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Abstract 
 
We devised a prediction model for the relationship between forward speed and propeller rotational speed of an autonomous 
underwater vehicle (AUV) using multiple regression analysis. When designing and operating an AUV, predicting its propulsion 
performance is important for estimating diving distance and operating time without power supply. To estimate the propulsive 
performance of the AUV, it is important to predict the propeller rotation speed and propeller power required for the propeller 
thrust to balance the resistance of the AUV at a given speed using experiments and numerical simulations. Additionally, 
although data on the propulsive performance of AUVs in actual seas needs to be measured and compared with tank tests and 
numerical simulations, the comparison requires processing that takes into account factors such as scaling, steering, and AUV 
motion. Thus, the purpose of this research is to develop a prediction model for the relationship between forward speed and 
propeller rotational speed considering other factors using the regression analysis based on data observed in actual seas. This 
predictive model should be comparable to the self-propulsion point estimated by tank tests and computational fluid dynamics 
(CFD). To demonstrate an example application of the regression model, we compared the results predicted by the regression 
model with those predicted by the self-propulsion simulation. The results of the regression model agreed with those calculated 
by CFD. The regression model proposed in this research can be used to validate the CFD results in an AUV instead of comparing 
with measured data directly. 
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1. Introduction 

 
Underwater robots are one of the important underwater technologies for inspections of marine structures, defenses, and ocean 

surveys. An autonomous underwater vehicle (AUV) is one type of underwater robot, and it is unmanned and has no external 
connections for powering and control 1). Estimation of the propulsion performance of an AUV is important to assess cruising 
distances and operating time without power supply, but this estimation is not easy because of complex hydrodynamic interaction 
between an AUV body and a propeller. Propulsion performance of an AUV can be estimated by tank tests and numerical 
simulation2) – 5). 

There are two important points to note about these methods. The first is how to evaluate performance on a full-scale AUV. 
The performance of a small model in a water tank test may differ from that of a full-scale AUV due to scale effects. For AUVs 
over 4 m in length, tank tests of a full-scale AUV are difficult due to the limited dimensions of the tank, so numerical calculations 
such as CFD are often used to estimate the performance of a full-scale AUV. Therefore, it is important to evaluate reliability of 
the results of CFD calculations on a full-scale AUV. The second is the influence of steering, motion, and other factors. 
Estimation by tank tests and numerical simulation usually does not consider rudder and AUV motion. Performance estimated 
by tank tests and numerical simulation is, namely, the performance of a AUV under ideal conditions. On the other hand, 
propulsion performance of an AUV in tank test and numerical simulation differs from that in actual conditions because that of 
an AUV in actual seas varies continuously due to multiple factors such as steering, motion, and ocean currents. 

It is simplest to measure data on the propulsive performance of AUVs in actual seas and compare it with tank tests and 
numerical simulations. Direct comparisons are difficult because of the variety of factors involved in the measured data. In other 
words, it is necessary to process the data in some way that considers factors such as scaling, steering, and AUV motion in order 
to make the data comparable to the measured data. 

In previous research on the performance estimation of an AUV in actual seas, the hydrodynamic coefficients in the 
mathematical model describing the dynamic behavior of an AUV were estimated by using a system identification 5), 6). An 
advantage of system identification is that the coefficients obtained by system identification can be directly compared with those 
obtained from model tests or numerical simulations. System identification including model of steering and AUV motion makes 
it possible to consider effects of steering and AUV motion. Problems with system identification are overfitting and 
overparameterization. Overfitting can occur when observed data are noisy, and it can cause overestimation of coefficients 
obtained by system identification. Overparameterization can cause convergence ratio to become slow and unstable. Using a 
simplified model, therefore, is desirable to avoid overparameterization and overfitting. 
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As another situation, an AUV may have flexible cables for ocean exploration in several cases. Investigation of AUV 
performance in these cases requires the consideration of effects of towed flexible cables in addition to the dynamic 
characteristics of an AUV. The dynamic model of the towed flexible cables can be modeled by the lumped-mass method, but 
the model tends to be complicated 7). Accordingly, a simplified method is required to consider the effects of the flexible cables 
in addition to steering and AUV motion. 

