e Pl e il 23 % M2 (IS AREE) BRZERRARE 159

Two-dimensional Separated Flow Model
around Ship Cross-sections

by

UENO Michio*

Abstract

This study is on an application of Parkinson’s wake source model for analyzing the potential flow around ship cross-sections.
The Lewis form is used to approximate the ship cross-sections. The analysis presented here demonstrates the difficulties of
applying the wake source model, which mainly occur in flow which separates around the upstream bilge corner of thick cross-
sections or the center keel of thin cross-sections. The present study aims also to enhance the wake source model and overcome
these difficulties. Applications of the extended wake source model to cross-sections of a containership and a tanker show
appropriate separation streamlines and pressure distributions of cross-sections with adequate Lewis form approximations. In
addition, this study discusses the effects of the separation point and the base pressure in the downstream region on the drag
coefficient of ship cross-sections. The sectional drag coefficient distributions along the ship’s length are compared with the tank

test data of segmented ship models to validate the extended wake source model.
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1. Introduction

The shortage of seafarers and the need for higher navigation safety have been promoting the development of autonomous
ships. The technologies together with rules and regulations are going to be in a phase of the practical use of autonomous ships.
The most difficult situations for autonomous ships are berthing and unberthing. The lateral speed and yaw rate of ships
compared with the longitudinal speed can be quite larger in these situations than those in ocean-going conditions. Wind and
currents effects on ship motion tend to be larger in these situations because of slow ship speed. Therefore, they must pay special
attention to the control of autonomous ships in such situations.

The cross-flow model'? is one of the mathematical models that represent hydrodynamic forces acting on ships in
manoeuvring motion. The hydrodynamic force in the cross-flow model is based on two-dimensional flow across ship sections
normal to the centerline. This is the reason why the cross-flow model is suitable for describing low-speed manoeuvres and for
controlling autonomous ships in berthing and unberthing situations®¥.

Many researchers have used the cross-flow model in the equations of motion of ships®>”. However, theoretical studies
analyzing two-dimensional flow around ship cross-sections and estimating cross-flow drags are not many. The cross-flow drag
coefficient plays an important role in the equations and resultant ship motion. Kijima and Tanaka®? used the vortex shedding
model to analyze the two-dimensional flow around rectangular sections with and without round corners and estimated cross-
flow drag coefficients. Tanaka and Kijima'® applied their method to ship cross-sections and compared them with tank test data
of a segmented ship model'!!?.

This paper presents a study on an application of Parkinson’s wake source model'? to potential flow around ship cross-sections.

Lewis form'¥ approximates the ship cross-sections. The analysis presented here clarifies that the wake source model has
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difficulties in the application. The difficulties mainly occur in such flow as separates around upstream bilge corner of thick
cross-sections or center keel of thin cross-sections. The present study enhances the wake source model and resolves the
difficulties. Applications of the enhanced wake source model to a containership and a tanker show appropriate separation
streamlines and pressure distributions of cross-sections with adequate Lewis form approximations. The study discusses the
effect of the separation point and the base pressure in the downstream region on the drag coefficient of the ship cross-sections.
Comparisons of the sectional drag coefficient distributions along ship length with tank test data of the segmented ship
models'"!? validate the extended wake source model.

Note that this paper presents part of the study carried out when the author was in the graduate school of Osaka University in

a more detailed manner than Ueno'® with additional consideration.

2. Formulation

Parkinson and Jandali'® presented the wake source model to represent two-dimensional separated flow around bluff bodies.
They considered the incompressible and irrotational steady flow. The bluff bodies were a normal flat plate, a circular cylinder,
a 90-degree wedge, and an elliptical cylinder placed symmetrically to the incident flow. In this paper, the Lewis form

transformation'¥ transforms the separated flow around circular cylinders into those around ship cross-sections.
2.1 Separated flow around a circular cylinder

2.1.1 Basic transform plane of the wake source model

The basic transform plane, {-pl., is a complex plane shown in Fig. 2.1.1 Variables (r, 6) and (¢, n) represent polar and
orthogonal coordinates of an arbitrary point, respectively. The flow in the {-pl. consists of a uniform flow V, a doublet at the
origin, double sources of strength 20 placed symmetrically on the circular boundary with unit radius at angles +6, and their
image sinks at the origin. This constitution satisfies the circular boundary'®), ASiBS; of which the radius is 1. The radius 1 is
different from that of Parkinson’s R. The separation points are S; and S> of which angular coordinates are +a. The separated

streamlines start normally from the circular boundary'®). The complex potential and the complex velocity are,
1 Q 5 _is
w@Q =v (z +?) +;{1n(( —e®)+In((—e®)=In¢}, --(2.1.1)

and,

respectively.
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¢-pl.

(r,0) My

Fig. 2.1.1 Basic transform plane, {-pl.

The complex velocity on the circle AS|BS: s,

C;_V(V - =V(1-e?) +%(ei0 ieia RN _1€—i5 - e_ie)
= 2Vie™"sind + %Ze"‘g(cci)ziér?lf cos §)
= 2ie ¥ sin 6 (V + %M)' ..(2.1.3)
and the velocity is,
d—W = 25in6<V+£;). ..(2.1.4)
agl._, 2mcosfB —cosd

The separation points S; and S,, s.p., satisfies,

aw

_ 1
rraie 2ieTi%sin 6 <V 42 —) =0. -(2.15)

sp. 2T cosa — cos O

Therefore,
Q =2nV(cos§ —cosa). - (2.1.6)

Equation (2.1.1) in terms of ¢ and 7 is,

_ $ . n

W= V{<€+fz +n2)+l(”_m)}

+9 ln{\/(g — c0s8)% + (1) — sin )%/ (§ — cos §)% + (1 + sin 5)2}
T

e

_, N —siné _1n+sin6_ _1ﬁ)l

+i(tan —— 4+ tan” - — = —tan
& —cosé &—cosé '3
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=V§(1+

Q \/(f —cos8)? + (n —sin 6)2\/(5 —co0s8)? + (n + sin §)?
2 +772) +—In

s /EZ +T)2
) 1 Q _,N—siné _ N +sind _177)
+i {Vr] (1 2 772) + - (tan T —coso + tan T —coso tan 3 } (2.1.7)

Therefore, the streamline function ¥ is,

1 Q n—siné 1N +siné n

y=y 1——)+—(t 1L 7 Gtanle—— ¢ —1—)

7]( &2 +n? s an &—cosd an & —cosé an &
_Vrsi 9(1 1)+Q(t _,rsinf —siné ) _,rsinf +siné 9) 218
- vrsm 72) T\ T osf —cose T " rcosf —cosd ' (2.1.8)

Note that the following equation determines the coordinates of the separated streamline in the {-pl. and that O/V given by

Eq. (2.1.6) tells the depth of the separated streamline from the axis of symmetry, &-axis'®.
Y=4Q. - (2.19)

2.1.2 Transformation to separated flow around circular cylinders

Let us consider the separated flow around circular cylinders of which the radius is 1 and the center is at the origin. The radius
and the location of the center are different from Parkinson and Jandali'?.

