36 トリムした船体に働く横力の分布について

海洋開発研究領域 海洋資源利用研究グループ * 湯川 和浩 環境・エネルギー研究領域 海洋汚染防止研究グループ 星野 邦弘、原 正一、山川 賢次

1. まえがき

1997年に日本海で発生した「ナホトカ号」の海難事 故や1999年にフランス北西部のブレスト沖で発生した 「エリカ号」の海難事故では、原油流出による海洋環境 汚染が国際的な問題にまで発展した。著者らは平成10 年度から5年計画で「荒天時における航行不能船舶の 漂流防止等に関する研究」を実施しており、前述のよ うな損傷船舶の漂流予測法および最適曳航法に関する 研究を通して、「最適曳航支援システム」の開発を目標 としている [1][2]。このシステムは既存のコンピュータ で実行可能なソフトウェアで、図-1に示すように損傷 船舶の姿勢から推定する流体力と海象条件から推定す る外力を用いたシミュレーション計算により、2次災害 や海洋汚染を最小限に留めるための指針を与えること ができる。ただし、シミュレーション計算で損傷船舶 の漂流運動や曳船時の運動を正確に評価するためには、 計算で用いる数学モデルを構成する流体力の表現が問 題となり、中でも船体に働く流体力を精度良く推定す ることが非常に重要である。

損傷船舶は一般に姿勢変化を伴っていると考えられ るが、トリムやヒールした船体に働く流体力の理論推 定法に関する研究例は非常に少ない[3][4]。そこで、本 研究では損傷船舶を曳航する場合を想定し、Even Keel と船首トリム3(deg.)のVLCC船型を対象に、船首曳 航時と船尾曳航時の船体に働く流体力の理論推定法を 取り扱う。まず、VLCC船型の10分割模型を用いてト リムした船体に働く流体力と横力の船長方向分布を計 測し[5]、偏角や姿勢の違いに伴う流体力の変化につい

図-1 最適曳航支援システムの流れ

て検討した。次に、ある程度取り扱いが簡便であり、 CFD[6][7]に比べて短時間で比較的精度良く船体に働く 流体力を推定することが可能であると思われる細長体 理論に基づく方法[8]により、トリムした船体に働く流 体力と横力の船長方向分布の推定を行ったので、その 結果を報告する。

2. 船体に働く流体力の理論推定法

計算には図-2 に示すような Midship を原点とする船 体固定座標を用いる。また、(1) 船体は細長体である、 (2) 偏角と旋回角速度の小さな運動を扱う、(3) 造波の 影響は無視できる、という3つの仮定のもと、船体ま わりの流場を Double Body Model として取り扱う。こ こで、剥離渦層以外の領域が完全流体であると仮定す ると、船体まわりの流場を表す全速度ポテンシャル Φ は、次の5つの条件を同時に満足する必要がある。

- [1] Laplace の条件: $\nabla^2 \Phi = 0$
- [2] 物体表面の条件: $\nabla \Phi \cdot \vec{n} = 0$
- [3] 無限遠方の条件: $\nabla \Phi \rightarrow (at \infty)$
- [4] 剥離の条件: $\nabla \Phi \cdot (\vec{n} \times \vec{r})$

[5] 剥離渦層の条件: $\Delta p = \Delta \vec{v}_n = 0, \vec{\omega} = \vec{n} \times \Delta \vec{v}_t$ ただし、 \vec{v} は流速ベクトル、 \vec{n} および \vec{r} は法線ベクト ルと接線ベクトル、 $\vec{\omega}$ は渦度ベクトル、p は圧力とし、 添字のn、t は法線および接線方向を表す。このとき、 細長体の仮定と等角写像を用いると、船体まわりの流 場は船体横断面ごとの2次元問題に簡略化して取り扱 うことが可能になる。そこで、次式に示す7次の写像 関数で船体のフレームライン形状を近似する。

$$\left. \begin{array}{l} W(\zeta; x) = \sum_{n=1}^{5} a_n \left(x \right) \zeta^{3-2n} \\ \zeta = \xi + i\eta = r \left(\cos \theta + i \sin \theta \right) \end{array} \right\} \tag{1}$$

