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Abstract 

 
This study is on an application of Parkinson’s wake source model for analyzing the potential flow around ship cross-sections. 
The Lewis form is used to approximate the ship cross-sections. The analysis presented here demonstrates the difficulties of 
applying the wake source model, which mainly occur in flow which separates around the upstream bilge corner of thick cross-
sections or the center keel of thin cross-sections. The present study aims also to enhance the wake source model and overcome 
these difficulties. Applications of the extended wake source model to cross-sections of a containership and a tanker show 
appropriate separation streamlines and pressure distributions of cross-sections with adequate Lewis form approximations. In 
addition, this study discusses the effects of the separation point and the base pressure in the downstream region on the drag 
coefficient of ship cross-sections. The sectional drag coefficient distributions along the ship’s length are compared with the tank 
test data of segmented ship models to validate the extended wake source model.  
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The shortage of seafarers and the need for higher navigation safety have been promoting the development of autonomous 

ships. The technologies together with rules and regulations are going to be in a phase of the practical use of autonomous ships. 
The most difficult situations for autonomous ships are berthing and unberthing. The lateral speed and yaw rate of ships 
compared with the longitudinal speed can be quite larger in these situations than those in ocean-going conditions. Wind and 
currents effects on ship motion tend to be larger in these situations because of slow ship speed. Therefore, they must pay special 
attention to the control of autonomous ships in such situations.  

The cross-flow model1,2) is one of the mathematical models that represent hydrodynamic forces acting on ships in 
manoeuvring motion. The hydrodynamic force in the cross-flow model is based on two-dimensional flow across ship sections 
normal to the centerline. This is the reason why the cross-flow model is suitable for describing low-speed manoeuvres and for 
controlling autonomous ships in berthing and unberthing situations3,4). 

Many researchers have used the cross-flow model in the equations of motion of ships3-7). However, theoretical studies 
analyzing two-dimensional flow around ship cross-sections and estimating cross-flow drags are not many. The cross-flow drag 
coefficient plays an important role in the equations and resultant ship motion. Kijima and Tanaka8,9) used the vortex shedding 
model to analyze the two-dimensional flow around rectangular sections with and without round corners and estimated cross-
flow drag coefficients. Tanaka and Kijima10) applied their method to ship cross-sections and compared them with tank test data 
of a segmented ship model11,12). 

This paper presents a study on an application of Parkinson’s wake source model13) to potential flow around ship cross-sections. 
Lewis form14) approximates the ship cross-sections. The analysis presented here clarifies that the wake source model has 
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difficulties in the application. The difficulties mainly occur in such flow as separates around upstream bilge corner of thick 
cross-sections or center keel of thin cross-sections. The present study enhances the wake source model and resolves the 
difficulties. Applications of the enhanced wake source model to a containership and a tanker show appropriate separation 
streamlines and pressure distributions of cross-sections with adequate Lewis form approximations. The study discusses the 
effect of the separation point and the base pressure in the downstream region on the drag coefficient of the ship cross-sections. 
Comparisons of the sectional drag coefficient distributions along ship length with tank test data of the segmented ship 
models11,12) validate the extended wake source model. 

Note that this paper presents part of the study carried out when the author was in the graduate school of Osaka University in 
a more detailed manner than Ueno15) with additional consideration. 

 
 

2.  Formulation 

 
Parkinson and Jandali13) presented the wake source model to represent two-dimensional separated flow around bluff bodies. 

They considered the incompressible and irrotational steady flow. The bluff bodies were a normal flat plate, a circular cylinder, 
a 90-degree wedge, and an elliptical cylinder placed symmetrically to the incident flow. In this paper, the Lewis form 
transformation14) transforms the separated flow around circular cylinders into those around ship cross-sections. 

 
2.1 Separated flow around a circular cylinder 

 
2.1.1 Basic transform plane of the wake source model 

The basic transform plane, �-pl., is a complex plane shown in Fig. 2.1.1 Variables (�, �) and (�, �) represent polar and 
orthogonal coordinates of an arbitrary point, respectively. The flow in the �-pl. consists of a uniform flow V, a doublet at the 
origin, double sources of strength 2Q placed symmetrically on the circular boundary with unit radius at angles ±�, and their 
image sinks at the origin. This constitution satisfies the circular boundary13), AS1BS2 of which the radius is 1. The radius 1 is 
different from that of Parkinson’s R. The separation points are S1 and S2 of which angular coordinates are ±�. The separated 
streamlines start normally from the circular boundary13). The complex potential and the complex velocity are, 
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Fig. 2.1.1 Basic transform plane, �-pl. 
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Therefore, the streamline function Ψ is, 
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Note that the following equation determines the coordinates of the separated streamline in the �-pl. and that Q/V given by 

Eq. (2.1.6) tells the depth of the separated streamline from the axis of symmetry, �-axis13).  
 

Ψ = ±�.      ⋯ (2.1.9) 
 

2.1.2 Transformation to separated flow around circular cylinders 
Let us consider the separated flow around circular cylinders of which the radius is 1 and the center is at the origin. The radius 

and the location of the center are different from Parkinson and Jandali13).  
Before considering such flows, consider the separated flow around a cylinder with the radius �0′� of which center is at the 

origin in the �′�-pl. as shown Fig. 2.1.2. Variables (�′� , �′� ) represent polar coordinates of an arbitrary point. As Parkinson and 
Jandali13) did, the Joukowsky transformation relates the circular boundary, AS1BS2 in the �-pl., to the slit AS1BS2 in the �′�-pl. 
The cylinder AS1DS2 assumes a circular cylinder in the �′�  -pl. on which the flow separates at S1 and S2 of which angular 
coordinates are ±��′� . The transformation is, 

 

�′� = � − cos� −
sin2 �

� − cos�
− �.      ⋯ (2.1.10) 

 
The variable e in Eq. (2.1.10) is an offset placing the center of the cylinder AS1DS2 at the origin as shown in Fig. 2.1.2.  

 

 

 
 

Fig. 2.1.2 Transformed separated flow around a 
circular cylinder with radius �0′�, �′�-pl. 

 

 

  
Fig. 2.1.1 Basic transform plane, �-pl. 

 
The complex velocity on the circle AS1BS2 is, 
 

��
�� ��=1

= ��1− �−2���+
�
�
�

1
��� − ���

+
1

��� − �−��
− �−��� 

                = 2���−�� sin� +
�
�

� sin�
2���(cos� − cos�) 

                = 2��−�� sin� �� +
�

2�
1

cos� − cos�
� ,      … (2.1.3) 

 
and the velocity is, 

 

�
��
�� ��=1

= 2 sin� �� +
�

2�
1

cos� − cos�
� .      … (2.1.4) 

 
The separation points S1 and S2, s.p., satisfies, 
 

��
�� ��.�.

= 2��∓�� sin� �� +
�

2�
1

cos� − cos�
� = 0.      ⋯ (2.1.5) 

 
Therefore, 

 
� = 2��(cos� − cos�).      ⋯ (2.1.6) 

 
Equation (2.1.1) in terms of � and � is, 
 

� = � ��� +
�

�2 + �2
� + � �� −

�
�2 + �2

�� 

              +
�
� �

ln �
�(� − cos�)2 + (� − sin �)2�(� − cos�)2 + (� + sin �)2

��2 + �2
�

+ � �tan−1
� − sin�
� − cos�

+ tan−1
� + sin �
� − cos�

− tan−1
�
�
�� 
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The separated streamlines at S1 and S2 are normal to the circular boundary13) in the �-pl. Since the angles at S1 and S2, the 
critical points, are doubled by the Joukowsky transformation, the separated streamlines are tangential to the cylinder AS1DS2 
in the �′�-pl. Therefore, the separation angle, ��′� , in the �′�-pl. is, 

 
��′� = 2�.      ⋯ (2.1.11) 

 
The basic characteristics of Joukowsky transformation tell that e in Eq. (2.1.10) is, 
 

� = 2 sin� tan �
�
2
− �� − ��′��� = 2 sin� tan �

�
2
− (� − 2�)� = −

2 sin�
tan 2�

=
1

cos�
− 2 cos� .      ⋯ (2.1.12) 

 
Therefore, the transformation from the �-pl., to the �′�-pl. is,  

 

�′� = � − cos� −
sin2 �

� − cos�
−

1
cos�

+ 2 cos� .      ⋯ (2.1.13) 

 
The radius of the cylinder AS1DS2, �0′�, in the �′�-pl. is, 
 

�0′� =
2 sin�

sin�� − ��′��
=

2 sin�
sin(� − 2�) =

1
cos�

.      ⋯ (2.1.14) 

 
Accordingly, the transformation from the �-pl. to the �̃-pl. shown in Fig. 2.1.3 representing the separated flow around a 

circular cylinder of which the radius is 1 and the center is at the origin is, 
 

�̃ =
1
�0′�
�′� =

1
�0′�
�� − cos� −

sin2 �
� − cos�

−
1

cos�
+ 2 cos�� 

    = �� − cos� −
sin2 �

� − cos�
� cos� + cos 2� .      ⋯ (2.1.15) 

 
Variables (�̃, ��) and (�̃, ��) in the �̃-pl. represent polar and orthogonal coordinates of an arbitrary point, respectively. Equation 
(2.1.15) also transforms the coordinates of the separated streamline in the �-pl. defined by Eq. (2.1.9) to those in the �̃-pl. 

