設定し直して試験した。挿入し た固定抵抗は(1)式により求めて 25 Ω とした。

$$Z = \Delta E / (IP \times S)$$
(1)
= 250 / (100 × 0.10) = 25 (Ω)
ここで、
Z : 固定抵抗 (Ω)
$$\Delta E : 有効電位差 (mV) \Delta E = 250 mV$$
IP : 設計カソード電流密度 (mA/m²)
IP = 100 mA/m²
S : 試験体両面の浸漬防食面積 (m²)
S = 0.28 × 0.18 × 2 \Rightarrow 0.10 m²
を示す。

(4) 電位計測方法の概要

1組の試験体系ごとに試験体、AI 陽極および照 合電極における電位を、接地基準に対する電位と して1時間に1点の割合で自動計測した。収録は データロガー(キーエンス社製 N1000)に自動収 録した。その概要を図-5に示す。

4.2.3 カソード分極曲線の測定

(1) 測定方法の概要

試験体表面に作用している電気防食の状態を調 査する目的で、Ti Plate およびTi Clad のチタン面 において IR (測定電流と液抵抗との積) 補正を 施したカソード分極曲線を測定した。その概要を 図-6に示す。カソード分極曲線の測定は、この

図-6 IR補正付きカソード分極曲線測定方法の 概要(試験体の左側面を測定例)

図に示すように、測定面側の前方に対極と照合電 極を配置し、測定面の裏面は樹脂板を用いて被覆 し状態で実施した。試験体の反対面側を計測する 場合も上記と同様の方法を用いて計測した。

測定方法は、自然電位からカソード方向に掃引 速度 50mA/min.で電位を掃引し、30 秒毎にカソー ド電流を測定した。また、IR 損に伴う電位の補 正を行うために、30 秒毎のデータサンプリング 時に± 10mV の交流電圧(1kHz、正弦波)をその時 の測定電位に短時間印加し、周波数応答分析器を 用いて印加交流電圧と応答電流から液抵抗を求め た。測定電位から求めた液抵抗と測定電流との積 に相当する電圧を差し引くことで補正した。

測定は、北斗電工社製(HA-501G)のポテンショ ・ガルバノスタット(PS/GS)と同社製(HB-105)の 関数発生器(FG)とを使用した。また,周波数応 答分析器(FRA)は NF 回路設計ブロック社製 (S-5720B)を使用した。なお、これらの測定機器 は GP-IB 回線を介して相互に連絡しており、一連 の作業はパソコン上で自動的に処理されている。

(2) 測定結果

カソード分極曲線の計測は、浸漬後2年以上経 過した3試験体のチタン面に対して実施した。計 測結果を図-7に示す。なお、試験体番号5の分 極曲線(Ti Cladのチタン面)は、測定後のデータ ファイルが破損したことにより図中に記載できな かった。試験結果の概要を次に示す。

1) 電気防食を施した試験体のチタン表面におい ては共に、電気防食を施していない Ti Plate の場 合に比べてカソード分極(自然腐食電位からの電 位のずれ)が大きくなる。また、それに伴いカソ ード電流密度においても顕著な低減傾向が見られ る。この要因としては、海水中に溶存していたカ ルシウムやマグネシウム等が電気防食を施したこ とにより炭酸カルシウムや水酸化マグネシウムを 主成分とする析出物の皮膜(以後、エレクトロコ ーティングと称す)となってチタン表面に析出し たためと考えられる。一般に、エレクトロコーテ ィングは防食に必要な保護膜として働くと共に、 良好であればカソード電流の分布を良くして所要 のカソード電流を低減させる働きをする¹¹⁾。

2) 浸漬後の試験体は、Ti Plate および Ti Clad の チタン表面におけるカソード分極曲線を比較する と、カソード電流密度に若干の差違は見られるが ほぼ同じ分極挙動をしているものと判断した。こ のことから、チタン表面において電気化学特性が 同じ防食条件下に置かれていたと仮定すれば、各 々のチタン部で吸収される水素量も同じ程度にな ると推測した。しかしながら、約 4.7 年間にわた る実海域試験の結果(図-10参照)から Ti Plate と Ti Clad との間において経年水素吸収量に顕著な差違 が見られた。この要因については 4.3.3 項にお いて考察する。なお、図中の Ti/TiO2 は Ti Plate の 表面が酸化物皮膜に覆われた状態を示し Ti は酸 化物皮膜をフッ化水素酸で除去した状態を示す。

図-7 IR補償付カソード分極曲線の測定結果

4.3 試験結果と考察

4.3.1 カソード電位と電流密度の経時変化

平成 13 年 2 月 2 日から平成 18 年 2 月 1 日まで の試験期間中に計測された試験体と Al 陽極間電 位(電位 ①と表記)、試験体と照合電極間電位 (電位 ②と表記)および Al 陽極と照合電極間電 位(電位 ③と表記)の経時変化を図-8 に示す。

なお、図中の網掛け部分は、試験開始から2年 目の平成14年10月1日に襲来した台風で試験場 の施設が大きな損傷を受け、平成15年2月6日 までの約4ヶ月半の間試験が中断した期間を示 す。試験再開時に際して、AI 陽極および照合電 極は全て新しい物と交換した。

試験体と照合電極との電位差(電位 ②参照)の 経時変化から、チタン表面に作用していたカソー ド電位は、浸漬後約 400 日経過した時点において 約-1,000mVvs.SSE 程度の値を示す。この電位は、 常温の海水中において電気防食によりチタン表面 に発生した水素をチタン部で電気化学的に吸収が 可能となるカソード電位-705mVvs.SSE 近傍より十 分に卑側の値を示している。この段階からチタン 表面では発生した水素を恒常的に吸収できる状態 に置かれたと考えられる。

次に、試験体と Al 陽極との電位差(電位 ①参照)から、試験時にチタン表面に作用したカソー ド電流密度を求めた。その結果を図-9に示す。

この図から、カソード電流密度は試験開始後約 240 日間は変動しながら大きく増加する傾向を示 す。その後は急激に減少して、設計カソード電流 密度 100mA/m² の約 1/10 程度にまで低減してい る。時間の経過に伴いカソード電流密度が低下し て安定する現象は、海面下の無塗装鋼板を電気防 食した場合に鋼板表面で良好なエレクトロコーテ ィングが形成された状態にあると、設計カソード 電流密度の 1/2 程度にまで減少して安定する傾向 と類似している。

4.3.2 水素吸収量の経時変化

実海域試験で回収した試料を基に、チタン部に おける年間の水素吸収量を求めてその経時変化を 調べた。水素吸収量の分析は、1年毎に回収した 試験体のチタン部の中央付近から切り出した各種 分析用試料(以後、試験片と称す)約5mm×15mm、 板厚 1mm に対して実施した。なお、分析に際し ては次に示す事前処理を施した。

① 歯ブラシで擦過し、水洗(表面の白色状半透 明付着皮膜を除去)

② アセトン溶液中で5分間の超音波洗浄

③ アルコール溶液中で5分間の超音波洗浄と乾 爗

④ 分析サンプルは試験片の全てから均等に採取 分析は、浸漬前および浸漬年数が1年~約2.7 年間の4つの試験片に対しては、電気伝導度法(堀 場製作所製 EMGA621-A) により実施した。また、 浸漬年数が3年目以降の2つの試験片に対して は、高周波加熱熱伝導度法(LECO 社製 RH402) により実施した。なお、浸漬年数が約 1.7 年およ び約 2.7 年経過した 2 つの試験片に対しては、分 析装置の違いによる分析精度の差違を調べる目的 で、上記の高周波加熱熱伝導度法を用いて再度分 析を行い検証した。分析した結果を図-10に示す。

図中の結果は、経過年数から試験中断期間を差 し引いた浸漬年数で示してある。

図-10に示す分析結果から、Ti Plateの場合は浸 漬後から水素の吸収が始まり、その水素吸収量(浸 漬後約 3.7 年間経過後の極端な分析結果、193ppm の一状態を除く)は、ほぼ直線的に増加していく 傾向を示す。一方、Ti Clad のチタンの場合は浸 漬後の約 2.7 年間は水素を吸収している明確な兆 候が見られない。その後、水素吸収量は緩やかに 増加していく傾向を示す。一方、両者の水素吸収 量を比較すると両者の間で顕著な差違が見られ る。この要因については次項で考察する。

