# 繰り返し載荷による防撓パネル座屈変形の 変化について

安藤 孝弘\*,小森山 祐輔\*,橋爪 豊\*,田中 義照\*\*

# Changes in Buckling Deformation of Stiffened Panel due to Cyclic Loading

by

# ANDO Takahiro, KOMORIYAMA Yusuke, HASHIZUME Yutaka and TANAKA Yoshiteru

## Abstract

In this study, the generation process of residual deformation of a bottom shell plate observed in the sister ships of a container ship in which the breakage accident occurred and the effect of the residual deformation on the ultimate strength were examined. To clarify the above processes and effects, cyclic compressive loading tests were conducted with stiffened panel specimens. Four specimens were manufactured and tested using composite load testing equipment owned by the National Maritime Research Institute. The results of the four specimens under different test conditions were compared to clarify the growth of buckling deformation. The effect of residual deformation in the panel cross-section on the ultimate strength of the stiffened panel was investigated using the finite element method (FEM). The results indicated that the shape of the deformed stiffened panel resulting from the cyclic compressive load test was different from the deformed bottom shell plate of the aforementioned sister ships. The residual deformation of the panels caused the ultimate strength of the stiffened panels to decrease slightly, but this deformation is unlikely to be an immediate cause of collapse.

<sup>\*</sup> 構造安全評価系, \*\* 企画部 研究特命主管 原稿受付 令和3年10月28日 審 査 日 令和3年12月13日

## 1. まえがき

輸送コストおよび GHG 排出削減の世界的動向により,コンテナ船はますます大型化が顕著であり,直近では, 船長が 400 m に達する 20,000TEU (Twenty-foot Equivalent Units) クラスのコンテナ船が建造されるようになってき た. このような超大型コンテナ船においては,船体の 2 節縦曲げ振動数が出会い波の振動数に近づいてくる. そ の結果,スラミングに誘起される船体振動により生じる曲げモーメント,いわゆるホイッピング荷重がハルガー ダーの縦曲げ最終強度に及ぼす影響を考慮することが重要となってきた<sup>1)-4)</sup>. 従来,コンテナ船の大規模折損事 故の発生は比較的少ないと認識されてきたが,2007 年 1 月に約 4,400TEU のコンテナ船が英仏海峡において折損 し,その原因の 1 つとして,ホイッピング影響による波浪荷重増大の可能性が示唆された<sup>5)</sup>. また,2013 年 6 月 に約 8,000TEU のコンテナ船がインド洋において折損,沈没した. この事故の直接的な引き金は,二重底の船底 外板の逐次崩壊と推定されたが,その理由として,複数の事故船姉妹船の船底外板に座屈波形に似た凹凸(弾性 変形を含むと考えられる最大で約 20 mm の変形;図1参照)が確認されたことが「コンテナ運搬船安全対策検討 委員会」等<sup>6,5</sup>7 において報告されたからである.このような船底外板における防撓パネルの凹凸永久変形の生成 過程として,2 つの仮説が立てられた.1 つ目の仮説としては,波浪中縦曲げモーメントとホイッピングモーメ ントの合モーメントがハルガーダー縦曲げ最終強度に達したか,あるいは超えたかであったが,作用時間が短 かった(準静的に崩壊に必要なエネルギに達しなかった)ために,船底外板には板厚程度の座屈変形が残ったが,

(2)

ハルガーダーとしては縦曲げ崩壊までには至らなかったというものである.2 つ目の仮説としては,防撓材の溶 接によって生じていたと推定されるパネル部のやせ馬モード状の初期たわみのうち,特に座屈モードの成分がホ イッピングを含む波浪中縦曲げモーメントに起因する繰り返し圧縮荷重により増幅されたというものである.



A: 凸状の変形, B: 凹状の変形 図1 船底外板の変形の様子(提供:株式会社商船三井)

これまで著者らは、上記の2つ目の仮説に基づき、繰り返し圧縮荷重が防撓パネルの面外たわみ形状の変化に 及ぼす影響を明らかにするため、実験的、数値的な検討を実施してきた<sup>80-11)</sup>.本稿では、これまでに報告した試 験条件の異なる全4体の防撓パネル試験体(以下,試験体という)の試験結果および有限要素法(FEM)解析結 果について、総合的に評価し報告する.はじめに実験的検討として、試験体に単調増加あるいは繰り返しの圧縮 荷重を負荷した座屈・塑性崩壊試験の結果から、1軸圧縮条件下における最終強度および初期座屈モードの変化 の過程を検証した.次に商用動的陽解法 FEM ソフトウェア LS-DYNA による詳細シミュレーションを実施し、実 験結果との比較に加え、加振速度や荷重振幅が座屈・塑性崩壊挙動に及ぼす影響についても検討を行った.なお、 事故当時の船級規則に従い設計された事故船は、縦曲げモーメント下で船底外板の弾性座屈が生じない設計に なっていたが、実際にはコンテナ荷重や水圧等のローカル荷重の影響により、弾性座屈が早めに生じた可能性も ある.なお、本稿では、現象を単純化するため、大型コンテナ船の船底構造において一般的な水圧や2軸圧縮応 力の影響<sup>10</sup>については扱わない.

ここで、一般的にコンテナ船の船底構造に適用される寸法の防撓パネルが、長辺方向の単調増加1軸圧縮を受ける場合の座屈・塑性崩壊挙動について考察しておく、パネル部のアスペクト比α(長辺の短辺に対する長さ比)が5前後、細長比β(式(1)参照)が1.8~2.0程度の矩形パネルで、防撓材の溶接に起因する初期たわみ形状がや せ馬モードとなる場合が多いと考えられる<sup>13)</sup>.このような防撓パネルでは、はじめに防撓材近傍を除くパネル 中央の圧縮残留応力と1軸圧縮荷重によりパネル部に座屈が生じ、やせ馬モードから座屈モード(アスペクト比 αに近い半波数の正弦波形状のたわみ形状)に移行すると考えられる.その後も圧縮荷重が増大すると、初期た わみや残留応力の大きさによっては、初期座屈モードからより高次のモードに突如飛び移る2次座屈現象<sup>14)</sup>が生 じる可能性があるが、通常、2次座屈強度は初期座屈強度と比較してかなり高い(一般に2倍以上)と考えられ る.矢尾ら<sup>14)</sup>は、自動車運搬船の車両甲板のような薄板パネルに対する弾性座屈許容設計の適用可能性を明ら かにするため、2次座屈について静的および動的弾塑性大たわみ解析により検討し、2次座屈と最終強度との関 係等を明らかにした.このような2次座屈現象に伴うパネル部の面外たわみ形状の変化は、基本的に弾性範囲内 での座屈モードの変化であり、本研究で検討対象としている繰り返し荷重による材料の塑性化を伴うパネルの面 外たわみ形状の変化とは現象が異なる.

パネル部に初期座屈が生じた後もさらに圧縮荷重の載荷を続けると、パネル部が最終強度に達し、座屈モードからより高次のモードに変化する局所化が生じる.この現象はパネルのある部分にたわみが集中して、直線的な塑性関節線を有する屋根型の面外たわみ形状に近づくモード変化であり、防撓材も局所的に倒れたりパネルの変形と連成して捩れたりする現象<sup>15)</sup>である.パネルたわみの局所化現象は前述の2次座屈現象と異なり、パネル部の最終強度後、すなわち塑性化を伴うモード変化であるが、防撓材はまだ耐力を有している状態にある.防撓パネル全体としてはさらに荷重増加に耐えるが、やがて全体としても最終強度に達する.このような現象はFEM 解析において、初期たわみとして座屈モードのみを付与した場合より、複数の初期たわみ成分を有するや

せ馬モードを付与した場合に生じやすいことが報告されているが<sup>13</sup>,面外たわみが局所的に増大することにより 他の部分に除荷が生じることから、パネル全体としては耐力が急激に減少することになる.後藤ら<sup>10</sup>は、薄板 構造の座屈によるパネル面外たわみの局所化現象について塑性分岐解析に基づく解析を行い、最終強度後の変形 能がたわみの局所化によって著しく損なわれることを示した.