Propulsion performance of an AUV includes various factors, however it denotes a self-propulsion point of an AUV in this 
paper. The self-propulsion point is defined as the condition of an AUV and a propeller when propeller thrust balances AUV 
resistance. In general, the propeller rotation speed and propeller power that are required for the propeller thrust to balance the 
resistance of the AUV at a given speed can be obtained from propeller-body interaction characteristics (wake fraction and thrust 
deduction coefficient) determined from water tank tests and CFD. In this research paper development of a prediction model for 
the relationship between forward speed and propeller rotational speed of a subjected cruising AUV is addressed because this 
predictive model is comparable with the self-propulsion point estimated by tank tests and CFD. 

This model presented in the paper can consider factors such as flexible cables, steering, and motion of the AUV. It is because 
the prediction model considering these factors leads to an estimation of propulsion performance of the AUV in various 
conditions. This research introduces two multiple regression analyses based on variable selection and sparse modeling to predict 
the relationship between forward speed and propeller rotational speed. The prediction performance of the two regression models 
is compared with each other. 

Although measured data cannot be directly compared with numerical analysis or experimental results, predictive models 
based on measured data using multiple regression analysis may be compared with numerical analysis or experimental results. 
As an example of application, the self-propulsion points of the subjected AUV are calculated from the self-propulsion 
simulation by computational fluid dynamics (CFD). The results of the CFD and the predictive model are compared with the 
regression model for validation of the CFD. 
 

2. Analysis method 

2.1 Subjected AUV 
Figure 1 and Table 1 show appearances and principal particulars of NMRI Cruising AUV#3, respectively. The National 

Maritime Research Institute, Japan (NMRI) has developed four cruising AUVs 8). In them, NMRI Cruising AUV#3 especially 
has a high motion characteristic because the AUV has the capacity that the maximum navigating pitch angles during descending 
and ascending are –45 and +70 degrees, respectively. Actuators of the AUV are cross-type four rudders for motion control and 
a thruster with a duct as a propulsion system.  

The onboard sensors shown in Table 1 are used for navigation and exploration. The sensors for navigation are an attitude 
heading reference system, a doppler velocity log, and a depth sensor. The survey sensors are a multi-beam echo sounder, a CT 
sensor, and a self-potential sensor. The multi-beam echo sounder is used to obtain seafloor topography. The self-potential sensor 
is used to detect naturally occurring electric fields in seafloor mineral deposits 9). This self- potential senor is removable 
depending on the purpose of the survey. 
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Figure 1 Appearances of NMRI Cruising AUV#3 with a self-potential sensor. 

 
Table 1 Principal particulars of NMRI Cruising AUV#3. 

Item Value and contents 
Length overall 3.90 m 

Maximum diameter of hull 0.65 m 
Weight in air 545 kg 

Maximum operation depth 2000 m 
Cruising speed 1.80 m/s 

Actuators One thruster, Cross-type four rudders 
Sensors Attitude heading reference system, Doppler velocity log, Depth sensor, 

Multi-beam echo sounder, CT sensor, Self-potential sensor 

 

2.2 Regression analysis method 
Multiple linear regression is a common modeling technique to analyze the correlation between independent variables and 

dependent variables. Multiple linear regression models can be expressed as follows: 
 
𝑦𝑦𝑦𝑦� = 𝐰𝐰𝐰𝐰𝐱𝐱𝐱𝐱 + 𝑤𝑤𝑤𝑤0 (1) 
 
The regression coefficients in the model can be obtained by solving the optimization problem defined as follows 10): 

 

min.   �(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2
𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=1

 (2) 

 
Minimal independent variables are desirable to avoid overfitting and multicollinearity in the regression model. Therefore, 

only the significant independent variables were selected. Variable selection was based on backward elimination 11). First, a 
regression model using all independent variables was established. The independent variable with the smallest contribution 
factor was selected for removal. If the variable satisfied a removal criterion, the variable was removed from the candidates of 
the significant variables. The process was repeated until there are no variables in the equation that satisfy the removal criterion. 