Before considering such flows, consider the separated flow around a cylinder with the radius ;(7 of which center is at the
origin in the E’ -pl. as shown Fig. 2.1.2. Variables (77’ , 0 ) represent polar coordinates of an arbitrary point. As Parkinson and
Jandali'® did, the Joukowsky transformation relates the circular boundary, ASiBS, in the {-pl., to the slit ASiBS; in the E’ -pl.
The cylinder AS|DS, assumes a circular cylinder in the (~' -pl. on which the flow separates at .S; and S> of which angular

coordinates are +6;'. The transformation is,

- sin a
('=(—cosa—m—e. (2110)

The variable e in Eq. (2.1.10) is an offset placing the center of the cylinder AS;DS; at the origin as shown in Fig. 2.1.2.

'pl. '7";’

Fig. 2.1.2 Transformed separated flow around a

circular cylinder with radius E;’ , (~' -pl.
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The separated streamlines at S; and S, are normal to the circular boundary' in the ¢-pl. Since the angles at S; and S, the
critical points, are doubled by the Joukowsky transformation, the separated streamlines are tangential to the cylinder AS;DS,

in the E’ -pl. Therefore, the separation angle, 8, in the Z’ -pl. is,
0,'=2a. - (2.1.11)

The basic characteristics of Joukowsky transformation tell that e in Eq. (2.1.10) is,

ZSina_ 1

e= ZSinatan{%— (m— 9~S’)} = ZSinatan{%— (r— Za)} =— —2cosa. -(2.1.12)

tan2a  cosa
Therefore, the transformation from the {-pl., to the z’ -pl. is,

' = e 1, 2.1.13
{'={—cosa 7 —cosa cosa cosa. (2.1.13)

The radius of the cylinder AS;DS,, 7, , in the (~' -pl. is,

~,  2sina 2sina 1 2114
ro_sin(n—9~5’)_sin(n—Za)_cosa' (21.14)

Accordingly, the transformation from the {-pl. to the {-pl. shown in Fig. 2.1.3 representing the separated flow around a
circular cylinder of which the radius is 1 and the center is at the origin is,

, 15 1 sin? a
{=f{ =ﬁ<5—cosa—(_cosa—cosa+2cosa>
sin? a
= ((— cosa _—f — cosa) cosa +cos2a. ---(2.1.15)

Variables (7, 8)and (¢, 7j)inthe {-pl. represent polar and orthogonal coordinates of an arbitrary point, respectively. Equation

(2.1.15) also transforms the coordinates of the separated streamline in the {-pl. defined by Eq. (2.1.9) to those in the -pl.

Fig. 2.1.3 Transformed separated flow around a

circular cylinder with radius 1, {-pl.
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Equation (2.1.15) preserves the angles between the 27 -pl. and the {-pl. Substituting the condition at the separation points,
s.p.,inthe {-pl;

{lsp =@, .- (2.1.16)

into Eq. (2.1.15) confirms Eq. (2.1.11) as,

|. =et?e.  ...(21.17)

0, =2a. --(2.1.18)
The {-pl. is the intermediate plane relating the basic transform plane, the {-pl., to the physical plane described later.

2.1.3 Relations of the separated flow around a cylinder to the basic transform plane

Differentiation of Eq. (2.1.15) is,

di L sin? a 2119
d_(_{ +((—CTCZ)2}COS“. ( 1. )

Therefore, the complex velocity in the -pl. is,

aw dw/d¢ dw 1 2120
W@l L Orsna/C—cosa)Feosa | 120

Since,

¢
— =cosa, --(2.1.21)
Uz

the relation between velocities of the uniform flow in the {-pl. and the {-pl. is,

V= - (2.1.22
cos ( )
Based on Eq. (2.1.15), { on the circular cylinder is,
. sinfacosa
{|. . =lcosa ——————sin%«a
rF=1 { — cosa et
2 cosa cosf (1 — cos a cos @) — sin? .2cosacosf (1 —cosacos8)
= .o (2.1.23)
1+ cos?a—2cosacosf

1+ cos?2a—2cosacosB

Therefore, the relation between @in the {-pl. and § inthe {-pl. where 7and # are both equal to 1 is,
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g tan {1 + sin”a

., = an -
rF=1 2cosacosf (1 —cosacosf) —sin?a
,2cosacosd(1—cosacosf)— sin? a

= - . (2.1.24
cos 1+ cos?2a—2cosacosf ( )

Since Eq. (2.1.19) on the circular cylinder is,

d¢
dc

i+ sin? a
= — - tcosa
. (el® — cosa)?

2(cos @ — cos a)e'?

= , - (2.1.25

{(cos® — cosa) + isin 0}? cosa ( )
dal _ 2cosa(cosf —cosa)  2cosa(cosf — cosa) 2126
gl _, " (cos@ —cosa)? +sin2@ 1+ cos2a—2cosacosf’ (2.1.26)

For the separation point, s.p., where &is equal to ¢, Eq. (2.1.26) is,

d¢
— =0. --(2.1.27)
d¢
s.p.
Equation (2.1.27) confirms that the separation points are the critical points.

2.2 Separated flow around ship cross-sections

2.2.1 Transformation to ship cross-sections

The physical plane, z-pl., shown in Fig. 2.2.1 represents a separated flow around a ship cross-section with its mirror image

in unbounded uniform flow. Variables (R, ©) and (x, y) represent polar and orthogonal coordinates of an arbitrary point,
respectively. B, and d stand for the breadth and the drought, respectively. The separation angles are £ 6.

z-pl. -d Si

(R,0) s,
VAl

Fig. 2.2.1 Physical plane, z-pl.

Lewis form approximation'? defined by,
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s C G5
=M (+—~+~—3 , - (2.2.1)
¢ ¢
transforms a circle of which radius is equal to 1 to a shape approximating a ship cross-section. The area of a ship cross-section,
B, and d determine M, C), and C,. This study employs Eq. (2.2.1) to transform the flow field in the {-pl. to that in the z-pl.
Let us consider in the {-pl. a point on the circular cylinder of the radius, 7, is equal to 1. The point corresponds to a point

on the surface of a ship cross-section in the z-pl. Substituting,

{=e?, ..(222)
into Eq. (2.2.1) leads to,
z= M{(l + C;) cosf + C5 cos 3§} + iM{(l — C;)sinf — Cysin 3§}, - (2.2.3)
and
x = M{(l + C;) cos B + C5 cos 3§},y = M{(l — C;)sin@ — C3sin 35}. - (2.2.4)

