材料加工部 *秋山繁、古谷典・ 群馬大学 天田重庚

1.まえがき

構造用セラミックスには、優れた熱抵抗特性を 有するものがあり、高温あるいは高熱流束の環境 下で最適な材料である。そのため、セラミックス の熱強度特性を研究することは、非常に重要であ る。近年、セラミックス表面にレーザパルスを照 射して、構造用セラミックスの熱衝撃抵抗を評価 する新しい手法¹⁾が開発された。この手法は、従 来から使用されている水中クエンチング試験に比 べて、簡便、高熱流束、安定な熱伝達係数が維持 できる等の優れた利点を有している。このレーザ 照射法は、レーザビームの臨界破壊出力密度によ って熱衝撃強度を評価するものである。

レーザ照射法におけるセラミックスの破壊メカ ニズムは、まだはっきりと解明されていない。し かし、熱衝撃によるセラミックスの破壊は、材料 の内部に存在する欠陥から発生すると考えられる。 このことは、熱衝撃強度が材料の破壊靭性値と密 接に関連していることを意味する。そのため、こ の研究は、レーザ照射法による熱衝撃強度 P_L と インデンテーション法による破壊靭性値 K_{IC} 及び 熱衝撃破壊抵抗係数 R' との関係を明らかにする。

2. レーザ照射による熱衝撃試験

炭酸ガス(CO₂)レーザ照射による熱衝撃試験に

用いたセラミックスは、TiB₂、Si₃N₄、Cr₃C₂、Al₂O₃、 3Al₂O₃・2SiO₂、MACOR(:商品名、SiO₂-MgO-Al₂O₃ を主成分とするマシナブルセラ ミックス)である。試験片は、TiB₂のみ 30 x 30 x 8 mm の平板で、他は全て、直径 50 mm、高さ

10 mm の円板である。これらセラミックスの物 理特性を表 - 1 に示す。

炭酸ガスレーザを用いた熱衝撃試験の構成を図 - 1に表す。用いた試験機は、定格出力 1kW と 3kW の 2 台の炭酸ガスレーザで、ビームモード は、それぞれガウスモード(TEM₁₀)とマルチモー ド(TEM₁₀)である。試験片表面のディフォーカス なレーザビームのスポット径を5、10、15、及 び 20 mm と変化させ、レーザビームを連続発振 で試験片表面に1秒間照射した後、自然空冷させ た。

レーザビームを照射された円板形試験片モデルの温度分布と熱応力分布は、汎用の構造解析有限 要素法プログラムMARCを用いて求めた。

図 - 1 レーザ熱衝撃試験方法

表 - 1	計算に用いたセラミックスの物理	特性	
		T .D	

	TiB ₂	Si_3N_4	Cr_3C_2	Al_2O_3	3Al₂O₃•	MACOR	
					2SiO ₂		
Density $(x10^3 \text{ kg/m}^3)$	4.40	3.20	6.50	3.90	3.10	2.52	
Coefficient of thermal expansion $(x10^{-5})$	0.76	0.32	1.16	0.81	0.50	1.14	
/K)							
Thermal conductivity [W/(m·K)]	79.6	17.0	12.0	8.37	6.0	1.46	
Specific heat $[x10^3 J/(kg \cdot K)]$	0.712		0.553	0.796	0.750	0.790	
		0.500					
Tensile strength (MPa)	318	396	225	226	167	112	
Bending strength (MPa)	635	686	390	392	294	123	
Compressive strength (MPa)	-		-	2,550	1,961	369	
		4.903					l

Young's modulus (GPa)	474	275	372	353	216	66.9
Poisson's ratio	0.09		0.245	0.25	0.3	0.29
		0.27				

用いた要素は、8節点四辺形軸対称要素で、モデ ル及び周囲の空気の初期温度は、20 とした。 レーザ照射を受けたセラミックスに生じた応力が、 引張強さ又は圧縮強さに達した時、材料が破壊す ると仮定して、セラミックスの臨界破壊曲線²⁾が 図 - 2のように得られた。それらは、試験片に破 壊が生じる臨界出力密度 P_c(W/mm²)と炭酸ガスレ ーザのスポット径D(mm)の関係を表している。 破壊領域は、各曲線の上側である。MACOR の場 合は、圧縮強さが、他のセラミックスと比較して 極端に小さい³⁾ので、圧縮強さで破壊したと仮定 して熱衝撃強度が評価でき、他は全て引張強さで 評価できた。