一方,繰り返し荷重を受ける防撓パネルの座屈モードの変化やハルガーダーのシェイクダウン限界に関する これまでの研究についても整理しておく.ただし,疲労強度すなわち S-N 関係に基づく寿命予測,並びに,き裂 伝播・停止に関するものは除く.Yao ら <sup>10</sup>は,繰り返し面内荷重を受ける板の座屈・塑性崩壊について FEM 弾 塑性大たわみ解析により検討し,薄板の座屈・塑性崩壊後の繰り返し強度特性に関する重要な知見を得たが,本 稿で扱うような最終強度に達する前に面外たわみ形状が変化するメカニズムについては検討されていない.平 川<sup>18</sup>は,鋼材の非線形挙動を考慮した繰り返し荷重下における防撓パネルの座屈・塑性崩壊挙動について検討 し,たわみが最大となるパネル中央部より防撓材隅肉溶接部に大きなひずみ振幅が発生することを示し,隅肉溶 接部の低サイクル疲労検討の必要性を提案した.また,山本ら<sup>19</sup>は,座屈・塑性崩壊後の鋼材が種々の繰り返 し変位を受けた場合のき裂強度に関し,定量的に把握・検討した結果について報告した.以上の研究は,いわゆ る低サイクル疲労(塑性疲労)に関するものであり,見かけ弾性状態の繰り返し荷重により防撓パネルのたわみ 形状が変化する,あるいは強度が低下するといった現象を取り扱ったものは見られない.

繰り返し荷重が防撓パネルの座屈・塑性崩壊挙動に及ぼす影響を考える場合,荷重速度を持つ動的荷重の影響も考慮する必要がある.藤久保ら<sup>20)</sup>は,動的陽解法により矩形パネルおよび連続防撓パネルの準静的な解析 を行い,荷重速度が座屈・塑性崩壊挙動に及ぼす影響を明らかにした.

繰り返し縦曲げモーメントを受けるハルガーダーの崩壊挙動に関しては、シェイクダウン(構造物が繰り返 し荷重を受ける場合、数サイクルの繰り返しの後、ある範囲内で安定的に応答する現象)限界から評価を行った 研究もある. Zhang ら<sup>21)</sup>は、ハルガーダーの折損に関連するシェイクダウン限界状態を評価するための新しい方 法を提案し、一例としてスエズマックス級の油タンカーに適用した. その結果、繰り返し荷重が単調載荷による 縦曲げ最終強度より小さい場合でもハルガーダーが縦曲げ崩壊に至る可能性があることが示された. また、Li ら<sup>22)</sup>は、ハルガーダーの縦強度評価におけるシェイクダウン限界状態について検討し、限界状態のエネルギー ベースの特性を提案した. この研究でも、シェイクダウン限界状態評価を使用することが過度に安全側であると する一方で、縦曲げ最終強度に基づく評価の安全マージンが大幅に減少する可能性があることを示した.

その他, Xia ら<sup>23</sup>) は,極端な縦方向繰り返し荷重を受ける板の最終強度および最終強度後の挙動について実験 および FEM 解析により検討を行った.その結果,全体的な残留変形だけでなく,繰り返し荷重で形成される局 所的な残留応力とひずみも板の耐力を低下させることが示された.

### 2. 試験方法

## 2.1 試験体および試験治具

### 2.1.1 試験体の設計・製作

防撓パネルの座屈・最終強度に最も影響を及ぼす因子は、次式で表されるパネル部の細長比βである.

$$\beta = \frac{b}{t_p} \sqrt{\frac{\sigma_Y}{E}} \tag{1}$$

ここで b:防撓材間隔

*t<sub>p</sub>*:パネル板厚 *o<sub>Y</sub>*:材料の降伏強度 *E*:材料のヤング率 である. 試験体の横桁位置が試験機(図7参照)の治具設置可能位置(500 mm間隔)によって制限されるため、 横桁の間隔  $a \ge 1000$  mm とし,防撓材間隔  $b \ge 200$  mm とした. また,評価対象となる中央スパンのパネル部に 使用する材料を公称板厚 3.2 mm の軟鋼板(SPHC)としたため、パネル部のアスペクト比 $\alpha$ は 5.0、幅・厚さ比  $b/t_p$ は、約 63 となった.

繰り返し圧縮荷重下でのパネルの面外たわみが変化する過程を検討するため、上述の基本設計に基づき防撓 パネル試験体の詳細設計を行い、同形状・同寸法かつ同溶接条件により試験体UA1~UA4の4体の試験体を製作 した.試験体の外観を図2に示す.試験体は3つのスパンおよび3つのベイからなるが、評価対象とする中央ス パンにおいてローカルな座屈・塑性崩壊が生じるようにするため、両端部スパンのパネル部には公称板厚 4.5 mmの軟鋼板(SS400)を使用した.中央スパンの横断面の形状および公称寸法を図3に、試験体の平面図および パネル面内に設定するX-Y全体座標系を図4に示す.一方、試験体全長にわたる防撓材は、評価対象のパネル部 に使用した公称板厚 3.2 mmの軟鋼板を80×20 mmのL型の断面形状に機械曲げ加工した部材を用いた.パネル 部とすべての防撓材および横桁材との接合にはTIG溶接による連続溶接を適用し、入熱量を抑制することにより 溶接初期不整の低減を図った.



図2 防撓パネル試験体の外観



図3 防撓パネル試験体の中央断面



図4 防撓パネル試験体(上面図および座標系)

## 2.1.2 材料特性

試験体に用いた材料(軟鋼板 SPHC および SS400)の化学成分を表1に、同じく JIS 規格に則り実施した引張試験から得られた代表的な機械的特性を表2に示す.ただし、使用材料に対して上記引張試験以外の材料試験は実施していない.

| Element | Concentration, weight % |                       |                       |  |  |
|---------|-------------------------|-----------------------|-----------------------|--|--|
|         | 3.2 mm plate of UA1 to  | 4.5 mm plate of UA1 & | 4.5 mm plate of UA3 & |  |  |
|         | UA4                     | UA2                   | UA4                   |  |  |
|         | (SPHC)                  | (SS400)               | (SS400)               |  |  |
| С       | 0.05                    | 0.09                  | 0.09                  |  |  |
| Si      | 0.02                    | 0.01                  | 0.00                  |  |  |
| Mn      | 0.23                    | 0.82                  | 0.82                  |  |  |
| Р       | 0.015                   | 0.020                 | 0.016                 |  |  |
| S       | 0.007                   | 0.006                 | 0.007                 |  |  |
| Fe      | Remainder               | Remainder             | Remainder             |  |  |

## 表1 使用材料の化学成分

## 表2 使用材料の機械的性質

|                       | 3.2 mm plate | 4.5 mm plate of UA1 & UA2 | 4.5 mm plate of UA3 & UA4*1 |  |  |
|-----------------------|--------------|---------------------------|-----------------------------|--|--|
|                       | (SPHC)       | (SS400)                   | (SS400)                     |  |  |
| E, GPa                | 200          | 203                       |                             |  |  |
| $\sigma_{Y}$ , MPa    | 218          | 327                       | 305                         |  |  |
| $\sigma_u^{*2}$ , MPa | 343          | 448                       | 438                         |  |  |
| $t_p, mm$             | 3.19         | 4.38                      | 4.50                        |  |  |

\*1Note: Values are based on the inspection certificate.

\*2Note: Tensile strength.

## 2.1.3 溶接初期不整量の推定

試験に先立ち,各試験体評価対象部のパネル部について初期たわみ計測を実施した.具体的には,パネル部 に 50 mm 間隔の格子線をマーキングし,各格子点における,X,Y,Zの3座標を公称精度 1/100 mm のレーザー変 位計測装置により計測した.各パネルにおいて計測された初期たわみ wop は,いわゆるやせ馬モードであったが, 次式の1~5 半波成分からなると仮定し,座標データを基に最小二乗法により各成分を推定した.

$$w_{0p} = \sum_{i=1}^{5} A_{0i} \sin \frac{i\pi x}{a} \sin \frac{\pi y}{b}$$
(2)

ここに、xおよびyはそれぞれパネルごとのローカル座標系(防撓材方向をx)を表し、aおよびbはそれぞれ パネルのX軸方向およびY軸方向の長さを表す.また、Auは表3に示す初期たわみ成分である.ただし、パネ ル初期たわみは、パネルと防撓材および横桁材との交線からなる平面からの差分としており、試験体全体の縦曲 がり変形や捩れ変形は考慮していない.また防撓材の横倒れ初期変形についても計測していない.