Therefore, the relation between the angle  on the circular cylinder in the {-pl. and that on the surface of the ship cross-

section @1in the z-pl. is,

_, 1=C)sinf - C3sin30

0 = tan — =
(1+ Cy)cosf + C5cos36
1 (14 C;)cosf + C5cos30
= Cos
\/1 +C 2+ 3% +2C,(1 + C3) cos 20 + 2C5 cos 46
1+C; —C3(3—4cos?8)}cosh
= cos™! { 1= G )} -+ (2.2.5)

J(C = C3— 1)2+ 4(Cy + C,C5 — 4C5) 0520 + 16C5cos* §

Substituting Eq. (2.1.18) into Eq. (2.2.5) leads to the relation between the separation point angle in the z-pl., @, and « in the
&pl. as,

_, (1= Cy)sin2a — C3sin6a
(14 C;)cos2a + C3cosba
(14 Cy)cos2a+ C3cosba

O, = tan

1

= cos” -+ (2.2.6)

J1 + C1% + C3% + 2€,(1 + C3) cos 4a + 2C; cos 8a

Equation (2.2.6) determines ¢, though implicitly, using given separation angle @, in the z-pl. This means that « is a function
of @, a(6)).
Differentiation of Eq. (2.2.1) is,
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Therefore, the complex velocity in the z-pl. is,

dw dw/d{ dw 1

A T S T (oY T

Since,

dz —M, -(229)
d¢l7 1o

the relation between velocities of the uniform flow in the {-pl. and the z-pl. is,

U= v 2.2.10
=u (2.2.10)
Substituting Eq. (2.1.22) into Eq. (2.2.10) leads to,

V=Mcosa)U. --(2.2.11)

Equation (2.2.11) determines ¥ in the {-pl. using U and a. Since @, determines « by Eq. (2.2.6), Vis a function of U and &,
V (U, 6).

Substituting Eq. (2.2.11) into Eq. (2.1.6) leads to,

Q = 2nMU(cosé —cosa)cosa. - (2.2.12)

For further analysis, on the surface of a ship cross-sections in the z-pl. or on the surface of a circular cylinder in the {-pl.,
dz

|l = M{(1— €y cos20 —3C3cos48) +i(C, sin28 + 3C3sin46)}. - (2.2.13)
=1
and, therefore,
dz ~ ~
@l MJI 4+ C2+9C3* — 2C,(1 — 3C3) cos 20 — 6C5 cos46. - (2.2.14)
F=1

Note that Eq. (2.2.1) also transforms the coordinates of the separated streamline and that O/U given by Eq. (2.2.12) tells the
depth of the separated streamline from the axis of symmetry, x-axis in the z-pl. '¥

2.2.2 Pressure and drag coefficient

Let us consider the pressure at separation points in the z-pl. Bernoulli’s theorem;

+1 |dW2
PT3P

1
= Po + 50U,

. -+ (2.2.15)

defines the pressure coefficient, C, in the z-pl. as,
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_ P~ P aw?

==

JUZ, - (2.2.16)

where p and p., are the pressure at a point and infinity in the z-pl., respectively, and p is the density of water.
The complex velocity in the z-pl. is,

dw aw/d{ dw/di{ 1
dz ~ dz/d{ ~ d{/d{ dz/dl’

- (2.2.17)

Since Egs. (2.1.5) and (2.1.27) hold at the separation points,

aw —0 2.2.18
T (2.2.18)
sp,

Equations (2.2.16) through (2.2.18), and Eq. (2.2.13) suggest that dW /dz|;, and C, at the separation points are also
indefinite.

Since the velocity dW /dz at separation points should be finite in the z-pl., the introduction of the base pressure p; and its
coefficient Cy, defines |dW /dzs,, as,

dawy| 2

dz

Pp — Poo

C.,=2_"=
Pb T U222

JUZ. - (2.2.19)
s.p.

Let us assume that the pressure over the downstream surface of a ship cross-section, S|DS, is constant p; and ignore the
flow inside the separation streamlines as in Parkinson and Jandali'®. The pressure coefficient on the downstream surface in the
lower half of the z-pl. is,

C

Py = Cop 0<O<aor0<06<0), - (2.220)

Substituting Egs. (2.2.11) and (2.2.12) into Eq. (2.1.4) leads to,

aw
d¢

aw
- |z

oMU ) Hcose—cosa 2291
= cosasing ———- . ..(2.2.21)

sur. r=1

Using Egs. (2.2.21) and (2.1.26) leads to,

dw/d dw/dl|,- 1+ cos?a — 2 cosa cos 0
| ~/ {lsur. _ | ~/ {lr=1 — MUsin @ L (2222)
|dd/di| |dd/dg| _, cos§ — cos §

sur.

Using Eqgs. (2.2.22) and (2.2.14) leads to,

aw
dz

_ |[dW /dq|y=1 1
sur.  |d{/dg| _ |dz/d|

7=
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U(1 + cos?a — 2cosacosB)sinf
= . (2223)

(cos @ — cos 6)\/1 + C,% 4+ 9C3* — 2€,(1 — 3C3) cos 26 — 6C5 cos 46

Therefore, Eq. (2.2.16) with Eq. (2.2.23) tells C,, as a function of 8, on the upstream surface in the lower half of the z-pl. as,

-1 (1+ cos?a —2cosacosf)?sin? @
PO) " (cos® —cos&)2{1+ C;? +9C5% — 2€,(1 — 3C3) cos 204y — 6C cos 40}
_ 1 (1 + cos?a —2cosacosf)?sin? @
~ 7 (cos8 — cos 8)2{(1 + C; — 3C3)? — 4(C; — 12C5 — 3C,C5) cos? By — 48C5 cos* §(g)}’
(a<b<morO;, <0 <m), --(2.2.24)

where # in the denominator is also a function of #as shown in Eq. (2.1.24).
Since C, is equal to C,,; at the separation point, substituting & into #and Eq. (2.1.18) into & lead Eq. (2.2.24) to,

(16
Cop =17 (cosa — cos §)2{1 + C,* + 9C328i12g1(1 —3C3) cos4a — 6C; cos 8a} v (22.25)
Since,
0<1-Cp, --(2.2.26)
Equation (2.2.25) tells,
0<1+C2%+9C%—2C,(1—3C3)cos28 —6C;3c0s46. - (2.2.27)
Also since,
6<a<m --(2228)
cosa—coséd <0. - (2.2.29)
Therefore,
&5 =cos|cosa + sin’ -+ (2.2.30)

\/(1 — Cpp )1+ C1* +9C5* — 2€, (1 — 3C3) cos 4a — 6C; cos 8a}

Equations (2.2.30) determine S using given Cp, and a. Since 6@, determines o by Eq. (2.2.6), dis a function of @, and Cpp,
3(6%, Cp). Since 6, e and U determine Q by Eq. (2.2.12), Q is a function of U, & and Cps, Q(U, 6, Cyp). Now, U, @, and Cpp
in the z-pl. determine all the parameters, o ©), 6 (&, Cy), (U, 6), Q(U, 6, Cyp) in the {pl. Figure 2.2.2 explains how the

variables in the z-pl. determine those in the {-pl.
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e (-pl. ------------ N Z-pl. ™
I )

i g * i Cpb

! Eq.(2.2.30) !

