76 二相流に関する日独共同研究の成果

推進性能部	日夏宗彦、	日野孝則、	塚田吉昭、	深澤良平
構造強度部	田中義照			
東京大学	川村隆文	(研究当時推	進性能部)	

1.まえがき

二相流の数値シミュレーション技術の開発は、 船舶技術における船首砕波、プロペラキャビテ ーションの現象解明に重要な手段を提供するの みならず、たとえば海洋における砕波による気 液交換メカニズムを解明するツールを提供する など、基礎科学的見地からも重要である。今回 上記背景のもとに、二相流数値シミュレーショ ン技術の開発のため、科学技術庁(当時)科学 技術振興調整費により当研究所とドイツのハン ブルグ-ハーブルグ大学(TUHH, Peric 教授)と 共同研究を行った。本共同研究の特色は同一の 対象流場に対し、日独双方の計算手法を用いて シミュレーションし、計算結果と実験結果を比 較・考察したところにある。以下、その概要と 結果を報告する。

2.シミュレーションの対象流場

シミュレーション技術の開発には検証実験の 実施が不可欠である。二相流シミュレーション の検証としてふさわしい実験の条件として、砕 波を伴うような非線形性の強い流場であること、 流れを規定する境界は単純なものであることが あげられる。このような観点から、本研究では 次の二つの流れを対象流場として採用した。一 つは水線面形状が半円とそれに続く平行部から なり、かつ水面近傍は垂直壁で構成される数式 船型まわりの流場で、他の一つは矩形容器内に 封入された流体の単純水平単振動によるスロッ シング流で、実験データは本研究とは別に海上 技術安全研究所と日本海事協会との共同研究で 得られた成果を利用した。

図-1 に今回用いた数式船型の概形を表-1 に本 模型船の水線面形状の座標を、図-2 にスロッシ ング実験に用いた矩形形状を示す。これらの流 場については、シミュレーションの他に実験を 行い、シミュレーション検証用のデータを収集 整備した。

x	у	х	у	
-0.5	0	0	-0.15	
-0.49802	-0.24267	0.1	-0.15	
-0.49215	-0.47895	0.15	-0.15	
-0.48253	-0.70261	0.17414	-0.14935	
-0.46941	-0.90776	0.21034	-0.14694	
-0.45315	-0.1089	0.24655	-0.14166	
-0.43418	-0.12415	0.28276	-0.13346	
-0.41298	-0.13614	0.31897	-0.12223	
-0.39013	-0.14453	0.35517	-0.10771	
-0.36622	-0.14912	0.39138	-0.8961	
-0.35	-0.15	0.42759	-0.67359	
-0.3	-0.15	0.46379	-0.37416	
-0.2	-0.15	0.5	0	
-0.1	-0.15	-	-	

表-1 数式模型船の水線面座標

図-1 数式模型概観図

スロッシングについては水平方向の水平振動 モードのみを対象とし、表-2 に示す条件のもと で計算を実施した。

静止水位	振動周期	片振幅			
20%	1.74 秒	60mm			
20%	1.95 秒	60mm			
60%	1.40 秒	15mm			
60%	1.47 秒	15mm			

表-2 スロッシング条件

図-2 スロッシング実験用矩形箱

3.計算手法

3.1 海上技術安全研究所側の計算法の概略

海上技術安全研究所側で用いた計算手法は、 以下の2種類のコードである。

1) 擬似圧縮法による非構造格子系で離散化した 定常流計算手法で、界面はレベルセット法に より捕獲する。今回の手法では水側のみ計算

した。数式船型 周りの流場を計算した。

2) MAC 型による非定常流計算法で界面はレベル セット法により捕獲する。スロッシング流の シミュレーションに用いた。計算手法として は水、空気の両相の計算が可能である。

3.2 TUHH 側の計算法の概略

TUHH 側のコードは、SIMPLE 法をベースと した非定常計算法で、水と空気の両方を計算し ている。界面は VOF 関数法により捕獲している。 VOF 関数を界面でシャープにとらえるためのス キームを用い、非構造格子系による離散化を用 いている。

