25 二重反転プロペラを装備した船体周りの流場計算

スーパーエコシッププロジェクトチーム *大橋 訓英、日野 孝則 CFD 研究開発センター 平田 信行

1. はじめに

近年、地球温暖化に伴う温暖化ガス削減のため、船 舶においても高効率推進法が必要とされている。多々あ る高効率推進法のなかでも、二重反転プロペラは高効 率を達成することができる有望な推進法の1つである。

二重反転プロペラについては、これまでにも研究が 行われてきたが、揚力線理論及び揚力面理論に基づく ものであった [1]。

一方で、CFD(Computational Fluid Dynamics) は、 設計段階で使われる等、広く使われるようになった。 CFDにより、船の推進性能を推定するには、プロペラ をモデル化する必要があるが、簡単にプロペラ影響を表 す方法として、体積力分布を用いる方法がある[2][3]。

ここでは、CFD により二重反転プロペラ (Contrarotating Propellers) を装備した船体周りの流場計算を行 う。二重反転プロペラは体積力分布を用いて表し、推 力減少率等を実験結果と比較する。

2. 数值計算法

今回使用した CFD コードは NEPTUNE であり、詳 細は文献 [4] に譲る。

支配方程式は非圧縮性 Navier-Stokes の式で、プロペラを体積力分布で表すと以下の式で与えられる。

$$\frac{\partial \mathbf{q}}{\partial t} + \frac{\partial (\mathbf{e} + \mathbf{e}_v)}{\partial x} + \frac{\partial (\mathbf{f} + \mathbf{f}_v)}{\partial y} + \frac{\partial (\mathbf{g} + \mathbf{g}_v)}{\partial z} + \mathbf{H} = 0 \quad (1)$$

ここで、x, y, z は Cartesian 座標系で、 $\mathbf{q} = [p, u, v, w]^T$ 、 $(\mathbf{e}, \mathbf{f}, \mathbf{g})$ 、 $(\mathbf{e}_v, \mathbf{g}_v, \mathbf{f}_v)$ は移流項、粘性項 を表す。**H** は体積力項であり、 $[0, -fbx, -fby, -fbz]^T$ で表される。

プロペラを表す体積力分布は Hough-Ordway の式 [2] より

$$fb_x = A_x r^* \sqrt{1 - r^*} \tag{2}$$

$$fb_y = fb_\theta \sin\phi, fb_z = -fb_\theta \cos\phi \tag{3}$$

$$fb_{\theta} = A_{\theta} \frac{r^* \sqrt{1 - r^*}}{(1 - Y_h)r^* + Y_h}$$
(4)

ここで

$$A_x = \frac{C_T}{\Delta x} \frac{105}{16(4+3Y_h)(1-Y_h)}$$
(5)

$$A_{\theta} = \frac{K_Q}{\Delta x J^2} \frac{105}{\pi (4 + 3Y_h)(1 - Y_h)}$$
(6)

$$r^* = \frac{Y - Y_h}{1 - Y_h}, Y_h = \frac{R_b}{R_p}, Y = \frac{R}{R_p}$$
 (7)

 ϕ ;任意角度 (図-1 参照), C_T ;推力係数 K_Q ; トルク係数,R;任意半径 J;前進係数, R_p ;プロペラ半径 R_b ;ハブ半径, Δx ;計算格子間隔 で与えられる。

3.考察

3.1 二重反転プロペラ周り流場計算

図-1 プロペラ配置及び座標系

表-1	プロ	コペラ	主要	目及	び	実験結果	f
-----	----	-----	----	----	---	------	---

CP	CI	RP		
MP258	MP258	MP259		
0.250		0.2399		
0.220		0.229		
Right	Right	Left		
1.06	1.06	1.11		
0.368	0.367	0.353		
0.365	0.367	0.425		
	CP MP258 0.250 0.220 Right 1.06 0.368 0.365	CP CI MP258 MP258 0.250 0.220 Right Right 1.06 1.06 0.368 0.367 0.365 0.367		

※各プロペラ直径で無次元化

二重反転プロペラを装備した船体周りの流場計算を 行う前に、まず二重反転プロペラ単独試験状態におい て、プロペラ後方流速分布を実験結果 [1] と比較する。 計算に用いたプロペラ配置を図-1 に示し、主要目及 び実験結果を表-1 に示す。二重反転プロペラの場合、 プロペラ間距離は 0.24D_f である。

図-2 体積力分布

図-2に体積力分布を示す。MP258に関しては2種類 あり、1つは単独状態(CP)、もう1つは二重反転プロ ペラ(CRP)の場合である。計算領域は

 $-4.0 < x < 8.0, -4.0 < y, z < 4.0 \tag{8}$

であり、前プロペラ直径で無次元化し、座標原点は前 プロペラ中心である。

図-3 プロペラ後方流速ベクトル図 (x=0.36)

図-3 に CP 及び CRP におけるプロペラ後方 x = 0.36におけるベクトル図を示す。これより、CRP では、前 プロペラの回転流を後プロペラが回収することで、回 転流が大幅に減少することが分かる。図-4 に x 軸方向 流速分布及び接線方向流速分布を実験結果 [1] と共に示 す。x軸方向流速は実験結果と概ね一致しているが、接 線方向流速については実験値と差が大きい。接線方向 流速を精度良く推定するためには、今回より高度なモ デルが必要と思われるが、推力減少率等は推定が可能 と思われる。