| a 6,
Eq.2.2.6),

e y e v

i Eq.(2.2.12) Eq.(2.2.11) :

Y ) :

Fig. 2.2.2 Relation between variables in the z-pl. and those in the {-pl. for the wake source model.
The drag coefficient of a ship cross-section is defined by,

1 fd . 1 fddy_ 1 jd—lde
pUz(2d)/2 ) PE M = a2 P as T T puzdy2 ) P T Tq ) oY

1 T dydf
= —E Cpbys +f Cp ﬁ%da , (2231)
a

Cd =

where ds and 7ix are a line segment along the surface of a ship cross-section and the angle of a normal outward vector on the
surface to the positive direction of the x-axis. The coordinates (x;, £;) stand for the separation points.
Equation (2.2.4) using Eq. (2.1.18) at separation points tells,
ye = M{(1 — C,)sin2a — C5sin6a}. - (2.2.32)

Differentiating Egs. (2.2.4) and (2.1.24) leads to,

d _ _
d—g = M{(1 - C,) cos & — 3C5 cos 36}
=M{1—C, +3C5(3—4cos?f)}cosf. --(2.2.33)
and,
do 2cosa (cosa — cosB)
- (2.2.34)

do et 1+ cosa (cosa —2cosf)

Equation (2.2.31) with Egs. (2.2.24), and Egs. (2.2.32) through (2.2.34) calculate the drag coefficient C; of a ship cross-

sections.
2.2.3 Condition for the separated streamline

Parkinson and Jandali'® noted based on the discussion by Woods'® that the separated streamline of the circular cylinder in

order not to intersect the cylinder surface must satisfy at the separation point,

2 — _ _
3 /1 — Cpp < sin(m—0;) =sinf;, - (2.2.35)
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where (7;, is the base pressure coefficient for the separated flow around a circular cylinder. The following equation defines

Cop-

2
/72, - (2.2.36)
s.p.

d¢

— _BPa_,_|W
Pb o022

where P, and Py, are the pressure at a point and infinity in the C-pl., respectively. C;',, defines dW /d{ |Spthat is indefinite

as in Eq. (2.2.18). Equation (2.2.19) with Eq. (2.2.10) tells,

R 172—(1 Cop) L w2 (2.2.37)
. V’Z E 2 UZ - pb ‘Q 2 . L.
d( S.p. d{ S.p.

aw
dz

1—Cpp

21 law
Uz -

Uz dd

s.p.

Substituting Eq. (2.2.37) into Eq. (2.2.35) using Eq. (2.1.18) leads to,

/1 —Cpp <sinf;. - (2.2.38)

Substituting Eq. (2.2.14) into Eq. (2.2.38) using Eq. (2.1.18) leads to,

2 sin
3 ’1—Cpb S\/
<

21

3M

dz

al,,

1+ C%+9C3% — 2¢,(1 — 3C3) cos 20, — 6C5 cos 40,

sin 2«

, --(22.39)

\/1 + €2 +9C3% — 2€,(1 — 3C3) cos 4a — 6C5 cos 8a

Equation (2.2.39) for the z-pl. corresponds to Eq. (2.2.35) for the {-pl.
Following is another line of thought leading to Eq. (2.2.39). Since both C and C; are zero for circular cylinders in the z-pl.,
Equation (2.2.25) suggests,

Cop =1 sin® @ 2.2.40
pb (cosa — cos §)?’ (2:2:40)
Substituting Eq. (2.2.40) into Eq. (2.2.35) leads to,
2 sina e 2.2.41
3cos6 —cosa — s (2:241)

Substituting Eq. (2.2.30) into Eq. (2.2.41) also leads to Eq. (2.2.39).
Modifying Eq. (2.2.39) leads to,
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sin? 2«
4{1+ C,* +9C5* — 2€,(1 — 3C3) cos 4a — 6C5 cos 8a}

Cpp =1 - (2.2.42)

Since «is a function of @, as shown in Eq. (2.2.6), Cp has the minimum value defined by Eq. (2.2.42) for a given 6.
Note that Eq. (2.2.42) or Eq. (2.2.39) means the physical requirement that the separated streamline does not intersect the

surface of a ship cross-section in the z-pl., while Eq. (2.2.35) does so in the {-pl. for circular cylinders.

3. Enhanced wake source model

The wake source model has two kinds of limitations. One comes from the physical requirement as explained in subsection
2.2.3. This chapter explains the other non-physical limitation of the wake source model and presents an enhanced wake source

model that resolves the limitation.

3.1 Non-physical limitation of the wake source model
Equation (2.2.41) with Eq. (2.1.18) tells,

2sind«a
cosd = cosa + ——
3sin2a
>1(2 + ! ) 3.1.1
zg|2cosa+——). (3.1.1)
Let us consider a function f defined by,
( )—1(2 - ) 3.1.2
fa—3 OSET osa)’ (3.1.2)
and its derivative,
Y fla) = 2(2 ) 3.1.3
da_fa_ 3 cos2a/’ (31.3)

Equations (3.1.2) and (3.1.3) tell the properties of fas,

F0=153) =22 @) =15 ()= G190

and

f1(=0f (%) =0, -(3.15)

as shown in Fig. 3.1.1.

(265)



174

1.6
1.4
1.2
1.0
Z 038
0.6
0.4
0.2
0.0
0

15 30 45 60 75 90
a (deg)

Fig. 3.1.1 f ().

Equations (3.1.1) and (3.1.2), and the characteristics of ftell,

T 2V2
cosd = f(d) = f(Z) = T, "'(3.1.6)
and
22
§< cos_lT =19.47 (deg). --(3.1.7)
Since,
cosd <1, --(3.1.8)
T
a< 3 (3.1.9)

Substituting Eq. (2.2.30) into Eq. (3.1.8) leads to,

sin® a

J(1 — Cpp){1 4+ €1* +9C5* — 2€,(1 — 3C3) cos 4a — 6C5 cos Ba}

Therefore,
sin® «
1—Cpp = - > = :
(1 —cos@)?{1 + C;* +9C5* — 2C; (1 — 3C;) cos 4a — 6C; cos 8a}
or
sin® a
Cpp <1-—

(1 —cos@)?{1+ C;* +9C3* — 2€, (1 — 3C3) cos 4a — 6C5 cos 8a}’
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Equation (3.1.12) or (3.1.11) is the non-physical limitation of the wake source model because Eq. (3.1.8) has no physical
meaning.
Equation (3.1.9), also the non-physical limitation, defines the maximum value of &, by Eq. (2.2.6) for a ship cross-section

as,

(1+C)(=1/2) - (5

O, < cos™!