なお、分析装置の違いによる分析精度に対する 影響は、2つの試験片に対して行った再度の分析 結果から小さいと判断される。

4.3.3 水素吸収量に差違が生じた要因

Ti Plate と Ti Clad との間において、水素吸収量 に差違(図-10参照)が生じた要因を調べた。調査 は、チタンに対する強制通電試験、文献調査およ び試験で回収したチタン表面に対する電子顕微鏡 を用いた観察と組成分析とにより行った。

(1) 強制通電方式を用いた水素発生状況の観察

試験は、実海域試験で用いたと同じ試料から切 り出した試験片(大略長さ 30mm ×幅 10mm ×板 厚 1mm、裏面をエポキシ樹脂で被覆)を陰極に、 陽極には白金を用い、常温の硫酸ナトリウム溶液 中において実施した。また、通電は定電位法を用 いた強制通電方式によりチタン表面に対して約 60 日間-1,700mVvs.SSE の電圧を印加した。この条 件下において、チタン表面で発生させた水素の発 生状況を観察した。また、この試験でチタン部に 生成した TiH2-x を電子顕微鏡を用いて観察した。 チタン表面での水素発生状況を図-11に示す。

Ti Plate 図-11 水素の発生状況

Ti Clad

目視観測の結果、通電初期の段階においてチタ ン表面で発生した水素は Ti Plate 表面の場合、発 生した細かい気泡状の水素が長時間にわたりチタ ン表面に留まる傾向を示した。一方、Ti Clad の チタン表面では Ti Plate 表面とは異なり、発生し た水素は表面からすぐに離れる傾向が見られた。 その後、時間の経過に伴いチタン表面では細か い気泡状の水素が連続的に発生していた。しかし ながら、その挙動において顕著な差違は見れなく なった。浸漬始後 60 日間にチタン表面で流れた カソード電流密度の経時変化を図-12 に示す。

図-12 カソード電流密度の経時変化

この図から、カソード電流密度は通電初期の段 階で既に Ti Plate の方が多く流れており、約 60 日 経過した試験終了時においてもその傾向を維持し 続けていた。チタン表面で流れたカソード電流密 度に差違が生じた主な要因としては、

1) 試験に用いた試験片は、Ti Plate 表面が非常 に滑らかであるのに対して、Ti Clad のチタン表 面は目視で十分に判断できる程度に表面粗度が大 きい。このことは、Ti Clad のチタン表面は Ti Plate 表面に比べて単位面積当りの防食表面積が大きい ことになる。試験がエレクトロコーティングを析 出しない溶液中において、同じカソード電圧を印 加した条件下で行われたことを勘案すると防食表 面積の差違が要因の一つと考えられる。

2) 電気防食の作用によりチタン表面近傍におい て TiH2-x が層状にまで生成した場合(図-31 参照)、 チタン表面に流れるカソード電流を抑制する効果 が生じると考えられている。但し、今回カソード 電流がどの程度まで抑制されたかは不明である。

次に、同装置を用いて実海域においてチタン表面に発生している水素の発生状況の観察を試みた。観察は、チタン表面に-1,000mVvs.SSEの電位を印加した時にチタン表面で発生する気泡状の水素を目視により確認する方法で行った。しかしながら、この印加電位の下では目視によりチタン表面で発生した気泡状の水素は確認できなかった。

(2) チタン酸化物皮膜が水素吸収量に及ぼす影響(文献調査)

Ti Plate における熱処理温度の差違がチタン酸 化物皮膜(以後、TiO2と称す)の膜厚の形成に 及ぼす影響および TiO2の膜厚差と水素吸収量と の関係について調べた。結果を図-13 に示す¹²。

この図から、TiO2皮膜の厚さ(実線)が増大 するに伴いチタン部での水素吸収量(破線)は大 きく減少する傾向を示している。この要因は、水素の拡散速度が TiO2 皮膜中では遅くなるためと 考えられている。但し、熱処理温度が 800 ℃を超 えると TiO2 皮膜は厚くなるが、緻密さが劣って くることで水素吸収効果は減少する。^{13),14),15)}

図-13 熟処理温度が水素吸収重と1102 及膜厚 とに及ぼす影響(文献12を参考に編集)

この図を基に水素吸収量に差違(図-10 参照) が生じた要因が、製造過程において Ti Plate およ びTi Clad のチタン表面に生成したTiO2皮膜の膜 厚差にあると考え TiO2 皮膜の膜厚の計測を試み た。計測にはエリプソメータを用いて行ったが、 Ti Clad のチタン表面における粗度が大きい等の 理由で膜厚を計測することはできなかった。一方、 製造元からは両者の製造工程に異いはあるが、各 々のチタン表面における TiO2 皮膜の膜厚は約 100 A程度の厚みであること、また TiO2 皮膜はその 膜厚の違いにより色相が変化し、TiO2の皮膜厚 はこの色相からも推測が可能であること等の説明 を受けた。この説明を踏まえ、試験で用いたチタ ンの表面を目視により色相観察すると、両者は共 に灰色ぽい銀白色を示していた。この色相を TiO2 の膜厚と色相(干渉色)との関係¹⁶に当て嵌め ると約 100 Å~ 200 Åの範囲に該当する。チタン 表面に生成した TiO2 の皮膜厚が 100 Å~ 200 Å程 度であれば、水素吸収量の差違に及ぼした影響は 小さいと考えられる。

(3) チタン表面の観察と析出物の分析

海水環境下で電気防食と併用した場合、チタン 表面にはエレクトロコーティングが析出する。今 回の試験においてチタン表面に析出したエレクト ロコーティングの観察および組成分析を試みた。

観察は、浸漬前および実海域試験で浸漬後約2.7 年~約4.7年間経過した4つの試験片に対して、 EDS検出器付きの低真空型走査電子顕微鏡(以後、 SEMと称す。日本電子社製JSM-5600LV)を用い て実施した。Ti Plate表面およびTi Cladのチタン 表面に析出したエレクトロコーティングの観察と 組成分析した結果の一例を図-14、図-15に示す。

図-14 Ti Plate 表面に析出したカルシウムの分析例(浸漬後約2.7年経過)

図-15 Ti Clad のチタン表面に析出したカルシウム等の分析例(浸漬後約2.7年経過)

これらの画像から、チタン表面で析出したエレ クトロコーティングは、カルシウムを主体とした炭 酸カルシウムで形成されている。一方、組成分析の 結果からはエレクトロコーティングを形成する成 分としてカルシウムの他に、若干のマグネシウム や酸素も検出されたが、TiH2-x についてはその存 在が確認されなかった。浸漬後約 3.7 年と約 4.7 年経過したチタン表面に析出したエレクトロコー ティングにおいても同様の成分が検出された。ま た、エレクトロコーティングの析出状態について は、顕著な差違は見られなかった。

浸漬前のチタン表面からはカルシウムをはじ め、何れの成分も確認されなかった。

炭酸カルシウムが多く析出した要因は、図-16 に示 すカソード電流密度とエレクトロコーティングの 組成成分との関係から、試験時にチタン表面で流 れていたカソード電流密度が少なかったことにあると 判断される。

ィングの組成成分に及ぼす影響 110

次に、浸漬後約 2.7 年経過した Ti Plate と Ti Clad のチタン表面に析出したカルシウムに対してエネ ルギー分散型 X 線分析器を用いて線分析を行っ た。線分析した画像の一例を図-17 に示す。

この結果、分析箇所の違いでエレクトロコーテ ィングの強度(Intensity)や距離(Distance)に若 干の違いは見られるが、Ti Clad のチタン表面に 析出したカルシウムの膜厚は、Ti Plate 表面に析 出したカルシウムの膜厚に比べてより厚く析出し ている。一般に、エレクトロコーティングは表面 粗度の大きい防食表面においてアンカー効果と言 われる働きにより析出し易い傾向を示す。今回の 試験においても Ti Plate の表面に比べて粗度が非 常に大きい Ti Clad のチタン表面により厚く析出 したと考えられる。このことを踏まえ、試験時に チタン表面で作用していたカソード分極特性を測 定した結果(図-7参照)について考察する。 前述したように良好なエレクトロコーティング が形成された防食表面では、流れるカソード電流 を低減する効果を生じさせる。今回の場合、カソード 分極を計測した時点においてTi Plate およびTi Clad のチタン表面に析出していたエレクトロコーティン グの膜厚さに差違が生じていた。このことが、チ タン表面で流れたカソード電流に差違を生じさ せ、結果としてTi Clad のチタン表面に流れたカ ソード電流密度がTi Plate 表面の場合に比べて小 さく測定された一因になったと判断される。