The removal criterion is applied to a hypothesis test based on the t-Test. The statements for the hypothesis test are expressed 
as: 
 
𝐻𝐻𝐻𝐻0 ∶ 𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗 = 0 
𝐻𝐻𝐻𝐻1 ∶ 𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗 ≠ 0 

(3) 
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where, 𝐻𝐻𝐻𝐻0 and 𝐻𝐻𝐻𝐻1 mean the null and alternative hypotheses, respectively. The t-statistic is an index for the null hypothesis 
via the t-Test. The t-statistic value is defined by 
 

𝑡𝑡𝑡𝑡 =
𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗

𝑆𝑆𝑆𝑆𝑒𝑒𝑒𝑒�𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗�
 (4) 

 
The P-value was calculated from the t-statistic and the t-distribution table. 𝐻𝐻𝐻𝐻0 in the null hypothesis is rejected if the P-

value was less than a significance level. When the null hypothesis for each coefficient is rejected, the result supports the 
hypothesis that there is a significant relationship between the independent variable and the dependent variable. In this research, 
the significance level was set to 0.05. 

Multicollinearity causes two serious problems in the multiple regression analysis. Due to multicollinearity, the predictions 
of the regression model are extremely sensitive to even slight changes. Multicollinearity prevents the regression model from 
predicting the dependent variable accurately. Moreover, since multicollinearity affects the P-value, the evaluated significance 
of independent variables is unreliable. Dependent variables with high correlation are eliminated to solve multicollinearity. 

The variance inflation factor (VIF) provides an index that assesses multicollinearity. The VIF of each variable was estimated 
to select the variables. First, the multiple linear regression model for 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 as a function of all the other variables was determined. 
The linear regression model for 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 that is an element in the vector of 𝐱𝐱𝐱𝐱 is expressed by as follows:  

 
𝑥𝑥𝑥𝑥�𝑗𝑗𝑗𝑗 = 𝐰𝐰𝐰𝐰𝒋𝒋𝒋𝒋𝐱𝐱𝐱𝐱𝒋𝒋𝒋𝒋,𝒊𝒊𝒊𝒊 + 𝑤𝑤𝑤𝑤𝑗𝑗𝑗𝑗0 (5) 

 
The VIF and the coefficient of the determination of 𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗 are defined as follows: 
 

𝑉𝑉𝑉𝑉𝑗𝑗𝑗𝑗 =
1

1 − 𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗2
 (6) 

𝑅𝑅𝑅𝑅𝑗𝑗𝑗𝑗2 = 1 −
∑ �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 − 𝑥𝑥𝑥𝑥�𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖�

2𝑀𝑀𝑀𝑀
𝑖𝑖𝑖𝑖=1

∑ �𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗,𝑖𝑖𝑖𝑖 − �̅�𝑥𝑥𝑥𝑗𝑗𝑗𝑗�
2𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=1

 (7) 

 
The VIF of 5 or more indicates multicollinearity in the regression model. The solution for multicollinearity is to remove one 
(or more) of the highly correlated dependent variables. 

There is regression analysis that can automatically select significant independent variables. It is the least absolute shrinkage 
and selection operator (LASSO) 12). In the multiple linear regression, the regression coefficients are determined to minimize 
the residual sum of squares of Eq. (2). In the LASSO, the 1-norm was added Eq. (2) to avoid overfitting. The regression 
coefficients in the LASSO can be determined by solving an optimization problem defined as follows: 

 

min.   �(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2
𝑀𝑀𝑀𝑀

𝑖𝑖𝑖𝑖=1

+ 𝜆𝜆𝜆𝜆‖𝐰𝐰𝐰𝐰‖1 (8) 

 
This optimization problem can be solved numerically with several software packages 13). 

The LASSO model was compared with the multiple regression model to validate the significant variables. The LASSO 
performs both determination of regressive coefficients and variable selection. The LASSO tends to produce regressive 
coefficients of unnecessary dependent variables as zero. 