 

 

 
 

Fig. 2.1.3 Transformed separated flow around a 
circular cylinder with radius 1,  �̃-pl. 
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1
�0′�
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sin2 �
� − cos�
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1

cos�
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Variables (�̃, ��) and (�̃, ��) in the �̃-pl. represent polar and orthogonal coordinates of an arbitrary point, respectively. Equation 
(2.1.15) also transforms the coordinates of the separated streamline in the �-pl. defined by Eq. (2.1.9) to those in the �̃-pl. 
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Equation (2.1.15) preserves the angles between the �′�-pl. and the �̃-pl. Substituting the condition at the separation points, 
s.p., in the �-pl.; 

 
�|�.�. = �±�� ,      ⋯ (2.1.16) 

 
into Eq. (2.1.15) confirms Eq. (2.1.11) as,  

 

�̃��.�. = �±2�� .      ⋯ (2.1.17) 

 
Therefore, the separation angle, ��� , in the �̃-pl. is, 

 
��� = 2�.      ⋯ (2.1.18) 

 
The �̃-pl. is the intermediate plane relating the basic transform plane, the �-pl., to the physical plane described later. 
 

2.1.3 Relations of the separated flow around a cylinder to the basic transform plane 
Differentiation of Eq. (2.1.15) is, 
 

��̃
��

= �1 +
sin2 �

(� − cos�)2� cos� .      ⋯ (2.1.19) 

 
Therefore, the complex velocity in the �̃-pl. is, 

 
��
��̃

=
�� ��⁄
��̃ ��⁄

=
��
��

1
{1 + sin2 � (� − cos�)2⁄ } cos�

.      ⋯ (2.1.20) 

 
Since, 
 

��̃
��
�
�,��→∞

= cos� ,      ⋯ (2.1.21) 

   
the relation between velocities of the uniform flow in the �-pl. and the �̃-pl. is, 

 

�� =
�

cos�
.      ⋯ (2.1.22) 

 
Based on Eq. (2.1.15), �̃ on the circular cylinder is, 
 

�̃��,�̃=1 = � cos� −
sin2 � cos�
� − cos�

− sin2 ��
�=1

 

    =
2 cos� cos� (1 − cos� cos�)− sin2 �

1 + cos2 � − 2 cos� cos�
+ �

2 cos� cos� (1− cos� cos�)
1 + cos2 � − 2 cos� cos�

.      ⋯ (2.1.23) 

 
Therefore, the relation between θ in the �-pl. and �� in the �̃-pl. where r and �̃ are both equal to 1 is, 

 

 

The separated streamlines at S1 and S2 are normal to the circular boundary13) in the �-pl. Since the angles at S1 and S2, the 
critical points, are doubled by the Joukowsky transformation, the separated streamlines are tangential to the cylinder AS1DS2 
in the �′�-pl. Therefore, the separation angle, ��′� , in the �′�-pl. is, 

 
��′� = 2�.      ⋯ (2.1.11) 

 
The basic characteristics of Joukowsky transformation tell that e in Eq. (2.1.10) is, 
 

� = 2 sin� tan �
�
2
− �� − ��′��� = 2 sin� tan �

�
2
− (� − 2�)� = −

2 sin�
tan 2�

=
1

cos�
− 2 cos� .      ⋯ (2.1.12) 

 
Therefore, the transformation from the �-pl., to the �′�-pl. is,  
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−

1
cos�
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The radius of the cylinder AS1DS2, �0′�, in the �′�-pl. is, 
 

�0′� =
2 sin�

sin�� − ��′��
=

2 sin�
sin(� − 2�) =

1
cos�

.      ⋯ (2.1.14) 

 
Accordingly, the transformation from the �-pl. to the �̃-pl. shown in Fig. 2.1.3 representing the separated flow around a 

circular cylinder of which the radius is 1 and the center is at the origin is, 
 

�̃ =
1
�0′�
�′� =

1
�0′�
�� − cos� −

sin2 �
� − cos�

−
1

cos�
+ 2 cos�� 

    = �� − cos� −
sin2 �

� − cos�
� cos� + cos 2� .      ⋯ (2.1.15) 

 
Variables (�̃, ��) and (�̃, ��) in the �̃-pl. represent polar and orthogonal coordinates of an arbitrary point, respectively. Equation 
(2.1.15) also transforms the coordinates of the separated streamline in the �-pl. defined by Eq. (2.1.9) to those in the �̃-pl. 
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����,�̃=1 = tan−1 �1 +
sin2 �

2 cos� cos� (1− cos� cos�)− sin2 �
� 

              = cos−1
2 cos� cos� (1 − cos� cos�)− sin2 �

1 + cos2 � − 2 cos� cos�
.      ⋯ (2.1.24) 

 
Since Eq. (2.1.19) on the circular cylinder is, 
 

��̃
��
�
�=1

= �1 +
sin2 �

(��� − cos�)2� cos� 

                =
2(cos� − cos�)���

{(cos� − cos�) + � sin�}2 cos� ,      ⋯ (2.1.25) 

 

�
��̃
��
�
�=1

=
2 cos� (cos� − cos�)

(cos� − cos�)2 + sin2 �
=

2 cos� (cos� − cos�)
1 + cos2 � − 2 cos� cos�

.      ⋯ (2.1.26) 

 
For the separation point, s.p., where θ is equal to ±α, Eq. (2.1.26) is, 

 

��̃
��
�
�.�.

= 0.      ⋯ (2.1.27) 

 
Equation (2.1.27) confirms that the separation points are the critical points. 
 

2.2 Separated flow around ship cross-sections 
 

2.2.1 Transformation to ship cross-sections 
The physical plane, z-pl., shown in Fig. 2.2.1 represents a separated flow around a ship cross-section with its mirror image 

in unbounded uniform flow. Variables (� , Θ ) and (x, y) represent polar and orthogonal coordinates of an arbitrary point, 
respectively. Br and d stand for the breadth and the drought, respectively. The separation angles are ±Θs. 

 

 

Fig. 2.2.1 Physical plane, �-pl.  
 
Lewis form approximation14) defined by,  
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����,�̃=1 = tan−1 �1 +
sin2 �

2 cos� cos� (1− cos� cos�)− sin2 �
� 

              = cos−1
2 cos� cos� (1 − cos� cos�)− sin2 �

1 + cos2 � − 2 cos� cos�
.      ⋯ (2.1.24) 
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��̃
��
�
�=1

= �1 +
sin2 �
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��̃
��
�
�=1

=
2 cos� (cos� − cos�)

(cos� − cos�)2 + sin2 �
=
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1 + cos2 � − 2 cos� cos�

.      ⋯ (2.1.26) 
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�
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Equation (2.1.27) confirms that the separation points are the critical points. 
 

2.2 Separated flow around ship cross-sections 
 

2.2.1 Transformation to ship cross-sections 
The physical plane, z-pl., shown in Fig. 2.2.1 represents a separated flow around a ship cross-section with its mirror image 
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� = ���̃ +
�1
�̃

+
�3
�̃3
� ,      ⋯ (2.2.1) 

 
transforms a circle of which radius is equal to 1 to a shape approximating a ship cross-section. The area of a ship cross-section, 
Br and d determine M, C1, and C2. This study employs Eq. (2.2.1) to transform the flow field in the �̃-pl. to that in the z-pl. 

Let us consider in the �̃-pl. a point on the circular cylinder of the radius, �̃, is equal to 1. The point corresponds to a point 
on the surface of a ship cross-section in the z-pl. Substituting, 

 

�̃ = ���� ,      ⋯ (2.2.2) 
 

into Eq. (2.2.1) leads to, 
 

� = ��(1 + �1) cos�� + �3 cos 3��� + ���(1− �1) sin �� − �3 sin 3��� ,      ⋯ (2.2.3) 
 

and  
 

� = ��(1 + �1) cos�� + �3 cos 3���,� = ��(1− �1) sin�� − �3 sin 3��� .      ⋯ (2.2.4) 
 

Therefore, the relation between the angle �� on the circular cylinder in the �̃-pl. and that on the surface of the ship cross-
section Θ in the z-pl. is,  

 

� = tan−1
(1− �1) sin�� − �3 sin 3��
(1 + �1) cos�� + �3 cos 3��

 

    = cos−1
(1 + �1) cos�� + �3 cos 3��

�1 + �12 + �32 + 2�1(1 + �3) cos 2�� + 2�3 cos 4��
 

    = cos−1
�1 + �1 − �3�3− 4 cos2 ���� cos��

�(�1 − �3 − 1)2 + 4(�1 + �1�3 − 4�3) cos2 �� + 16�3 cos4 ��
.      ⋯ (2.2.5) 

 
Substituting Eq. (2.1.18) into Eq. (2.2.5) leads to the relation between the separation point angle in the z-pl., Θs, and α in the 

ζ-pl. as, 
 

�� = tan−1
(1− �1) sin 2� − �3 sin 6�
(1 + �1) cos 2� + �3 cos 6�

 

      = cos−1
(1 + �1) cos 2� + �3 cos 6�

�1 + �12 + �32 + 2�1(1 + �3) cos 4� + 2�3 cos 8�
.      ⋯ (2.2.6) 

 
Equation (2.2.6) determines α, though implicitly, using given separation angle Θs in the �-pl. This means that α is a function 
of Θs, α (Θs). 