14 C2+C%+2C,(14 C3)(=1/2) +2C5(=1/2)
_1 - Cl + 2C3
2J1=C,C3 + C,(C, — D + C3(C5 — 1)

1

< cos™

-+ (3.1.13)

3.2 Cps range and examples for circular cylinders

Equations (3.1.12) and (2.2.42) define C,; range for a ship cross-section as,

91(@) < Cpp < go(@), - (3.2.1)
where,
@ =1 9 sin? 2«
a)=1—-
g1 4{1+ C,* +9C5* — 2€,(1 — 3C5) cos 4a — 6C; cos 8a} 322
sin® a (32.2)
g2(@) =1

(1 - cos a)?{1+ C;* +9C;* — 2C, (1 — 3C3) cos 4a — 6C5 cos 8a}

Let us consider the corresponding Cpy range for circular cylinders, C. Since both Cy and C; are zero for circular cylinders,
gi(@) <G <gz(a), - (323)

where,

9
gia)=1- Zsin2 2a

“inf g - (3.2.4)
) =] —
o(a) (1 —cosa)?
The derivatives of g; and g are,
G1' (@) = —9sin2a cos2a
@) = — 2(2cosa —1)sin®a. - (3.2.5)
2 =

(1 —cosa)?

Equations (3.2.4) and (3.2.5) tell,

(267)



176

70 =15 () =3 () =g () =

i , - (3.26)
AORSACR

[N

and

T O=g(3) =7 (3) =0

;- (3.2.7)
7 (3)=9(3) =0

respectively. Figure 3.2.1, based on Egs. (3.2.6) and (3.2.7) shows characteristics of g; and g3. Note that the abscissa « is
equalto 6,/2 for circular cylinders as in Eq. (2.1.18). Equation (3.1.13) for circular cylinders turns to,

~ 1 21
0s < cos™? (_E) =—. --(3.2.8)

Equation (3.1.12) is the result that comes from Egs. (2.1.18) and (3.1.9) for circular cylinders. Equations (3.2.3) and (3.2.8)
means in Fig. 3.2.1 that (7;, can have a value above the g;-line, below the G-lineand 8,/2 equal to or less than /3 where

g1-line and g-line lines intersect.