Setting the proper value of 𝜆𝜆𝜆𝜆 is essential to the performance of the LASSO. When the parameter, 𝜆𝜆𝜆𝜆, increases, significant 
variables may be eliminated, and regression coefficients can be shrunk excessively. In this research, the parameter was 0.15 on 
the basis of several trials that maximum the coefficient of the determination defined by 10) 

66

(510)



 

7 

 

 

𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦2 =
∑(𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2

∑(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2 = 1 −
∑(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�𝑖𝑖𝑖𝑖)2

∑(𝑦𝑦𝑦𝑦𝑖𝑖𝑖𝑖 − 𝑦𝑦𝑦𝑦�)2  (9) 

 
2.3 Data set for regression analysis 

The data set for the regression analysis were observed in several sea trials from the year 2018 to 2020 8), 14). The sampling 
time of the data is 0.25 s, and in total, five hours of the data were used for regression analysis. The data set was randomly split 
into 85% for training and 15% for testing to validate the regression model. The number of training data in this research is about 
500. 

Figure 2 shows observed propeller rotational speeds versus forward speeds of the AUV. The blue and red markers show the 
results without and with the self-potential sensor. The forward speeds increased roughly in proportion to the propeller rotational 
speed. However, there were variations in the propeller rotational speeds and forward speeds depending on the steering and the 
presence or absence of the self- potential sensor. Propeller rotational speeds with the self-potential sensor were higher than ones 
without the self-potential sensor due to the drag of the self-potential sensor.  

 

 
Figure 2 Propeller rotational speeds versus forward speeds of the AUV. Red and blue markers show data observed 

with and without the self-potential sensor, respectively. 
 

Regression analysis requires pre-processing for the training data set. The observed data were filtered by a simple moving 
average every minute. Moreover, normalization is required to adjust values measured on different scales to a notionally common 
scale. Several normalization techniques were proposed in statistics 13). In this research, the maximum absolute scaling was 
selected as follows: 

 

 
The maximum absolute scaling translates each variable into a value between -1.0 and 1.0 by dividing every observation by its 
maximum absolute value. 

Since the prediction of the self-propulsion point was focused on in this research, the relationship between propeller rotational 
speed and forward speed were modeled considering disturbances such as steering. In this paper, 𝑈𝑈𝑈𝑈 means the forward speed 
through the water to consider the effects of tidal currents. The independent variables and the dependent variable in the two 
regression models are defined by the following equations: 

 
𝐱𝐱𝐱𝐱 = [𝑈𝑈𝑈𝑈′ 𝜙𝜙𝜙𝜙′ 𝜃𝜃𝜃𝜃′ 𝜓𝜓𝜓𝜓′ 𝑝𝑝𝑝𝑝′ 𝑞𝑞𝑞𝑞′ 𝑟𝑟𝑟𝑟′ 𝛿𝛿𝛿𝛿′𝑠𝑠𝑠𝑠 𝛿𝛿𝛿𝛿′𝑏𝑏𝑏𝑏 𝛿𝛿𝛿𝛿′𝑝𝑝𝑝𝑝 𝛿𝛿𝛿𝛿′𝑡𝑡𝑡𝑡 𝑠𝑠𝑠𝑠]𝑇𝑇𝑇𝑇 (11) 
𝑦𝑦𝑦𝑦� = 𝑛𝑛𝑛𝑛  (12) 

𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗′ =
𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗

max (�𝑥𝑥𝑥𝑥𝑗𝑗𝑗𝑗�)
 (10) 
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where, 𝑠𝑠𝑠𝑠  in Eq. (11) means the dummy variable whether the self-potential sensor is installed or not. When the sensor is 
installed to the AUV, the dummy variable equals one, and when it is uninstalled, the dummy variable equals zero. 
 
 

3. Validation of the regression model 

 
Table 2 shows the determined regression coefficients and 𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦2 by using the multiple linear regression model and the LASSO 

model on the basis of the analysis introduced in the previous section. The regression coefficient of zero means that the 
independent variable in Eq. (11) is determined to be insignificant. Since 𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦2 of all models were more than 0.90, the two models 
were agreed with the training and test data set. 𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦2 for test data of the multiple linear regression was larger than that of the 
LASSO. 
 