一方,溶接残留応力評価用の試験体(以下,RS試験体という)として,長さ600 mm,断面形状を図3と同様 としたRS-1およびRS-2の計2体(図5参照)を,上述の防撓パネル試験体評価対象部と同材料・同寸法かつ同 溶接条件で製作した.RS試験体の中央断面上のパネル部にひずみゲージを貼付し,その周辺を機械的に20 mm 角程度に切断した際に生じるひずみ値の変化から,試験体製作時に生じる溶接残留応力を推定した(いわゆる応 力解放法).計測されたメンブレン応力(表裏の応力の平均値)を,図6に●○で示す.また,圧縮残留応力と 引張残留応力の平衡を考慮して推定される理想化された残留応力分布の例を図中に実線で示す.RS試験体では, 幅方向中央のパネルとその両側のパネルとの間に応力分布に差が見られるが,防撓材溶接時の拘束の影響と推定 される.なお,後述するFEM解析(第4章)において,この溶接残留応力分布を変化させて単調増加圧縮荷重 による座屈・塑性崩壊解析を行い,その結果から推定値の妥当性を検証する.

| Components | S       | pecimen UA | .1      | S       | pecimen UA | 2       | S       | pecimen UA | .3      | S       | pecimen UA | 4       |
|------------|---------|------------|---------|---------|------------|---------|---------|------------|---------|---------|------------|---------|
|            | Panel-1 | Panel-2    | Pnael-3 |
| $A_{01}$   | 0.90    | 0.83       | 0.32    | 0.70    | 0.65       | 0.45    | 0.37    | 0.92       | 0.53    | 0.57    | 0.75       | 0.46    |
| $A_{02}$   | 0.01    | -0.03      | 0.05    | 0.14    | 0.08       | -0.05   | 0.03    | -0.07      | 0.10    | -0.05   | 0.01       | -0.17   |
| $A_{03}$   | 0.25    | 0.06       | 0.08    | 0.23    | 0.13       | 0.16    | 0.30    | 0.37       | 0.20    | 0.34    | 0.07       | 0.14    |
| $A_{04}$   | 0.02    | -0.08      | 0.06    | 0.16    | 0.07       | 0.01    | 0.03    | -0.03      | -0.02   | 0.04    | -0.10      | -0.05   |
| $A_{05}$   | 0.08    | 0.04       | -0.01   | 0.10    | 0.22       | 0.06    | 0.09    | 0.11       | 0.15    | 0.02    | 0.01       | 0.01    |

表3 評価対象部の初期たわみ成分



図5 溶接残留応力評価用試験体の外観



## 2.2 試験方法

## 2.2.1 試験装置および試験体の設置

単調増加圧縮荷重による座屈・塑性崩壊試験,および繰り返し圧縮載荷試験には,海上技術安全研究所の複 合荷重試験装置を使用した.本装置は,動的載荷容量±1MN,最大速度±100mm/secの可搬型油圧サーボ式アク チュエータ(以下,アクチュエータという)4台を耐圧床上に設置できる装置である.試験体はすべて図7に示 すように設置した.1軸圧縮の方向をX軸方向とし,試験体を支持治具により水平に支持するとともに,全体座 屈を回避するため,横桁位置で試験体の鉛直方向変位を拘束した.また試験体端部には円柱鋼棒が接合されてお り,凹面を有する支持治具で挟むことにより試験体両端においてY軸回りの回転を許容した.ただし,接合した 円柱鋼棒の軸心は試験体により異なり,試験体 UA1および UA2 は中央スパン横断面全体の中立軸となる高さに 設定し,試験体 UA3 および UA4 は中央スパンパネル断面の中立軸(上記,UA1および UA2 の取り付け位置に対 して 20mm 下方)となる高さに設定した. 圧縮荷重は試験体両端に配置された対向する2台のアクチュエータに より,負荷治具を介して載荷された.



図7 試験体の設置状況

(in mm).

### 2.2.2 載荷方法

8

試験体 UA2 は、単調増加圧縮荷重による座屈・塑性崩壊試験に供した.ただし、アクチュエータの圧縮変位 を段階的に増加させる変位制御を採用した.一方,試験体 UA1 は、繰り返し圧縮載荷試験によりパネルおよび 防撓材の面外たわみをある程度成長させた後、単調増加圧縮荷重による座屈・塑性崩壊試験を実施した.また, 試験体 UA3 および UA4 には、それぞれ加振条件を変えた繰り返し圧縮載荷を与え、試験体が崩壊に至るまで継 続した.なお、これらの繰り返し圧縮載荷試験においてもアクチュエータは変位制御とし、必要な荷重振幅とな るように調整した変位振幅を正弦波で与えて加振した.

一般的に、コンテナ船の静水縦曲げモーメントは常にホギング状態であり、波浪中縦曲げモーメントが作用 してもサギング状態にはならないと考えられることから、繰り返し載荷試験の荷重条件は圧縮の範囲内での繰り 返し荷重とした.

## 2.2.3 計測項目

それぞれの試験を実施中に、応答が大きいと予想されるパネルおよび防撓材位置での動ひずみ、および静ひ ずみを計測した. 主な計測点は、Panel-1~Panel-3 (図 4 参照)の短辺の中心線上の表裏に貼付した 2 軸ひずみ ゲージ (試験体 UA1 および UA2 は試験体長手方向に 200 mm 間隔,試験体 UA3 および UA4 は同 100 mm 間隔)、 並びに、防撓材直下のパネル部に貼付した X 軸方向の 1 軸ひずみゲージである (X 軸方向に約 500 mm 間隔). 2 軸ひずみゲージの計測値により座屈発生時の曲げひずみの変化を計測するとともに、1 軸ひずみゲージの計測値 から試験体に載荷される圧縮荷重の Y 軸方向の一様性を確認した. 加えてパネル部のたわみ変化を非接触式レー ザー変位計により計測した.

## 3. 試験結果

本章では、試験体 UA2 を単調増加圧縮試験に供し、その試験結果から得られた最終強度 Pu を試験体シリーズ 共通の評価基準とした.また、残り3体の試験体については、異なる繰り返し圧縮載荷条件下における最終強度、 並びに最終強度に至る座屈・塑性崩壊挙動について検討した.なお、繰り返し圧縮載荷試験の各荷重セットにお ける最大圧縮荷重を Pmax、荷重振幅を ΔP,加振周期を Tとする.

各試験体はセットアップ終了後、それぞれの試験に供する前に完全弾性範囲内で圧縮荷重を数回負荷し、試験体中央横断面におけるX軸方向のひずみ分布ができるだけ一様になるように治具の調整を行った.その結果、 すべての試験体において負荷治具近傍のひずみ値にはばらつきが見られたが、試験体中央横断面ではひずみ値が ほぼ一様となった.また、載荷荷重から推定される平均圧縮ひずみ(荷重/横断面積/ヤング率)についても、 ひずみゲージ計測値とほぼ一致することを確認した上で後述する載荷試験を実施した.

## 3.1 繰り返し圧縮載荷試験

## 3.1.1 試験体 UA1 の試験結果

試験体 UA1 の繰り返し圧縮載荷試験では、アクチュエータによる強制変位を周期  $T=2 \sec$ の正弦波として与 え、それぞれ 10<sup>4</sup>回×11 セット繰り返すことで試験体に繰り返し圧縮を載荷した.評価対象部横断面に生じる最 小応力は各荷重セット共通で 0 付近になるよう調整し、応力振幅を荷重セットごとに段階的に増加させることに より、各荷重レベルにおけるパネルのたわみ形状やひずみ値の変化を調査した.それぞれの荷重セットでの評価 対象部横断面に生じる平均応力振幅を材料の降伏応力で無次元化して図 8 に示す.それぞれの荷重セット終了後 の除荷時に計測した Panel-1~Panel-3 の防撓材間中心線上の残留曲げひずみの変化を図 9 に示す.また、試験体中 央横断面位置(X=0 mm) および横桁位置( $X=\pm500$  mm) における防撓材直下の残留直ひずみの変化を図 10 に 示す.図 9 から分かるように、8 セット目の繰り返し圧縮載荷中に最初に評価対象部中央パネルの Panel-2 に(同 図(b))、9 セット目にその両隣の Panel-1 および Panel-3 に(同図(a), (c))、X=200 mm 位置で残留曲げひずみが生じ た.8 セット目の最大圧縮荷重  $P_{max}$  はー414 kN であり、作用した平均圧縮応力(荷重/横断面積)の最大値として は-0.589 or であるため、巨視的には弾性範囲内にあったと考えられるが、すべてのパネルで X=200 mm 位置にお



各荷重セットの平均応力振幅(試験体 UA1) 図 8



(試験体 UA1)