このほかに、共同研究実施時に海技研(当時

船研)に滞在していたデンマーク工科大学 (DTU)の Nielsen が VOF 法による界面捕獲法に 基づく MAC 型の非定常流計算法について研究 を進めており、スロッシング問題で今回の共同 研究に参加した。ただしコードは二次元計算用 で、空気側は計算していない。

4. 数式船型まわりの流れにおける実験と

シミュレーション結果の比較

数式船型周りの自由表面流のシミュレーショ ン結果および実験結果を示す。

図-3(a) 数式船型周りの流場計算結果(TUHH)

図-3(b) 数式船型周りの流場計算結果(海技研)

図-3(c)数式船型周りの流場実験結果

これでみると、両計算手法とも、実現象の様 子をよくとらえている。海技研の方法は定常流 計算法なので、船側で見られる砕波の部分はな めらかな水面になっている。

次に船速波形および圧力分布を比べる。TUHH コードで得られた船側波形(図-4(a))は、非定 常計算で得られた結果の時間平均である。実験 結果と非常によく合っている。計算に当たって は、3種類の計算格子(約 10 万セル、40 万セ ル、215 万セル)を使っているが、この波高分 布は40 万セルの結果である。

一方、海技研コードで計算された船側波形 (図)-4(b))をみると、船体中央部の山が計算 値ではかなり低めになっている。これを図-5 に 示した圧力分布の結果と見比べると、海技研側 の結果の方が、水面に沿う圧力勾配が TUHH コ ードの結果に比べ、なだらかであることがわか る。海技研コードは定常流計算コードであるこ とと TUHH コードの実験との一致度を考える と、砕波が著しい極めて非定常性の強い流場計 算にはやはり非定常コードで計算することが必 要と考えられる。もっとも擬似圧縮近似に基づ く定常流解析手法でも、非定常性の強くない流 場に対しては、実験結果と極めてよく一致する 結果が示されている[1]ことから、コードの善し 悪しと言うことでなく、流場の性質にあった計 算手法を採用すべきであることを物語っている ものと思われる。

図-5(c) 船体表面圧力分布(実験値)

5. スロッシング流場における実験と シミュレーション結果の比較

次にスロッシングの結果を示す。図-6 に例と して、TUHH、海技研、DTU の方法で得られた 水位 20%、周期 1.74 秒、振幅 60mm の sway 運 動における、図-2の P1 位置(箱底部)での圧 力の時系列結果を示す。海技研側の計算はタン ク奥行き方向にはメッシュは4分割とした。こ れは流れが2次元的に取り扱えるであろうと考 えたためである。三者とも、計算値は実験結果 をよく表している。しかし衝撃圧の捉え方をみ ると、海技研側の結果の方が TUHH 側の結果に 比べピークが鈍い。P1 の位置は常に水中にある ため、空気側の計算との相互干渉は表面的には 現れない。しかし現象としては、壁面に達した 水塊が天板まで急激に達し、それが崩れて底面 をたたくので、この過程が正確に計算されては じめて底部の圧力も正しく計算されると考えら れる。このため、図-7 にこの状態の水位の様子 を示した。図で見ると TUHH 側の結果は天板に 水塊がぶつかっている様子をとらえている。一 方、海技研側の結果では、天板へ到達する様子 が十分に表現されていない。またここでは示さ ないが、VOF 法に基づく DTU コードで計算さ れた結果では、天板への到達は計算されており、 自由表面を表現するレベルセット関数の計算途

図-6(a) P1 位置における圧力の時系列比較 水位 20%、周期 1.74 秒、振幅 60mm (TUHH)

図-6(b)P1 位置における圧力の時系列比較 水位 20%、周期 1.74 秒、振幅 60mm (海技研)

図-6(c)P1 位置における圧力の時系列比較 水位 20%、周期 1.74 秒、振幅 60mm (DTU)

