機関動力部

3 *張 潔,高杉喜雄,石村惠以子,菅 進

1. はじめに

舶用ディーゼル機関の排ガス特性の改善を目的 として、我々は実験用ディーゼル機関の燃料噴射 系を油圧駆動電子制御方式に改造し、A重油およ び乳化燃料を使用した運転試験を実施した1)2)3)。 この結果、A重油使用の場合、低負荷では排ガス 特性と燃料消費率を同時に改善できる着火時期を 選ぶことができ、燃料噴射系の電子制御化が排ガ ス特性の改善に有効であることを実証した。しか し、最適な噴射時期(着火時期)と噴射圧の組み 合わせは、燃料によっても負荷によっても異なっ ており、制御パラメーターの最適な組み合わせを 実験によって探し出すことは容易ではない。この ため、広範な運転条件に対して最適条件を探索す る方法として、数値解析法の適用が望まれる。デ ィーゼル機関の実サイクルの数値解析については 多くの研究が行われているが、我々は比較的簡便 な計算法を用いて、計測された圧力から熱発生率 および温度分布の解析を行った。計算結果は電子 制御化で得られた実験結果を定性的によく説明す るものであり、本計算法は最適燃焼設計の研究に 有用と思われるので、特徴的な適用例について報 告する。

2. 解析の方法

燃料噴射系の噴射特性(噴射時期、噴射圧パタ ーン等)と噴霧特性はディーゼル機関の排気特性 と燃料消費率に大きな影響を与える。燃料噴射特 性から機関特性までを関連づけて検討するために は、燃焼過程での熱発生率と筒内温度・圧力の詳 細を知る必要がある。ここでは広い範囲での最適 化条件について考察するために、計算には簡略化 した方法を採用することにした。

圧縮行程から燃焼、膨張行程までの筒内熱発生 率 d Q/d θ は(1)式から、筒内温度Tは完全ガス の式(2)から求めることができる。

$$\frac{dQ}{d\theta} = \frac{\kappa}{\kappa - 1} p \frac{dV}{d\theta} + \frac{1}{\kappa - 1} V \frac{dp}{d\theta}$$
(1)

$$T = pV / MR \tag{2}$$

ここで、気筒圧力pは計測値を用い、気筒容積

Vは機関寸法からクランク角θの関数として求める。計算の簡略化のため、比熱比κとガス定数R は一定と仮定する。dQは燃焼による熱発生や壁面からの伝熱の総和であるが、ここでは単に作動ガ スへの入熱と見なす。

計算式(2) で必要な簡内ガス質量Mは、吸気 弁が閉じたクランク角(-145度)における気筒体 積に、吸気管で測定した過給圧および中間冷却器 出口における空気温度を筒内圧力および筒内温度 として計算した。燃料噴射後の燃料による質量の 増加は無視した。比熱比は1.35とし、ガス定数R は30とした。なお、排気弁が開いたあとは(2) 式は成り立たないが、温度計算値が急激に変化す る点から排気弁が開いたクランク角を知ることが できる。

3.実験結果の解析

最適燃焼を実現するためには、燃料や負荷に応 じて、噴射時期、噴射圧、噴射率等の適切な組み 合わせが必要である。これまでに我々が実施した 実験では、装置の制限などもあって最適化条件に 至らなかった場合もあるが、電子制御で得られた 種々の噴射特性に関して熱発生率解析を行い、機 関性能と関連づけて考察することは、最適化条件 を明確にする上で重要である。以下に特徴的な例 についての検討結果を示す。

実験は表1に示す3気筒4サイクルディーゼル 機関(定格出力257kW、回転速度420rpm)を用い て行った。負荷は舶用特性とし、25%、50%、75%、 100%負荷の機関速度はそれぞれ260rpm、330rpm、 380rpm、420 rpmとなる。燃料はA重油および乳化 燃料を使用した。

表 - 1 実験機関の要目

型式	4サイクルディーゼル機関
シリンダー	230 φ ×380、3気筒
最大出力×回転数	257kW×420 r pm
圧縮比	13.7

筒内圧力はYSK Systems社製のディーゼルエン ジン分析計(NH-X分析計)を用いて測定した。 圧力センサーは実験機関の構造上の制約から、気 筒内壁から機関外部に引き出された圧力計測管の 先端に取り付けた。No.1,No.2気筒の計測管の長さ は約250mmで、No.3気筒ではやや短い。圧力は計 測管内部で発生する振動波が重なって計測される ため、デジタルローパスフィルターで振動成分を 和らげる処理を行った。