ける曲げひずみがこの後増加傾向に転じていることから、この断面近傍でパネルの面外たわみの増大が生じたと 推察される.一方、図10から分かるように、Stiffener-1ではX=500 mmの横桁近傍で(同図(c))、Stiffener-4では X=-500 mmの横桁近傍で(同図(a))、防撓材直下の残留直ひずみが増加に転じていることから、局所的にパネル の面内曲げが生じた可能性がある.特に、図10(c)に示すように、X=500 mmに位置するStiffener-1直下の残留直 ひずみが早い段階で急激に増加していたことから、Stiffener-1のX=500 mmの横桁付近に圧縮ひずみが集中し、 図9(a)~(c)に示すようにX=200 mm 断面近傍で曲げひずみの増大が生じたと考えられる.全11 セットの繰り返 し圧縮載荷後のPanel-1のたわみ状況を図11に示す.残留曲げひずみの計測結果を裏付けるパネルたわみ(たわ みの局所化による屋根型モード)が観察され、パネル部分については最終強度に達したと推定されるが、試験体 UA1 全体としては最終強度に達していなかったことから、さらに単調増加圧縮荷重を負荷して座屈・塑性崩壊 挙動を確認し、繰り返し圧縮載荷を受けない試験体 UA2 のそれと比較することにより、繰り返し圧縮載荷によ るパネルたわみの変化が最終強度に及ぼす影響について検討することとした。



図 11 試験体 UA1の全繰り返し圧縮載荷後の Panel-1 のたわみ(屋根型モードに近い)

## 3.1.2 試験体 UA3 の試験結果

試験体 UA3 の繰り返し圧縮載荷試験では,試験体 UA1 の載荷条件とは異なり,全荷重セットともに変位振幅 一定の正弦波とする強制変位を与え,荷重セットごとにその平均変位をより圧縮側にシフトさせていく載荷方法 を採用し,パネルたわみ形状やひずみ値の変化について調査した.載荷は *ΔP* がおよそ 60 kN(約0.1*P*<sub>u</sub>に相当) となるように調整した変位振幅を周期 *T* = 2 sec の正弦波として与え,10<sup>2</sup> 回×31 セット繰り返すことで供試体に 繰り返し圧縮を載荷した.それぞれの荷重セットにおける最初の1周期目の荷重-変位関係を図12 に両端マー ク付きの線分として示す.



各荷重セットでは図 13 (低荷重域) および図 14 (高荷重域) に示すように、荷重セット内におけるストロー クが一定であるにもかかわらず、載荷序盤に荷重が低下しその後低下量が徐々に減少する傾向が見られるが、図 14 に示すように、最大圧縮荷重に達した荷重セットでは、加振開始直後に荷重が急激に低下した. 試験体 UA3 の繰り返し圧縮載荷試験で得られた最大荷重は-581 kN であり、後述する単調増加圧縮荷重試験に供した試験体 UA2の最終強度 Puを基準とすれば、試験体 UA3の最終強度は約 2.4%低下した.



図 15 に試験体 UA3 の評価対象部中央パネル Panel-2 (図 4 参照) に生じた面外変位を,それぞれの荷重セット 終了後の平均圧縮荷重載荷状態で計測したレーザー変位計の値により示す.本図より 9 セット目終了後からパネ ル面外たわみの顕著な変化が観察される.また,図 16 に Panel-1 ~ Panel-3 の中央横断面位置 (*X* = 0 mm)のパネ ル短辺中央線上に貼付したひずみゲージにより計測された X 軸方向の曲げひずみの変化を,各荷重セット実施前 後における平均荷重に対して示す.本図より 10<sup>2</sup>回の繰り返し圧縮による曲げひずみは,平均荷重を約-300kN と する荷重セット (6 セット目)から変化が見られ,平均荷重が約-400kN とする荷重セット (9 セット目)からさ らに増大することが分かる.最終強度後におけるパネルの面外たわみの様子を図 17 に示すが,この試験体にお いては, *X* = -100 ~ -200 mm や *X* = 200~300 mm の断面位置で複数の屋根型モードのたわみが観察された.





図 17 最終強度後におけるパネル面外たわみの様子(試験体 UA3)

## 3.1.3 各荷重セットにおける最大圧縮荷重と曲げひずみの関係

前述のとおり繰り返し圧縮載荷試験に供した試験体 UA1 と UA3 の試験条件は、加振回数、荷重振幅等が大き く異なる. そこで上記両試験体について、各荷重セットにおける最大荷重 *P<sub>max</sub>* と評価対象部中央パネルの Panel-2 における X 軸方向の曲げひずみ (*X* = -200, 0, 200 mm の 3 か所) との関係を図 18(a)に示す. 同様に、同図(b) には後述する単調増加圧縮試験に供した試験体 UA2 の中央の Panel-2 の曲げひずみの変化を比較のために示す. 同図(a)より、圧縮荷重-100 kN~-300 kN における中央横断面に近い上記 3 か所の曲げひずみは、試験体 UA3 で最 大で-30με 程度と僅かではあるもののパネルの面外変形が確認できる. 他方、試験体 UA1 と同図(b)に示す試験体 UA2 では、曲げひずみはほぼ 1 桁台で推移しており、これらの位置におけるパネルの面外変形は観察されない. この試験体による違いは 2.2.1 項で述べた載荷位置となる円柱鋼棒の取り付け位置(圧縮荷重作用線と断面重心 高さとの距離)の違いによるものと推察されるが、その影響はわずかであったと言える. その後、試験体 UA1 および UA3 はともに圧縮荷重-350 kN 付近から曲げひずみが徐々に増加し、さらに圧縮荷重-400 kN に達して以 降その傾向は顕著となり、パネル部の面外変形が増加していったことが分かる. 3.1.2 項と同様に、試験体 UA2 の最終強度 *P<sub>u</sub>*を基準とすれば、本試験体シリーズでは、およそ 0.7*P<sub>u</sub>*の圧縮荷重が負荷された際に曲げひずみが 増大する傾向にあることが確認された. この結果を踏まえ、試験体 UA4の荷重条件の設定を行った.



図18 各荷重ケースの最大圧縮荷重と曲げひずみの関係

## 3.1.4 試験体 UA4 の試験結果

試験体 UA4 に対しては、前項で示した曲げひずみの増加が顕著となる 0.7P<sub>u</sub>以上の圧縮荷重を繰り返し負荷し 続けた場合に、パネルの面外変形がどのように変化し、最終的に座屈・塑性崩壊に至るかどうかについて検証し た.まず、図 19 に示すように、試験体に最大-522 kN(0.88P<sub>u</sub>に相当)の圧縮荷重を単調増加により負荷し、ス トローク和(両端部アクチュエータの押し込み量の和)と圧縮荷重との関係を求めた.次に、得られた結果から、 ストローク和に基づき、最大圧縮荷重が-522 kN、荷重振幅 *ΔP* が 110 kN となるような繰り返し圧縮荷重を計 64 セット(1荷重セットあたり4×10<sup>3</sup>~6×10<sup>3</sup>回),計2.746×10<sup>6</sup>回負荷した.具体的には,はじめに平均荷重まで 圧縮荷重を負荷した後に,±55kNに相当する±0.15mmの強制変位振幅を周期 $T=2 \sec$ の正弦波として与えた. 図 20に各荷重セットにおける平均圧縮荷重値を,図 21に平均圧縮荷重を負荷するのに要したアクチュエータの ストローク和を示す.平均圧縮荷重は図 20に示すようにパネルの面外変形の変化に応じて,0~7.8×10<sup>4</sup>回が -466kN,7.8×10<sup>4</sup>~1.704×10<sup>5</sup>回が-480kN,同じく1.704×10<sup>5</sup>~2.746×10<sup>6</sup>回が-490kNと段階的に増加させた. 図 21を見ると,平均荷重を得るために必要なアクチュエータのストローク和が変動しているが,連なった3~4 個のマークが1日(9:00~18:00)の試験結果を示しており,気温の上昇に伴う試験体の膨張により等価な荷重に 必要なストロークが低下したと考えられる.しかしながら,全体的な傾向は,繰り返し圧縮載荷を重ねるに伴い 上記の平均圧縮荷重を得るために必要なアクチュエータのストローク和が漸増し,最終的には座屈・塑性崩壊に 至った.試験体 UA4の最大荷重は瞬時値ではあるが-569kNであり,前項までと同様に試験体 UA2の最終強度  $P_u$ を基準とすれば,0.96 $P_u$ に達する荷重を繰り返すことで座屈・塑性崩壊に至ることが確認された.