図-2 座標系

また、直進と横運動による撹乱を表す単位複素速度 ポテンシャル f_1 、 f_2 および剥離渦層の複素ポテンシャ ル f_3 をそれぞれ足し合わせると、船体まわりの流場を 表す全複素速度ポテンシャル fが得られる。

$$f = Uf_1 + Vf_2 + f_3$$
 (2)

$$f_1 = C_0 \log \zeta - \frac{C_1}{2\zeta^2} - \frac{C_2}{4\zeta^4} - \frac{C_3}{6\zeta^6} - \frac{C_4}{8\zeta^8} \qquad (3)$$

$$C_{0} = a_{1}a'_{1} - a_{2}a'_{2} - 3a_{3}a'_{3} - 5a_{4}a'_{4} - 7a_{5}a'_{5}$$

$$C_{1} = a_{1}a'_{2} - a_{2}(a'_{1} + a'_{3}) - 3a_{3}(a'_{2} + a'_{4})$$

$$-5a_{4}(a'_{3} + a'_{5}) - 7a'_{4}a_{5}$$

$$C_{2} = a_{1}a'_{3} - a_{2}a'_{4} - 3a_{3}(a'_{1} + a'_{5})$$

$$-5a'_{2}a_{4} - 7a'_{3}a_{5}$$

$$C_{3} = a_{1}a'_{4} - a_{2}a'_{5} - 5a'_{1}a_{4} - 7a'_{2}a_{5}$$

$$C_4 = a_1 a_5' - 7 a_1' a_5$$
(4)

$$f_2 = a_1\left(\zeta + \frac{1}{\zeta}\right) \tag{5}$$

$$f_{3} = \sum_{k=1}^{n_{s}} \sum_{j=1}^{n} \frac{K_{k,j}}{2\pi i} \log \frac{(\zeta - \zeta_{k,j}) \left(\zeta - \zeta_{k,j}^{-1}\right)}{(\zeta - \overline{\zeta}_{k,j}) \left(\zeta - \overline{\zeta}_{k,j}^{-1}\right)}$$
(6)

ここで、 $K_{k,j}$ は k 番目の剥離点から流出した j 番目の 渦糸の渦強さ、 $\zeta_{k,j}$ は ζ 平面における渦糸の位置、 n_s および n は剥離点と渦糸の数を表す。船体に働く横力 Y と回頭モーメント N は、横運動と剥離渦層の運動量 I_2 、 I_3 を用いて、次式のように表せる。

$$Y = -UI_{3} \bigg|_{x = \frac{L}{2}}$$

$$N = UI_{3} \bigg|_{x = \frac{L}{2}} \cdot \frac{L}{2} - U \int_{-\frac{L}{2}}^{\frac{L}{2}} (I_{2} + I_{3}) dx \bigg\}$$
(7)

$$I_{2} = -\rho \pi V \left\{ (a_{1} - a_{2})^{2} + 3a_{3}^{2} + 5a_{4}^{2} + 7a_{5}^{2} \right\}$$

$$I_{3} = 2\rho \sum_{k=1}^{n_{s}} \sum_{k=j}^{n} K_{k,j} \left\{ (a_{1} - a_{2}) \operatorname{Im} \left[\zeta_{k,j}^{-1} \right] -a_{3} \operatorname{Im} \left[\zeta_{k,j}^{-3} \right] - a_{4} \operatorname{Im} \left[\zeta_{k,j}^{-5} \right] -a_{5} \operatorname{Im} \left[\zeta_{k,j}^{-7} \right] \right\} + \rho \sum_{k=1}^{n_{s}} \sum_{j=1}^{n} K_{k,j} \delta_{k,j} \right\}$$

$$(8)$$

ただし、 ρ は流体の密度、 $\zeta_{k,j}$ は渦糸の渦対間距離を表 す。なお、横力 Y、回頭モーメント N および各船体横 断面に働く横力 ΔY の無次元化には次式を用いる。

$$Y' = \frac{Y}{\frac{1}{2}\rho L dU_s^2}, N' = \frac{N}{\frac{1}{2}\rho L^2 dU_s^2}, C_Y = \frac{\Delta Y}{\frac{1}{2}\rho dU_s^2}$$
(9)

3. 剥離境界層のモデル化

船体まわりの流場は、流れの可視化実験の報告を参考にしてモデル化を行った。すなわち、図-3に示すよ

うに各船体横断面の両舷のビルジ部におけるフレーム ラインとベースラインの接点を剥離点と仮定する。ま た、各断面で新たに発生する渦糸の渦強さは、両舷の ビルジ部に仮定した剥離点における接線速度を打ち消 すように決定する。その際、渦糸の初期発生位置が問 題となるが、Cross Flow に対する Face 側では剥離点 の鉛直下方の点、Back 側では原点 o_j と剥離点の延長 線上の点に仮定する。剥離点と渦糸の初期発生位置と の距離については新たに s という係数を定義して、次 式のように表現する。

$$s = \frac{h(x) - d(x)}{d} \tag{10}$$

また、流場の粘性の影響を考慮し、流れの上流部分で 流出した渦糸の強さ $K_{k,j}$ は、次式に従って時間の経過 と共に減衰するものと仮定する。ただし、 $K_{k,j}(0)$ は渦 糸流出時の初期強さ、 ν は流体の動粘性係数、tは渦糸 流出後の経過時間を表す。

$$\frac{K_{k,j}(t)}{K_{k,j}(0)} = 1 - \exp\left(-\frac{\sigma^2}{4\nu t}\right), \quad \sigma = d \cdot \gamma \qquad (11)$$