Differentiation of Eq. (2.2.1) is, 
 

��
��̃

= ��1−
�1
�2�
−

3�3
�̃4

� .      ⋯ (2.2.7) 

 

 

 

 

����,�̃=1 = tan−1 �1 +
sin2 �

2 cos� cos� (1− cos� cos�)− sin2 �
� 

              = cos−1
2 cos� cos� (1 − cos� cos�)− sin2 �

1 + cos2 � − 2 cos� cos�
.      ⋯ (2.1.24) 

 
Since Eq. (2.1.19) on the circular cylinder is, 
 

��̃
��
�
�=1

= �1 +
sin2 �

(��� − cos�)2� cos� 

                =
2(cos� − cos�)���

{(cos� − cos�) + � sin�}2 cos� ,      ⋯ (2.1.25) 

 

�
��̃
��
�
�=1

=
2 cos� (cos� − cos�)

(cos� − cos�)2 + sin2 �
=

2 cos� (cos� − cos�)
1 + cos2 � − 2 cos� cos�

.      ⋯ (2.1.26) 

 
For the separation point, s.p., where θ is equal to ±α, Eq. (2.1.26) is, 

 

��̃
��
�
�.�.
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Therefore, the complex velocity in the z-pl. is, 
 

��
��

=
�� ��̃⁄
�� ��̃⁄

=
��
��̃

1
��1− �1 �̃2⁄ − 3�3 �̃4⁄ �

.      ⋯ (2.2.8) 

 
Since, 
 

��
��̃
�
�� ,�→∞

= �,      ⋯ (2.2.9) 

 
the relation between velocities of the uniform flow in the �̃-pl. and the z-pl. is, 

 

� =
��
�

.      ⋯ (2.2.10) 

 
Substituting Eq. (2.1.22) into Eq. (2.2.10) leads to,  
 

� = (� cos�)�.      ⋯ (2.2.11) 
 

Equation (2.2.11) determines V in the �-pl. using U and  α. Since Θs determines α by Eq. (2.2.6), V is a function of U and Θs, 
V (U, Θs). 

Substituting Eq. (2.2.11) into Eq. (2.1.6) leads to, 
 

� = 2���(cos� − cos�) cos� .      ⋯ (2.2.12) 
 
For further analysis, on the surface of a ship cross-sections in the z-pl. or on the surface of a circular cylinder in the �̃-pl., 
 

��
��̃
�
�̃=1

= ���1− �1 cos 2�� − 3�3 cos 4���+ ���1 sin 2�� + 3�3 sin 4���� .      ⋯ (2.2.13) 

 
and, therefore,  

 

�
��
��̃
�
�̃=1

= ��1 + �12 + 9�32 − 2�1(1− 3�3) cos 2�� − 6�3 cos 4�� .      ⋯ (2.2.14) 

 
Note that Eq. (2.2.1) also transforms the coordinates of the separated streamline and that Q/U given by Eq. (2.2.12) tells the 

depth of the separated streamline from the axis of symmetry, �-axis in the z-pl. 13)  
 

2.2.2 Pressure and drag coefficient 
Let us consider the pressure at separation points in the z-pl. Bernoulli’s theorem; 
 

� +
1
2
� �
��
�� �

2

= �∞ +
1
2
��2 ,      ⋯ (2.2.15) 

 
defines the pressure coefficient, Cp in the z-pl. as, 
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Therefore, the complex velocity in the z-pl. is, 
 

��
��

=
�� ��̃⁄
�� ��̃⁄

=
��
��̃

1
��1− �1 �̃2⁄ − 3�3 �̃4⁄ �

.      ⋯ (2.2.8) 

 
Since, 
 

��
��̃
�
�� ,�→∞

= �,      ⋯ (2.2.9) 

 
the relation between velocities of the uniform flow in the �̃-pl. and the z-pl. is, 

 

� =
��
�

.      ⋯ (2.2.10) 
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� = 2���(cos� − cos�) cos� .      ⋯ (2.2.12) 
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��
��̃
�
�̃=1

= ���1− �1 cos 2�� − 3�3 cos 4���+ ���1 sin 2�� + 3�3 sin 4���� .      ⋯ (2.2.13) 
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��̃
�
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2.2.2 Pressure and drag coefficient 
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� +
1
2
� �
��
�� �

2

= �∞ +
1
2
��2 ,      ⋯ (2.2.15) 

 
defines the pressure coefficient, Cp in the z-pl. as, 
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�� =
� − �∞
��2 2⁄

= 1 − �
��
�� �

2

�2� ,      ⋯ (2.2.16) 

 
where p and p∞ are the pressure at a point and infinity in the �-pl., respectively, and ρ is the density of water.   

The complex velocity in the �-pl. is, 
 

��
��

=
�� ��̃⁄
�� ��̃⁄

=
�� ��⁄
��̃ ��⁄

1
�� ��̃⁄

.      ⋯ (2.2.17) 

 
Since Eqs. (2.1.5) and (2.1.27) hold at the separation points, 

 

��
��̃

�
�.�,

=
0
0

.      ⋯ (2.2.18) 

 
Equations (2.2.16) through (2.2.18), and Eq. (2.2.13) suggest that �� ��⁄ |�.�.  and Cp at the separation points are also 
indefinite. 

Since the velocity �� ��⁄  at separation points should be finite in the �-pl., the introduction of the base pressure pb and its 
coefficient Cpb defines |�� ��⁄ |�.�. as, 

 

��� =
�� − �∞
��2 2⁄

= 1 − �
��
�� ��.�.

2

�2� .      ⋯ (2.2.19) 

 
Let us assume that the pressure over the downstream surface of a ship cross-section, S1DS2, is constant pb and ignore the 

flow inside the separation streamlines as in Parkinson and Jandali13). The pressure coefficient on the downstream surface in the 
lower half of the z-pl. is, 

 

��(�) = ���   (0 ≤ � ≤ � �� 0 ≤ � ≤ ��),    ⋯ (2.2.20) 

 
Substituting Eqs. (2.2.11) and (2.2.12) into Eq. (2.1.4) leads to, 
 

�
��
�� ����.

= �
��
�� ��=1

= 2�� cos� sin �
cos� − cos�
cos� − cos�

.      … (2.2.21) 

 
Using Eqs. (2.2.21) and (2.1.26) leads to, 

 

|�� ��⁄ |���.

���̃ ��⁄ ����.

=
|�� ��⁄ |�=1
���̃ ��⁄ ��=1

= �� sin �
1 + cos2 � − 2 cos� cos�

cos� − cos�
.      ⋯ (2.2.22) 

 
Using Eqs. (2.2.22) and (2.2.14) leads to, 

 

�
��
�� ����.

=
|�� ��⁄ |�=1
���̃ ��⁄ ��=1

1
��� ��̃⁄ ��̃=1

 

 

 

Therefore, the complex velocity in the z-pl. is, 
 

��
��

=
�� ��̃⁄
�� ��̃⁄

=
��
��̃

1
��1− �1 �̃2⁄ − 3�3 �̃4⁄ �

.      ⋯ (2.2.8) 

 
Since, 
 

��
��̃
�
�� ,�→∞

= �,      ⋯ (2.2.9) 

 
the relation between velocities of the uniform flow in the �̃-pl. and the z-pl. is, 

 

� =
��
�

.      ⋯ (2.2.10) 

 
Substituting Eq. (2.1.22) into Eq. (2.2.10) leads to,  
 

� = (� cos�)�.      ⋯ (2.2.11) 
 

Equation (2.2.11) determines V in the �-pl. using U and  α. Since Θs determines α by Eq. (2.2.6), V is a function of U and Θs, 
V (U, Θs). 

Substituting Eq. (2.2.11) into Eq. (2.1.6) leads to, 
 

� = 2���(cos� − cos�) cos� .      ⋯ (2.2.12) 
 
For further analysis, on the surface of a ship cross-sections in the z-pl. or on the surface of a circular cylinder in the �̃-pl., 
 

��
��̃
�
�̃=1

= ���1− �1 cos 2�� − 3�3 cos 4���+ ���1 sin 2�� + 3�3 sin 4���� .      ⋯ (2.2.13) 

 
and, therefore,  

 

�
��
��̃
�
�̃=1

= ��1 + �12 + 9�32 − 2�1(1− 3�3) cos 2�� − 6�3 cos 4�� .      ⋯ (2.2.14) 

 
Note that Eq. (2.2.1) also transforms the coordinates of the separated streamline and that Q/U given by Eq. (2.2.12) tells the 

depth of the separated streamline from the axis of symmetry, �-axis in the z-pl. 13)  
 

2.2.2 Pressure and drag coefficient 
Let us consider the pressure at separation points in the z-pl. Bernoulli’s theorem; 
 

� +
1
2
� �
��
�� �

2

= �∞ +
1
2
��2 ,      ⋯ (2.2.15) 

 
defines the pressure coefficient, Cp in the z-pl. as, 
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=
�(1 + cos2 � − 2 cos� cos�) sin �

(cos� − cos�)�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2�� − 6�3 cos 4��
.      ⋯ (2.2.23) 

 
Therefore, Eq. (2.2.16) with Eq. (2.2.23) tells Cp, as a function of θ , on the upstream surface in the lower half of the z-pl. as, 

 

��(�) = 1 −
(1 + cos2 � − 2 cos� cos�)2 sin2 �

(cos� − cos�)2�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2��(�) − 6�3 cos 4��(�)�
 

           = 1 −
(1 + cos2 � − 2 cos� cos�)2 sin2 �

(cos� − cos�)2�(1 + �1 − 3�3)2 − 4(�1 − 12�3 − 3�1�3) cos2 ��(�) − 48�3 cos4 ��(�)�
, 

                                                                                                           (� ≤ � ≤ � �� �� ≤ � ≤ �),    ⋯ (2.2.24) 
 

where �� in the denominator is also a function of θ as shown in Eq. (2.1.24).  
Since Cp is equal to Cpb at the separation point, substituting α into θ and Eq. (2.1.18) into �� lead Eq. (2.2.24) to,  
 

��� = 1 −
sin6 �

(cos� − cos�)2�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��
.      ⋯ (2.2.25) 

 
Since, 
 

0 ≤ 1 − �� ,      ⋯ (2.2.26) 
 

Equation (2.2.25) tells, 
 

0 ≤ 1 + �12 + 9�32 − 2�1(1− 3�3) cos 2�� − 6�3 cos 4�� .      ⋯ (2.2.27) 
 