1.5

~~~~~~~~

g1
0 15 30 45 60 75 90
a = 0,/2 (deg)

Fig.3.2.1 g7 and gj.
The examples for the circular cylinder imply the non-physical limitation of Egs. (3.1.12) and (3.1.13), the g5-line in Fig.

3.2.1, may prevent the wake source model to describe flow around ship cross-sections separating around the upstream bilge

corner with relatively high pressure.
3.3 Enhanced wake source model for ship cross-sections
Let us introduce a flow model shown in Fig. 3.3.1 representing an alternative basic transform plane having an alternative

complex potential for cases not satisfying Eq. (3.1.8). Let us call the alternative complex plane as the ;-pl. though the same

variables (r, 6) and (&, 7) and so forth are used as in the {-pl. The complex potential and the complex velocity are,

xv«)=V(c+%)+%@n@—4)+n(q—%)—mc} - (33.1)
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and,

H=v(1-2)+ A7) 632

n\(—1 ¢—-1/l

respectively.

Fig. 3.3.1 Alternative complex plane, {;-pl., for enhanced wake source model.

The complex velocity on the circle, AS1BS,, of which radius r is equal to 1 is,

Cii_V{V et =v(-e™?) +%<ei91— [ "o i /1 e—iG)
= 2Vie " sin6 +%e2i9 — (lziSiln/?)eie 1
=2Vie ®sinf + %eig _Z(ile:i;ilr)li =y
= 2ie ¥sin6 (V + %ﬁ) ..(3.3.3)
where,
I*= 1([ + 1) ..(3.34)
2 l
The velocity on the circle is,
d—W = Zsin9<V+£—). ..(3.3.5)
acl._, 2mcos O — [*

The separation points S; and S,, s.p., satisfies,

aw
d¢

Q

2wcosa — *

) =0. --(33.6)

= 2ieT@sin g <V +
s.p.
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Therefore,
Q =2nV({l*—cosa). --(3.3.7)

Equation (3.3.1) in terms of £and 7 in Fig. 3.3.1 is,

w=v{(e+em) i)

—1 2 + 2 —1/1 2 + 2
+g In VE-D2 V€ —1/D + +i(tan'1—+tan'1 —tan'l—)
T [£2 52 E—1 &E—-1/1 '3
Q. [VE-=D*+n%/(E - 1/D*+n?
=Vé(1+ 5] +—In
2+ n [£2 2
. 1 Q n Ui
Vn{1l—-—=——=)+—(tan"!—— +tan™? —t ‘1—)} --+(3.3.8
+l{ r]< 52_|_772)+ <an E—l+ an T 1/1 an 3 ( )
Therefore, the streamline function ¥ is,
— 1 Q -1 -1 1 -1 )
LP—Vr)(l 52+n2)+n(tan f—l+tan = 1/1 tan 3
= Vrsi 9(1 1)+Q(t ~y_rsind + tan™?! rsin6 9) 3.3.9
= vrsm rz) T\ rese—1 rcosf —1/1 ' (3:3.9)
The streamline function for » equal to 1 is,
W] —Q(t _, rsinf + tan-1 rsin @ 9) 3.3.10
=t =\ T ese =1 ! rcos@ —1/1 ' (3:3.10)

Let us consider in Fig. 3.3.2 a point C on the upper half of the circle with unit radius, O at (0, 0), A at (1/, 0), and B at (/, 0).

The relation,

:l=1:1=0C:0B, --(3.3.11)

leads to,

AACO = ACBO. - (3.3.12)
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Fig. 3.3.2 Schematic diagram of the alternative z-pl. for the enhanced wake source model.

Therefore, for a point on the upper half of the circle,
Q
Wlro10er<n = ;{(n —£CBO) + (6 + £CBO) — 0} =Q. ---(3.3.13)

The discussion for the upper half circle AS;B and its analogy for the lower one ensures that the circle with unit radius is a
boundary as in Fig. 2.1.1. This also suggests that Eq. (2.1.9) also determines the coordinates of the separated streamline in the
¢1-pl.

All the discussions in subsections 2.1.2 and 2.1.3, and those in subsection 2.2.1 except Eq. (2.2.12) holds for the {;-pl.
because they are independent of the complex potential. Therefore, Eq. (2.2.6) holds for the {;-pl.

Since Egs. (2.1.22), (2.2.10) and (2.2.11) hold, substituting Eq. (2.2.11) into Eq. (3.3.7) leads to, in the {;-pl.,

Q =2nMU(l* —cosa)cosa, --(3.3.14)

that replace Eq. (2.2.12).

The discussions in subsection 2.2.2 except Eqs. (2.2.21) through (2.2.25), and Egs. (2.2.28) through (2.2.30) hold. Since Eq.
(3.3.5) replaces Eq. (2.1.4), replacing cosd by [* leads to equations corresponding to Egs. (2.2.21) through (2.2.25) for the {;-
pl. Equations corresponding to Egs. (2.2.24), (2.2.25) and (2.2.30) are,

-1 (14 cos?a —2cosacosB)?sin?8
PO 7 (cos@ — I)2{1+ €, +9C;% — 2C, (1 — 3C3) cos 265y — 6C; cos 48g) )
1 (14 cos?a —2cosacosB)?sin? 8
(cos® — 1)2{(1 + C; — 3C5)2 — 4(C; — 12C5 — 3C,C3) cos? gy — 48C5 cos* Oy}’
(a<b<mor6,<0<m), --(3.3.15)

Cpp =1 sin® (3.3.16)
PP (cosa — 1)2{1 + €,2 + 9C5% — 2C,(1 — 3C3) cos 4a — 6C; cos 8a) o
and,
sin® a
I =cosa+ , - (3317)
\/(1 — Cpp){1+ C,* +9C5* — 2€,(1 — 3C3) cos 4a — 6C; cos 8a}
respectively.
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Note that Eq. (2.2.31) calculating C, uses Eq. (2.2.24) or Eq. (3.3.15) depending on whether " defined by Eq. (3.3.17) is
greater or smaller than 1. Figure 3.3.3 explains how the variables in the z-pl. applied to the enhanced wake source model
determine those in the {-pl. or {;-pl.

The introduction of the alternative complex potential, Eq. (3.3.1), with the replacement of cosd by I, removes the non-
physical limitation, Eq. (3.1.8), and enhances the original d wake source model.

jrmm s pL/gy-pl.-mmmmmmm e < — Z-pl.—
(" Eq.(2.2.30) CpliGp \ P

. I* . :

i o

! a [ 6,
Eq.2.2.6)"

| 4 H U
Eq.(2.2.11) !

Fig. 3.3.3 Relation between variables in the z-pl., and those in the {-or {;-pl. for the enhanced wake source model.

4. Case studies

This chapter presents the case studies in Ueno'>

of the enhanced wake source model applied to a container ship and a tanker
with additional information and commentaries. The cases validate the enhancement explained in section 3.3 by showing
separated streamlines, C, distributions, and C; dependencies on Cp, and &. The discussion includes comparisons of Cy

distributions along ship length with Matsumoto’s experimental data'’:'2.

4.1 Subject ships and parameter setting

The subject ships are the containership and the tanker used in Matsumoto and Suemitsu'"” and Matsumoto'?. They used
segmented models that consist of ten parts of segments equally separated along ship length to measure hydrodynamic lateral
forces acting on each segment. Figure 4.1.1 shows the arrangement of the segmented model' -2,

Table 4.1.1 lists the principal particulars of the subject segmented ship models. Each ship's model length is 3.0 m. Figures

4.1.2 and 4.1.3 show the body plans approximated by Lewis form'¥

. The original lines, ship hull form data, and Lewis form
parameters are not presented here. Values in Figs. 4.1.2 and 4.1.3 stand for longitudinal coordinates of cross-sections, X, divided
by ship length, L,,. The origin of X is at midship pointing fore. These coordinates correspond to those of Matsumoto’s tank test
data'""'?), The aft-end cross-section of containership where X/L,, is equal to -0.45 is not applied to the enhanced wake source
model calculation because its shape is out of the range of Lewis form approximation. The Tanker’s parallel part of which X/L,,
is from -0.10 to 0.25 has an identical shape of cross-section.

Their tank test data include those measured when the ship models were towed laterally. The data, therefore, clarified the

longitudinal Cy distribution corresponding to Eq. (2.2.31).
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joint pitching
and surging free

\\\\

Fig. 4.1.1 Arrangement of the segmented model. Reprinted from Matsumoto and Suemitsu'" with permission from The

Japan Society of Naval Architects and Ocean Engineers.

Table 4.1.1 Principal particulars of subject ships in model scale

Containership Tanker Note
Load. Trial Full Loading condition
L,, (m) 3.0000 3.0000  Length between perpendiculars
B, (m) 0.4354 0.5236  Breadth
d, (m) 0.1457 0.1956  Drought at midship
7 (m) 0.0172 0.0000  Trim by stern
Ly (%) 1.8100 -2.4800  Center of buoyancy, midship-to-aft ship length ratio
Vol. (m?) 0.1069 0.2534  Displaced volume
S (mz) 1.5019 2.3987  Wetted surface area
c, 0.5617 0.8250  Block coefficient
Scale 1/58.3 1/104.7  Ratio to full-scale ship

Fig. 4.1.2 Containership body plan approximated by Lewis form.

Fig. 4.1.3 Tanker body plan approximated by Lewis form.