4. 分割模型による横力分布の計測

当研究所の海洋構造物試験水槽において、VLCC 船

図-3 剥離点および渦糸の初期発生位置

表-1 供試模型船の主要目

	VLCC
<i>L</i> (m)	3.000
<i>B</i> (m)	0.544
<i>d</i> (m)	0.181
C_B	0.803

写真-1 供試模型船の概観

図-4 偏角による横力分布の変化

型 (SR221C 船型 [9])の 10 分割模型を用いて船体に働 く流体力 (横力、回頭モーメント)および横力の船長方 向分布を計測した [5]。供試模型船の主要目と概観を表-1、写真-1 に示す。模型船の姿勢は Even Keel と船首 トリム 3(deg.) であり、曳航速度は造波の影響を無視で きるように 0.206(m/s)(F_n =0.038) とした。船体にプロ ペラと舵は付いていない。また、各セグメントの間隔 を 4(mm) とし、運動を全て拘束した状態で計測を行っ た。図-4 に偏角 β の違いによる横力分布の変化、図-5 に横力 Y' と回頭モーメント N' の計測結果を示す。

図より傾向を見ると、Even Keel の場合には偏角 β が 大きくなるに従い船体中央部から船首部にかけて働く 横力が発達し、偏角40(deg.)では船首部に働く横力は 船尾部の6倍程度まで大きくなる。また、偏角90(deg.) 付近では船首尾に働く横力はほぼ等しくなり、船体中 央部では小さくなる。船尾曳航時も、船首尾を入れ替え れば同様な傾向と言える。一方、船首トリム3(deg.)の 場合には船首部に働く横力の発達が非常に大きく、船 体中央部から船尾部にかけて働く横力は、偏角 β が大 きくなってもほとんど変化しない。また、船尾曳航時 には船体中央部に働く横力が大きく、偏角 β が大きく なると逆に横力は小さくなる。 横力 Y' および回頭モーメント N' については、供試 模型船を対象とした Even Keel 時の計測結果が過去に 報告されているため [9][10]、その結果も合わせて示す。 小偏角の範囲での比較になるが、本研究で得られた横 カY' と回頭モーメント N' の計測値はそれらと同様な 傾向を示しており、拘束模型試験の実験精度を検証す る上での目安となる。Even Keel の場合、偏角 80(deg.) 付近で横力 Y' は最大となるが、船首トリム 3(deg.) の 場合、110(deg.) 付近で最大となる。また、回頭モーメ ント N' については、船首トリム 3(deg.) の場合、Even Keel に比べて半分程度の値で、特に船尾曳航時に働く 回頭モーメント N' が非常に小さいことがわかる。

5. 推定結果と計測結果の比較

数値計算では船体を長さ方向に 40 等分割し、各船 体横断面から離散的な渦糸を自由に流出させた。また、 (1) 式の写像関数には 5 つの係数が含まれるが、係数 $a_1(x) \sim a_3(x)$ は船体横断面ごとに吃水 d(x)、船幅 B(x)、 横断面積 S(x) から決まる係数である。また、係数 $a_4(x)$ と $a_5(x)$ についてはできるだけ実船型に近い数学船型 が得られるように、試行錯誤により適切な値をとるこ とにした。図-6 に Bodyplan を示す。図中の破線は実船

図-5 横力および回頭モーメントの比較

図-7 係数 sa の推定

型、実線は写像関数による数学船型を表す。フレーム ラインの絞込みが大きい船首尾端を除けば比較的精度 良く近似できているものと思われる。また、渦糸の初 期発生位置を表す係数 s については、剥離境界層が発 達する様子をモデル化して、船首より船尾方向に向かっ て値を線形的に大きくしていく。その際、F.P. 断面に おける係数を s_f、A.P. 断面における係数を s_a とおく と、s_f は剥離境界層が発達する出発点であるため 0.01 という小さい値とし、最終的に得られる流体力の推定 結果に対して支配的であると考えられる s_a の値のみを 変化させた。図-7 は Even Keel の模型船 7 隻を対象と して、流体力の推定結果ができるだけ実験結果に合う ように選んだ s_a の値を主要目を組み合わせたパラメー タでまとめたものである。図より計算で用いる s_a の値 は 0.047、(11) 式中の係数 γ についても模型試験結果を ベースにした検討から 0.05 という値を用いた。また、 船尾曳航時には船首と船尾の座標系を入れ替え、船尾 で $s_f = 0.01$ 、船首で $s_a = 0.047$ として計算した。