(4) まとめ

これらの調査から、Ti Plate と Ti Clad のチタン との間で水素吸収量に差違が生じた主な要因を次 に示す。

1)約4.7年間の浸漬期間中、電気防食の作用によ りチタン表面で析出したエレクトロコーティングの 膜厚に差違が生じていた。また、防食表面積も異 なっている。これらの要因により、Ti Plate ではTi Clad のチタン表面に比べて多くのカソード電流が 流れていた。この結果、Ti Plate ではTi Clad に比べ てチタン表面において、より活発な電気化学反応 が起こり発生した水素の量も多かった。チタン表 面に供給された水素量に差違が生じたことで、チ タン部で吸収された水素量(図-10参照)にも影 響を与えたものと考えられる。

2) チタン表面に形成された TiO2 皮膜の膜厚差 は、膜厚が約 100 Å程度と薄く、また両者の膜厚 も同程度であったことから水素吸収量の差違に及 ぼす影響は少ないと考えられる。

3) その他、チタンの水素吸収量に影響を及ぼす 要因としては、チタンの表面処理の問題、チタン 表面の鉄汚染や溶液中の Fe(OH) 2 濃度および軟 鋼との接触等が関係する¹⁵⁾。但し、今回の試験 において、これらの因子がチタン部での水素吸収 量にどの程度影響を及ぼしたかは未調査である。

4.4 チタンの機械的性質

実海域試験で回収された試験体のチタン部において吸収された水素量が、チタンの機械的性質の 伸びおよび引張強さにどの程度影響を及ぼすかを 調べる目的で引張試験を実施した。

4.4.1 引張試験用試料の概要

試験体から切り出した引張試験用試料(以後、 テストピースと称す)は、浸漬前および浸漬後1 年毎に回収した試験体のTi PlateおよびTi Cladか らチタン部分を分離した板厚が1mmのチタン板 を用いた。テストピースは、チタン板の中央近傍 部分から表-2に示すJIS5号テストピース(JIS Z2201 で区分) に準ずる形状と寸法に加工して各 2 枚づつ製作した。表-2 にテストピースの主要目 を、図-18 にその全容を示す。

表-2 テストピースの主要目

対象	管類、薄鋼板、非鉄金属、または					
	その合金の板および形材に適用					
主要寸法	標点間距離:50mm					
	幅:25mm、板厚:1mm					
	平行部長さ:60mm					
	肩の丸味 :>15mm					

4.4.2 引張試験結果

引張試験は 50ton アムスラー式の引張試験機を 用いて実施した。テストピースに荷重を負荷した 時点から破断に至るまでの計測は、引張試験機内 蔵の荷重計およびポテンショ式変位計の出力電圧 をサンプリング時間 1 秒で A/D し、データロガー (キーエンス社製 N1000)に自動収録した。その 出力電圧から荷重および変位に変換して求めた。

伸びの計測は、試料に標点間距離 50mm の間隔 で印を付け、破断後の印間距離との差から求めた。

図-18 引張試験で用いたテストピース

なお、チタンは形成加工する際に圧延方向が圧 延した方向とその直角方向とで機械的性質は若干 異なる。但し、今回の引張試験では、圧延方向の 違いによる影響については考慮していない。

(1) 負荷荷重と伸びとの関係

引張試験は、浸漬前および浸漬後1年毎に回収 した Ti Plate および Ti Clad のチタンに対して実施 した。なお、引張試験は同じ浸漬条件のテストピ ースに対して2度づつ実施した。

浸漬後約 2.7 年経過したテストピースにおいて 計測された荷重一伸び線図例を図-19、図-20 に示 す。引張試験から得られた主な結果を次に示す。

1) Ti Plate の場合、荷重-伸び線図の傾向は最 大荷重を示すピークが明瞭に表れている。その後、 チャック間距離が広がるに従い、負荷荷重は徐々 に減少していき破断に至る延性的な破壊形式を示 す。一方、Ti Clad のチタンの場合は最大荷重を 示すピークが明確に表れない上に、チャック間距 離が広がっても最大荷重はほぼ一定値を保った状 態で推移した後、突然破断に至る脆性的な破壊形 式が見られる。

2) 破断に至るまでの伸びは、Ti Plate の方が Ti Clad のチタンに比べて明らかに大きな値を示す。 3) Ti Plate および Ti Clad のチタンは、共に同程 度の最大荷重値を示す。

図-20 荷重-伸び線図(Ti Clad のチタン)

(2) チタンの水素吸収量と機械的性質との関係 引張試験の結果を表-3に示す。なお、表中の 値は2回の試技の平均値で表記してある。参考ま でに、試験に用いた試料に相当する Ti Plate の化 学成分と機械的性質および Ti Clad の機械的性質 に対する工場出荷時の公称値を表-4 に示す。

表-4 Ti Plateの化学成分と機械的性質¹⁷⁾ およびTi Clad の機械的性質¹⁸⁾の公称値

	化学成分 (%) max.					
	н	0	N	Fe	Ti	備考
Ti Plate	0.0	13 0	.2 0.05	0.25	6 残	JISH4600 2種
		耐力	引張り強さ	伸び	Ti破断伸ひ	
		kgf/mm^2	kgf/mm^2	%	%	備考
Ti Plate						JISH4600 2種
Ti Plate		≧21.93	34.68 - 52.1	12 ≧23		厚板、熱延、冷延
Ti Clad						
Ti 部	TP270	21.22	34.68		41.8	Ti部 1mm
母材部	SS330	18.56	38.56			母材部 4mm

表-3 引張試験結果の一覧

	経過年数	引張強さ	伸び
	(年)	(kgf/mm^2)	(%)
Ti Plate	0	38.4	47.0
	1.0	38.3	47.8
	1.7	38.7	47.8
	2.7	38.0	48.0
	3.7	38. 1	44. 3
	4.7	37.4	45.0
Ti Clad	0	36. 1	no data
(チタン部)	1.0	35.1	33.9
	1.7	37.8	33.0
	2.7	37.6	39.5
	3.7	35.8	34. 5
	4.7	35.2	35.8

表-3の結果と約4.7年間の実海域試験期間中に チタン部で吸収された水素量の結果とから、水素 吸収量の差違が機械的性質の伸びおよび引張強さ に及ぼす影響について調べた。結果を図-21 に示 す。なお、図中には、文献5から引用した Ti Plate (2種相当、板厚 1mm) に対する水素吸収量と伸 びの関係(実線で表記)および水素吸収量と引張 強さとの関係(破線で表記)も併せて示す。

図-21 水素吸収量と伸び・引張強さとの関係

この図を基に、浸漬後約 4.7 年間経過した時点 での水素吸収量と伸びおよび引張強さとの関係に ついて調査した。主な結果を次に示す。

1) 水素吸収量と伸びとの関係では、チタン部に 吸収された水素吸収量に関係なく各々は同程度の 値を示す。このことから、試験期間中に吸収した 水素吸収量の範囲では、伸びの低下に対して殆ど 影響を及ぼしていないと判断される。この要因は、 チタン部で蓄積された水素吸収量が、機械的性質 の伸びを急激に低下させ始める約 300ppm の域ま でに十分到達していないためと考えられる。

2) Ti Clad のチタンは Ti Plate に比べて浸漬前の 段階からすでに、伸びは約20%程度低い値を示す。 3) 水素吸収量と引張強さとの関係では、両者は 試験期間中にチタンで吸収した水素量に関係な く、同程度の一定値を示す。

ここで、今回の引張試験結果と文献 5 の結果と を比較する場合、テストピース(チタン)に水素 を吸収させた過程が異なっている。文献 5 で用い られた水素を吸収させる方法を次に示す。