3.1 A重油使用時の実験結果の解析

A重油使用、25%負荷における実験結果と熱解 析結果を図1a~eに示す。着火時期を遅くすると 熱発生率(図1c)の最大値は高くなるが、最高 温度(図1d)および最高圧力(図1e)は下が り、図1aに示す実験結果のNOx低下とよく対応 する。着火時期を10度とした場合、図1dでは膨 張後半で简内温度が高くなり、燃焼が遅れた様子 を表わしており、図1aの燃料消費率の増加と対 応する。

負荷が増加した場合でも燃焼終了が遅れ過ぎな い条件で着火時期を遅らせることによって、NO xと燃費に関しての最適条件が得られる。しかし、 負荷が増加すると噴射持続時間は増加し、着火時 期の制御範囲は限定されたものになる。図2に負 荷を75%にした場合の解析結果の一例を示す。

3.2 乳化燃料使用時の運転結果の解析

図3に乳化燃料を使用した場合の解析結果を示 す。乳化燃料の場合、加水による燃料の粘度の増 加や質量流量の増加、さらに着火遅れの増加によ る影響が現れる。25%負荷(図3a)の場合を見 ると、最大熱発生率はA重油に比べて著しく高く なり、燃焼はオットーサイクル的になっているこ とが分かる。これは着火遅れが増加した結果、燃

料噴射が終わってから着火し、燃焼が急激に進む ためと思われる。負荷が大きくなると噴射時間が 長くなり、着火後も燃料噴射が続いてディーゼル 燃焼的な傾向に戻り、dQ/d 0の最大値は低下する

(図3b)が、加水による燃料流量の増加によって 燃焼終了はA重油の場合よりさらに遅れるため、 着火時期の可変範囲は一層狭まくなる。

3.3 カム駆動と電子制御油圧駆動のdQ/d θ の比較

カムと油圧駆動では最高噴射圧と噴射圧パター ンは異なった特性を示す。図4a、bに75%負荷 における噴射圧特性と熱発生率解析結果の一例を、 図4cにはこのときの燃費とNOx排出率を示す。

図-2 着火時期による特性(75%負荷)

図-3 乳化燃料使用時の熱発生率 (加水率 30%)

A重油使用の場合、カム駆動と油圧駆動の熱発生 率特性の違いは顕著ではないが、着火時期の最適 化によって燃費とNOx排出特性はカム駆動の場 合より改善された。乳化燃料の場合は、前述のよ うに噴射時間が長くなって燃焼終了が遅れ、NOx は低下するものの燃費が悪化するという機関性能 の結果(図4c)を裏づけている。

4. 逆解析例

本法を用いて、任意の熱発生率分布を与える場 合のシリンダー内温度、圧力を計算することがで きる(逆解析)。図5に、A重油使用、25%負荷の 実験例に対する熱発生率分布を変えた場合の逆解 析結果の一例を示す。ここでは、熱発生率は簡単 化のためクランク角に対して一定とし、総熱発生 量が変わらないように熱発生持続期間を決めた (図5a)。気筒内の最大圧力は熱発生率の高さ

に大きく影響される(図b)。着火時期を変える

ことで、最適化が期待できる。

5. まとめ

燃料噴射系を電子制御化することによって、燃 費と排ガス特性を同時に改善する事が可能となる 反面、制御パラメーターが多くなることから、最 適化条件を実験のみによって求めることは難しい。 このため、数理的な解析手段を活用することが必 要である。本報告では、比較的簡便な計算方法を 用いてディーゼル機関の熱発生率解析を行い、実 験で得られた機関特性をよく説明できることを示

図-5 逆解析予想図

した。

実験機関で採用した油圧駆動電子制御方式は、 現状では装置の制限から制御範囲の自由度は限ら れているが、本計算は実験では困難な条件でのシ ミュレーションも可能であり、今後、より広範な 条件での最適化の検討に役立てることができる。 制御の安定性の改善や油圧駆動動力の軽減なども 課題であり、今回報告した数値解析を更に改良し つつ、総合的な研究を進める予定である。

参考文献

- 1) 張他「燃料噴射系の電子制御化による舶用デ ィーゼル機関の排ガス特性の改善A重油 使用時の運転結果」、日本舶用機関学会誌 第35巻第12号2000-12
- 3. 張他「舶用ディーゼル機関の燃料噴射の電子 制御化の研究」第1報 A 重油使用時の運転 試験結果、船舶技術研究所第74 回研究発表 会、2000.6
- 3) 石村他「舶用ディーゼル機関の燃料噴射の電 子制御化の研究 第2報 乳化燃料使用時の 運転試験結果」、船舶技術研究所第74回研究 発表会、2000.6