図-8、図-9に横力分布の推定結果と実験結果の比較 を示す。図中の実線が推定結果である。船体中央部付近 では比較的精度良く推定できているが、船首尾端にお いては若干推定精度が悪くなっている。その原因とし て、自由表面の影響と図-6 に示す Bodyplan の近似精 度が挙げられる。特に船首尾バルブ近傍における絞込 みの大きいフレームライン形状の近似については、(1) 式の写像関数の限界であると思われ、今後検討すべき 課題の一つである。図-10 に船首曳航時と船尾曳航時の 船体に働く横力 Y' および回頭モーメント N' の推定結 果と実験結果の比較を示す。横力 Y' は図-8 と図-9 に 示した横力分布の積分値である。傾向を見ると、船首 トリムした船体を船首曳航する場合に働く流体力の推 定結果は、実験結果に対して多少定量的な差が生じて いるが、その他の結果については比較的精度良く推定 できていると思われる。

本研究で取り扱った流体力の理論推定法には、実験 によって同定するパラメータがいくつか含まれている。 しかし、トリムした船体に働く流体力や船体まわりの 流場に関する詳細なデータは極めて少ないため、Even Keel 時のパラメータを適用して推定計算を行った。ト リムした船体に働く流体力の推定精度を向上させるた めには、今後さらに数多くのデータを収集し、渦モデ

図-9 横力分布の推定結果 (Bow Trim 3 deg.)

ルに改良を加える必要があると思われる。しかし、計 算対象とした船型は現在運航している一般的な VLCC 船型 であるため、他の VLCC 船型に対しても同様に 本計算法を適用することで、船首トリムした船体を船 尾曳航する場合に働く流体力や Even Keel の船体を船 首曳航および船尾曳航する場合に働く流体力を実用的 な精度で推定することが可能であると考えられる。

6. まとめ

本研究では、VLCC 船型の 10 分割模型を用いた拘束 模型試験結果をベースにして、Even Keel および船首 トリムした船体に働く流体力と横力分布の理論推定法 について検討した。その結果、船首トリムした船体を 船首曳航する場合に働く流体力に関しては、推定結果 と実験結果の間に多少定量的な差が生じたものの、そ れ以外の状態については、本計算法を適用することで 船首曳航時と船尾曳航時の流体力を実用的な精度で推 定可能であることがわかった。今後、他の船型や旋回 運動のような大きな運動に適用していくためには、計 算で用いるパラメータと船型要素および船体の運動状 態の相互関係を十分に把握することが重要であると考 えられる。また、トリムした船体に働く流体力の推定 精度を向上させるためには、特に船体まわりの流場に 関するデータを収集し、剥離線や渦の強さ、横力分布 などの場で個別に渦モデルの検証を行っていく必要が あると思われる。

図-10 横力および回頭モーメントの推定結果

- [1] 原 正一: 荒天下における航行不能船舶の漂流防止等に関する研究概要、船舶技術研究所研究発表 会講演集、第74回(2000)、pp.307-308.
- [2] 原 正一、山川賢次、星野邦弘、湯川和浩:最適 曳航支援システムの開発(その1.損傷船舶の最終 姿勢)、海上技術安全研究所研究発表会講演集、第 1回(2001)、pp.33-36.
- [3] 井上正祐、貴島勝郎、森山文雄:トリム時の船 体操縦微係数の推定、西部造船会々報、第55回 (1977)、pp.127-139.
- [4] 野中晃二:ヒール時の主船体に働く操縦流体力の 推定、西部造船会々報、第96号(1998)、pp.59-67.
- [5] 星野邦弘: 漂流運動の研究、第5回曳航技術研究 委員会資料 (2001).

- [6] 大森拓也、藤野正隆、巽 圭司、川村隆文、宮田秀明:肥大船の操縦運動中の流場に関する研究(第三報定常旋回中の流場)、日本造船学会論文集、第179号(1996)、pp.125-138.
- [7] 宮崎英樹、野中晃二、日野孝則、児玉良明: CFD による操縦流体力の推定について、船舶技術研究所 研究発表会講演集、第72回(1998)、pp.191-196.
- [8] 湯川和浩:操縦運動時の船体に作用する流体力の 推定に関する研究、九州大学学位論文 (1998).
- [9] (社) 日本造船研究協会:操縦運動時の船体周囲流場に関する研究、第 221 研究部会 (第 2 年度)報告書 (1995).
- [10] 二村 正、上野道雄、宮崎英樹、佐伯延博、野中 晃二:旋回運動する船体の船尾流場の計測、船舶 技術研究所研究発表会講演集、第72回(1998)、 pp.185-190.