 20ppm ~ 100ppm の水素吸収量に対しては、
 0.5MH2SO4 溶液中で電気防食を用いてチタンをカ ソード側に保持した状態に置き吸収させたもの

② 100ppm ~ 1000ppm の水素吸収量に対しては、
 200 ℃のアルゴンガス中において水素を拡散処理したものおよび 500 ℃~ 600 ℃の水素ガス中において水素を拡散処理したもの

水素の吸収過程の違いが伸びに与える影響につ いては不明であるが、十分に留意する必要がある。

しかしながら、今回はこの影響を考慮した資料 がないために文献5の結果を用いて比較した。

(3) テストピースの破断形状と破断面組成

1) テストピースが破断した段階において観察された破断形状の一例を図-22 に示す。

【Ti Clad のチタン】

この図および目視観察から、Ti Plate の場合、 破断形状は延性で破断した場合に多く表れるカッ プコーン状を呈している。一方、Ti Clad のチタ ンの場合、破断形状は傾斜破壊(一組の平行面に せん断が起きた場合)、またはチゼルポイント型 破壊(せん断が二方向に起きた場合)でせん断し た様相を呈している¹⁹。この様相は、浸漬期間 が約 4.7 年経過したテストピースに対しても同様 の破断形状を示す。

2) 破断時の絞り率は、浸漬後約 4.7 年間経過した時点においても浸漬期間に関係なく Ti Plate で約 63%、Ti Clad のチタンで約 29%の値を示す。

このことから、破断に至るまでの塑性変形量は、 Ti Plateの方が Ti Cladのチタンの場合に比べて大きいと判断される。

(4) テストピースの破断面組成

浸漬後約 2.7 年経過した Ti Plate および Ti Clad のチタンの破断箇所(図-22 参照)に対して、破 断面を組成の観点から調査した。チタンの破断面 で観察された組成画像を図-23、図-24 に示す。な お、観察は前述の SEM を用いて行った。主な観 察結果を次に示す。

1) Ti Plate の破断面の場合、垂直破断した箇所 の全面で延性破壊したことを示す細かいディンプ ルと呼ばれる窪みが無数に観察される。

図-23 Ti Plate 破断面の組成画像

2) Ti Clad のチタン破断面の場合、破断面に平 ら(flat) または角ばった(square)輪郭を呈した 擬へき開(微少亀裂が単位破面内で同時に成長す ることにより生ずる凹凸であり、短く高密度に湾 曲した引裂線が存在する特徴を有する)が観察さ れる。また、表面付近にはせん断により破断した
 破断面の組成像

 倍率:100

図-24 Ti Clad のチタン破断面の組成画像

3) 浸漬後約 4.7 年間経過した時点では、水素吸 収量がチタンの機械的性質に影響を及ぼす段階に まで達していないとの結果(図-21 参照)を考え 合わせた場合、Ti PlateとTi Cladのチタンは共に 製造時に近い組成状態を示していると判断され る。このことから、両者は製造工程での熱処理温 度の違いにより異なった組成に変化した。その結 果、チタン部では破断形状や破断面の組成におい て差違が生じたと推測される。また、Ti Cladの チタンの伸びがTi Plateに比べて浸漬前の状態か ら既に 20%程度低い値で計測されたのも、組成に 違いが生じたことに起因すると考えられる^{20,21)}。

4.5 チタン表面の組成分析と生成したTiH2-xの 観察

チタン表面で発生した水素がチタン表面から進展し、チタン表面近傍においてどのような状態で TiH2-x を生成しながら蓄積しているのかを調べた。調査では、チタン表面に対して X 線回折に よる組成分析を試みた。分析には X 線回折装置 (Rigaku 社製 RINT2500)を用いた。一方、チタン 部に進展拡散した水素が内部で生成した TiH2-x の 存在および形状や寸法等の基本的な項目について も SEM を用いて調査した。 4.5.1 チタン表面の組成分析

(1) X線回折による組成分析結果(強制通電試験) 組成分析は、前述の強制通電試験においてチタン表面に約 60 日間-1,700mVvs.SSE の電圧を印加し た試験片に対して実施した。試験片は、チタン表 面における印加電圧を水素発生電位より十分に高 くすることで、チタン表面の電気化学反応を促進 させて水素の発生を促し、チタン表面でより多く の TiH2-x を生成させた試料である。組成分析した 結果を図-25、図-26 に示す。

これらの図から、Ti Plate およびTi Clad のチタ ン表面では共に、浸漬前(図-27、図-29参照)に は確認されなかった反射角(2 θと表記)が 59.2 度 近傍において TiH2-x (図中に白抜きの矢印で明記) と同定される明確なピークが確認された。この結 果、電気防食の作用によりチタン表面で発生した 水素の一部をチタン部において吸収し、チタン表

ことを示す傾斜破壊面が表れている。)。

面で TiH2-x を生成していることが確認された。

(2) X線回折による組成分析結果(実海域試験)

組成分析は、浸漬前および約 4.7 年経過した試 験体から切り出した大略の長さ1cm×幅1.5cm、板 厚 1mm の試験片に対して実施した。なお、浸漬 後約 4.7 年経過した試験片に対しては、浸漬面を 歯ブラシで擦過しながら水洗した後にアセトンに て表面を洗浄し、乾燥させた状態で用いた。

1) 浸漬前と浸漬後約 4.7 年経過した Ti Plate 表面 に対して実施した組成分析の結果を図-27、図-28 に示す。

こられの結果から、浸漬後約 4.7 年経過後の Ti Plate の表面には、反射角が 59.2 度近傍において 浸漬前の状態では確認されなかった TiH2-x を同定 する小さなピークが見られる。エレクトロコーティングの影響が無い強制通電試験(図-25 参照) においても同じ位置に TiH2-x と同定できるピーク が見られたことから TiH2-x が生成したものと判断 した。このことから、実海域環境下で用いられて いる電気防食を Ti Plate と併用して用いた場合、 チタン表面近傍において TiH2-x を生成しているこ とが確認された。

2)浸漬前と浸漬後約 4.7 年経過した Ti Clad のチタン表面に対して実施した組成分析の結果を図-29、図-30 に示す。

図-30 組成分析結果(浸漬後約4.7年経過)

これらの結果から、Ti Clad のチタン表面近傍 においては、浸漬前と浸漬後約 4.7 年経過した段 階の何れの場合にも TiH2-x を同定する明確なピー クは確認できなかった。 3) Ti Plate および Ti Clad のチタン表面には、エ レクトロコーティングの存在を示すカルシウムお よびマグネシウムの炭酸化物((Ca,Mg)CO3と表 記)として同定できる明確なピークが観察された。

これらの結果、浸漬後約 4.7 年経過した時点で はチタン表面は Titanium と(Ca,Mg) CO3 とを主成 分とするエレクトロコーティングで被覆されてい る。一方、TiH2-x の存在は小さいと判断される。

4.5.2 TiH2-x の生成と進展過程の観察

強制通電試験および実海域試験で用いた試験片 に対し、チタン表面近傍において水素がどのよう な形態で進展、蓄積しているのかを調べる目的で SEMを用いて観察を行った。

(1) TiH2-x 層の観察(強制通電試験)

観察は、強制通電試験によりチタン部に大量の 水素を吸収させた試験片に対して実施した。観察 された組成画像を図-31に示す。

Ti Plate

[Ti Clad]

図-31 チタン表面に析出したTiH2-x を含んだ層

これらの図から、チタン表面近傍には TiH2-x を 含む変色した 30 数 μ m 程度の厚みを有する帯状 の層が形成されている。これらの層は、TiH2-x が 針状の初期の段階からさらに TiH2-x の蓄積が進 み、レンズ状の第二段階に達した状態にあると判 断される。チタン表面近傍において明瞭な TiH2-x を含む層が形成された主な要因としては、次のこ とが考えられる。

 カソード電位が、-1,100mVvs.SSE 程度より卑 側(今回は、カソード電位を-1,700mVvs.SSE に設 定)に移行するに伴い、チタン表面での水素吸収 速度は急激に増加する³⁾。