Also since, 
 

� ≤ � ≤ �,      ⋯ (2.2.28) 
 

cos� − cos� ≤ 0.      ⋯ (2.2.29) 
 

Therefore, 
 

� = cos−1

⎣
⎢
⎢
⎡
cos� +

sin3 �

��1− �����1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��⎦
⎥
⎥
⎤
.      ⋯ (2.2.30) 

 
Equations (2.2.30) determine δ using given Cpb, and α. Since Θs determines α by Eq. (2.2.6), δ is a function of Θs, and Cpb, 

δ (Θs, Cpb). Since δ, α and U determine Q by Eq. (2.2.12), Q is a function of U, Θs and Cpb, Q(U, Θs, Cpb). Now, U, Θs, and Cpb 
in the z-pl. determine all the parameters, α(Θs), δ (Θs, Cpb), V(U, Θs), Q(U, Θs, Cpb) in the ζ-pl. Figure 2.2.2 explains how the 
variables in the z-pl. determine those in the ζ-pl. 
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=
�(1 + cos2 � − 2 cos� cos�) sin �

(cos� − cos�)�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2�� − 6�3 cos 4��
.      ⋯ (2.2.23) 

 
Therefore, Eq. (2.2.16) with Eq. (2.2.23) tells Cp, as a function of θ , on the upstream surface in the lower half of the z-pl. as, 

 

��(�) = 1 −
(1 + cos2 � − 2 cos� cos�)2 sin2 �

(cos� − cos�)2�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2��(�) − 6�3 cos 4��(�)�
 

           = 1 −
(1 + cos2 � − 2 cos� cos�)2 sin2 �

(cos� − cos�)2�(1 + �1 − 3�3)2 − 4(�1 − 12�3 − 3�1�3) cos2 ��(�) − 48�3 cos4 ��(�)�
, 

                                                                                                           (� ≤ � ≤ � �� �� ≤ � ≤ �),    ⋯ (2.2.24) 
 

where �� in the denominator is also a function of θ as shown in Eq. (2.1.24).  
Since Cp is equal to Cpb at the separation point, substituting α into θ and Eq. (2.1.18) into �� lead Eq. (2.2.24) to,  
 

��� = 1 −
sin6 �

(cos� − cos�)2�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��
.      ⋯ (2.2.25) 

 
Since, 
 

0 ≤ 1 − �� ,      ⋯ (2.2.26) 
 

Equation (2.2.25) tells, 
 

0 ≤ 1 + �12 + 9�32 − 2�1(1− 3�3) cos 2�� − 6�3 cos 4�� .      ⋯ (2.2.27) 
 
Also since, 
 

� ≤ � ≤ �,      ⋯ (2.2.28) 
 

cos� − cos� ≤ 0.      ⋯ (2.2.29) 
 

Therefore, 
 

� = cos−1

⎣
⎢
⎢
⎡
cos� +

sin3 �

��1− �����1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��⎦
⎥
⎥
⎤
.      ⋯ (2.2.30) 

 
Equations (2.2.30) determine δ using given Cpb, and α. Since Θs determines α by Eq. (2.2.6), δ is a function of Θs, and Cpb, 

δ (Θs, Cpb). Since δ, α and U determine Q by Eq. (2.2.12), Q is a function of U, Θs and Cpb, Q(U, Θs, Cpb). Now, U, Θs, and Cpb 
in the z-pl. determine all the parameters, α(Θs), δ (Θs, Cpb), V(U, Θs), Q(U, Θs, Cpb) in the ζ-pl. Figure 2.2.2 explains how the 
variables in the z-pl. determine those in the ζ-pl. 

 

170
 

 

 

Fig. 2.2.2 Relation between variables in the z-pl. and those in the ζ-pl. for the wake source model. 
 
The drag coefficient of a ship cross-section is defined by, 
 

�� = −
1

��2(2�) 2⁄ ���� cos��� = −
1

��2(2�) 2⁄ ����
��
��

= −
1

��2� 2⁄ ���� = −
1
��

���� 

      = −
1
�
������ + � ��

�

�

��
���

���
��

��� ,      ⋯ (2.2.31) 

 
where ds and ���  are a line segment along the surface of a ship cross-section and the angle of a normal outward vector on the 
surface to the positive direction of the x-axis. The coordinates (xs, ±ys) stand for the separation points. 

Equation (2.2.4) using Eq. (2.1.18) at separation points tells, 
 

�� = �{(1− �1) sin 2� − �3 sin 6�}.      ⋯ (2.2.32) 
 
Differentiating Eqs. (2.2.4) and (2.1.24) leads to, 
 

��
���

= ��(1− �1) cos�� − 3�3 cos 3��� 

       = ��1− �1 + 3�3�3− 4 cos2 ���� cos�� .      ⋯ (2.2.33) 
 

and, 
 

���
��
�
�,�̃=1

=
2 cos� (cos� − cos�)

1 + cos� (cos� − 2 cos�).      ⋯ (2.2.34) 

 
Equation (2.2.31) with Eqs. (2.2.24), and Eqs. (2.2.32) through (2.2.34) calculate the drag coefficient Cd of a ship cross-

sections. 
 

2.2.3 Condition for the separated streamline 
Parkinson and Jandali13) noted based on the discussion by Woods16) that the separated streamline of the circular cylinder in 

order not to intersect the cylinder surface must satisfy at the separation point, 
 

2
3
�1 − ���� ≤ sin�� − ��� � = sin ��� ,      ⋯ (2.2.35) 

 

 

 

=
�(1 + cos2 � − 2 cos� cos�) sin �

(cos� − cos�)�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2�� − 6�3 cos 4��
.      ⋯ (2.2.23) 

 
Therefore, Eq. (2.2.16) with Eq. (2.2.23) tells Cp, as a function of θ , on the upstream surface in the lower half of the z-pl. as, 

 

��(�) = 1 −
(1 + cos2 � − 2 cos� cos�)2 sin2 �

(cos� − cos�)2�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2��(�) − 6�3 cos 4��(�)�
 

           = 1 −
(1 + cos2 � − 2 cos� cos�)2 sin2 �

(cos� − cos�)2�(1 + �1 − 3�3)2 − 4(�1 − 12�3 − 3�1�3) cos2 ��(�) − 48�3 cos4 ��(�)�
, 

                                                                                                           (� ≤ � ≤ � �� �� ≤ � ≤ �),    ⋯ (2.2.24) 
 

where �� in the denominator is also a function of θ as shown in Eq. (2.1.24).  
Since Cp is equal to Cpb at the separation point, substituting α into θ and Eq. (2.1.18) into �� lead Eq. (2.2.24) to,  
 

��� = 1 −
sin6 �

(cos� − cos�)2�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��
.      ⋯ (2.2.25) 

 
Since, 
 

0 ≤ 1 − �� ,      ⋯ (2.2.26) 
 

Equation (2.2.25) tells, 
 

0 ≤ 1 + �12 + 9�32 − 2�1(1− 3�3) cos 2�� − 6�3 cos 4�� .      ⋯ (2.2.27) 
 
Also since, 
 

� ≤ � ≤ �,      ⋯ (2.2.28) 
 

cos� − cos� ≤ 0.      ⋯ (2.2.29) 
 

Therefore, 
 

� = cos−1

⎣
⎢
⎢
⎡
cos� +

sin3 �

��1− �����1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��⎦
⎥
⎥
⎤
.      ⋯ (2.2.30) 

 
Equations (2.2.30) determine δ using given Cpb, and α. Since Θs determines α by Eq. (2.2.6), δ is a function of Θs, and Cpb, 

δ (Θs, Cpb). Since δ, α and U determine Q by Eq. (2.2.12), Q is a function of U, Θs and Cpb, Q(U, Θs, Cpb). Now, U, Θs, and Cpb 
in the z-pl. determine all the parameters, α(Θs), δ (Θs, Cpb), V(U, Θs), Q(U, Θs, Cpb) in the ζ-pl. Figure 2.2.2 explains how the 
variables in the z-pl. determine those in the ζ-pl. 
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where ����  is the base pressure coefficient for the separated flow around a circular cylinder. The following equation defines 
���� .  

 

���� =
��� − �∞�
���2 2⁄

= 1 − �
��
��̃

�
�.�.

2

�� 2� ,      ⋯ (2.2.36) 

 

where ��� and �∞�  are the pressure at a point and infinity in the �̃-pl., respectively. ����  defines �� ��̌⁄ �
�.�.

that is indefinite 

as in Eq. (2.2.18). Equation (2.2.19) with Eq. (2.2.10) tells, 
 

1− ��� = �
��
�� ��.�.

2 1
�2 = �

��
��̃

�
�.�.

2 1
��2

1

�����̃��.�.

2
�� 2

�2 = �1− ���� �
1

�����̃��.�.

2�
2 .      ⋯ (2.2.37) 

 
Substituting Eq. (2.2.37) into Eq. (2.2.35) using Eq. (2.1.18) leads to, 

 

2
3

1
�
�
��
��̃
�
�.�.

�1− ��� ≤ sin��� .      ⋯ (2.2.38) 

 
Substituting Eq. (2.2.14) into Eq. (2.2.38) using Eq. (2.1.18) leads to, 

 

2
3�

1 − ��� ≤
sin ���

�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2��� − 6�3 cos 4���
 

                          ≤
sin 2�

�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8�
,      ⋯ (2.2.39) 

 
Equation (2.2.39) for the �-pl. corresponds to Eq. (2.2.35) for the �̃-pl. 