臨界出力密度は、図 - 2 に表されているように、 スポット径が小さい領域では、急激な減少が見ら れ、スポット径が大きくなるに従って、それぞれ 次第に漸近値に収束する。ここで、レーザ照射法 による熱衝撃強度は、この漸近値、即ちレーザビ ームのスポット径に依存しない臨界出力密度の最 小値 *P_L(W/mm²)によって定義できる。*

表 - 2 に解析値 $P_L と実験値 P_c の値を示す。D$ = 20 mm における $Si_3N_4 \ge Cr_3C_2$ の実験から得られ た臨界出力密度 P_c は、理論計算から得られた P_L の値と比較して小さかった。その原因として、寸 法効果とレーザ照射面の化学反応が考えられるが、 さらに詳細な検討が必要である。TiB₂の実験によ る臨界出力密度 P_c は、必要な出力が、実験に用 いたレーザの出力を超えるため、D = 20 mm では 得られなかった。

図-2 各種セラミックスの臨界破壊曲線

表-2 解析結果と実験結果

	P_{L}	$P_c(W$	// mm ²)		
		[:D=10	[:D=20		
	(W/mm^2)	1	1		
TiB ₂	16.5	36.5	-		
Si ₃ N ₄	4.2	5.6	3.0		
Cr_3C_2	3.4	3.3	2.2		
Al_2O_3	2.9	2.9	2.3		
3Al ₂ O ₃ · 2SiO ₂	1.5	1.9	1.5		
MACOR	0.6	0.5	0.3		

3.破壊靭性値の測定

マイクロビッカース硬さ試験機を用いて、イン デンテーション法により破壊靭性値を測定した。 レーザ照射法により生じたき裂の寸法と比較する ことを考慮して、作用荷重 4.9 N と 9.8 N を採用 した。き裂と圧痕の寸法は、それぞれ7点の平均 値をとり、走査型電子顕微鏡 SEM)を用いて測 定した。また、インデンテーション破壊の模式図 を図 - 3 に示す。ここで、P は押し込み荷重、a は圧痕の対角線の半分の長さ、c は試験片表面の インデンテーションき裂の半分の長さ、1 はc - a である。経験的に、破壊靭性値K_{ic}は、c/a 2.3 ~ 2.5 の場合は浅い楕円状の表面型き裂(いわゆ る Palmqvist crack)に対する式で評価され、c/a が それ以上の場合はメジアンクラックに対する式で 評価される⁴⁾。また、表面型き裂の場合、P はlに比例し、メジアンクラックの場合、c³²に比例 する⁴⁾。本実験では、c/a 2.3 ~ 2.5、P l で あるので、K_{ic}はNiiharaらによる表面型き裂に対 して提案された(1)式⁵⁾

によって評価する。

(1)

ただし、*E はヤング率である。実験結果は、表 -3に示す。*

4. $P_L \geq K_{IC} の関係$

セラミックスの破壊は、欠陥から発生するの で、熱衝撃による破壊もまたそれらの欠陥から発 生する。そのため、熱衝撃強度はセラミックスの 破壊靭性値に関連すると考えられる。表 - 3 に示 すレーザ照射法による熱衝撃強度 P_L とインデン テーション法による破壊靭性値 K_{LC}の関係を図 -4 に表す。両者は非常に強い相関性を示し、この 結果からも前述のことが証明される。P_L とK_{LC}の 関係は、線形近似で表され、両者の 関係は、(2)式の指数関数で与えられる。

(2)

よって、熱衝撃強度 *P_Lは、破壊靭性値 K_{lc} から推 定することができる。逆に、破壊靭性値 K_{lc} は、 (3)式の自然対数関数で表せることができ、<i>P_L* から推定できる。