2) チタン表面で吸収された水素は、初期の段階 において針状の TiH2-x を生成する。さらに TiH2-x の蓄積が進むと、針状からレンズ状の TiH2-x を含 む層を生成して第二段階に移行する⁸⁾。

(2) TiH2-x 層の観察(実海域試験)

1)浸漬前の試験片に対して、チタン表面を研磨 した条件の下で観察を行った。図-32にTi Cladの チタンに対する組成図と凹凸図を示す。この組成 図において黒い針状の画像が観察された。この黒 い針状の部分がチタン部に生成したTiH2-x である と判断した。その理由としては、組成図と同じ箇 所を凹凸像で観察した場合、研磨傷であれば凹凸 が明瞭に表れる。しかしながら、凹凸画像では黒 い針状の部分があった箇所に若干の凹凸が見られ る程度である。このことは、黒い針状の部分が研 磨傷で生じた凹凸ではなくて何かの化合物であっ たと推測される。また、文献3で公表されたTiH2-x の画像と形状や寸法が類似していることをも勘案 してTiH2-x であると判断した。

図-32 浸漬前のTi Clad のチタン部に析出した TiH2-x (倍率2000倍)

2) 浸漬後約 2.7 年、約 3.7 年および約 4.7 年経過 した試験片のチタン表面に対して、前記と同様の 方法により観察を行った。しかしながら、チタン 表面近傍において TiH2-x を明確に確認することは できなかった。

また、試験期間中に TiH2-x の針状組織の先端が 最大どの程度にまでチタン内部に進展していたか を調べるために、専門会社に依頼して針状組織が 到達した先端の観察を行った。調査は、Ti Plate および Ti Clad の試験片について、浸漬期間が約 2.7年、約3.7年および約4.7年の3種類の計6状 態を対象とした。観察は、Ti Plate では試験片か ら約 10mm 角の板を、また Ti Clad では試験片の チタン層 1mm の部分から約 10mm 角の板を切出 して樹脂に埋め込んだ試料に対して光学顕微鏡の 200 倍を用いて 1mm 間隔で 10 点、針状組織先端 の最大到達深さを測定して合計 60 個のデータを 得た。TiH2-x がチタン部に生成し、内部へと進展 していく様子を表す画像の1例を図-33、図-34に 示す。チタン表面近傍を観察した 60 個のデータ には、画像例に見られるようにチタンの結晶の間 に生成した黒い層状の TiH2-x が観察された。また、 浸漬期間ごとに観察した画像例(図-42参照)か らは、チタン表面近傍で生成した TiH2-x が時間の 経過と共に表面から内部に進展拡散していく様子 が観察された。

図-33 Ti Plate 部に進展したTiH_{2-x}の1例 (浸漬後約4.7年)

図-34 Ti Clad のチタン部に進展したTiH_{2-X}の 1例 (浸漬後4.7年)

今回観測された TiH_{2-x} の先端は、浸漬後約 4.7 年が経過した時点で、Ti Plate は最大で約 224 μ m、 Ti Clad のチタンでは最大で約 164 μ m の所にま で進展拡散していた。

5. 安全性評価

Ti Clad はチタンが有する優れた耐食性を防食 材として利用した複合材であるが、チタン部はそ れ自体、強度部材としての働きは殆どしない。

しかしながら、防食工法として海洋構造物に被 覆された Ti Clad は、常に海洋構造物が受ける波 力や熱応力等の外力により母材の鋼と共にチタン 部においても繰り返し応力受ける。その際、長期 間にわたり電気防食と併用したことで、チタン部 に吸収された水素がチタンの伸びを極端に低下さ せる領域(水素脆化が起こる領域)を越えて吸収 した場合、チタン部では水素脆化が原因で割れを 生じ、海水が直接母材と接触する危険性が起きる。

また、チタン内部に進展した水素が TiH2-x に 変化し、その進展深さが Ti Clad のチタン部の板 厚 1mm に達した場合、海水が母材にまで浸透す る危険性が生じる。この様に、Ti Clad のチタン 部に生じた割れを通じて海水が透過し、直接母材 の鋼と接触すると Ti Clad は防食機能を喪失する のみならずチタンと鋼との間で異種金属による接 触が起こり、母材である鋼の腐食をさらに促進さ せる結果となる。

今回の試験結果を基に、長期耐用型海洋鋼構造物の防食対策として、電気防食と Ti Clad とを併用した状態で 100 年間設置された場合を想定してこれらの問題点の安全性を評価した。

5.1 電気化学反応を用いた水素吸収量予測

(1) 今回の実海域試験の問題点

浸漬開始から約1年半の間、固定抵抗の挿入ミスにより、カソード電流密度を小さく設定した状態で試験を行った。このことがチタンの水素吸収に及ぼす影響について考察した。

流電陽極による電気防食では、一つの設計防食 電流密度(電気防食設計)に対して、ただ一つの 電気防食特性線とも称される直線が定まり、カソ ードの電位はその直線上を移動する。設計防食電 流密度を増加させる(本試験で言えば、固定抵抗 を小さくする)ということは、本直線の傾きを減 少させ、一定電位における電流密度を増加させる ことに対応する。本試験の場合、カソードの電位 ・電流密度の経時変化データをみると、図-35の概 念図に示すような位置にプロットされると推定で きる。当初より 25 Ωの抵抗を挿入していれば、 傾きの小さい直線上のいずれかの値を示していた と推測される。一方、50 Ω時のデータ(図-8 の電 位②参照)は、電位が約 -800mVvs.SSE 近傍の値を 示していることから、この電位下で流れているカ ソード電流密度はその当時の溶存酸素の拡散限界 電流密度(拡散によるイオンの補給が限界に達し、 電圧を上げても電流密度が増加しなくなる電流密 度の最大値)と考えられる。固定抵抗を 25 Ωにし ていればカソード電流密度は変化することなく、 電位が卑化(-側に移行)すると考えられるため、 正規の実験では青丸位置の電位・電流密度を示し たと推測される。大きな固定抵抗を使用したこと により、電位の卑化が抑制されたことは、この期 間、水素吸収が抑制されたと考えられるが、全試 験期間に対する影響(評価の修正につながるよう な影響)はないと判断した。

2) 台風の上陸で施設が破壊したことにより、 約4ヶ月半の間試験が中断した。中断期間中、図-1 に示す試験装置および取り付けた試料体は共に設 置状態のままで、常温の大気中に置かれていた。

文献 22 によると、室温に放置した Ni-Ti 合金に 吸収された試料からの水素の放出は、ほとんど起 こらないと結論している。このことから、それま での浸漬期間中に試料体(チタン部)に吸収され た水素が試験中断期間中に試料から放出した量は 非常に少なく、全試験期間に対する影響(評価の 修正につながるような影響)はないと判断した。

(2) 試験期間中にチタン表面で流れた電気量と 発生した水素濃度の算定²³⁾

実海域試験期間中に、チタン表面で流れたカソ ード電流密度と電位との関係は、前述したように 一つの設計防食電流密度に対して唯一つの直線で 定まり、この直線上において変化する。そのカソ ード電流密度の経時変化は、図-9に示すように 浸漬試験開始後、カソード電流密度は大きく増加 するが時間の経過と共にカソード電位が低下しす ると共にカソード電流密度も低下した状態で安定 する。この傾向は、一般に炭素鋼においても同様 の傾向を示す。このことから、カソード電流密度 の量を、その違いから3段階の期間に分けて調査 した。概念図を図-36に示す。なお、図中の数値 は各段階でのカソード電流密度の平均値を示す。

図-36 を基に、5 年間にチタン表面(防食面積 は両面で約 0.1m²)で流れた電気量とチタン表面 における水素濃度を算定した。1 />-ロン(Cで表記) が 1 アンヘ[°] ア(A で表記)の電流を 1 秒間流した時 の電気量に相当する。また、電子 1mol が持って いる電気量は 96,500 C(ファラディー定数、 q で 表記)に相当する関係を用いた。