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The input parameters to the enhanced wake source model are U, Cn, and @;. The lateral towing velocities U of the
containership model in the tank test were 0.271, 0.542, and 0.813 m/s'"'?). In this case study, the flow velocity U is 0.271 m/s
for the containership model. The reason to select the lowest velocity is that the data should be mostly free from wave-making
effects among those in three kinds of velocities. The flow velocity for the tanker model is 0.651 m/s as in the tank test'"!?. The
other parameters C,, and 6 are set as follows because their theoretical estimation is difficult and out of the scope of this study.
Firstly, assume appropriate ©; around the bilge corner or keel of each cross-section. Secondly, set C,; to make the calculated
C at the closest cross-sections to midship nearly equal to the corresponding tank test data. Lastly, assume the C,, of other cross-
sections is equal to that at the closest cross-sections to midship. Note that larger &, means the upstream region, while smaller
6O, means the downstream region.

The second through fourth columns from left in Tables 4.1.2 and 4.1.3 list the input parameters U, &, and C, for the
containership and tanker, respectively.

Because U of the containership is low and cross-sections have relatively round shapes at the bilge corner or center keel, the
values of @, are assumed equal to or smaller than 90° except at X/L,, is equal to 0.45 and 0.35. @, at X/L,, equal to 0.45 is
assumed larger than 90° due to its slender shape. @, at X/L,, equal to 0.35 is assumed slightly larger than 90° due to the
continuity of the successive aft cross-section. Comparison of calculated C; at the closest cross-sections to midship with
Matsumoto’s tank test data assumed C,; equal to -0.464 for the containership.

The inflow velocity U for the tanker is larger than that of the containership and the most of tanker’s cross-sections have bilge
corners with relatively small radii of curvature. These are the reasons why 6, is assumed around upstream bilge corners, or
points of @, equal to or larger than 90 °. The tank test data around midship cross-sections for the tanker leads to the assumed
Cy» value equal to -0.950, lower than that of the containership probably due to larger U. Note that a trial calculation in which
O, were assumed at around downstream bilge corners led to Cy,; equal to -1.488 and those cross-sections at X/L,, equal to -0.25
and -0.35 did not satisfy Eq. (2.2.42), the physical requirement of the separated streamline.

Table 4.1.2 Flow parameters for the enhanced wake source model (Containership)

XI/L,, U (m/s) C,, O,(deg) o/u C, oa(deg) o(deg) I o
045 0271 -0.464 100 0.2577 1.0447  58.50 1.4042 5.5451
0.35 do. do. 95 0.2275 0.7609  49.84 — 1.1709 3.2940
0.25 do. do. 90 0.1852 0.5409  45.00 1.92 — 1.8368
0.15 do. do. 60 0.1220 0.4251 3478 17.56 — 0.8296
0.05 do. do. 36 0.0760 0.4384  22.73 9.01 — 0.4104

-0.05 do. do. 35 0.0738 0.4629 21.37 7.04 — 0.3847
-0.15 do. do. 40 0.0809 0.4149 2536 1235 — 0.4601
-0.25 do. do. 90 0.2041 0.5388 45.00 12.04 — 1.7022
-0.35 0271 -0.464 90 0.2943 0.7406  45.00 — 1.2096 3.1666
-045  — — — — — — — — —
X/L ,,: Long. coord. of cross-section, ratio to ship length (pointing fore from midship)
Table 4.1.3 Flow parameters for the enhanced wake source model (Tanker)

X/L,, U (m/s) C,, O,(deg) o/u C, a(deg) o(deg) I’ o
045 0.651 -0.950 121 03639 12782 62.14 1.1280 4.1563
0.35 do. do. 141 0.5528 1.4063 67.85 — 1.2881 5.7172
0.25 do. do. 142 0.5958 1.4567 68.21 — 1.3352  6.0646
0.15 do. do. do. do. do. do. — do. do.
0.05 do. do. do. do. do. do. — do. do.

-0.05 do. do. 142 0.5958 1.4567 68.21 — 1.3352  6.0646
-0.15 do. do. 142 0.5764 1.4285 68.12 — 1.3076 5.8817
-0.25 do. do. 140 0.4658 1.2552  66.07 — 1.1280 4.5424
-0.35 do. do. 97 0.2478 1.0076 48.07 18.66 — 1.7543
-0.45  0.651 -0.950 90 1.2873 1.7883  45.00 — 2.8457 13.4343

X/L ,,: Long. coord. of cross-section, ratio to ship length (pointing fore from midship)
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4.2 Separated streamline and C, distribution

Figures 4.2.1 through 4.2.9 and Figs. 4.2.10 through 4.2.16 are the calculation results of the containership and the tanker,
respectively. Each figure consists of three subfigures. The top subfigure isa {-pl. showing a separation point by the open circle,
separated streamline, and positions of the double sources of strength 20 except at the origin by the filled circle. Whether the
filled circles are on the circular cylinder or the &-axis distinguishes which wake source model is used for calculation, the
original or the enhanced one. Note that one of the two double source positions for the tanker’s cross-section at X/L,, equal to -
0.45 is not within the display. The middle subfigure is a z-pl. showing a separated streamline in a physical plane. The bottom
subfigure is also a z-pl. showing C, distribution on a ship cross-section. The line connecting consecutive edges of assumed
vectors representing C, normal to and originating from the surface of a cross-section stands for the pressure distribution. The
scale is as C,, equal to 1 corresponds to the vector magnitude equal to B,/4 in each cross-section.

The right-hand six columns in Tables 4.1.2 and 4.1.3 list calculated values. Results of cross-sections having § values are by
the original wake source model, while those having [* values are by the enhanced wake source model. The magnitude of C
correlates well with that of Q/U and that of Q/V representing the depth of separated streamline in the z-pl. and the {-pl.,
respectively, as mentioned in subsection 2.2.1.

The enhanced wake source model calculates the two fore and one aft-end cross-section of the containership, and all but one
cross-section of the tanker. Most of the separated streamline and C, distribution in the z-pls. seem appropriate. Negative C,
seems to appear in the high flow velocity region, especially around bilge corners and center keels. However, the separated
streamline of the tanker’s aft-end cross-section where X/L,, is equal to -0.45 seems to be unnatural. The acute center keel
should result in large values of Cy, Q/U, and Q/V. The Lewis form approximation is quite poor around the center keel of

this aft-end cross-section, though the comparison with the original sectional shape is not shown here.

(275)



184

Containership (X/L,,=0.45)
a = 58.50(deg),l = 2.39,Q/V = 5.5451

Containership (X/L;,=0.35)
a = 49.84(deg),l = 1.78,Q/V = 3.2940

Containership (X/L,,=0.35)
Cpp = —0.464,0, = 95.0(deg), Q/U = 0.2275

§
n ¢-pl.
Containership (X/L,,=0.45)
Cpp = —0.464, 65 = 100.0(deg), Q /U = 0.2577
=, p
b
\
y z-pl

Containership (X/L,,=0.45)
Cpp = —0.464,0, = 100.0(deg), C4 = 1.0447

C, = 1.0

Fig. 4.2.1 Containership’s sectional flow and
Cp at X/L,,=0.45.
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Containership (X/L,,=0.35)
Cpp = —0.464,0, = 95.0(deg), C4 = 0.7609

C, =10

Fig. 4.2.2 Containership’s sectional flow and
C, at X/L,,=0.35.
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Containership (X/L;,=0.25)
a = 45.00(deg), § = 1.92(deg), Q/V = 1.8368

Containership (X/L,,=0.15)
a = 34.78(deg), § = 17.56(deg), Q/V = 0.8296

$
n ¢-pl
Containership (X/L,,=0.25)
Cpp = —0.464, 0, = 90.0(deg), Q/U = 0.1852
/ X
)-%
y z-pl

Containership (X/L,,=0.25)
Cpp» = —0.464,0; = 90.0(deg), C; = 0.5409
C, =10

Fig. 4.2.3 Containership’s sectional flow and
C, at X/L,,=0.25.

Containership (X/L,,=0.15)

Cpp = —0.464, 0, = 60.0(deg), Q/U = 0.1220

1
! X
!
!
1
/
/
/
-

y z-pl.

Containership (X/L,,=0.15)

Cpy = —0.464,0, = 60.0(deg), C; = 0.4251

Fig. 4.2.4 Containership’s sectional flow and
Cp at X/L,,=0.15.
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Containership (X/L,,=-0.05)
