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Abstract 
 

As CFD calculations and model tests are used to assess ship performance, certain standardised procedures are necessary to 
ensure that there is minimal discrepancy in the estimation results between the implementing organisations, testing and 
calculation personnel. Non-governmental organisations such as the International Towing Tank Conference (ITTC) are 
contributing to such efforts. Test and calculation results using the same ship shape are also being compared in research projects 
and international workshops to establish a performance evaluation procedure that can lead to better estimation results. 
Benchmark hull forms are required for these comparisons, and several major and common ship types such as KVLCC, KCS, 
DTC and JBC have been published and are widely used. However, they only include the shape below the water surface and not 
the shape above the water surface, which is necessary for wind force assessment. Therefore, with the aim of increasing the 
value of the JBC as a benchmark hull form, the above-water shape of the JBC is published in this report along with the results 
of wind tunnel tests. This enables comparative verification of the wind forces as well as hydrodynamic forces received from 
the water, and provides a benchmark hull form that can be used for actual sea performance assessment that comprehensively 
considers the shape of the upper structure and the lower hull across the water surface.  
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masts and so on, which have a negligible effect on wind forces, were omitted from the reproduction. This chapter describes the 
principal dimensions of the JBC in designed full load condition, as well as the input data required for the use of the vessel 
performance evaluation tool in actual seas "VESTA"8)9), the life cycle fuel consumption evaluation program "OCTARVIA 
Index/Prediction"10) developed by OCTARVIA-PJ and the regression formula by Fujiwara et al.11) for the wind resistance 
coefficient estimation, plus, the three-view drawing of the shape above the water surface and the three-dimensional geometry 
required for model manufacturing and computational grid generation for CFD. 
 
2.1 Principal dimensions and input data for some calculation program  

The input data required to use VESTA, OCTARVIA Index/Prediction and the regression formula by Fujiwara et al. as well 
as the principal dimensions of JBC in designed full load condition are shown in Table 1. The definitions of each variable are 
given in Eq. (1) and Fig. 1. 
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Fig. 1 Definition of input parameters for wind force calculations. 

 

Table 1 Principal dimensions at designed full load condition. 

 

 

2.2 Three-view drawing 
A three-view drawing of JBC in designed full load condition is shown in Fig. 2. It can be seen that the detailed parts are 

omitted and only the superstructures, hatch covers and a funnel, which have a dominant influence on the aerodynamic forces 
acting on the hull, are reproduced. The dimensions of the various parts can be obtained from the 3D geometry data described 
in the next section and are therefore omitted from the three-view drawing. 
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1. Introduction 

 
In the project on the evaluation of actual ship performance at sea (OCTARVIA-PJ, Oct. 2017-Mar. 2021), in which 25 

domestic organisations participated, several ship types were selected to develop standardised procedures for tank tests in waves 
and CFD calculations necessary for the evaluation of actual ship performance at the design stage, and tank tests and CFD 
calculations have been carried out. The selected ship types include the Japan Bulk Carrier (JBC), which has been published as 
a benchmark hull form and is widely used worldwide. Furthermore, OCTARVIA-PJ has developed procedures for wind tunnel 
tests and CFD calculations for estimating wind forces acting on a hull, the above-water geometry of the JBC has been created 
and used for wind tunnel testing and CFD calculations. The results of the wind tunnel tests and CFD calculations of wind forces 
have been published in papers1)2) and provided to the International Towing Tank Conference (ITTC), contributing to the 
development of various ITTC guidelines3)4). 

As the name suggests, JBC is a hull form of bulk carrier designed in Japan for a use of benchmark. The three-dimensional 
geometry of the hull below the water surface has already been published5), but the projected shape (contour lines) of the hull 
and upper structures above the water surface was only published in the aforementioned documents1)-3). 

Benchmark hull forms are often used together with their test results, particularly for validation of CFD calculations, and 
many comparisons6) with tank test results have been carried out. In order to promote their use by more organisations, this paper 
presents basic data on the geometry above water surface of JBC and the wind tunnel test results. 