図-36 カソード電流密度の経時変化

 1)0日~320日間の期間中に、チタン表面で流 れた電気量(Q₁)は、

$$\begin{split} Q_1 &= \ 0.041 \ [A/m^2] \times \ 320 \ [day] \times \ 24 \ [hour/day] \\ &\times \ 60 \ [min/hour] \times \ 60 \ [sec/min] \times \ 0.1 \ [m^2] \\ &\doteq \ 1.13 \times \ 10^5 \ [C] \\ \end{split}$$
発生した水素濃度 (N₁) は、

 $N_1 = Q1 \div q$

≒ 1.13 × 10⁵[C]÷ 96,500 [C/mol]≒ 1.17 [mol]
 2) 321 日~ 1,290 日間(但し、試験中断期間 129
 日間は除く)の期間中に、チタン表面で流れた電気量(Q2)および水素濃度(N2)は、

 $Q_2 = 1.02 \times 105 [C]$, $N_2 = 1.06 [mol]$

3) 1,291 日~ 1,828 日間の期間中に、チタン表面 で流れた電気量(Q3) および水素濃度(N3)は、

 $Q_3 = 3.25 \times 10^4 [C], N_3 = 3.37 \times 10^{-1} [mol]$

5年間の総電気量(Qtotal)と総水素濃度(Ntotal)
 は、各浸漬期間で求めた結果の総和として次のように算定される。

 $\begin{array}{l} Q_{total} \ \rightleftharpoons \ Q_1 + Q_2 + Q_3 \ \rightleftharpoons \ 2.48 \ \times \ 10^{\,5} \ [C] \\ \\ N_{total} \ \doteq \ 2.48 \ \times \ 10^{\,5} \ [C] \ /96,500 \ [C/mol] \ \doteq \ 2.57 \ [mol] \end{array}$

(3) 水素発生量の算定

電気防食の作用により、チタン表面では次に示

す電気化学反応(図-1参照)が生じている。

 H_2O + $e^- \rightarrow Had$ + OH^-

Had $\rightarrow 1/2H_2$

この電気化学反応により、電子 1mol に対して 水素分子(H2で表記) 1/2 mol が生成する。水 素原子(Hで表記) 1 mol の質量は、水素の原子量 にグラムを付けた量であり 1g に相当する。この 関係を用いて、浸漬期間が5年の間にチタン表面 で発生した水素量(Htotal)を算定する。5年の間 に発生した水素濃度が2.57 mol の場合、

 $H_{total} = 2.57[mol] \times 1[g/mol] = 2.57[g]$

の水素が発生していたことになる。

試験期間中に Ti Plate と Ti Clad のチタン表面と におけるカソード電流密度(図-7 参照)には若 干の差違は見られるが、同量のカソード電流密度 が流れていたと仮定すると、チタン表面には片面 で約 1.29g の水素が発生していたと算定される。

(4) 水素吸収率の算定

試験期間中にチタン部において計測された水素 吸収量(図-10参照)の実測値を一次近似(但し、 白抜丸印は除く)して、年間の5年間の平均水素 吸収量を求めた。結果を図-37に示す。

この結果を基に、チタン部で吸収された水素量 および水素吸収率を次のようにして算定した。

なお、防食面積部に対するチタンの質量(Mm)

は、比重量を 4.51 g/cm³ として片面で、

 $Mm = 28[cm] \times 18[cm] \times 0.1[cm] \times 4.51[g/cm^3]$ $\approx 227.30[g]$

とする。

1) Ti Clad のチタンの場合

浸漬後5年経過した時点での水素吸収量は、図-37の実線で示す近似直線から約55ppmとなる。

浸漬期間5年間の間にチタン部で吸収された水素の質量(Hm(Ti-Cl))は、

H_m(Ti-Cl) = (55-10) [ppm] ÷ 10³ ÷ 10³ × 227.30[g] = 10.23 × 10⁻³ [g]

ここでは、固溶限を 10ppm と仮定して、5 年間 経過した時点でチタン部に含有する予測水素量か ら除いている。

実際に吸収した水素量とチタン表面で発生した 水素量との比率として水素吸収率(Ha(Ti Clad))を 求めると、

 $H_{a(Ti-Cl)} = H_{m(Ti-Cl)}[g] \div (H_{total} \div 2)[g] \times 100$

⇒ 10.23 × 10⁻³÷ 1.29 × 100 ⇒ 0.79[%] が算定される。

2) Ti Plate の場合

同様にして、図-37 の破線で示す近似直線から約 120ppm となる。5 年間にチタン部で取り込こ まれた水素の質量は、約 2.50 × 10⁻² gになる。

また、その水素吸収率は約1.94%となる。

(5) 100年間の水素吸収量予測

上記の結果を用いて、100 年間にチタン部で吸 収される水素量を算定した。

1) 主な計算条件および仮定

① 一般に、防食維持に要するカソード電流は時間の経過に伴いほぼ一定値に落ち着く傾向を示す。このことから、浸漬期間が約 3.5 年以降 100年までの間は、チタン表面で流れるカソード電流密度(図-35参照)を7mA/m²一定とする。

② チタン表面における水素吸収率は、Ti Clad のチタンが 0.79 %で、Ti Plate が 1.94 %とする。こ の値は 100 年間変化しないものとする。

③ 固溶限を超えて吸収した水素は、全て TiH_{2-x}
 を生成してチタン部に蓄積されるものとする。
 2)水素吸収量の算定

これらの仮定の下で、浸漬期間が5年間の場合 と同様の方法を用いて100年間(365日/年)にチ タン部で吸収する水素量を算定する。この期間中 にチタン表面で流れた電気量は、約2.34×10⁶ C で、その間の水素濃度は約24.25molとなる。この 結果を用いてチタン表面で発生した水素量を算定 すると、片面で約12.12gが求まる。

- ① Ti Clad の場合、水素吸収量(H(Ti-Cl)100)は、
- $$\begin{split} H_{\text{(Ti-Cl) 100}} &= 12.12 [g] \times \ 0.0079 \div 227.30 [g] \times \ 10^3 \\ &\times \ 10^3 \doteqdot 421.24 [\text{ppm}] \end{split}$$

② Ti Plate の場合、水素吸収量(H(Ti Plate) 100)は、 H(Ti Plate) 100 = 12.12[g]×0.0194 ÷ 227.30[g]×

 $10^3 \times 10^3 \approx 1034.44$ [ppm]

と算定される。

100 年間に Ti Clad のチタン部で吸収される水素 吸収量を予測した結果を図-38 に実線で示す。

図-38 100年間にチタン部で吸収される水素吸収 量予測結果

(6) 100年間の水素吸収量予測結果の考察

図-21 を基に、安全性の判断基準をチタン部で の水素吸収量 300ppm で評価した場合、Ti Plate は 浸漬後約 25 年、Ti Clad では約 70 年経過した時点 において両試料とも、チタンの機械的性質の伸び が急に低下する領域に入る。しかしながら、次に 示す課題も残されており、現時点では安全性の判 断ができるところまでには至らなかった。

1) 今回の推定法では、吸収された水素が全て チタン部に蓄積されるとの仮定の下に推算してい る。しかしながら、Fick の第2法則を用いた拡散 理論で水素吸収量を推算した場合、水素がチタン 部で吸収され始めた時点から一年以内で、チタン 内の水素濃度プロフィールは定常状態に近づくと 共に、内部に存在する水素も水素濃度プロフィー ルに支配されて定常状態に近づく。安定状態にな った後は、これ以上水素を蓄積することはない。

一方、実海域試験の結果を見ると、水素吸収量 は1年後の定常状態なった後にも増加する傾向を 示す。この要因は、例えば、チタン部において水 素がTiH2x に変態する際に消費される時、その消 費された水素に相当する量が、新たな水素吸収量 分として蓄積される等、チタン部では拡散理論に 従わない何らかの現象により水素の蓄積が起きて いることが推測される。この要因については十分 には解明されていない。このことから、長期間に わたる水素吸収量の予測値は直線的に増加してい くのではなくて、水素濃度プロフィールが定常状 態に近づくに従いその傾きは次第に小さくなる傾 向を示すとの指摘もある⁸⁾。この場合、図-38 に 示した 100 年間の水素吸収量予測値は、安全性評 価に対して安全側に移行すると判断される。 2)吸収された水素の内、どの程度の量が TiH2-x に変化しチタン部に蓄積するのか。また、変化に 至るまでに、水素を吸収した時点からどの程度の 時間的な遅れを要するのか等が不明である。今回、 これらの項目について実海域試験の結果を基に調 べたが、経年変化に伴うチタン部での水素吸収量 の動向を詳細に調べるには、さらに長期間にわた る実海域試験によるデータの蓄積が求められる。