Table 2 Regression coefficients and 𝑹𝑹𝑹𝑹𝒚𝒚𝒚𝒚𝟐𝟐𝟐𝟐 of the multiple linear regression model and LASSO model. 
Item Multiple linear regression LASSO 
𝑤𝑤𝑤𝑤0 7.77 15.3 
𝜙𝜙𝜙𝜙′ –75.9 –59.3 
𝜃𝜃𝜃𝜃′ –41.1 –39.7 
𝜓𝜓𝜓𝜓′ 0.0 –1.94 
𝑝𝑝𝑝𝑝′ 0.0 0.0 
𝑞𝑞𝑞𝑞′ 0.0 0.0 
𝑟𝑟𝑟𝑟′ 0.0 0.0 
𝛿𝛿𝛿𝛿′𝑠𝑠𝑠𝑠 0.0 0.0 
𝛿𝛿𝛿𝛿′𝑏𝑏𝑏𝑏 24.8 25.1 
𝛿𝛿𝛿𝛿′𝑝𝑝𝑝𝑝 –31.8 –29.9 
𝛿𝛿𝛿𝛿′𝑡𝑡𝑡𝑡  0.0 0.0 
𝑠𝑠𝑠𝑠 27.4 32.7 
𝑈𝑈𝑈𝑈′ 563 546 

𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦2 for training data 0.921 0.921 
𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦2 for test data 0.927 0.925 

 
The regression coefficients of the two regression models showed a similar trend, but there were some differences, such as ψ' 

in the multiple regression was zero and removed, while it was not zero in LASSO. The angular speeds (𝑝𝑝𝑝𝑝′, 𝑞𝑞𝑞𝑞′, 𝑟𝑟𝑟𝑟′) did not affect 
predicted values because observed data were averaged every minute. 𝛿𝛿𝛿𝛿′𝑠𝑠𝑠𝑠 and𝛿𝛿𝛿𝛿′𝑝𝑝𝑝𝑝  are the rudder angles of elevator rudders, 
and the two rudders often were manipulated simultaneously. Since the correlation between 𝛿𝛿𝛿𝛿′𝑠𝑠𝑠𝑠 and 𝛿𝛿𝛿𝛿′𝑝𝑝𝑝𝑝 became high because 
of simultaneous operations, 𝛿𝛿𝛿𝛿′𝑠𝑠𝑠𝑠 was removed to solve multicollinearity due to the high correlation. 𝛿𝛿𝛿𝛿′𝑡𝑡𝑡𝑡 also was removed for 
the same reason. 

Since residuals of values predicted by the regression model should agree with a normal distribution, the distribution of the 
residuals is shown to verify the regression model. Figure 3 shows a quantile-quantile plot for the residuals of the multiple 
regression and the LASSO model. The quantile-quantile plot visualizes how the shapes of the two distributions are similar. The 
line and markers in Fig. 3 show the theoretical normal distribution and residuals of the regression model. When the markers 
agree with the line, the distribution of residuals agreed with the normal distribution. Figure 3 shows the residuals of the 
regression model agreed with the normal distribution.  
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Since the LASSO model was equivalent to the multiple regression model with variable selection, the LASSO is compatible 
to the multiple regression with variable selection. The LASSO is recommended because LASSO can remove insignificant 
independent variables with few steps when the number of independent variables is large. 

Figure 4 shows the predicted results and observed data. Since 𝑅𝑅𝑅𝑅𝑦𝑦𝑦𝑦2 for test data in the multiple linear regression was larger 
than that in the LASSO, the multiple regression model was selected as the prediction model. Black cross and red circle markers 
in Fig. 4 show the predicted results and the data observed with the self-potential sensor. Yellow cross and blue circle markers 
in Fig. 4 show them without the self-potential sensor. The predicted results agreed with the observed data. That is, the statistical 
model based on regression analysis shows the relationship between the propeller rotation speed and the forward speed of the 
AUV considering several factors such as flexible cable dynamic behavior, steering, and AUV motion. 

The data used in the regression analysis was obtained at a constant speed of 1.6~2.4 m/s. Outside this range, the regression 
model has low prediction accuracy. Note that the model is also not applicable to large rudder angles (>10 degrees) such as when 
turning. 