Following is another line of thought leading to Eq. (2.2.39). Since both C1 and C3 are zero for circular cylinders in the �-pl., 
Equation (2.2.25) suggests,  

 

���� = 1 −
sin6 �

(cos� − cos�)2 .      ⋯ (2.2.40) 

 
Substituting Eq. (2.2.40) into Eq. (2.2.35) leads to, 

 

2
3

sin3 �
cos� − cos�

≤ sin��� .      ⋯ (2.2.41) 

 
Substituting Eq. (2.2.30) into Eq. (2.2.41) also leads to Eq. (2.2.39). 

Modifying Eq. (2.2.39) leads to, 
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where ����  is the base pressure coefficient for the separated flow around a circular cylinder. The following equation defines 
���� .  

 

���� =
��� − �∞�
���2 2⁄

= 1 − �
��
��̃

�
�.�.

2

�� 2� ,      ⋯ (2.2.36) 

 

where ��� and �∞�  are the pressure at a point and infinity in the �̃-pl., respectively. ����  defines �� ��̌⁄ �
�.�.

that is indefinite 

as in Eq. (2.2.18). Equation (2.2.19) with Eq. (2.2.10) tells, 
 

1− ��� = �
��
�� ��.�.

2 1
�2 = �

��
��̃

�
�.�.

2 1
��2

1

�����̃��.�.

2
�� 2

�2 = �1− ���� �
1

�����̃��.�.

2�
2 .      ⋯ (2.2.37) 

 
Substituting Eq. (2.2.37) into Eq. (2.2.35) using Eq. (2.1.18) leads to, 

 

2
3

1
�
�
��
��̃
�
�.�.

�1− ��� ≤ sin��� .      ⋯ (2.2.38) 

 
Substituting Eq. (2.2.14) into Eq. (2.2.38) using Eq. (2.1.18) leads to, 

 

2
3�

1 − ��� ≤
sin ���

�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2��� − 6�3 cos 4���
 

                          ≤
sin 2�

�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8�
,      ⋯ (2.2.39) 

 
Equation (2.2.39) for the �-pl. corresponds to Eq. (2.2.35) for the �̃-pl. 

Following is another line of thought leading to Eq. (2.2.39). Since both C1 and C3 are zero for circular cylinders in the �-pl., 
Equation (2.2.25) suggests,  

 

���� = 1 −
sin6 �

(cos� − cos�)2 .      ⋯ (2.2.40) 

 
Substituting Eq. (2.2.40) into Eq. (2.2.35) leads to, 

 

2
3

sin3 �
cos� − cos�

≤ sin��� .      ⋯ (2.2.41) 

 
Substituting Eq. (2.2.30) into Eq. (2.2.41) also leads to Eq. (2.2.39). 

Modifying Eq. (2.2.39) leads to, 
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��� ≥ 1 −
9
4

sin2 2�
�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��

.      ⋯ (2.2.42) 

 
Since α is a function of Θs as shown in Eq. (2.2.6), Cpb has the minimum value defined by Eq. (2.2.42) for a given Θs .  

Note that Eq. (2.2.42) or Eq. (2.2.39) means the physical requirement that the separated streamline does not intersect the 
surface of a ship cross-section in the �-pl., while Eq. (2.2.35) does so in the �̃-pl. for circular cylinders. 

 
 

3.  Enhanced wake source model 

 
The wake source model has two kinds of limitations. One comes from the physical requirement as explained in subsection 

2.2.3. This chapter explains the other non-physical limitation of the wake source model and presents an enhanced wake source 
model that resolves the limitation. 

 
3.1 Non-physical limitation of the wake source model 

Equation (2.2.41) with Eq. (2.1.18) tells, 
 

cos� ≥ cos� +
2
3

sin3 �
sin 2�

 

           ≥
1
3
�2 cos� +

1
cos�

� .      ⋯ (3.1.1) 

 
Let us consider a function f defined by,  
 

�(�) =
1
3
�2 cos� +

1
cos�

� ,      ⋯ (3.1.2) 

 
and its derivative,  

 
��
��

= �′(�) = −
2
3
�2−

1
cos2 �

� .      ⋯ (3.1.3) 

 
Equations (3.1.2) and (3.1.3) tell the properties of f as,  

 

�(0) = 1,� �
�
4�

=
2√2

3
,� �

�
3�

= 1,� �
�
2�

= ∞,      ⋯ (3.1.4) 

 
and 

 

�′(0) = 0,�′ �
�
4�

= 0,      ⋯ (3.1.5) 

 
as shown in Fig. 3.1.1. 

 

 

 

where ����  is the base pressure coefficient for the separated flow around a circular cylinder. The following equation defines 
���� .  

 

���� =
��� − �∞�
���2 2⁄

= 1 − �
��
��̃

�
�.�.

2

�� 2� ,      ⋯ (2.2.36) 

 

where ��� and �∞�  are the pressure at a point and infinity in the �̃-pl., respectively. ����  defines �� ��̌⁄ �
�.�.

that is indefinite 

as in Eq. (2.2.18). Equation (2.2.19) with Eq. (2.2.10) tells, 
 

1− ��� = �
��
�� ��.�.

2 1
�2 = �

��
��̃

�
�.�.

2 1
��2

1

�����̃��.�.

2
�� 2

�2 = �1− ���� �
1

�����̃��.�.

2�
2 .      ⋯ (2.2.37) 

 
Substituting Eq. (2.2.37) into Eq. (2.2.35) using Eq. (2.1.18) leads to, 

 

2
3

1
�
�
��
��̃
�
�.�.

�1− ��� ≤ sin��� .      ⋯ (2.2.38) 

 
Substituting Eq. (2.2.14) into Eq. (2.2.38) using Eq. (2.1.18) leads to, 

 

2
3�

1 − ��� ≤
sin ���

�1 + �12 + 9�32 − 2�1(1− 3�3) cos 2��� − 6�3 cos 4���
 

                          ≤
sin 2�

�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8�
,      ⋯ (2.2.39) 

 
Equation (2.2.39) for the �-pl. corresponds to Eq. (2.2.35) for the �̃-pl. 

Following is another line of thought leading to Eq. (2.2.39). Since both C1 and C3 are zero for circular cylinders in the �-pl., 
Equation (2.2.25) suggests,  

 

���� = 1 −
sin6 �

(cos� − cos�)2 .      ⋯ (2.2.40) 

 
Substituting Eq. (2.2.40) into Eq. (2.2.35) leads to, 

 

2
3

sin3 �
cos� − cos�

≤ sin��� .      ⋯ (2.2.41) 

 
Substituting Eq. (2.2.30) into Eq. (2.2.41) also leads to Eq. (2.2.39). 

Modifying Eq. (2.2.39) leads to, 
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Fig. 3.1.1 f (α). 
 
Equations (3.1.1) and (3.1.2), and the characteristics of f tell, 
 

cos� ≥ �(�) ≥  � �
�
4�

=
2√2

3
,      ⋯ (3.1.6) 

 
and 

 

� ≤ cos−1
2√2

3
= 19.47 (deg).      ⋯ (3.1.7) 

 
Since, 

 
cos� ≤ 1,      ⋯ (3.1.8) 

 

� ≤
�
3

.      ⋯ (3.1.9) 

 
Substituting Eq. (2.2.30) into Eq. (3.1.8) leads to, 

 
sin3 �

��1− �����1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��
≤ 1 − cos� .      ⋯ (3.1.10) 

 
Therefore, 

 

1 − ��� ≥
sin6 �

(1− cos�)2�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��
.      ⋯ (3.1.11) 

 
or 

 

��� ≤ 1 −
sin6 �

(1− cos�)2�1 + �12 + 9�32 − 2�1(1− 3�3) cos 4� − 6�3 cos 8��
.      ⋯ (3.1.12) 
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Fig. 3.1.1 f (α). 
 
Equations (3.1.1) and (3.1.2), and the characteristics of f tell, 
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Equation (3.1.12) or (3.1.11) is the non-physical limitation of the wake source model because Eq. (3.1.8) has no physical 
meaning. 

Equation (3.1.9), also the non-physical limitation, defines the maximum value of Θs by Eq. (2.2.6) for a ship cross-section 
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respectively. Figure 3.2.1, based on Eqs. (3.2.6) and (3.2.7) shows characteristics of �1� and �2�. Note that the abscissa α is 
equal to ��� 2⁄  for circular cylinders as in Eq. (2.1.18). Equation (3.1.13) for circular cylinders turns to,  

 

��� ≤ cos−1 �−
1
2
� =

2�
3

.      ⋯ (3.2.8) 

 
Equation (3.1.12) is the result that comes from Eqs. (2.1.18) and (3.1.9) for circular cylinders. Equations (3.2.3) and (3.2.8) 
means in Fig. 3.2.1 that ����  can have a value above the �1�-line, below the �2�-line and ��� 2⁄  equal to or less than π/3 where 
�1�-line and �2�-line lines intersect. 

 

 

Fig. 3.2.1 �1� and �2�. 
 
The examples for the circular cylinder imply the non-physical limitation of Eqs. (3.1.12) and (3.1.13), the �2�-line in Fig. 

3.2.1, may prevent the wake source model to describe flow around ship cross-sections separating around the upstream bilge 
corner with relatively high pressure. 

 
3.3 Enhanced wake source model for ship cross-sections 

Let us introduce a flow model shown in Fig. 3.3.1 representing an alternative basic transform plane having an alternative 
complex potential for cases not satisfying Eq. (3.1.8). Let us call the alternative complex plane as the �1-pl. though the same 
variables (�, �) and (ξ, η) and so forth are used as in the �-pl. The complex potential and the complex velocity are, 
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Fig. 3.3.1 Alternative complex plane, �1-pl., for enhanced wake source model. 
 