図20繰り返し載荷における平均荷重の変化

図 22 に評価対象部中央パネルの Panel-2 における面外変形の変化の様子を示す.最大-522 kN まで単調増加圧 縮荷重を負荷した直後には X = 200 mm 位置で計測された面外変形が最も大きく,繰り返し圧縮荷重の継続負荷 により,さらにその近傍で面外変形が増加していることから、この付近で面外たわみの局所化が生じたと推察さ れる.同様に Panel-2 に貼付したひずみゲージから得られた曲げひずみの変化を図 23 に示す.面外変形と同様、 X = 200 mm 位置で計測された曲げひずみが局所的に増大しているが、繰り返し数が 2×10<sup>4</sup>回まで、および、2.24 ×10<sup>5</sup>回以降で顕著であり、それ以外では塑性ひずみが累積するペースは遅い.図 24 に最大荷重到達時における 評価対象部の面外変形の様子を示すが、この試験体においても繰り返し圧縮載荷試験に供した試験体 UA3 と同 様に、塑性関節線を有する複数の屋根型モードのたわみが見られた.以上より、本試験体シリーズの最終強度  $P_u$ よりやや低めの圧縮荷重を繰り返し負荷することにより、パネルの面外変形が変化し、座屈・塑性崩壊に至る ことが明らかになった.



図 21 アクチュエータの平均ストローク和の変化



図 22 中央パネルの面外変形の変化(試験体 UA4)





図 24 最終強度における変形の様子(試験体 UA4)

## 3.2 単調増加圧縮試験

試験体 UA2 は弾性試験を実施した後に単調増加圧縮荷重による座屈・塑性崩壊試験に供した.また 3.1.1 項に 示した繰り返し圧縮載荷試験後の試験体 UA1 に対しても同様の試験を行い,両者の結果を比較した.両端 2 台 のアクチュエータの平均圧縮荷重とストローク和の関係を図 25 に示す.本試験体シリーズ共通の基準とした試 験体 UA2 の最終強度は-595 kN であった.一方,繰り返し圧縮荷重によりパネルの面外たわみが変化した状態の 試験体 UA1 の最終強度は-587 kN となり,試験体 UA2 に比べて最終強度が約 1.3%低下したことになる.同様に 3.1.2 項に示した試験体 UA3 の最終強度も約 2.4%の低下であり,本試験体シリーズにおいては,溶接初期不整量 等の個体差も考えられることから,繰り返し圧縮載荷によって生じた面外変形(パネル部の残留たわみ)が最終 強度に及ぼす影響はわずかであったと言える.

図26に試験体UA1および試験体UA2の最終強度後の変形の様子を示すが、同図(a)に示すように、試験体UA1 では評価対象部全体に塑性関節線を有する屋根型モードのたわみが複数見られる.この変形は上述の試験体 UA3,試験体UA4でも見られ(図17および図24参照)、繰り返し圧縮載荷試験結果で見られる特徴的な現象で ある.同じく同図(b)に単調増加圧縮試験にのみ供した試験体UA2の変形の様子を示すが、評価対象部全体に通 常の座屈変形が生じた後、X=200mmの断面のみに屋根型モードの変形に移行している.

このように、各試験体の座屈・崩壊挙動が、繰り返し圧縮荷重によるパネル面外変形により変化しても、上 記のとおり最終強度に及ぼす影響はわずかであり、これは最終的には第1章で述べたような防撓パネルの一般的 な座屈・塑性崩壊挙動を辿るためと考えられる.



図 25 両アクチュエータ反力の平均荷重とストローク和の関係



(a) 試験体 UA1



(b) 試験体 UA2

図26最終強度後の試験体の崩壊モードの様子

## 4. FEM 解析および考察

## 4.1 FEM 解析の概要と目的

各圧縮試験をモデル化した FEM 解析を行い,試験体 UA1 および UA3 に対する繰り返し圧縮荷重試験から得ら れたパネル面外たわみが変化する過程を検証するとともに,繰り返し荷重により生成されるパネル面外たわみが 防撓パネル全体の最終強度に及ぼす影響を確認する.また,試験体 UA3 の試験結果で観察された,変位振幅一 定とした繰り返し圧縮載荷条件下で生じるパネルたわみ形状の変化に伴い平均圧縮荷重が低下(剛性が低下)す る現象や,試験体 UA4 で実施した曲げひずみが増加する荷重域における繰り返し載荷条件において,荷重速度 や荷重振幅が最終強度に及ぼす影響についても,FEM 解析により確認する.

## 4.2 試験体の有限要素モデル化

防撓パネル試験体(図 2~4 参照)の FEM 弾塑性大たわみ解析(単調載荷,繰り返し載荷とも)には,商用の 動的陽解法解析コード LS-DYNA を使用する. すべての部材を 4 節点等方性シェル要素(Belytschko-Tsay 要素) でモデル化した. 主要要素の大きさは,パネル部に溶接残留応力を設定するとともに,十分な精度でパネル部の 初期たわみや座屈モードを表現できるよう 10 mm×10 mm に設定し,要素の板厚方向の積分点数を 5 とした. 解 析に使用した FEM モデルを図 27 に示す.



図 27 試験体の有限要素モデルの例

## (1)境界条件および荷重条件

図 27 に示した有限要素モデルに対し、それぞれの圧縮荷重載荷試験と同様に、横桁に接合された 4 枚の基板 にのみ固定境界条件を課し、試験体長手方向のエッジ部分に相当する節点については拘束しない. アクチュエー タにより試験体に負荷される荷重は、試験体端部の直線上に並ぶ節点群に圧縮方向の節点力または強制変位とし て与える.

## (2) 材料定数

材料(軟鋼)は等方性硬化則に従うと仮定する.また本稿では、繰り返し塑性の影響は考慮せず、引張試験 結果から得られた応力-ひずみ関係をもとに、相当応力-相当塑性ひずみ関係を図 28 に示すように区分線形近 似により定義する.



図28 評価対象部に適用した相当応カー相当塑性ひずみ関係

(3) 初期たわみ

各試験体に対応する FEM モデルの初期たわみは、中央スパンの Panel-1~Panel-3 に対し、表 3 の各試験体の値 を式(2)に適用することで設定する.本稿では、共通した解析モデルを用いて異なる載荷条件による解析結果を 比較、評価するために、残留応力の推定には試験体 UA2の初期たわみを適用した FEM モデル UA2 を、それ以外 の解析には試験体 UA1の初期たわみを適用した FEM モデル UA1 を使用した.ただし上記 FEM モデルには、防 撓材の横倒れ、縦曲がり、試験体の全体的な不均一性、並びに、部材の目違い等は考慮しない. (4)溶接残留応力

LS-DYNA の初期応力オプション<sup>24</sup>により,図6に示した溶接残留応力分布を試験体評価対象部のパネルにの み適用する. FEM モデル UA2の単調増加圧縮載荷解析には、表4に示す5ケースの溶接残留応力を設定した解 析を行い、その結果から推定した残留応力分布の妥当性を検証する.

| Casa | Comp   | ressive |  | Tensile |       |  |
|------|--------|---------|--|---------|-------|--|
| Case | stress | width   |  | stress  | width |  |
|      | MPa    | mm      |  | MPa     | mm    |  |
| 1    | -45    | 140     |  | 105     | 30    |  |
| 2    | -30    | 140     |  | 70      | 30    |  |
| 3    | -45    | 160     |  | 180     | 20    |  |
| 4    | -30    | 180     |  | 120     | 20    |  |
| 5    | 0      |         |  | 0       |       |  |

表 4 評価対象部に適用した溶接残留応力

#### 4.3 単調増加圧縮載荷解析結果

単調増加圧縮載荷試験に供した試験体 UA2 の FEM 解析結果を図 29 に示す. FEM モデルには,表3 に示す試験体 UA2 の初期たわみを適用し,加えて表4に示す溶接残留応力条件をそれぞれ適用した5 ケースの FEM モデルに,負荷速度およそ3000 kN/sec となる荷重条件を与えて解析を行った.各残留応力条件適用時の最終強度は,Case 1:-591 kN, Case 2:-607 kN, Case 3:-568 kN, Case 4:-596 kN となり,Case 5(残留応力無し,-660kN)の最終強度を10%程下回り,かつ試験結果に近いで値であることから,図6および表4に示した溶接残留応力の推定結果が妥当であったことが分かる.上記の結果を踏まえ,以降の解析に用いた FEM モデル UA1 には Case 1の溶接残留応力分布を採用した.



