熱曲げデータベース

国土交通省 海事局 技術課 岩田 知明

輸送高度化研究領域 インテリジェント加工法研究G *安藤 孝弘

海上安全研究領域 構造安全性研究G 田中 義照

研究統括主幹 松岡 一祥

1. まえがき

船舶建造に用いられる曲げ加工は、経験と勘を要 する伝統技芸によって支えられている。 撓鉄作業も その一つであるが、近年の不況によるリストラや若 年層の製造業離れにより技能継承が危ぶまれてい る。

本研究の目的は高度な熟練技芸である撓鉄作業を 次世代に継承するとともに、新しい現図展開法に基 づく曲げ方案¹⁾を構築し、再現性のある汎用技術へ の転換を図ることにある。鋼板への規則的な入熱か ら得られる変形量をデータベース化し、板厚、入熱 量などのパラメータと鋼板の変形との関係について定 量化を検討した。

2. 熱曲げ作業のパラメータ

入熱量 Q(J/m) は燃焼ガス流量から計算される単 位時間当たりの燃焼熱q(J/s)とガストーチの移動速 度 v(m/s) で定まる。

$$Q = q/v \tag{1}$$

板を線状に加熱したとき、角変形 Θ、横収縮 Dt 及び縦収縮 Dl が生じる。溶接変形の理論²⁾から、 以下が類推される³⁾。

$$\Theta = Fn(Q/T^2) \tag{2}$$

$$Dt = \alpha_1 Q/TE \tag{3}$$

$$Dldb = \alpha_2 Q(L/BTE)$$
(4)

ここに、Tは板厚、Fn(•)は、•の関数、α₁とα₂ は定数、L、Bは板の長さと幅、Eはヤング率であ る。(4)式の左辺は、長さLの平行する基準線間の 縦収縮 D1の板幅方向の積分である。これを(5)式 のように書き換え、縦収縮力 Ft として評価できる。

$$Ft = \alpha_2 Q = BTE \int Dl / Ldb \tag{5}$$

入熱量Qの次元がJ/m=Nであるため、(3)から(5)

式の α, とα, は無次元量である。

ここでは、角変形(rad.)、横収縮Dt(mm)及び縦 収縮力Ft(N)と入熱量Q(J/m)の関係を実験的に把 握することとした。

3. 実験方法

熱曲げ作業を定量化するため、板厚と加熱条件 の組み合わせに対する変形量の違いを基礎実験にお いて明らかにした。この結果を基に実際の熱曲げ加 工に必要な加熱条件を求め、この条件を適用した 施工を行った後、精度確認を行った。

3.1 材料および熱源

試験片には板厚 10,16,19 及び 22mm の磨き鋼板 (SS400, 914mm × 1829mm)を用いた。線状加熱の 熱源にはアセチレンガスとプロパンガスの2種類のガス を使用した。

3.2 基礎実験

試験片に図-1に示すような罫書き線を表裏面共 に記し、公称精度1/100mmの計測装置でx,y,zの 3座標を加熱前後で計測することにより、変形を調べ た。各板厚の試験片に対し、ガス2種類、火口3 種類をそれぞれに組み合わせた条件下で、一枚の 試験片に対し図-1に示す位置に3条件のトーチ移 動速度で加熱を行った。アセチレンガス使用時にお ける使用火口番号は#1200, #2500, #4000、同じ くプロパンガス使用時にはL1000, L3000, L5000の 火口を使用した。トーチ移動速度は各ガス使用時と も共通で800,600,400mm/minとし、加熱時の熱入 力を集中させるために白心先端が鋼板表面に位置 するように調整した。

3.3 精度確認実験

基礎実験で得られた各パラメータと変形量の関係から、 試験片をR=2000mm程度の半円筒型に熱曲げ加工 するのに必要な加熱条件を求め、求めた加熱条件を 適用した施工を行い、加工後の寸法精度の確認を行っ た。精度確認実験での加熱位置は全試験片共通であ り、図-2に示す。また加熱条件を表-1に示した。

図-2 精度確認実験加熱位置

	アセチレン	/		プロパン				
板番号	設定流量	設定速度		板番号	設定流量	設定速度		
	l/h	mm/min			l/h	mm/min		
10-1	1050	445		10-3	1000	400		
16-1	3360	445		16-4	2950	400		
19-1	3500	315		19-4	3500	330		
22-1	3500	230		22-2	3500	250		
10-2	1150	640		10-5	1000	700		
16-2	3100	445		16-5	2500	400		
19-2	3500	335		19-3	3500	370		
22-4	3500	240		22-5	3500	260		
10-4	1100	900		10-6	750	900		
16-3	3100	445		16-6	2500	400		
19-5	3500	355		19-6	3500	390		
22-3	3500	250		22-6	3500	270		

表-1 精度確認実験加熱条件

基礎実験計測データ 処理方法

4.1 角変形

トーチ移動速度800mm/minで の加熱線上(y=100mm)に x=0mmから1800mmまでの計 19本の計測線を設け($\square-1$ 参 照)、計測線それぞれについて 加熱線を挟む $y=0 \rightarrow 40$ mmと $y=160 \rightarrow 200$ mmのベクトルの成 す角を、加熱前後で計測・計算 し、得られた19個のデータの中

央値を求めた。この値を表裏各面毎に求め、両者 の平均値を角変形とした。 同じくトーチ移動速度 600 mm/min 及び 400 mm/min の加熱線による角変 $形の算出には、y=<math>300 \rightarrow 340 \text{ mm}$, y= $460 \rightarrow 500 \text{ mm}$ 及び y= $600 \rightarrow 640 \text{ mm}$, y= $760 \rightarrow 800 \text{ mm}$ によるベ クトルを用いた。