a = 21.37(deg), 5§ = 7.04(deg), Q/V = 0.3847

Containership (X/L,,=0.05)
a = 22.73(deg), § = 9.01(deg), Q/V = 0.4104 ;
$
n ¢-pl.
n ¢-pl.
, Containership (X/L,,=-0.05)
Containership (X/L,,=0.05) Cpp = —0.464, 05 = 35.0(deg), Q/U = 0.0738
C,p = —0.464,0, = 36.0(deg), /U = 0.0760 ‘ | -
\ : x /'
y z-pl.
y z-pl.

Containership (X/L,,=-0.05)
Cpp = —0.464, 0, = 35.0(deg), C4 = 0.4629

Containership (X/L,,=0.05)

Cpp = —0.464,6, = 36.0(deg), C, = 0.4384

Fig. 4.2.6 Containership’s sectional flow and

Fig. 4.2.5 Containership’s sectional flow and
C, at X/L,,=-0.05.

C, at X/L,,=0.05.
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Containership (X/L,,=-0.15)
a = 25.36(deg), § = 12.35(deg), Q/V = 0.4601

$23% W2 (FMSERE) WHERAE R

Containership (X/L,,=-0.25)
a = 45.00(deg), § = 12.04(deg), Q/V = 1.7022
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Fig. 4.2.7 Containership’s sectional flow and
Cy at X/L,,=-0.15.
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Fig. 4.2.8 Containership’s sectional flow and
Gy at X/L,,=-0.25.
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Containership (X/L,,=-0.35)
a = 45.00(deg),l = 1.89,Q/V = 3.1666

) £
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Containership (X/L,,=-0.35)
Cpp = —0.464, 0, = 90.0(deg), /U = 0.2943

z-pl.

Containership (X/L,,=-0.35)
Cpp = —0.464, 0, = 90.0(deg), C; = 0.7406

Fig. 4.2.9 Containership’s sectional flow and

C, at X/L,,=-0.35.
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Tanker (X/L,,=0.45)
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Fig. 4.2.10 Tanker’s sectional flow and C, at
X/L,;=0.45.
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Tanker (-0.05<X/L,,<0.25)
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Tanker (X/L,,=0.35)
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Fig. 4.2.11 Tanker’s sectional flow and C, at
X/L,=0.35.
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Fig. 4.2.12 Tanker’s sectional flow and C, at
-0.05<X/L,,<0.25.
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Tanker (X/L,,=-0.15)
a = 68.12(deg),l = 2.15,Q/V = 5.8817

) £

n ¢-pl.

Tanker (X/L,,=-0.15)
C,p = —0.950,0; = 142.0(deg), Q/U = 0.5764

Tanker (X/L,,=-0.15)
Cpp = —0.950, 05 = 142.0(deg), C; = 1.4285

G =10

Fig. 4.2.13 Tanker’s sectional flow and C, at
X/L,,=-0.15.
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Tanker (X/L,,=-0.25)
a = 66.07(deg),l = 1.65,Q/V = 4.5424
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Tanker (X/L;,=-0.25)
Cpp = —0.950, 65 = 140.0(deg), Q/U = 0.4658

I
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!

Tanker (X/L,,=-0.25)
Cpp = —0.950, O = 140.0(deg), C; = 1.2552

Fig. 4.2.14 Tanker’s sectional flow and C, at
X/L,=-0.25.
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Tanker (X/L,,=-0.35)
a = 48.07(deg), § = 18.66(deg), Q/V = 1.7543
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Fig. 4.2.15 Tanker’s sectional flow and C, at
X/L,,=-0.35.
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Fig. 4.2.16 Tanker’s sectional flow and C, at
X/L,=-0.45.
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4.3 Cqs dependency on @ and Cps

To have a wider perspective than specific cases presented in the previous section 4.2, this section clarifies C; dependency on
6, and Cp. Figures 4.3.1 through 4.3.9 for the containership and Figs. 4.3.10 through 4.3.16 for the tanker show Cy contours
as a function of @, and Cy,. The flow speed U is 0.271 m/s for the containership and 0.651 m/s for the tanker as shown in Tables
4.1.2 and 4.1.3, respectively. A filled circle in each figure stands for the calculation results shown in Tables 4.1.2 and 4.1.3, and
Figs. 4.2.1 through 4.2.16. All figures also show lines of g; and g, in Eq. (3.2.2). Note that part of the contours near the
upper and right-hand edges of each figure seems distorted due to unknown plotting algorism effects and, therefore, must be
ignored. Also, note that the contour for the tanker’s cross-section at X/L,, equal to -0.45 is not displayed because the C,
variation range exceeds 100 due to the acute center keel.

As explained in subsection 2.2.3, calculation results in the hatched region below the g,-line has separated streamlines
intersecting the surface of ship cross-sections, which is physically irrational. The enhanced wake source model is limited only
by the g;-line as the lowest C,, while the original wake source model is additionally limited by the g, line as the highest C,»
asin Eq. (3.1.2).

It is reasonable that C; decreases as C,; increases for a constant @. It is also reasonable that the smaller radius of curvature
is the larger Cy is. On the other hand, the rough trend for a constant C, is that Cy increases as 6 increases. However, the local
maximum tends to appear around the upstream bilge corner, and the local minim is around the downstream bilge corner, though
no such clear trend appears for cross-sections without bilge corners.

Characteristics of g, reflects well the cross-section shape. g; has a small value around the bilge corner or center keel
where the radius of curvature is small. Since g, becomes smaller in the upstream bilge corner than in the downstream one,
most of the flow fields in which separations occur at the upstream bilge corner must rely on the enhanced wake source model.
In general, the larger 6, is assumed, the more often the enhanced wake source model is employed. These facts confirm that the
enhanced wake source model is more effective than the original one for applying to ship cross-sections.
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4.4 Cs comparison with tank test data

Two-dimensional drag coefficients along ship length are shown in Figs. 4.4.1 and 4.4.2 compared with the tank test data for
the containership and the tanker, respectively. Although no calculation result is obtained at the aft-end cross-section, the
enhanced wake source model explains well the characteristics of the containership’s tank test data. For the tanker, the enhanced
wake source model also explains the tank test data except for the fore-end and the aft-end cross-sections. The discrepancy at
the fore-end cross-section is probably due to the three-dimensional effect. The discrepancy at the aft-end cross-section is due

to both the three-dimensional effect and poor Lewis form approximation, especially around the center keel.
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Fig. 4.4.1 C, distribution of containership. Fig. 4.4.2 C, distribution of tanker.
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5. Concluding remarks

This paper presented the analytical procedure to apply Parkinson’s wake source model'® to potential flow around ship cross-
sections. Lewis form'¥ approximated the ship cross-sections. The analysis clarified difficulties in the application that mainly
occur in flow that separates around the upstream bilge corner of thick cross-sections or center keel of thin cross-sections. The
present study proposed the enhanced wake source model and resolves the difficulties. Applications of the enhanced wake source
model to the containership and the tanker using assumed base pressure and separation points show the appropriate separated
streamlines and pressure distributions for cross-sections with adequate Lewis form approximations. The study discusses the
effect of the separation point and the base pressure in the downstream region on the drag coefficient of the ship cross-sections.
Comparison of the sectional drag coefficient distributions along ship length with tank test data of the segmented ship models'"'?)

validated and showed the potential of the extended wake source model.
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