The complex velocity on the circle, AS1BS2, of which radius r is equal to 1 is, 
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Therefore, 
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Equation (3.3.1) in terms of ξ and η in Fig. 3.3.1 is, 
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Therefore, the streamline function Ψ is, 
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The streamline function for r equal to 1 is, 
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Let us consider in Fig. 3.3.2 a point C on the upper half of the circle with unit radius, O at (0, 0), A at (1/l, 0), and B at (l, 0). 
The relation,   
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leads to, 
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Fig. 3.3.2 Schematic diagram of the alternative z-pl. for the enhanced wake source model. 

 
Therefore, for a point on the upper half of the circle, 
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The discussion for the upper half circle AS1B and its analogy for the lower one ensures that the circle with unit radius is a 
boundary as in Fig. 2.1.1. This also suggests that Eq. (2.1.9) also determines the coordinates of the separated streamline in the 
�1-pl.  

All the discussions in subsections 2.1.2 and 2.1.3, and those in subsection 2.2.1 except Eq. (2.2.12) holds for the �1-pl. 
because they are independent of the complex potential. Therefore, Eq. (2.2.6) holds for the �1-pl. 

Since Eqs. (2.1.22), (2.2.10) and (2.2.11) hold, substituting Eq. (2.2.11) into Eq. (3.3.7) leads to, in the �1-pl.,  
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Note that Eq. (2.2.31) calculating Cd uses Eq. (2.2.24) or Eq. (3.3.15) depending on whether l* defined by Eq. (3.3.17) is 
greater or smaller than 1. Figure 3.3.3 explains how the variables in the z-pl. applied to the enhanced wake source model 
determine those in the �-pl. or �1-pl. 

The introduction of the alternative complex potential, Eq. (3.3.1), with the replacement of cosδ by l*, removes the non-
physical limitation, Eq. (3.1.8), and enhances the original d wake source model. 

 

 

Fig. 3.3.3 Relation between variables in the z-pl., and those in the �- or �1-pl. for the enhanced wake source model. 
 
 

4.  Case studies 

 
This chapter presents the case studies in Ueno15) of the enhanced wake source model applied to a container ship and a tanker 

with additional information and commentaries. The cases validate the enhancement explained in section 3.3 by showing 
separated streamlines, Cp distributions, and Cd dependencies on Cpb and Θs. The discussion includes comparisons of Cd 
distributions along ship length with Matsumoto’s experimental data11,12). 

 
4.1 Subject ships and parameter setting 

The subject ships are the containership and the tanker used in Matsumoto and Suemitsu11) and Matsumoto12). They used 
segmented models that consist of ten parts of segments equally separated along ship length to measure hydrodynamic lateral 
forces acting on each segment. Figure 4.1.1 shows the arrangement of the segmented model11,12).  

Table 4.1.1 lists the principal particulars of the subject segmented ship models. Each ship's model length is 3.0 m. Figures 
4.1.2 and 4.1.3 show the body plans approximated by Lewis form14). The original lines, ship hull form data, and Lewis form 
parameters are not presented here. Values in Figs. 4.1.2 and 4.1.3 stand for longitudinal coordinates of cross-sections, X, divided 
by ship length, Lpp. The origin of X is at midship pointing fore. These coordinates correspond to those of Matsumoto’s tank test 
data11,12). The aft-end cross-section of containership where X/Lpp is equal to -0.45 is not applied to the enhanced wake source 
model calculation because its shape is out of the range of Lewis form approximation. The Tanker’s parallel part of which X/Lpp 
is from -0.10 to 0.25 has an identical shape of cross-section. 

Their tank test data include those measured when the ship models were towed laterally. The data, therefore, clarified the 
longitudinal Cd distribution corresponding to Eq. (2.2.31).  
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Note that Eq. (2.2.31) calculating Cd uses Eq. (2.2.24) or Eq. (3.3.15) depending on whether l* defined by Eq. (3.3.17) is 
greater or smaller than 1. Figure 3.3.3 explains how the variables in the z-pl. applied to the enhanced wake source model 
determine those in the �-pl. or �1-pl. 

The introduction of the alternative complex potential, Eq. (3.3.1), with the replacement of cosδ by l*, removes the non-
physical limitation, Eq. (3.1.8), and enhances the original d wake source model. 

 

 

Fig. 3.3.3 Relation between variables in the z-pl., and those in the �- or �1-pl. for the enhanced wake source model. 
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with additional information and commentaries. The cases validate the enhancement explained in section 3.3 by showing 
separated streamlines, Cp distributions, and Cd dependencies on Cpb and Θs. The discussion includes comparisons of Cd 
distributions along ship length with Matsumoto’s experimental data11,12). 

 
4.1 Subject ships and parameter setting 

The subject ships are the containership and the tanker used in Matsumoto and Suemitsu11) and Matsumoto12). They used 
segmented models that consist of ten parts of segments equally separated along ship length to measure hydrodynamic lateral 
forces acting on each segment. Figure 4.1.1 shows the arrangement of the segmented model11,12).  

Table 4.1.1 lists the principal particulars of the subject segmented ship models. Each ship's model length is 3.0 m. Figures 
4.1.2 and 4.1.3 show the body plans approximated by Lewis form14). The original lines, ship hull form data, and Lewis form 
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by ship length, Lpp. The origin of X is at midship pointing fore. These coordinates correspond to those of Matsumoto’s tank test 
data11,12). The aft-end cross-section of containership where X/Lpp is equal to -0.45 is not applied to the enhanced wake source 
model calculation because its shape is out of the range of Lewis form approximation. The Tanker’s parallel part of which X/Lpp 
is from -0.10 to 0.25 has an identical shape of cross-section. 

Their tank test data include those measured when the ship models were towed laterally. The data, therefore, clarified the 
longitudinal Cd distribution corresponding to Eq. (2.2.31).  

 

180
 

 

  

Fig. 4.1.1 Arrangement of the segmented model. Reprinted from Matsumoto and Suemitsu11) with permission from The 
Japan Society of Naval Architects and Ocean Engineers. 

 
Table 4.1.1 Principal particulars of subject ships in model scale 

 
 

 
Fig. 4.1.2 Containership body plan approximated by Lewis form. 

 

 

Fig. 4.1.3 Tanker body plan approximated by Lewis form. 
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Fig. 4.1.2 Containership body plan approximated by Lewis form. 
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The input parameters to the enhanced wake source model are U, Cpb, and Θs. The lateral towing velocities U of the 
containership model in the tank test were 0.271, 0.542, and 0.813 m/s11,12). In this case study, the flow velocity U is 0.271 m/s 
for the containership model. The reason to select the lowest velocity is that the data should be mostly free from wave-making 
effects among those in three kinds of velocities. The flow velocity for the tanker model is 0.651 m/s as in the tank test11,12). The 
other parameters Cpb and Θs are set as follows because their theoretical estimation is difficult and out of the scope of this study. 
Firstly, assume appropriate Θs around the bilge corner or keel of each cross-section. Secondly, set Cpb to make the calculated 
Cd at the closest cross-sections to midship nearly equal to the corresponding tank test data. Lastly, assume the Cpb of other cross-
sections is equal to that at the closest cross-sections to midship. Note that larger Θs means the upstream region, while smaller 
Θs means the downstream region. 

The second through fourth columns from left in Tables 4.1.2 and 4.1.3 list the input parameters U, Θs, and Cpb for the 
containership and tanker, respectively.  

Because U of the containership is low and cross-sections have relatively round shapes at the bilge corner or center keel, the 
values of Θs are assumed equal to or smaller than 90° except at X/Lpp is equal to 0.45 and 0.35. Θs at X/Lpp equal to 0.45 is 
assumed larger than 90° due to its slender shape. Θs at X/Lpp equal to 0.35 is assumed slightly larger than 90° due to the 
continuity of the successive aft cross-section. Comparison of calculated Cd at the closest cross-sections to midship with 
Matsumoto’s tank test data assumed Cpb equal to -0.464 for the containership. 

The inflow velocity U for the tanker is larger than that of the containership and the most of tanker’s cross-sections have bilge 
corners with relatively small radii of curvature. These are the reasons why Θs is assumed around upstream bilge corners, or 
points of Θs equal to or larger than 90°. The tank test data around midship cross-sections for the tanker leads to the assumed 
Cpb value equal to -0.950, lower than that of the containership probably due to larger U. Note that a trial calculation in which 
Θs were assumed at around downstream bilge corners led to Cpb equal to -1.488 and those cross-sections at X/Lpp equal to -0.25 
and -0.35 did not satisfy Eq. (2.2.42), the physical requirement of the separated streamline.  

 
Table 4.1.2 Flow parameters for the enhanced wake source model (Containership) 

  
 

Table 4.1.3 Flow parameters for the enhanced wake source model (Tanker) 
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The second through fourth columns from left in Tables 4.1.2 and 4.1.3 list the input parameters U, Θs, and Cpb for the 
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Because U of the containership is low and cross-sections have relatively round shapes at the bilge corner or center keel, the 
values of Θs are assumed equal to or smaller than 90° except at X/Lpp is equal to 0.45 and 0.35. Θs at X/Lpp equal to 0.45 is 
assumed larger than 90° due to its slender shape. Θs at X/Lpp equal to 0.35 is assumed slightly larger than 90° due to the 
continuity of the successive aft cross-section. Comparison of calculated Cd at the closest cross-sections to midship with 
Matsumoto’s tank test data assumed Cpb equal to -0.464 for the containership. 

The inflow velocity U for the tanker is larger than that of the containership and the most of tanker’s cross-sections have bilge 
corners with relatively small radii of curvature. These are the reasons why Θs is assumed around upstream bilge corners, or 
points of Θs equal to or larger than 90°. The tank test data around midship cross-sections for the tanker leads to the assumed 
Cpb value equal to -0.950, lower than that of the containership probably due to larger U. Note that a trial calculation in which 
Θs were assumed at around downstream bilge corners led to Cpb equal to -1.488 and those cross-sections at X/Lpp equal to -0.25 
and -0.35 did not satisfy Eq. (2.2.42), the physical requirement of the separated streamline.  