 

 

Figure 3  Quantile quantile plots of the residuals (Left: multiple regression model, Right: LASSO model). 
 

 
Figure 4  Comparison of observed data and results predicted by the multiple regression model. 

 
 

4. Application example of the multiple regression model 

 
In this section, an application example of the multiple regression model is presented. Regression analysis yielded the 

relationship between the propeller rotational speed and the forward speed of the AUV, including other factors. When the 
independent variables except for the forward speed are equal to zero, the regression model can predict the self-propulsion points 
under the same ideal conditions as CFD and other models. Therefore, the regression model predicts the propeller rotational 
speed using only the forward speed with and without the self-potential sensor, so that it can be compared with CFD. 
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Self-propulsion simulations by the CFD were conducted to estimate the speed-rpm curve of the subjected AUV. The detailed 
information of the CFD calculation is shown in Appendix. Note that CFD does not take into account the flexible cable of the 
self-potential sensor because of the difficulty of modeling it. 

Figure 5 shows the regression model and the results calculated by the CFD with and without self-potential sensor. The 
regression model without the self-potential sensor derived from the data set observed in the actual seas agreed with the results 
calculated by the CFD without the self-potential sensor. Due to the increased resistance of the AUV caused by the self-potential 
sensor, the propeller rotation speed is increased in the regression model. On the other hand, the propeller rotation speed is almost 
unchanged in the CFD calculation.  

The self-potential sensor consists of a flexible cable and a data logger. However, fluid phenomena in the cable section were 
not considered in CFD calculations because modeling the flexible cable was difficult. Therefore, the difference between the 
regression model and CFD calculations is reasonable. In CFD calculation, the cable must be modeled using methods such as 
those proposed in previous research.  

Measured data were not directly compared to the numerical analysis, but the predictive model was created from the measured 
data using multiple regression analysis and compared to the CFD calculations. The results show that the regression model can 
be used to validate against the CFD results. 
 

 
Figure 5  Comparison of the regression model and the results calculated by the CFD w/o and w/ self-potential sensor 

 
 

5. Conclusions 

This research addressed the development of a prediction model for the relationship between forward speed and propeller 
rotational speed of a subjected cruising AUV to make this predictive model comparable with the self-propulsion point estimated 
by tank tests and CFD. The model developed in the paper can consider factors such as flexible cables, steering, and AUV 
motion. 

The multiple regression with variable selection and the LASSO model were applied for regression analysis. The two 
regression models were agreed with the data observed in the various conditions. The prediction performance of the two analysis 
was equivalent. Although the LASSO and the multiple regression with variable selection can be utilized, the LASSO that can 
automatically remove insignificant independent variables is recommended to suppress the computational cost for variable 
selection increases. 

As an application example of the regression model, the regression model was compared with the self-propulsion points 
calculated from self-propulsion simulations by CFD. The accuracy level of CFD method on self-propulsion simulation was 
able to be confirmed using the regression model presented in this paper. The regression model proposed in this research are 
available for validation of CFD simulation results in an AUV instead of comparing with measured data directly. 
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Appendix 
 

Self-propulsion simulation using CFD were conducted for investigation the flow around an AUV body and interaction 
between the AUV body and propeller in detail. The viscous CFD code, NAGISA, was used. This code is an in-house code 
developed at National Maritime Research Institute (NMRI) in Japan A1). The code solves mass-conservation and incompressible 
Reynolds-averaged Navier Stokes (RaNS) equations by overset structured-grids based finite-volume method. Domain 
connectivity information for the overset grid was computed by the in-house overset grid assembler developed at NMRI, 
UP_GRID A2). 