## 4.4 繰り返し圧縮荷重載荷解析結果

(1)パネル面外変形の変化の検証

試験体 UA1 の繰り返し圧縮荷重載荷試験(3.1.1 項参照)で実施したような数万回に及ぶ繰り返し載荷の FEM 解析については、解析時間の制約により現実的ではない.したがって、本 FEM 解析では試験体パネル部に生じる面外変形の変化を再現することに絞り、表 5 に示す荷重条件に従って FEM 解析を実施する.なお、本章ではFEM モデル UA1 の単調増加圧縮荷重載荷に対する FEM 解析結果から得られた最終強度(-582 kN)を基準最終強度  $P_u$ とする.荷重条件 Case A は、3.1.4 項に示した繰り返し圧縮荷重載荷試験において崩壊に至った最終強度 に相当する荷重であり、Case C は 3.1.1 項に示したパネルの残留曲げひずみが増大した最大の荷重セットの  $P_{max}$ (約-488kN)に相当する荷重である.また Case B は両者の中間値である.いずれも、周期 T=1.0 sec、荷重振幅  $\Delta P = P_{max}$ (図 38 参照)とする圧縮荷重を繰り返し載荷する解析を実施した.

| Case | P <sub>max</sub> | Number of cycles |
|------|------------------|------------------|
| А    | $0.96P_{u}$      | 50               |
| В    | $0.90P_{u}$      | 50               |
| С    | $0.84P_u$        | 50               |

表 5 繰り返し載荷解析の荷重条件

平均圧縮応力(荷重/横断面積)の見かけ上の最大値は、Case C では 0.7 or 程度であり巨視的には弾性範囲内 であるが、設定した圧縮残留応力や初期たわみの影響により実質的には圧縮応力が降伏応力を上回る部分も生じ ると考えられる.一例として、図30にCase C の1回目の圧縮荷重載荷後に生じた相当塑性ひずみ分布を示すが、 巨視的弾性状態であっても、局所的なパネル変形の変化の影響により試験体パネル表層に塑性ひずみが見られた. 同様に Case B の評価対象部の除荷時における相当塑性ひずみ分布について,加振回数 10 回ごとの変化を図 31 に まとめて示す.なおコンター表示した相当塑性ひずみのレンジはすべて共通である.本図より,1 回目の加振で 生じた面外たわみの変化により部分的に塑性化した部位は,加振回数と共に徐々にその範囲が広がり,さらにそ の中央部では面外変形の変化に伴い相当塑性ひずみの値も増加していくことが分かる.すなわち,圧縮荷重のみ の繰り返し荷重では,除荷時においても塑性化した変形が回復することは無く,その結果として,加振回数と共 にパネル面外変形が徐々に増加すると考えられる.



図 30 荷重条件 Case C の 1 回目の載荷で得られた相当塑性ひずみ



図 31 荷重条件 Case B の繰り返し圧縮荷重載荷後における相当塑性ひずみの変化

図 32 に Case A~C の FEM 解析で得られた試験体評価対象部の各パネルの残留変形を示す.ただしパネル中央 線,すなわち Panel-1 は Y=-200mm, Panel-2 は Y=0mm, Panel-3 は Y=200mm の直線に沿う縦断面形状である. 本図より,規定回数載荷後の除荷時に得られた Case A および Case B の Panel-1 に生じた残留たわみ形状は,図 11 で観察された繰り返し圧縮荷重載荷試験で生じた残留変形とよく似た形状となっており,FEM 解析により防撓 パネルのたわみ変化を再現することが可能であることが明らかになった.また Case C についても,同図 Panel-1 の結果から,初期たわみ形状に比べ,繰り返し載荷により面外変形が変化しつつあることが確認できることから, さらに載荷を繰り返すことにより Case A および Case B に近い残留変形が形成されると推察される.



図 32 試験体 UA1の FEM 解析結果(繰り返し圧縮荷重載荷後の残留変形の分布)

(2)パネル部の残留面外変形が最終強度に及ぼす影響

FEM モデル UA1 の単調増加圧縮荷重による崩壊解析と,前述の繰り返し圧縮荷重載荷解析 Case A および Case B の解析後にさらに単調増加圧縮荷重を加えて座屈・塑性崩壊させた際の解析結果を図 33 示す. なお,単 調増加圧縮載荷の荷重条件は前節と同様である.本図より単調増加圧縮載荷のみの最終強度 P<sub>u</sub> (-582 kN) に対 して, Case A および Case B の繰り返し圧縮荷重載荷後に単調増加圧縮載荷を加えた場合の最終強度はそれぞれ, -571 kN と -574 kN であり,前者で-2.0%,後者で-1.4%と僅かに低下した程度であった.3.2節に示した試験体 UA1 の試験結果と同様に,繰り返し圧縮荷重載荷によって生じたパネル面外たわみ(最大で評価対象部パネル 板厚程度)が防撓パネル全体の最終強度に及ぼす影響は僅かであることが FEM 解析からも明らかとなった.次 に Panel-2 のたわみ形状の比較として,単調増加圧縮載荷のみの最終強度到達時と,繰り返し圧縮荷重載荷終了 時の解析結果を併せて図 34 に示すが,両者のたわみ形状は非常に似ており,後者のたわみ形状は圧縮荷重によ 20

る防撓パネルの崩壊モード形成に至る途中形状であると考えられることから、本防撓パネル試験体においては、 繰り返し圧縮荷重載荷に起因するパネル面外たわみの増大が最終強度に及ぼす影響が僅かであったと推察できる.



図 33 試験体 UA1の FEM 解析結果(繰り返し載荷後の単調載荷と単調載荷のみの比較)



(3)繰り返し圧縮荷重載荷試験時における平均荷重低下の検証

3.1.2 項に示した,変位振幅一定とした繰り返し繰り返し圧縮荷重載荷時に生じる平均荷重低下について検証 するため,試験体UA3の繰り返し圧縮荷重載荷試験と同条件でFEM解析を実施した.一例として,図35は3.1.2 項で示した曲げひずみが生じ始めた *P<sub>max</sub>*=0.5*P<sub>u</sub>*に相当する荷重セット(図13参照)に対応する解析結果であり, 同じく図36は,繰り返し圧縮荷重載荷時に最終強度を得た荷重セットの試験結果(図14参照)に対応する解析 結果である(ただし FEM 解析時には周期*T*=1 sec の正弦波に変更し解析している).図35 では試験体 UA3 の試



図 35 *Pmax*=0.5*Pu*の荷重セットの計算結果



図36 最終強度に達した荷重セットの計算結果

験結果と同様に平均圧縮荷重は繰り返し数の増加とともに漸減する傾向を示し、また図 36 では、平均圧縮荷重 は最終強度到達後に大幅に減少するという傾向が再現された. つまり、低荷重域(*P<sub>max</sub>* が、~-350 kN 程度)で は荷重セット全体を通じて僅かではあるがパネル面外変形が増大することを、また高荷重域(*P<sub>max</sub>* が、およそ -400 kN ~ *P<sub>u</sub>*)では、荷重セットの加振開始直後から大幅にパネル面外変形が増大することを示しており、これ は図 18 (a)に示した曲げひずみが増大する最大圧縮荷重を示した試験結果にも合致する.

## 4.5 負荷速度が防撓パネルの最終強度に及ぼす影響

第1章でも述べたように、ホイッピングモーメントのような周期の短い成分(1 sec 程度)を含む波浪縦曲げ モーメントに対しては、ハルガーダーの縦曲げに対する耐力が増すと考えられる.第3章で述べたように、供試 防撓パネル試験体にはホイッピング周期より長めの周期である *T*=2 sec の正弦波状の繰り返し圧縮荷重を載荷し たことから、FEM モデル UA1 を解析対象として、負荷速度を変えた座屈・塑性崩壊解析を行い、負荷速度が防 撓パネル試験体の最終強度に及ぼす影響を検討しておく.

なお、負荷速度の影響に関しては、材料のヤング率や降伏強度等の材料特性に及ぼすひずみ速度の影響も考え られるが、本稿での FEM 解析においてはこれを考慮していない.例えば、検討対象としたコンテナ船の船底外 板に使用される一般的な YP36 鋼材(ヤング率および降伏応力をそれぞれ 206 GPa および 350 MPa と仮定)が周 期 T = 1 sec のホイッピングモーメントに起因する圧縮曲げ応力により負荷時間 T/2 の時間で降伏に至る場合の平 均ひずみ速度は、3.4×10<sup>3</sup>/sec 程度であり、材料特性のひずみ速度影響は殆どないと考えられる<sup>25)</sup>.