(3)

図-3 インデンテーション破壊の模式図

表 - 3 K _{IC} とP _L の比較	
---	--

	K_{IC} (MPa· m ²)	$\frac{P_L}{(W/mm^2)}$
TiB ₂	4.53	16.5
Si ₃ N ₄	4.22	4.2
Cr_3C_2	3.88	3.4
Al ₂ O ₃	3.73	2.9
3Al ₂ O ₃ · 2SiO ₂	2.22	1.5
MACOR	1.86	0.6

図 - 4 $P_{L} \geq K_{IC}$ の関係

5. P」と熱衝撃破壊抵抗係数

熱衝撃がセラミックス中に存在する微小き裂の 成長を招き、それによる強度の低下が問題になる 場合、セラミックスの耐熱衝撃性は、熱衝撃破壊 抵抗によって評価される。一定熱流束加熱・冷却に 対して、熱衝撃破壊抵抗係数*R*′は、 (4)式⁶′で表される。

(4)

ただし、*k は*熱伝導率、 _/は破壊強度、 はポ アソン比、 は線膨張係数である。レーザ照射に よる熱衝撃強度 *P*_Lと熱衝撃破壊抵抗係数 *R'*の関 係を求め、図 - 5 に表す。*P*_Lは、両対数軸表示 で *R'と*線形関係(5)式で表され、*P*_L *R'*²⁶⁴⁶で ある。

(5)

よって、 P_L は、セラミックスの熱衝撃破壊抵抗 を評価するパラメータと成り得ることがわかる。 また、熱衝撃の程度が小さい場合には、 T_c R'の関係⁷⁾がある。従って、 P_L $T_c^{0.646}$ となり、 熱衝撃強度 P_L は、セラミックスにおけるクエン チング法の臨界温度差 $T_c($)に相当する破壊 クライテリオンであることがわかる。

6.結論

レーザ照射法による熱衝撃試験とインデンテー

ション法による破壊靭性試験が、幾つかのセラミ ックスを用いて行われ、熱衝撃強度と破壊靭性値 が得られた。両者の結果は、良い相関関係を示し た。従って、熱衝撃強度は、セラミックスの破壊 靭性値と密接な関係があると考えられる。得られ た結果は、以下のように要約される。

- レーザ照射によるセラミックスの熱衝撃強度
 は、P_Lによって評価できる。
- (2)マイクロビッカース硬さ試験機を用いて、イ ンデンテーション法により破壊靭性値 K_{ic} を 評価した。
- (3) P_L と K_{IC} の関係は、強い相関性を示し、両者 の関係は(2)式の指数関数式によって表され、 P_L は K_{IC} によって推定できる。
- (4)*P*_Lは、両対数軸表示で*R*'と線形関係(5)式で 表され、セラミックスの熱衝撃破壊抵抗を評
- 図 5 熱衝撃強度 P_Lと熱衝撃破壊抵抗係数 R' の関係

価するパラメータと成り得る。

(5)熱衝撃強度 P_L は、セラミックスにおけるク エンチング法の臨界温度差 T_c ()に相当 する破壊クライテリオンである。

参考文献

- 中川:熱応力緩和傾斜機能材料開発のための 破壊強度評価に関する研究,東北大学修士論 文,(1988).
- 2)秋山,天田,千田,島田,古谷,矢野:炭化 クロムセラミックスのレーザ熱衝撃強度に関 する研究,66-645(2000),186-192.
- Akiyama, S. and Amada, S.: A New Method to Evaluate the Thermal Shock Resistance of Ceramics by Laser Pulse Irradiation, Fusion Technology, 23-4 (1993), 426-434.
- 4) 西田,安田:セラミックスの力学的特性評価,
 日刊工業新聞社,(1991),83.
- Niihara, K., Morena, R. and Hasselman, D.P.H., Journal Material Society Letters, 1-13(1982).
- 6) 日本セラミックス協会編、セラミックスの機 械的性質,(1988),69-71.
- 7) 西田, 安田: セラミックスの力学的特性評価,

日刊工業新聞社,(1991),222-224.