CFD is a highly valuable tool that provides a lot of information on hydrodynamic forces and flow fields, but the ITTC 
requires each organisation to prepare best practice guidelines7), including procedures for conducting CFD calculations and 
results of verification of calculation accuracy, when CFD is used as a substitute for model tests. The use of CFD with guaranteed 
estimation accuracy is expected to progress in the future. This paper provides the necessary set of validation data for this. 

 
 

2. Geometry above water surface 

 
The JBC has a geometry designed as a capesize bulk carrier, but not a real hull form. Therefore, the shape above the water 

surface was designed with reference to the actual capesize bulk carriers. Relatively small structures such as handrails, winches, 

 

 

masts and so on, which have a negligible effect on wind forces, were omitted from the reproduction. This chapter describes the 
principal dimensions of the JBC in designed full load condition, as well as the input data required for the use of the vessel 
performance evaluation tool in actual seas "VESTA"8)9), the life cycle fuel consumption evaluation program "OCTARVIA 
Index/Prediction"10) developed by OCTARVIA-PJ and the regression formula by Fujiwara et al.11) for the wind resistance 
coefficient estimation, plus, the three-view drawing of the shape above the water surface and the three-dimensional geometry 
required for model manufacturing and computational grid generation for CFD. 
 
2.1 Principal dimensions and input data for some calculation program  

The input data required to use VESTA, OCTARVIA Index/Prediction and the regression formula by Fujiwara et al. as well 
as the principal dimensions of JBC in designed full load condition are shown in Table 1. The definitions of each variable are 
given in Eq. (1) and Fig. 1. 
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Fig. 1 Definition of input parameters for wind force calculations. 

 

Table 1 Principal dimensions at designed full load condition. 

 

 

2.2 Three-view drawing 
A three-view drawing of JBC in designed full load condition is shown in Fig. 2. It can be seen that the detailed parts are 

omitted and only the superstructures, hatch covers and a funnel, which have a dominant influence on the aerodynamic forces 
acting on the hull, are reproduced. The dimensions of the various parts can be obtained from the 3D geometry data described 
in the next section and are therefore omitted from the three-view drawing. 
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Fig. 1 Definition of input parameters for wind force calculations. 

 

Table 1 Principal dimensions at designed full load condition. 

 

 

2.2 Three-view drawing 
A three-view drawing of JBC in designed full load condition is shown in Fig. 2. It can be seen that the detailed parts are 

omitted and only the superstructures, hatch covers and a funnel, which have a dominant influence on the aerodynamic forces 
acting on the hull, are reproduced. The dimensions of the various parts can be obtained from the 3D geometry data described 
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HBR

LOA BMAX

AT
midship

Cdis HC

centre of AL

ALAOD (sum of all hatched areas above upper deck) (area above water surface)upper
deck

Unit

Length overall L OA [m] 291.293

Length between perpendiculars L PP [m] 280.000

Maximum breadth B MAX [m] 45.000

Draught at midship d M [m] 16.500

Trim [m] 0.000

Freeboard height [m] 8.720

Transverse projected area above water line A T [m2] 965.3

Lateral projected area above water line A L [m2] 3 373.4

Lateral projected area above upper deck A OD [m2] 799.1

Height to bridge top from water line H BR [m] 28.420

Height of the equivalent rectangle for A L H L [m] 11.580

Distance from the midship section to the centre of A L

(+ means fore from midship) C dis [m] -12.985

Height to centre of A L  from water line H C [m] 7.028

ValueItem
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・ Wind tunnel measuring part: Closed type, 3 m width, 2 m height and 15 m length 
・ Steady wind velocity: 1.0 ~ 30 m/s 
・ Turbulence intensity: less than 0.5 % 
 
The cross-sectional area of the measurement section is 6.0 m2, which gives a blockage ratio of 1.0 % with respect to the 

maximum projected area of the model ship, AL of 0.0620 m2. This is a smaller blockage ratio than the recommended 5.0 % to 
reduce the influence on measurements, and it can be said that there is less influence of the closed wind channel on wind force 
measurements. 