3.2 二重反転プロペラを装備した船体周り流場計算

3.1 においてプロペラ単独状態について、プロペラ周 り流場の検討を行い、推力減少率については推定可能 であることを確認した。ここでは、船体に二重反転プ ロペラが装備された状態について流場計算を行い、推 力減少率について実験結果 [1] と比較し、また、プロペ ラ後方流場について CP と CRP で比較する。

表-2 に模型船主要目及び実験状態を、図-5 に計算格 子を示す。格子点数は主流方向 145 分割、ガース方向 65 分割、幅方向 81 分割で、計算領域は

-1.5 < x < 3.0, -2.0 < y < 2.0, -2.0 < z < 0.0 (9)

であり、 L_{pp} で無次元化し、座標原点は FP である。乱 流モデルは Spalart-Allmaras モデルである。なお、自 由表面は考慮していない。

表-2 模型船主要目及び実験状態

MS.No.234		
$L_{pp}(\mathbf{m})$	6.960	
B(m)	1.009	
d(m)	0.365	
Fn	0.278	
Rn(抵抗試験時)	$1.833 imes 10^6$	

表-3 に抵抗試験状態における計算結果及び実験結果 [5] の比較を示す。公称伴流係数 w_n については実験値 と差があるが、形状影響係数1+Kについてはほぼ一致 していることより、船体抵抗については推定可能であ ると思われる。

表-3	抵抗	試驗	壮能	での	比較
<u>3</u> <u>v</u> - <u>v</u>	324376	ロトレップ大	11/25	~~/	JUJEX

	1+K	w_n
Comp.	1.15	0.292
Exp.	1.16	0.236

表-4 に CP の主要目を示す。なお CRP については 表-1 と同じである。図-7 に CP,CRP 単独試験実験結果 を示す。今回の計算では推力一致法により自航計算を 行う。自航状態は Ship Point で

$$\Delta R = R' - T - SFC = 0 \tag{10}$$

R': 自航計算時船体抵抗 T: プロペラ推力 SFC: 摩擦修正係数

を満たした場合とし、SFC は実験で使われた解析法で ある二次元外挿法により

$$SFC = (C_f(Rn_m) - C_f(Rn_S) - \Delta C_f) * \frac{1}{2} \rho S' V^2$$
(11)

$Rn_m = 1.400 \times 10^\circ$: 模型船レイノルズ数
$Rn_S = 2.071 imes 10^9$:実船レイノルズ数
$\Delta C_f = -1.0 imes 10^{-4}$:粗度修正係数
S': 模型船浸水面積, ρ: 水の密度, V: 船速

で求められる。

表-4 プロペラ主要目

MP.No.	MP145
Diameter(m)	0.256
Boss Ratio	0.180
Direction of Turning	Right

図-7 プロペラ単独試験実験結果

<u>表-5 1-t の比較</u>				
	1-t			
	CRP	CP		
Comp.	0.868	0.844		
Exp.	0.836	0.800		

表-5 に推力減少率 t から求まる 1-t の比較を示す。 CP、CRP とも実験値 [1] と比較して、概ね一致してい る。また、 CP と CRP を比較すると CRP の 1-t が CP より大きくなる傾向を再現することができた。

CRP 図-8 プロペラ後方流場比較 (x=1.0)

図-9 船体表面圧力分布比較

図-8にプロペラ後方流場比較(AP位置,x=1.0)、図-9 に船体表面圧力分布比較を示す。CPと比較し、CRP ではプロペラ単独状態と同様にプロペラ後方で回転流 が回収される様子が捉えられている。また、CPより CRPでは1-tが大きくなる理由として、船尾の圧力が CPほど低下しないことが考えられ、計算結果にその 傾向が現れている。

4.まとめ

今回、二重反転プロペラ周りの流場計算及び二重反

転プロペラを装備した船体周り流場計算を行い、以下 の結果を得た。

まず、二重反転プロペラ単独状態でプロペラ周り流 場計算を行い、実験値と同様にプロペラ後方流場にお いて CP と比較し回転流が大幅に減少することが確認 された。また、実験結果と比較し、x 軸方向流速につ いては概ね実験結果と一致したが、接線方向流速につ いては実験結果と差があり、今後体積力分布を表すモ デルについて高度化が必要である。

次に、二重反転プロペラを装備した船体周り流場計 算を行い、推力減少率を実験値と比較し、概ね一致し た。また CP より CRP が 1-t が大きくなる傾向を計算 でも再現することが出来た。今後は CFD コードの高 度化として、舵付き自航計算、プロペラを体積力分布 ではなく回転する物体として CFD 計算することが挙 げられる。

4. 謝辞

本計算を行うにあたり、輸送高度化研究領域 船型開 発研究グループ長 右近良孝博士には、実験結果を提供 して頂き、貴重な討論を頂きました。厚くお礼申し上 げます。

参考文献

[1] 右近 良孝他:二重反転プロペラの設計について — 高速コンテナ船への適用—, 西部造船会会報, 第 75 号, pp.52-64, (1988)

[2] Stern, F. et.al : Viscous-Flow Approach to the Computation of Propeller-Hull Interaction, Journal of Ship Research, Vol.32 No.4, pp.246-262,(1988)

[3] 日夏 宗彦他: プロペラ影響を考慮した船体まわり 流れの数値シミュレーション,西部造船会会報,第88 号, pp.1-12, (1994)

[4]Hirata,N., Hino,T. : An Efficient Algorithm for Simulating Free Surface Turbulent Flows around Advancing Ship, Journal of the Society of Naval Architects of Japan, Vol.185, pp.1-8, (1999)

[5] 門井 弘行他: キャビテーション試験水槽における 模型船船尾の伴流分布, 船舶技術研究所報告, 第17巻 第3号, pp.261-271,(1980)