Figure A1 shows the computational domains and the boundary conditions in CFD. The computational grid consists of the 
rectangular grid of the entire computational domain, the body of the AUV, the acoustic modem, the self-potential meter, the 
four rudders (top, bottom, left, and right), and a propeller duct. The effect of the propeller is considered by applying a body 
force to the RaNS equation. The size of the external zone in X, Y, and Z directions are –3.0 ≤ 𝑋𝑋𝑋𝑋/𝐿𝐿𝐿𝐿 ≤ 2.0, –1.5≤ 𝑌𝑌𝑌𝑌 ⁄ 𝐿𝐿𝐿𝐿 ≤ 1.5, 
and –2.5≤  𝑍𝑍𝑍𝑍/𝐿𝐿𝐿𝐿 ≤ 0, respectively. The AUV was located at the center of the computational zone. 

Table A1 shows the number of cells in the block. Minimum spacing next to the body surface satisfied that the non-
dimensional wall distance was smaller than 1.0 according to the criteria suggested by the ITTC A3). It means that the low-
Reynolds treatments were utilized for full-scale simulations. The total number of cells was approximately 4.9 million. 

The no-slip condition was applied to the boundary condition on the surface of the AUV. The symmetry condition was 
imposed on the top and bottom surfaces of the external zone. The outflow was imposed on the starboard and afterward surfaces 
of the external zone. The inflow was imposed on the port and forward surfaces of the external zone. 

 
Figure A1 Computational domain and boundary conditions in the CFD. 

 
Since the calculations were conducted in full scale, the model-scale correction was not considered. In the calculation, the 

free surface was not considered, and k-ω explicit algebraic stress model was applied to the turbulence model. The Reynolds 
number (𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛) was 4.54 × 106

 – 7.78 × 106, which corresponds to the forward speed of 1.4 m/s to 2.4 m/s. The definition of the 
Reynolds number is as follows: 

 
𝑅𝑅𝑅𝑅𝑛𝑛𝑛𝑛 = 𝑈𝑈𝑈𝑈𝐿𝐿𝐿𝐿 𝜈𝜈𝜈𝜈⁄   (A1) 

 
Table A1 Number of cells in the CFD. 

Block 
name 

Duct Bottom 
rudder 

Top rudder Starboard 
rudder 

Port  
rudder 

Self-
potential 
sensor 

Acoustic 
modem 

AUV 
body 

External 
zone 

Cells 599 K 329 K 329 K 329 K 329 K 638 K 358 K 860 K 1,131 K 

Inflow

Outflow

symmetry

symmetry

Inflow

Outflow
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The evaluation of the propulsion performance requires the resistance and the open-water characteristics of the propeller. The 

resistance of the AUV were calculated directly by the CFD. The open-water characteristics of the propeller were calculated by 
the body force theorem. Self-propulsion points were calculated by the thrust identity method. 

Figure A2 shows the propeller open-water characteristics calculated by the body force theorem. The horizontal axis in Fig. 
A2 is the advance coefficient, and 𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡, 𝐾𝐾𝐾𝐾𝑞𝑞𝑞𝑞 , and 𝜂𝜂𝜂𝜂𝑜𝑜𝑜𝑜 in the vertical axes are thrust coefficient, torque coefficient, and propulsor 
efficiency ratio. The definitions of these parameters are as follows: 
 

𝐽𝐽𝐽𝐽 =
𝑈𝑈𝑈𝑈
𝑛𝑛𝑛𝑛𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝

 (A2) 

𝐾𝐾𝐾𝐾𝑡𝑡𝑡𝑡 =
𝑇𝑇𝑇𝑇𝑝𝑝𝑝𝑝

𝜌𝜌𝜌𝜌𝑛𝑛𝑛𝑛2𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝4
 (A3) 

𝐾𝐾𝐾𝐾𝑞𝑞𝑞𝑞 =
𝑄𝑄𝑄𝑄

𝜌𝜌𝜌𝜌𝑛𝑛𝑛𝑛2𝐷𝐷𝐷𝐷𝑝𝑝𝑝𝑝5
 (A4) 

𝜂𝜂𝜂𝜂0 =
𝐽𝐽𝐽𝐽

2𝜋𝜋𝜋𝜋
𝐾𝐾𝐾𝐾𝑇𝑇𝑇𝑇
𝐾𝐾𝐾𝐾𝑄𝑄𝑄𝑄

 (A5) 

 

 
FigureA2 Propeller open-water characteristics used in the self-propulsion simulations. 
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