図-7(a) 水位 20%、周期 1.74 秒、振幅 60mm の sway 運動時の水位の様子(TUHH)

図-7(b) 水位 20%、周期 1.74 秒、振幅 60mm の sway 運動時の水位の様子(海技研)

上の再定義の方法など、自由表面をとらえる手 法が、このような結果の差の原因となっている 可能性がある。この水位の計算結果と衝撃圧の 計算結果から、水面が壁面に急激に接するよう な場面を正確に計算できること、空気を巻き込 んだときに空気側の圧力も正確に計算できるこ と等が正確な衝撃圧の計算に不可欠であると思 われる。なお、海技研の結果は位相にわずかの ずれが見られるが、別の周期では見受けられな い場合もあり、原因は不明である。

DTU の方法で得られた圧力分布 (図-6(c))の 結果をみると、衝撃圧のピークはよく計算され ている。しかし、運動が進むと不自然なピーク が計算されていること、位相がわずかにずれて いくことが見られる。これについて TUHH 側で は2次元および3次元計算の両方を実施してお り興味深い結果を得ている。つまり、3次元計 算において、波面に3次元性に起因する奥行き 方向の非対称が現れない内はその結果は2次元 計算の結果とよく一致するが、3次元性に基づ く波面の非対称性が現れ始めると、2次元計算 の結果と比べて位相がずれ始めることを指摘し ている。ただし、圧力値の全体的な傾向につい ては2次元計算でも3次元計算でもほぼ同じ結 果が得られるとしており、実際、今回の計算で は、奥行き方向にそれほどメッシュ数を確保し ていなかった海技研側の結果や2次元計算であ る DTU の結果も、TUHH 側の結果と定性的には よく似たものとなっている。

ちなみに、実験においても低水位では、漕内 で液体が回転するスワーリングと呼ばれる現象 が頻繁に観察され、流れの3次元性が重要であ ることが認められた。

あとがき

以上、砕波を伴う船体周り流れおよび矩形タ ンク内のスロッシング流を共通のテーマとして 取り上げ、それぞれの機関が持つ数値シミュレ ーション技術を用いてシミュレーションを行い、 実験結果および計算結果を比較し、計算手法に ついて考察した。その結果、

- 非定常性が極めて強い流場のシミュレーションには、非定常流計算手法を用いた上で時間 平均を取る方が実験結果をよく表すこと。
- 2) スロッシングのように衝撃圧を伴う流場のシ ミュレーションには、空気側のシミュレーシ ョンも無視できないと思われること。
- 3)一見、二次元性が優位と思われるようなスロッシング問題の場合でも、今回のように激しい運動を伴う場合は、もはや二次性を想定したコードあるいはメッシュの分割では、十分な精度が得られず、流場の三次元性を考慮した計算する必要があること。

がわかった。今回共同研究を通じて得られた実 験結果は、今後も、二相流シミュレーション技 術の検証データに有用と思われるので、他の機 関でも利用できるように整備したい。

今回得られた研究成果は平成13年2月に船舶 技術研究所においてミニワークショップを開催 し[2]、機関の参加者が集まり互いに発表した。 自由表面における乱流の取り扱い等まだ未知の 部分が残されているが、現状でもかなり複雑な 自由表面の計算が可能であることが明らかとな った。今回得られた知見をもとにさらなる手法 の改良に努めたい。

最後に科学技術庁(現文部科学省)およびス ロッシング実験データ提供に御快諾いただいた 日本海事協会に謝意を表します。またデンマー ク工科大学から参加した Mr.K.B.Nielsen に謝意 を表します。

参考文献

[1] Hirata et al., An Efficient Algorithm for Simulating Free-Surface Turbulent Flows around an Advancing Ship, J.S.N.A.J. vol.185, (1999)

[2] Proceedings of SRI-TUHH mini-Workshop on Numerical Simulation of Two-Phase Flows, SRI & TUHH Feb., (2001)