 
Table 4.1.2 Flow parameters for the enhanced wake source model (Containership) 

  
 

Table 4.1.3 Flow parameters for the enhanced wake source model (Tanker) 
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4.2 Separated streamline and Cp distribution 

Figures 4.2.1 through 4.2.9 and Figs. 4.2.10 through 4.2.16 are the calculation results of the containership and the tanker, 
respectively. Each figure consists of three subfigures. The top subfigure is a -pl. showing a separation point by the open circle, 
separated streamline, and positions of the double sources of strength 2Q except at the origin by the filled circle. Whether the 
filled circles are on the circular cylinder or the -axis distinguishes which wake source model is used for calculation, the 
original or the enhanced one. Note that one of the two double source positions for the tanker’s cross-section at X/Lpp equal to -
0.45 is not within the display. The middle subfigure is a -pl. showing a separated streamline in a physical plane. The bottom 
subfigure is also a -pl. showing Cp distribution on a ship cross-section. The line connecting consecutive edges of assumed 
vectors representing Cp normal to and originating from the surface of a cross-section stands for the pressure distribution. The 
scale is as Cp equal to 1 corresponds to the vector magnitude equal to Br/4 in each cross-section. 

The right-hand six columns in Tables 4.1.2 and 4.1.3 list calculated values. Results of cross-sections having  values are by 
the original wake source model, while those having l* values are by the enhanced wake source model. The magnitude of Cd 
correlates well with that of Q/U and that of Q/V representing the depth of separated streamline in the -pl. and the -pl., 
respectively, as mentioned in subsection 2.2.1.  

The enhanced wake source model calculates the two fore and one aft-end cross-section of the containership, and all but one 
cross-section of the tanker. Most of the separated streamline and Cp distribution in the -pls. seem appropriate. Negative Cp 
seems to appear in the high flow velocity region, especially around bilge corners and center keels. However, the separated 
streamline of the tanker’s aft-end cross-section where X/Lpp is equal to -0.45 seems to be unnatural. The acute center keel 
should result in large values of Cd, Q/U, and Q/V. The Lewis form approximation is quite poor around the center keel of 
this aft-end cross-section, though the comparison with the original sectional shape is not shown here. 
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assumed larger than 90° due to its slender shape. Θs at X/Lpp equal to 0.35 is assumed slightly larger than 90° due to the 
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Matsumoto’s tank test data assumed Cpb equal to -0.464 for the containership. 
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corners with relatively small radii of curvature. These are the reasons why Θs is assumed around upstream bilge corners, or 
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Cpb value equal to -0.950, lower than that of the containership probably due to larger U. Note that a trial calculation in which 
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and -0.35 did not satisfy Eq. (2.2.42), the physical requirement of the separated streamline.  
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Fig. 4.2.1 Containership’s sectional flow and 
Cp at X/Lpp=0.45. 

Fig. 4.2.2 Containership’s sectional flow and 
Cp at X/Lpp=0.35. 
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Fig. 4.2.1 Containership’s sectional flow and 
Cp at X/Lpp=0.45. 

Fig. 4.2.2 Containership’s sectional flow and 
Cp at X/Lpp=0.35. 
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Fig. 4.2.3 Containership’s sectional flow and 
Cp at X/Lpp=0.25. 

Fig. 4.2.4 Containership’s sectional flow and 
Cp at X/Lpp=0.15. 

 

 

 
 
 

    

    
 

  

Fig. 4.2.1 Containership’s sectional flow and 
Cp at X/Lpp=0.45. 

Fig. 4.2.2 Containership’s sectional flow and 
Cp at X/Lpp=0.35. 

185海上技術安全研究所報告　第 23 巻　第 2号（令和 5年度）研究調査資料

（277）



 

 

 
 
 

    

    
 

  

Fig. 4.2.5 Containership’s sectional flow and 
Cp at X/Lpp=0.05. 

Fig. 4.2.6 Containership’s sectional flow and 
Cp at X/Lpp=-0.05. 

 

 

 
 
 

    

    
 

  

Fig. 4.2.5 Containership’s sectional flow and 
Cp at X/Lpp=0.05. 

Fig. 4.2.6 Containership’s sectional flow and 
Cp at X/Lpp=-0.05. 
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Fig. 4.2.5 Containership’s sectional flow and 
Cp at X/Lpp=0.05. 

Fig. 4.2.6 Containership’s sectional flow and 
Cp at X/Lpp=-0.05. 

 

 

 
 
 

    

    
 

  

Fig. 4.2.5 Containership’s sectional flow and 
Cp at X/Lpp=0.05. 

Fig. 4.2.6 Containership’s sectional flow and 
Cp at X/Lpp=-0.05. 

186
 

 

 
 
 

    

 

    
 

  

Fig. 4.2.7 Containership’s sectional flow and 
Cp at X/Lpp=-0.15. 

Fig. 4.2.8 Containership’s sectional flow and 
Cp at X/Lpp=-0.25. 

 

 

 
 
 

    

    
 

  

Fig. 4.2.5 Containership’s sectional flow and 
Cp at X/Lpp=0.05. 

Fig. 4.2.6 Containership’s sectional flow and 
Cp at X/Lpp=-0.05. 

 

 

 
 
 

    

    
 

  

Fig. 4.2.5 Containership’s sectional flow and 
Cp at X/Lpp=0.05. 

Fig. 4.2.6 Containership’s sectional flow and 
Cp at X/Lpp=-0.05. 
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Fig. 4.2.9 Containership’s sectional flow and 
Cp at X/Lpp=-0.35. 

Fig. 4.2.10 Tanker’s sectional flow and Cp at 
X/Lpp=0.45. 
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Fig. 4.2.9 Containership’s sectional flow and 
Cp at X/Lpp=-0.35. 

Fig. 4.2.10 Tanker’s sectional flow and Cp at 
X/Lpp=0.45. 
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Fig. 4.2.11 Tanker’s sectional flow and Cp at 
X/Lpp=0.35. 

Fig. 4.2.12 Tanker’s sectional flow and Cp at  
-0.05≤X/Lpp≤0.25. 

 

 

 
 
 

   

    
 

  

Fig. 4.2.9 Containership’s sectional flow and 
Cp at X/Lpp=-0.35. 

Fig. 4.2.10 Tanker’s sectional flow and Cp at 
X/Lpp=0.45. 
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Fig. 4.2.13 Tanker’s sectional flow and Cp at 
X/Lpp=-0.15. 

Fig. 4.2.14 Tanker’s sectional flow and Cp at 
X/Lpp=-0.25. 
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Fig. 4.2.13 Tanker’s sectional flow and Cp at 
X/Lpp=-0.15. 

Fig. 4.2.14 Tanker’s sectional flow and Cp at 
X/Lpp=-0.25. 
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Fig. 4.2.15 Tanker’s sectional flow and Cp at 
X/Lpp=-0.35. 

Fig. 4.2.16 Tanker’s sectional flow and Cp at 
X/Lpp=-0.45. 

 

 

 
 
 

    

    
 

  

Fig. 4.2.13 Tanker’s sectional flow and Cp at 
X/Lpp=-0.15. 

Fig. 4.2.14 Tanker’s sectional flow and Cp at 
X/Lpp=-0.25. 
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4.3 Cd dependency on ΘΘ  s and Cpb  

To have a wider perspective than specific cases presented in the previous section 4.2, this section clarifies Cd dependency on 
Θs and Cpb. Figures 4.3.1 through 4.3.9 for the containership and Figs. 4.3.10 through 4.3.16 for the tanker show Cd contours 
as a function of Θs and Cpb. The flow speed U is 0.271 m/s for the containership and 0.651 m/s for the tanker as shown in Tables 
4.1.2 and 4.1.3, respectively. A filled circle in each figure stands for the calculation results shown in Tables 4.1.2 and 4.1.3, and 
Figs. 4.2.1 through 4.2.16. All figures also show lines of �1 and �2 in Eq. (3.2.2). Note that part of the contours near the 
upper and right-hand edges of each figure seems distorted due to unknown plotting algorism effects and, therefore, must be 
ignored. Also, note that the contour for the tanker’s cross-section at X/Lpp equal to -0.45 is not displayed because the Cd 
variation range exceeds 100 due to the acute center keel. 

As explained in subsection 2.2.3, calculation results in the hatched region below the �1 -line has separated streamlines 
intersecting the surface of ship cross-sections, which is physically irrational. The enhanced wake source model is limited only 
by the �1-line as the lowest Cpb, while the original wake source model is additionally limited by the �2 line as the highest Cpb 
as in Eq. (3.1.2).  

It is reasonable that Cd decreases as Cpb increases for a constant Θs. It is also reasonable that the smaller radius of curvature 
is the larger Cd is. On the other hand, the rough trend for a constant Cpb is that Cd increases as Θs increases. However, the local 
maximum tends to appear around the upstream bilge corner, and the local minim is around the downstream bilge corner, though 
no such clear trend appears for cross-sections without bilge corners. 

Characteristics of �1 reflects well the cross-section shape. �1 has a small value around the bilge corner or center keel 
where the radius of curvature is small. Since �2 becomes smaller in the upstream bilge corner than in the downstream one, 
most of the flow fields in which separations occur at the upstream bilge corner must rely on the enhanced wake source model. 
In general, the larger Θs is assumed, the more often the enhanced wake source model is employed. These facts confirm that the 
enhanced wake source model is more effective than the original one for applying to ship cross-sections. 