(1) 単調増加圧縮荷重による座屈・塑性崩壊解析

繰り返し圧縮荷重載荷試験の平均負荷速度は,試験体UA1では130~450kN/sec程度(図8参照),試験体UA3 では60~74kN/sec程度(図12参照)であった.FEMモデルにこの負荷条件を踏まえた負荷速度を設定し,単調 増加圧縮荷重による座屈・塑性崩壊解析を行った.結果を図37に示すが,例え負荷速度が100倍程度となって も最終強度の増加量は1%以内であり,防撓パネル試験体の単調増加圧縮載荷の負荷速度条件は,実船のホイッ ピングモーメントにおける荷重速度と大差なく,負荷速度が最終強度に及ぼす影響は小さいと考えられ,4.3節 および4.4節で示した単調増加圧縮載荷解析時に適用した負荷速度についても妥当であると言える.



図37防撓パネル試験体の最終強度に及ぼす負荷速度の影響

## (2)繰り返し圧縮荷重載荷解析

繰り返し圧縮における負荷速度, すなわち繰り返し圧縮荷重の加振周期および荷重振幅の影響について検証 する. 3.1節で示した試験体 UA3 および UA4 の試験結果から, 繰り返し圧縮荷重載荷中にパネルの面外たわみが 増大し, 座屈・塑性崩壊に至った場合の最終強度の低下量が, それぞれ 2.4%および 4.4%程度であったことを踏 まえ,本解析の繰り返し圧縮荷重の最大値  $P_{max}$ を 0.98 $P_u$ , 0.97 $P_u$ および 0.96 $P_u$ に設定し, 図 38 に示すような荷重 振幅  $\Delta P = P_{max}$  (いわゆる完全片振圧縮, Case I),  $\Delta P = 0.5P_{max}$  (Case II) の 2 ケース,および加振周期  $T = 0.5 \sim 4.0$ sec までの 6 ケースとして,各パラメータを組み合わせた繰り返し圧縮解析を実施し,座屈・塑性崩壊に至るま での加振回数を調査した.解析結果として、加振周期と崩壊に至るまでの加振回数の関係として、Case Iの結果を棒グラフで、Case IIの結果を折れ線グラフとして図 39 に併せて示す.ただし、解析途中で塑性ひずみの累積が 停滞し、崩壊に至らなかった *Pmax* = 0.96*Pu*、Case II、*T* = 0.75~4.0 sec のケースについては記載していない.



本図より、 $P_{max} = 0.98P_u$ および  $0.97P_u$ の解析結果では、加振周期の増加に伴いより少ない加振回数で崩壊に至る傾向が見られるが、これは加振周期が長い条件の方が  $P_u$ 付近の高負荷となる荷重の作用時間が長く、加振周期の短い条件に比べて 1 周期あたりにおける塑性ひずみの累積が大きくなったためと考えられる。一方、荷重振幅に着目すると、 $P_{max} = 0.98P_u$ および  $0.97P_u$ の荷重条件では、荷重振幅に依らず崩壊に至るのに対し、 $P_{max} = 0.96P_u$ の荷重条件では、Case Iでは崩壊に至るものの、荷重振幅が 1/2 となる Case IIでは塑性ひずみの増加が頭打ちとなり、数百回程度の加振では崩壊に至らないケースが殆どとなったことから、荷重振幅の差が明確に表れた。

図 40 に、繰り返し圧縮荷重の最大値を  $P_{max}=0.98 P_u$ 、  $0.96 P_u$ 、  $0.93 P_u$ に設定し、 $T=0.5 \, \text{sec}$ 、 Case I の加振を行った場合(実線)と、最大荷重を載荷したまま保持し続けた場合(破線)について、相当塑性ひずみの時間による変化を比較して示す。本図より  $P_{max}=0.98 P_u$  では荷重を維持するだけでも相当塑性ひずみはその作用時間と共に増加し続け、やがて試験体は崩壊(図中、×印)に至ることが分かるが、これは図 39 で  $P_{max}=0.98 P_u$  と似た傾向を示した  $P_{max}=0.97 P_u$ の荷重条件でも同様であると推察される。一方、 $P_{max}=0.96 P_u$ では、荷重を保持し続けただけでは相当塑性ひずみの増加はやがて鈍化するが、Case Iのような加振を加えることにより相当塑性ひずみの増加は僅かであり、数百回の加振では崩壊に至らなかった。追加で実施した同様の繰り返し載荷解析( $T=0.5 \, \text{sec}$ 、 Case I)では、 $P_{max}=0.95 P_u$ の条件では崩壊に至り(170回)、 $P_{max}=0.94 P_u$ の条件では崩壊に至らないことが確認された。

したがって一連の FEM 解析から得られた本試験体シリーズが 1 軸圧縮のみの繰り返し圧縮載荷によって座屈・ 塑性崩壊する荷重条件としては、

・荷重振幅が完全片振り圧縮となるような、最大圧縮荷重が 0.95P<sub>4</sub> 以上の繰り返し載荷が与えられること.

・最大圧縮荷重が0.97Pu以上の最大圧縮荷重が一定時間以上載荷されること.

が挙げられる.ここで 3.1.4 項に示した試験体 UA4 の繰り返し圧縮荷重載荷試験の崩壊時の載荷条件を確認すると、 $P_{max} = 0.96P_u$ 、 $\Delta P = 0.19P_{max}$ であり、上記の条件には当て嵌まらないが、この荷重条件でも繰り返し圧縮荷 重載荷試験と同程度の加振回数のシミュレーションが可能であれば、崩壊に至る FEM 解析結果が得られる可能 性はある.

なお、本繰り返し圧縮荷重載荷解析では、加振周期に応じて、解析時間:300秒または加振回数:200回程度 で解析が継続していた場合や、X=200mm断面近傍のパネルの面外たわみの局所化が生じる部位に相当する要素 について、明らかに塑性ひずみの増加が停滞している場合を「崩壊せず」と判定した.



図40載荷方法の違いによる相当塑性ひずみの変化

## 5. まとめ

本報告では、1章で示した約8,000TEUのコンテナ船の事故原因の2つ目の仮説に基づき、繰り返し圧縮荷重が防撓パネルの面外たわみ形状の変化に及ぼす影響を明らかにするため、防撓パネル試験体を用いた実験的検討,並びに有限要素法(FEM)解析による数値的な検討を実施した.

- (1) 本研究で用いた防撓パネル試験体に、巨視的に弾性の範囲内で繰り返し1軸圧縮荷重を載荷した結果、形成された防撓パネル試験体の変形は塑性関節を有する屋根型モードを特徴とする変形であり、事故船の姉妹船の船底外板で確認された、"座屈波形に似た最大で板厚程度の凹凸形状"とは異なるたわみ形状となることが確認された。
- (2) 試験体 UA1 の試験結果から,繰り返し圧縮載荷により屋根型モードを特徴とするようなパネルの残留変 形が生じたとしても、この変形が防撓パネルの最終強度に及ぼす影響はわずかである.また,繰り返し 圧縮荷重載荷と単調増加圧縮載荷の負荷条件を組み合わせた FEM 解析からも、同様の結果が得られた. すなわち,繰り返し圧縮荷重載荷に起因するパネル面外たわみの増大が、直ちに崩壊の起点となること は考えにくい.
- (3) 以上の結果から、"防撓材の溶接によって生じていたと推定されるパネル部のやせ馬モード状の初期撓みのうち、特に座屈モードの成分がホイッピングを含む波浪中縦曲げモーメントに起因する繰り返し圧縮荷重により増幅された"とする2つ目の仮説は、本研究では再現されなかった。