3) 電気防食とTi Clad とが併用した場合、水素 は海水面と接したチタン表面から内部へと進展拡 散する。このためTiH2-x は、海水面と接したチタ ン表面側に偏在した状態で生成する。一方、判定 基準値を 300ppm と決めた文献 5 で用いられたテ ストピースは、4.4.1 章で示したように水素を両 面から強制的にチタン内部へ進展拡散させた状態 の試料から製作している。このためにチタン部で は、TiH2-x が一様に分布した状態にあるものと推 測される。このように、チタン部における TiH2-x の分布状態が異なる場合の機械的性質の伸びに対 する差違については不明である。このために、今 回安全性の判断基準として採用したチタン部での 水素吸収量 300ppm の値が妥当かどうかについて も考慮する必要がある。

5.2 Fickの第2法則を用いた水素吸収量予測 ^{8)、24)、25)}

100年間に Ti Clad のチタン部において吸収され る総水素量を、次式に示す Fick の第 2 法則に基 づく拡散方程式を用いて算定した。

(1) 計算方法

1) 支配方程式と諸条件

チタン部への水素の移動は、(2)式に示す Fick の第2法則に基づく支配方程式に従い拡散するも のとする。

$$\frac{\partial C}{\partial t} = D \frac{\partial^2 C}{\partial X^2} + Q$$
(2)

ここで、Dは拡散係数、Qは固定化項を示す。 境界条件は、Ti Cladのチタン表面の水素濃度 を一定とする。

 $X=0,\qquad C_{^{_{H}}}=C_{^{0}}$

$$X = X_{max}$$
, $C_H = 0.0$

初期条件は、初期の鋼内部の水素濃度を 0ppm とする。

t = 0, C(x) = 0.0

なお、図-1 で示すように、各部材層はチタン 皮膜層、チタン層、銅(接着層)および炭素鋼層 の4層構造と仮定する。計算に用いた各部材層の 厚さおよび物性値を表-5に示す。

各部材層の厚さ Hadの拡散係数 原子量 密度 部材層名 (cm) (cm²/vear) (g/cm³ 3 154*10-4 TiO2 1 0*10-6 8. 199*10⁻³ 47.867 0.1 Ti 1. 356*10⁻¹ 63.546 4.5 2.0*10-Cu 0.4 2.838*103 55.845 Fe

1.008

表-5 計算に用いた諸係数の一覧

2) 表面水素濃度の決定

電気防食の作用によりチタン表面で発生する水 素の表面水素濃度については、公表された数値を 入手することができなかった。そのためにチタン 表面での水素濃度は次のようにして決定した。

計算時において、最初チタン表面の水素濃度を ある常数として入力し計算する。計算で算出され たチタン部での水素吸収量と実験で実測された水 素吸収量の増加傾向とが一致するまで水素濃度を 変えて繰り返し計算を行い、増加傾向が一致した 時の水素濃度値を表面水素濃度とした。今回の場 合、表面水素濃度は 0.0054mol/m² に決定した。

図-39 実測値と理論計算で求めた結果との比較

この表面水素濃度値を用いて、約 4.7 年間にチ タン部で吸収される水素量を計算し実測値と比較 した。結果を図-39 に示す。なお、計算では浸漬 前の Ti Clad のチタン部における水素吸収量を 0ppm と仮定している。

(2) 計算結果

1) 計算時の主要な仮定条件

① Ti Clad のチタン表面における水素濃度は、100 年間 0.0054mol/m² 一定とする。

② 浸漬期間 100 年間にチタン部で吸収する総水素量を推算するために、各接点において水素の固 溶限 10ppm を超えた水素は、その全てが瞬時にチ タンと化合して TiH2-x を生成するものとする。 また、チタン以外の金属(TiO2を含む)につ いてはTiH2-xを生成しないものとする。

2) 100 年間の水素吸収量予測

100 年間に Ti Clad のチタン部で吸収される水素 吸収量を予測した。結果を図-38 に破線で示す。

この結果、Ti Clad のチタン部で吸収される水素の総予測吸収量は約 1230ppm の値を示す。

(3) 100年間の水素吸収量予測結果の考察

電気化学反応を用いた推定法と同様に、安全性の判断基準をチタン部での水素吸収量 300ppm で 評価した場合、Ti Clad は浸漬後約 25 年で、チタンの機械的性質の伸びが急に低下する領域に入る。しかしながら、次に示す課題も残されている。 1)電気化学反応の場合と同様に、浸漬後の水素吸収量は直線的に増加せずに、浸漬時間の経過と 共に拡散による水素蓄積分と TiH2x の変態分による水素蓄積分との和で表されるようになり、その 傾きは徐々に緩くなる傾向を示すと考えられる。

しかしながら、水素の蓄積過程や TiH2-x の変態 過程につては長期の実海域試験を基に推算する必 要があり、現時点では解明されていない点もある。 2) 拡散方程式を用いた推定手法の場合、水素吸 収量を推算する際に初期条件として与えるチタン 表面で発生した水素の表面水素濃度について、今 回は試験結果を基に推算したが定量的な値が確立 されていない。また、チタンに侵入した水素が各 層間を進展拡散していく過程で各層に対する拡散 係数が必要となるが、これらの拡散係数は文献に よりその値に違いが見られる^{80.140}。

5.3 TiH2-x の最大進展深さ予測

チタンの機械的特性の低下は、TiH2-xの成長進 展によって生じるものである。したがって、既往 の研究⁸⁰において報告されている TiH2-xの進展 の観点から試験結果を考察する。

5.3.1 TiH2-x 層進展の理論計算

この TiH2-x の進展過程は、おおよそ以下の2段 階に分けられる。

第一段階:カソード電位により異なるが、チタン中への水素拡散が開始された後、90日程度で チタン中の水素濃度プロフィールは定常状態となる。

第二段階:チタン内で TiH2-x は、水素濃度が定 常状態に達した後の水素濃度プロフィールに支配 されながら成長する。

上記の段階の内、長期的な TiH2-x の成長とその 進展の予測では第二段階が重要となる。水素化層 の成長モデルを図-40 に示す。

Н

この理論的予測手法は以下の通りである。

チタン内の TiH2-x の成長と進展形態は、実際に は 3 次元的であり極めて複雑である。しかし、こ こではチタンの板厚方向に対して TiH2-x の進展が 最も早い状態を考えた。即ち、図-40 に示すよう に針状の TiH2-x が板厚方向に成長する速度 dz/dt は、 α チタンが δ チタンへ変態する際の変態速度 に比例すると考え、(3)式で与えられるものとし た。

$$\frac{dz}{dt} \propto v (X_H) = K \cdot v (X_H)$$
(3)

ここで、K は比例定数を、v は変態速度を示す。 K はこれまでの実験結果⁸⁾を基に K=0.02mm/year とした。また、v (XH)についての詳細な式の導 出は省略するが、水素原子分率 XH の関数で表せ る。この式を任意時間 t まで積分することで図-41 に示すような針状組織の先端の成長進展が求ま る。

図-41 チタン中の長期水素化進展予測

図中には、本試験の水素化深さと比較する目的 でカソード電位、E=-850mV、-900mV、-950mV お よび-1,000mVvs.SSE の 4 ケースについて 100 年ま での計算値を示す。カソード電位の違いにより水 素化進展は、大きく影響を受けることがわかる。

5.3.2 水素化深さの測定

電気防食試験完了後、Ti Clad の試験片では表 層のチタン層 1mm 部分から約 10mm 角の板を、 また Ti Plate では試験片からそのまま約 10mm 角 の板を切出して樹脂に埋め込んだ後、断面組織の 観察を行なった。観察は暴露年 3 種類、Ti Clad お よび Ti Plate の 2 種類の試験片に対して光学顕微 鏡の 200 倍を用いて 1mm 間隔 10 点で針状組織先 端の最大深さを測定し、合計 60 個のデータを得 た。図-42 に典型的なマクロ写真を示す。表面の 黒い層状のものが TiH2-x 層である。