 

 

Fig. 4.3.1 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.45. 
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4.3 Cd dependency on ΘΘ  s and Cpb  

To have a wider perspective than specific cases presented in the previous section 4.2, this section clarifies Cd dependency on 
Θs and Cpb. Figures 4.3.1 through 4.3.9 for the containership and Figs. 4.3.10 through 4.3.16 for the tanker show Cd contours 
as a function of Θs and Cpb. The flow speed U is 0.271 m/s for the containership and 0.651 m/s for the tanker as shown in Tables 
4.1.2 and 4.1.3, respectively. A filled circle in each figure stands for the calculation results shown in Tables 4.1.2 and 4.1.3, and 
Figs. 4.2.1 through 4.2.16. All figures also show lines of �1 and �2 in Eq. (3.2.2). Note that part of the contours near the 
upper and right-hand edges of each figure seems distorted due to unknown plotting algorism effects and, therefore, must be 
ignored. Also, note that the contour for the tanker’s cross-section at X/Lpp equal to -0.45 is not displayed because the Cd 
variation range exceeds 100 due to the acute center keel. 

As explained in subsection 2.2.3, calculation results in the hatched region below the �1 -line has separated streamlines 
intersecting the surface of ship cross-sections, which is physically irrational. The enhanced wake source model is limited only 
by the �1-line as the lowest Cpb, while the original wake source model is additionally limited by the �2 line as the highest Cpb 
as in Eq. (3.1.2).  

It is reasonable that Cd decreases as Cpb increases for a constant Θs. It is also reasonable that the smaller radius of curvature 
is the larger Cd is. On the other hand, the rough trend for a constant Cpb is that Cd increases as Θs increases. However, the local 
maximum tends to appear around the upstream bilge corner, and the local minim is around the downstream bilge corner, though 
no such clear trend appears for cross-sections without bilge corners. 

Characteristics of �1 reflects well the cross-section shape. �1 has a small value around the bilge corner or center keel 
where the radius of curvature is small. Since �2 becomes smaller in the upstream bilge corner than in the downstream one, 
most of the flow fields in which separations occur at the upstream bilge corner must rely on the enhanced wake source model. 
In general, the larger Θs is assumed, the more often the enhanced wake source model is employed. These facts confirm that the 
enhanced wake source model is more effective than the original one for applying to ship cross-sections. 

 

 

Fig. 4.3.1 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.45. 
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Fig. 4.3.2 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.35. 
 

 

Fig. 4.3.3 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.25. 
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4.3 Cd dependency on ΘΘ  s and Cpb  

To have a wider perspective than specific cases presented in the previous section 4.2, this section clarifies Cd dependency on 
Θs and Cpb. Figures 4.3.1 through 4.3.9 for the containership and Figs. 4.3.10 through 4.3.16 for the tanker show Cd contours 
as a function of Θs and Cpb. The flow speed U is 0.271 m/s for the containership and 0.651 m/s for the tanker as shown in Tables 
4.1.2 and 4.1.3, respectively. A filled circle in each figure stands for the calculation results shown in Tables 4.1.2 and 4.1.3, and 
Figs. 4.2.1 through 4.2.16. All figures also show lines of �1 and �2 in Eq. (3.2.2). Note that part of the contours near the 
upper and right-hand edges of each figure seems distorted due to unknown plotting algorism effects and, therefore, must be 
ignored. Also, note that the contour for the tanker’s cross-section at X/Lpp equal to -0.45 is not displayed because the Cd 
variation range exceeds 100 due to the acute center keel. 

As explained in subsection 2.2.3, calculation results in the hatched region below the �1 -line has separated streamlines 
intersecting the surface of ship cross-sections, which is physically irrational. The enhanced wake source model is limited only 
by the �1-line as the lowest Cpb, while the original wake source model is additionally limited by the �2 line as the highest Cpb 
as in Eq. (3.1.2).  

It is reasonable that Cd decreases as Cpb increases for a constant Θs. It is also reasonable that the smaller radius of curvature 
is the larger Cd is. On the other hand, the rough trend for a constant Cpb is that Cd increases as Θs increases. However, the local 
maximum tends to appear around the upstream bilge corner, and the local minim is around the downstream bilge corner, though 
no such clear trend appears for cross-sections without bilge corners. 

Characteristics of �1 reflects well the cross-section shape. �1 has a small value around the bilge corner or center keel 
where the radius of curvature is small. Since �2 becomes smaller in the upstream bilge corner than in the downstream one, 
most of the flow fields in which separations occur at the upstream bilge corner must rely on the enhanced wake source model. 
In general, the larger Θs is assumed, the more often the enhanced wake source model is employed. These facts confirm that the 
enhanced wake source model is more effective than the original one for applying to ship cross-sections. 

 

 

Fig. 4.3.1 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.45. 
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Fig. 4.3.4 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.15. 
 

 

Fig. 4.3.5 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.05. 
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Fig. 4.3.4 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.15. 
 

 

Fig. 4.3.5 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.05. 
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 Fig. 4.3.6 Containership’s Cd (Θ s, Cpb ) at X/Lpp=-0.05. 
 

 

Fig. 4.3.7 Containership’s Cd (Θ s, Cpb ) at X/Lpp=-0.15. 
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Fig. 4.3.4 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.15. 
 

 

Fig. 4.3.5 Containership’s Cd (Θ s, Cpb ) at X/Lpp=0.05. 
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Fig. 4.3.8 Containership’s Cd (Θ s, Cpb ) at X/Lpp=-0.25. 
 

 
Fig. 4.3.9 Containership’s Cd (Θ s, Cpb ) at X/Lpp=-0.35. 
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Fig. 4.3.8 Containership’s Cd (Θ s, Cpb ) at X/Lpp=-0.25. 
 

 
Fig. 4.3.9 Containership’s Cd (Θ s, Cpb ) at X/Lpp=-0.35. 
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Fig. 4.3.10 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=0.45. 
 

 

Fig. 4.3.11 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=0.35. 
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Fig. 4.3.8 Containership’s Cd (Θ s, Cpb ) at X/Lpp=-0.25. 
 

 
Fig. 4.3.9 Containership’s Cd (Θ s, Cpb ) at X/Lpp=-0.35. 
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Fig. 4.3.12 Tanker’s Cd (Θ s, Cpb ) at -0.05≤X/Lpp≤0.25. 
 

 

Fig. 4.3.13 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=-0.15. 
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Fig. 4.3.12 Tanker’s Cd (Θ s, Cpb ) at -0.05≤X/Lpp≤0.25. 
 

 

Fig. 4.3.13 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=-0.15. 
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Fig. 4.3.14 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=-0.25. 
 

 

Fig. 4.3.15 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=-0.35. 
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Fig. 4.3.12 Tanker’s Cd (Θ s, Cpb ) at -0.05≤X/Lpp≤0.25. 
 

 

Fig. 4.3.13 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=-0.15. 
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Fig. 4.3.16 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=-0.45. 
 

4.4 Cd comparison with tank test data 
Two-dimensional drag coefficients along ship length are shown in Figs. 4.4.1 and 4.4.2 compared with the tank test data for 

the containership and the tanker, respectively. Although no calculation result is obtained at the aft-end cross-section, the 
enhanced wake source model explains well the characteristics of the containership’s tank test data. For the tanker, the enhanced 
wake source model also explains the tank test data except for the fore-end and the aft-end cross-sections. The discrepancy at 
the fore-end cross-section is probably due to the three-dimensional effect. The discrepancy at the aft-end cross-section is due 
to both the three-dimensional effect and poor Lewis form approximation, especially around the center keel. 

 

      

Fig. 4.4.1 Cd distribution of containership.          Fig. 4.4.2 Cd distribution of tanker. 
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Fig. 4.3.16 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=-0.45. 
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wake source model also explains the tank test data except for the fore-end and the aft-end cross-sections. The discrepancy at 
the fore-end cross-section is probably due to the three-dimensional effect. The discrepancy at the aft-end cross-section is due 
to both the three-dimensional effect and poor Lewis form approximation, especially around the center keel. 
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5.  Concluding remarks 

 
This paper presented the analytical procedure to apply Parkinson’s wake source model13) to potential flow around ship cross-

sections. Lewis form14) approximated the ship cross-sections. The analysis clarified difficulties in the application that mainly 
occur in flow that separates around the upstream bilge corner of thick cross-sections or center keel of thin cross-sections. The 
present study proposed the enhanced wake source model and resolves the difficulties. Applications of the enhanced wake source 
model to the containership and the tanker using assumed base pressure and separation points show the appropriate separated 
streamlines and pressure distributions for cross-sections with adequate Lewis form approximations. The study discusses the 
effect of the separation point and the base pressure in the downstream region on the drag coefficient of the ship cross-sections. 
Comparison of the sectional drag coefficient distributions along ship length with tank test data of the segmented ship models11,12) 
validated and showed the potential of the extended wake source model. 
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Fig. 4.3.16 Tanker’s Cd (Θ s, Cpb ) at X/Lpp=-0.45. 
 

4.4 Cd comparison with tank test data 
Two-dimensional drag coefficients along ship length are shown in Figs. 4.4.1 and 4.4.2 compared with the tank test data for 

the containership and the tanker, respectively. Although no calculation result is obtained at the aft-end cross-section, the 
enhanced wake source model explains well the characteristics of the containership’s tank test data. For the tanker, the enhanced 
wake source model also explains the tank test data except for the fore-end and the aft-end cross-sections. The discrepancy at 
the fore-end cross-section is probably due to the three-dimensional effect. The discrepancy at the aft-end cross-section is due 
to both the three-dimensional effect and poor Lewis form approximation, especially around the center keel. 

 

      

Fig. 4.4.1 Cd distribution of containership.          Fig. 4.4.2 Cd distribution of tanker. 
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