 

Fig. 4 Plan view of wind tunnel at NMRI. 
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the forces acting on the ship model, the hull is fixed to the force balance with 3 mm clearance above the floor so that it does 
not touch to the floor. The vertical distribution of the wind speed at the centre of the turntable, that is where the midship is 
located, is shown in Fig. 6. Although the wind profile is shown in Fig. 6 when the ship model is not present in the wind tunnel, 
the front view of the ship is also shown in the figure for convenience to contrast with the size of the model. The wind profile 
is normalised by the reference wind speed Uref in the wind tunnel, which is measured by a pitot tube fixed upstream in the wind 
tunnel. No objects are installed in the wind tunnel to simulate arbitrary boundary layers or to adjust the turbulence intensity. 
The thickness of the naturally developed boundary layer at the wind tunnel floor is about 130 mm at the centre of the turntable, 
indicating an almost uniform flow outside this boundary layer. 

 

 
Fig. 5 Measurement position in wind tunnel test section. 

 

 

 

 
Fig. 2 Three-view drawing of JBC above water surface at designed full load condition. 

 
2.3 Three-dimensional geometry  

The 3D geometry of the JBC above water surface at designed full load condition is stored in IGES format in the “NMRI DB” 
at the URL below. The IGES data is created at full ship scale shown in Table 1, with the origin of the x, y and z coordinates 
being the aft perpendicular, the centre line and the original baseline of the hull. 

 
URL for getting 3D geometry of JBC above water surface: 

https://www.nmri.go.jp/en/study/intellectual/db/jbc/ 
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3.1 Ship model specification for wind tunnel test 

For the wind tunnel tests, the LPP was set at 1.200 m in the model compared to 280.0 m in the actual ship, taking into account 
the size of the wind tunnel measurement section and other limitations such as the capacity of the force balance. The scale ratio 
is 1.2/280. Fig. 3 shows the JBC model on the wind tunnel floor, which has the same 3D geometry as presented in the previous 
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3.5 Coefficients of wind forces and yaw moment 
The forces and yaw moment measured in the NMRI wind tunnel are normalised using Eqs. (4) to (6) and are shown in Figs. 

8 to 10 and Table 2 for each wind direction angle. As the ship shape is symmetrical, only port side of the measurement is shown. 
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Where FX, FY and MZ are the longitudinal force, lateral force and yaw moment acting on the ship model, respectively, as 

defined by the coordinate system shown in Fig. 11, and  is air density. 
 

 

Fig. 8 Coefficient of longitudinal wind force. 
 

 

Fig. 9 Coefficient of lateral wind force. 
 

 

 

 

 

Fig. 6 Vertical distribution of wind speed at centre of turntable (Uref =25 m/s). 
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and yaw moment. The equations for calculating UA1 and UA2 are shown in Eqs. (2) and (3), and a conceptual diagram of the 
height averaged wind velocity is shown in Fig. 7. Where, HBR is the height of the top of the navigation bridge from the sea 
surface and HL is the average height which is derived from dividing the side projected area AL of a ship by the ship overall 
length as given in Eq. (1). Note that UA1 and UA2 for the JBC model (LPP =1.200 m) calculated using Fig. 6 and Eqs. (2) and (3) 
are 23.32 m/s and 20.98 m/s respectively when the reference wind speed in the wind tunnel Uref is 25.00 m/s. 
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Fig .7 Conceptual diagram of height averaged wind velocity. 
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3.5 Coefficients of wind forces and yaw moment 
The forces and yaw moment measured in the NMRI wind tunnel are normalised using Eqs. (4) to (6) and are shown in Figs. 

8 to 10 and Table 2 for each wind direction angle. As the ship shape is symmetrical, only port side of the measurement is shown. 
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Where FX, FY and MZ are the longitudinal force, lateral force and yaw moment acting on the ship model, respectively, as 

defined by the coordinate system shown in Fig. 11, and  is air density. 
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3.5 Coefficients of wind forces and yaw moment 
The forces and yaw moment measured in the NMRI wind tunnel are normalised using Eqs. (4) to (6) and are shown in Figs. 

8 to 10 and Table 2 for each wind direction angle. As the ship shape is symmetrical, only port side of the measurement is shown. 
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