図-42 浸漬後の断面マクロ組織

これらのデータを基に分析した後述する図-43 および図-44 の結果から判断すると、浸漬後 2、3 年経過した段階から TiH2-x は顕微鏡を用いて観察 できるまでに成長し、経年に従い徐々に進行して いく状況がわかる。

5.3.3 TiH2-x 進展の考察

上記の Ti Clad および Ti Plate について得られた 水素化層深さのデータと上記 3 式で計算した理論 値を併せて図-43、図-44 に示す。

図-43 Ti Clad 中の水素化進展

図-44 Ti Plate 中の水素化進展

今回の電気防食試験の電位は浸漬後 400 日経過 後は約-1,000mVvs.SSE であったが、この理論値と 比較すればかなり水素化進展が遅い状態であっ た。 このことはチタン表面に生成したエレクト ロコーティング等の皮膜が生成したことにより、 実際の表面カソード電位が貴側になっていること やモデルで考慮していない面方向の TiH2-x の成長 による深さ方向の成長が遅れたこと等の影響が原 因と考えられる。今後さらに長期の浸漬データの 蓄積は必要であるが、チタン中の TiH2-x の成長に よる機械的特性の低下を考慮した場合には、カソ -ド電位値を-900mVvs.SSE 以上の貴な範囲に保持 するように管理すれば、防食層としてのチタン板
 厚 1mm は、設計耐用年数 100 年間に対し十分な 余裕があると言える。

6. 結言

海洋鋼構造物の防食対策として Ti Clad と電気 防食とを併用した場合の課題について調査してき た。調査で得られた主な結果をまとめて示す。

1) 実海域環境下において Ti Clad と電気防食と が併用して用いられた場合、チタン表面では水素 が発生する。その水素の一部をチタン部で吸収し て内部で TiH2-x を生成する。今回の実海域試験に おいても、生成した TiH2-x がチタン表面近傍で層 状を形成する様子や時間の経過と共に、TiH2-x が チタン内部へと進展拡散していく様子が SEM 等 を用いた観察により確認された。

2) 電気防食は、Ti Clad のチタン表面において 水素を発生させる。反面で、チタン表面にはエレ クトロコーティングを生成し、水素の発生に関係 するカソード電流密度を低減させる効果を有して いる。実海域試験においても、エレクトロコーテ ィングの存在を確認すると共に、その効果による 明確なカソード電流密度の低下が計測された。

3) 浸漬後約 4.7 年経過した段階では、チタンの 水素の吸収量は、チタンの機械的性質の伸びを大 きく低減させるまでには蓄積していない。但し、 製造行程の違いにより浸漬前の時点において既 に、Ti Clad のチタンは Ti Plate に比べて伸びが 20% 程度低い値を示す。

4) チタン部におこる水素脆化の問題に対して、 実海域試験結果と理論計算とを組み合わせる推算 手法を用いて安全性の評価を試みた。これらの手 法により、100 年間の長期にわたり両者を併用し た場合の安全性を評価する手掛かりが得られたも のと考える。しかしながら、何れの手法において も計算に必要な諸係数の多くは実海域試験の結果 から決定している。今後、評価精度を高めるには 長期間にわたる実海域試験を行い、さらに多くの データの蓄積が求められる。

謝辞

本研究は、(株)ナカボーテックとの共同研究 により実施した。

今回の試験を実施するにあたり、新日本製鐵株 式会社 チタン事業部の木下氏から試験用試料を 提供して頂いた。また、独立行政法人 港湾空港 技術研究所材料研究室室長(当時)濱田氏および 同研究室の宮田氏(当時)には、実海域試験の試 験場所として同研究所所有の循環水槽を使用させ て頂くと共に、使用に際しては多くの便宜を図っ て頂いた。

TiH2-x の進展深さの観察および TiH2-x の進展を 考慮した長期予測の計算と評価については、新日 本製鐵株式会社の鉄鋼研究所の松岡氏および紀平 氏に協力して頂いた。

各位に対しましてお礼申しあげます。

参考文献

- (財)日本造技センター:平成 13 年度石油貯 蔵船の長期保守管理に関する調査研究成果報告
 書,平成 13 年 3 月
- 2) 香川,中村,本間,他:鋼製橋脚飛沫干満部防食用Ti Cladの防食性能について,土木学会論文集 No.435/VI-15 pp.79-pp87,1991.9
- 村井,石川,三浦:陰分極下におけるチタンの 水素吸収,防食技術 26,pp177-pp183,1977
- 4) 上窪:実用チタン製装置における腐食と防食, 配管技術,Vol.9 pp150,1985
- 5)(社)チタニウム協会,耐食性分科会:チタン 管を使用した蒸発法海水淡水化装置における腐 食と防食チタニウム・ジルコニウム,Vol.29,1981.7
- 6) 山本,中村,西山,他:液相を利用したチタンク ラッド鋼連続熱間圧延コイル製造技術の開発, 新日鉄技法第352号,1994
- 7)羽田空港再拡張事業工法評価選定会議:羽田 空港再拡張事業工法評価選定会議報告書,平成 14年10月

www.mlit.go.jp/koku/04_outline/09_houkoku/img/h14_01.p df

- 8) 松岡,紀平,木下:電気防食下におけるチタン クラッド鋼の長期水素化進展予測、第49回材料 と環境討論会「環境調和と腐食防食」2003D-205, 平成14年9月
- 9) 日本材料学会:X 線材料強度学 基礎編 実験 法編,養賢堂,1973
- 10)藤田:金属物理-材料科学の基礎-,アグネ 技術センター,pp206,pp223
- 11) 福沢:金属の腐食および電気防食技術とその 応用,ナボーテック技資 No.383 pp32-pp33,1996.11
- 12) 八木,森口,田部,他:純チタンの水素吸収とその防止法-チタン特集-,R・D神戸製鋼技法

Vol.32 No.1,pp20-pp23

- 福塚,下部,佐藤,他:チタンの耐食性と水素吸 収に及ぼす熱処理の影響,防食技術 Vol.30 No.2, pp106-pp112,1981
- 14) 福塚,下部,田辺,他:銅合金板チタン管復水器 における陰極防食条件 金属の腐食・防食特集,

神戸製鋼技報 R&D/Vol.26 No.2,pp23-pp27

- 15) 山内,永田,佐藤: MSF 海水淡水化装置におけ るチタン伝熱管の水素吸収,防食技術 32,
 - pp311-pp317,1983
- 16)新日本製鐵株式会社:新日鐵のチタン建材, 技術資料
- 17) 新日本製鐵株式会社:新日鐵のチタン カタ ログ
- 18)新日本製鐵株式会社:熱延チタンクラッド鋼板カタログ
- 19) 宮本:構造材料の強度と破壊①,培風館, pp200-210,1970
- 20) 日本材料学会:機械材料とその試験法, pp263-pp264,1969
- 林,吉村,石井,他:純チタンの熱間圧延時の変 形特性と組織解析,新日鐵技法 第 352 号 pp56-pp59,1994
- 羽木,水野,伊部:カソード分極に伴う 50.9at% Ni-Ti 合金への水素侵入と水素化物の形成,表面 技術,Vol.48,No.8,pp76-81,1997
- 23) NHK 高校講座: 電気分解の解説,電気分解の 量の計算(1),電気分解の量の計算(2),電気分解 の量の計算(3)

http://www.nhk.or.jp/kokokoza/kagaku/study21/index4.html http://www.nhk.or.jp/kokokoza/kagaku/study21/index5.html http://www.nhk.or.jp/kokokoza/kagaku/study21/index6.html http://www.nhk.or.jp/kokokoza/kagaku/study21/index7.html

- 24) 三井,前田,佐川,他:高レベル放射性廃棄物処 理環境における Ti オーバーバック材料の腐食 評価手法の検討,第 49 回材料と環境討論会「環 境調和と腐食防食技術」,2003C-304,平成 14 年 9 月
- 25)明石,佐々木,辻川:α-Ti合金における水素化物誘起応力腐食割れのプロセス模型,第49回材料と環境討論会「環境調和と腐食防食技術」 2003C-305,平成14年9月