- その他,本研究で得られた主な知見を以下に示す.
  - (4) 繰り返し圧縮荷重載荷により生じる防撓パネルの面外変形の変化の過程は、動的陽解法 FEM 解析コード LS-DYNA により再現することができた.
  - (5) 本試験体シリーズの FEM 解析により、1 軸圧縮のみの繰り返し荷重により崩壊に至るには、荷重振幅が 完全片振りとなるような、最大圧縮荷重 0.95P<sub>u</sub>以上の繰り返し載荷が与えられる場合であり、また荷重 振幅が小さくても 0.97P<sub>u</sub>以上の最大圧縮荷重が一定時間以上作用することでも相当塑性ひずみが増加し 崩壊に至る. その際に荷重振幅の増加が伴えば、相当塑性ひずみの累積はより促進され、より短時間で 崩壊に至る.
  - (6) 繰り返し圧縮載荷試験に供した試験体 UA1 および UA3 の試験結果では、最終強度のおよそ 70%に達する 載荷が与えられた際にパネル部の曲げひずみが増大・累積し、同時に剛性の低下も見られるようになる. この剛性の低下は、繰り返し荷重の1セット内の序盤に顕著であり、繰り返し数の増加に伴い剛性の低下 は緩やかとなる.
  - (7) 繰り返し圧縮載荷試験に供した試験体 UA1, UA3 および UA4 のパネルの面外変形の様子は,評価対象部の複数の部位で塑性関節を有する屋根型モードが表れる特徴的な変形モードが観察された.
  - (8) 試験体 UA4 の試験結果では、繰り返し荷重の最大値が最終強度の 96%に達する圧縮荷重を 27 万回以上繰り返し載荷することにより、パネルの面側たわみが増幅され崩壊に至ることが確認された.
  - (9) 本研究の今後の課題として、コンテナ船の船底外板において、より一般的な2軸圧縮と横圧の影響を実験 的且つ数値的に検討する必要がある.また、FEM 解析においては、繰り返し塑性に係る材料特性の影響 を検討する必要がある.

#### 謝 辞

本研究は、学術振興会助成金番号15H02328(研究代表者、藤久保昌彦)の支援を受けました.大阪大学の藤 久保教授、辰巳助教、海上技術安全研究所の高見氏、馬氏、佐久間氏(当時)、大阪大学藤久保昌彦研究室、広 島大学田中智行研究室の皆様による試験の準備、並びに貴重なアドバイスに対し、感謝の意を表します.

#### References

- Kobayakawa, H., Okada, T., Kusumoto, H., Nagashima, T., Neki, I.: Strength Evaluation of Containerships Based on Dynamic Elastic Response Calculation of Hull Girder – 1<sup>st</sup> Report Unsteady Time Domain Analysis of Ship Motions in Head Seas – (in Japanese), Journal of the Japan Society of Naval Architects and Ocean Engineers, Vol. 22 (2015), pp. 161-173.
- 2) Kawasaki, Y., Okada, T., Kobayakawa, H., Amaya, I., Miyashita, T., Nagashima, T., Neki, I.: Strength Evaluation of Containerships Based on Dynamic Elastic Response Calculation of Hull Girder – 2<sup>nd</sup> Report Influence of Hull Girder Rigidity and Correlation between Double Bottom Bending and Hull Girder Bending – (in Japanese), Journal of the Japan Society of Naval Architects and Ocean Engineers, Vol. 25 (2017), pp. 191-203.
- Kawabe, H., Shigemi, T., Matsumoto, T., Ishibashi, K., Toyoda, K.: Quantitative Estimation Method for Vertical Wave-induced Bending Moments of Very Large Container (in Japanese), Conference Proceedings, the Japan Society of Naval Architects and Ocean Engineers, Vol. 22 (2016), pp. 477-482.
- The Japan Society of Naval Architects and Ocean Engineers S-14: Final Report of the FS Committee on the Ultimate Strength of Containerships (in Japanese), (2016).
- Marine Accident Investigation Branch, UK: Report on the Investigation of the Structural Failure of MSC Napoli English Channel on 18 January 2007, Report No 9/2008, (2008).
- 6) Class NK: Investigation Report on Structural Safety of Large Container Ships, (2014).

- Committee on Large Container Ship Safety JAPAN: Final Report of Committee on Large Container Ship Safety (English version), (2015).
- 8) Tanaka, Y., Ando, T., Hashizume, Y., Muro, N., Morishita, K., Tatsumi, A. and Fujikubo, M.: Cumulative Buckling Deformation of Stiffened Panel under Cyclic Loading – (1st Report) FEM Based Detailed Simulation – (in Japanese), Conference proceedings, the Japan Society of Naval Architects and Ocean Engineers, Vol. 24 (2017), pp. 19-24.
- Tanaka, Y., Ando, T., Hashizume, Y., Tatsumi, A. and Fujikubo, M.: Experimental study on cumulative buckling deformation of stiffened panel subjected to cyclic loading, Proceedings of 6<sup>th</sup> International Conference on Marin Structures, pp. 319-326, (2017).
- 10) Tanaka, Y., Komoriyama, Y., Ando, T., Hashizume, Y., Tatsumi, A. and Fujikubo, M.: Cumulative Buckling Deformation of Stiffened Panel under Cyclic Loading – (2nd Report) FEM Based Detailed Simulation – (in Japanese), Conference proceedings, the Japan Society of Naval Architects and Ocean Engineers, Vol. 25 (2017), pp. 399-404.
- 11) Komoriyama, Y., Tanaka, Y., Ando, T., Hashizume, Y., Tatsumi, A. and Fujikubo, M.: Effects of Cumulative Buckling Deformation Formed by Cyclic Loading on Ultimate Strength of Stiffened Panel, Proceedings of 37th International Conference on Ocean, Offshore and Arctic Engineering (OMAE2018), (2018).
- 12) Tatsumi, A. and Fujikubo, M.: Ultimate Longitudinal Strength Analysis of Container Ships Considering Bottom Local Loads Part 1: Nonlinear Finite Element Analysis – (in Japanese), Journal of the Japan Society of Naval Architects and Ocean Engineers, Vol. 24 (2016), pp. 189-198.
- Yao, T., Fujikubo, M., Yanagihara, D., Zha, Y. and Murase, T.: Post-Ultimate Strength Behaviour of Rectangular Panel under Thrust (in Japanese), Journal of The Society of Naval Architects of Japan, Vol. 183 (1998), pp. 351-359.
- 14) Yao, T., Fujikubo, M., Ko, J. Y. and Yamamoto, M.: Influence of Secondary Buckling on the Buckling/Plastic Collapse Behaviour of Plates (in Japanese), Journal of The Society of Naval Architects of Japan, Vol. 177 (1995), pp. 347-356.
- 15) Tanaka, Y. and Endo, H: Ultimate Strength of Stiffened Plates with Their Stiffeners Locally Buckled in Compression (in Japanese), Journal of The Society of Naval Architects of Japan, Vol. 164 (1988), pp. 456-467.
- 16) Goto, Y., Wan, K. and Obata, M.: Analysis of buckling mode localization phenomenon of compression plate based on plastic bifurcation analysis (in Japanese), Journal of the Japan Society of Civil Engineers, 543:I-36 (1996), pp.55-77.
- Yao, T. and Nikolov, P. I.: Buckling/Plastic Collapse of Plates under Cyclic Loading, Journal of The Society of Naval Architects of Japan, Vol. 168 (1990), pp. 449-462.
- Hirakawa, S.: Buckling/Plastic Collapse Behavior of Plate Structure under Cyclic Loading (in Japanese), Master's thesis of Hiroshima University Graduate School of Engineering, (2000).
- 19) Yamamoto, M., Tsukada, K., Fujikubo, M., Yao, T. and Yajima, H.: Crack Initiation Strength of Structural Steel Members Having Experienced Large Compressive Strain due to Buckling Deformation (1st Report) (in Japanese), Journal of The Society of Naval Architects of Japan, Vol. 178 (1995), pp. 565-573.
- 20) Fujikubo, M.: Research on the progressive collapse behaviour of ship hull and its efficient analysis method (in Japanese), Research Results Report of the Grants-in-Aid for Scientific Research, (2007).
- 21) Zhang, X., Paik, J. K. and Jones, N.: A new method for assessing the shakedown limit state associated with the breakage of a ship's hull girder, Ships and Offshore Structures, 11:1 (2016), pp.92-104.
- Li., S. and Benson, S. D.: A re-evaluation of the hull girder shakedown limit states, Ships and Offshore Structures, Vol. 14 (2019), pp.239-250.
- 23) Xia, T., Yang, P., Song, Y., Hu, K., Qian, Y. and Feng, F.: Ultimate strength and post ultimate strength behaviors of hull plates under extreme longitudinal cyclic load, Ocean Engineering, Vol. 193 (2019), Article 106589.
- 24) LS-DYNA Version 971 User's Manual Volume 2.
- 25) Komoriyama, Y. and Tanaka, Y.: Dynamic Buckling and Collapse Behaviour of Rectangular Panels Subjected to In-Plane Compressive Load (in Japanese), Reports of National Maritime Research Institute, 21:1 (2021), pp.15-31.