4.2 横収縮

x=0から1800mmまでの計19本の計測線上それ ぞれについて、トーチ移動速度800mm/minであれ ば $y=0 \rightarrow 40 \rightarrow 70 \rightarrow 100 \rightarrow 130 \rightarrow 160 \rightarrow 200mm$ の距離を計測し、これを合計したものをガース長とし て、加工前後の変化を表裏面で平均し横収縮とし た。同じくトーチ移動速度 600mm/min及び 400mm/minによる横収縮も、 $y=300\sim500mm$ 及び $y=600\sim800mm$ を計測点とし、ガース長の変化から 横収縮を求めた。

4.3 縦収縮力

 $y=0,40, \cdot \cdot \cdot \cdot 800$ mmの加熱線と平行な各計測 線上の、 $x=0 \rightarrow 100 \rightarrow 200 \rightarrow \cdot \cdot \cdot \cdot 1800$ mmの 各点間の距離の合計をガース長とし、その加工前 後における変化量を表裏面で平均した値を各計測 線の標点間距離1800mmに対する縦収縮力Dlとし た。Dlが台形分布しているもの見なし、(5)式を用 い縦収縮力Ftを計算した。トーチ移動速度800mm/ minについては y=-50~250mmを、600min/mmに ついては y=250~550mmを、400mm/minについて は y=550~850mmをそれぞれ積分範囲とした。

5. 実験結果

5.1 基礎実験結果

得られた実験結果を、表-2、表-3として、本稿 の最後に示した。それぞれ、アセチレンガス、プロパ ンガスの結果を示している。また板番号左側の値は板 厚を表している。

5.1.1 角変形

角変形 Θと入力パラメータ Q/T²の関係を図-3、 図-4に示す。それぞれアセチレンガス及びプロパ ンガス使用時の計測結果を示している。但し、加工 時に捩れ座屈した板厚 10mmの結果を□で、それ 以外の結果を●で記している。

アセチレンガスの場合は、Q/T²=30(kJ/m)/mm² 程度から鋼板が座屈し、Q/T²がこの値以上になって も角変形の増加が見られなくなった。このことから、 線状加熱による曲げ施工の条件としては、Q/T² =30(kJ/m)/mm²までの範囲が適当であるといえる。

プロパンガスの場合もアセチレンガス使用時と同様 の傾向が見られるため、Q/T² = 30(kJ/m)/mm²以 下までの範囲が線状加熱による曲げ施工の条件とし て適当である。またこの値以上の範囲においては

図-3 角変形とQ/T²の関係 (アセチレン)

Q/T²の値に関係なくほとんど角変形が生じないため、 絞り・縮め施工の条件として適当であると言える。

各ガス種における角変形 Θと入熱パラメータ Q/T² との関係は、近似的に以下の実験式で与えた。

 $\Theta = 23.9Ln(Q/T^2)-29.7$ (アセチレン) (6)

 $\Theta = 24.5Ln(Q/T^2) - 30.2$ (プロパン) (7)

5.1.2 縦収縮

縦収縮力Ftと入熱量Qとの関係を図-5、図-6に 示す。それぞれアセチレンガス及びプロパンガスの 結果を示し、捩れ座屈を起こした板厚10mmの結果 を□で、それ以外を●で記した。アセチレンガスの 結果では、捩れ座屈した試験片の結果を除くと、収 縮力Ftと入熱量Qとの間には良好な比例関係が見 られる。プロパンガスの結果においても、捩れ座屈 した試験片の結果を除けば、多少のばらつきはある ものの比例関係にあるといえる。この結果から近似 的に次の実験式を得る。

Ft(N) = 0.103Q	(kJ/m)	(アセチレン)	(8)
Ft(N) = 0.069Q	(kJ/m)	(プロパン)	(9)

図-5 縦収縮力と入熱量の関係 (アセチレン)

図-6 縦収縮力と入熱量の関係 (プロパン)

これらから (4),(5)式における各ガス種のα₂が求め られる。

5.1.3 横収縮

横収縮量 Dt と入熱量の板厚比 Q/T との関係を、 それぞれアセチレンガス、プロパンガスの結果とし て図-7、図-8に示す。どちらの結果においても横 収縮量の測定値にばらつきが多いため、異常に横 収縮量の大きい試験片の計測値を□で記し、それ 以外の試験片の計測値を●で記した。●で記した 計測値 Dt とQ/T の間に良好な比例関係が確認で き、この結果を基に近似式として以下を得る。

 $Dt (10^{-3} \text{mm}) = 0.395 Q/T (\text{kJ/m})/\text{mm}$

Dt(m) = 0.081Q/(TE) (kJ/N) (アセチレン)(10)

 $Dt (10^{-3} \text{mm}) = 0.361 Q/T (\text{kJ/m})/\text{mm}$

Dt (m) = 0.074Q/(TE) (kJ/N) (プロパン) (11) ここで E は試験片のヤング率である。これらの式 から(3)式における各ガス種のα,を決定した。

5.2 精度確認実験結果半円筒製作(R=2000mm程度)に必要な曲率及

び加熱条件を式(6),(7)から求め、求めた条件を実 際の施工に適用し、期待する加工寸法(予測値)と 実測値との比較を行った。アセチレン、プロパンの 各ガス種における実験結果の詳細について、表-4、 表-5として本稿の最後に示した。この中から曲率半 径の実測値と予測値との比と板厚の関係を図-9に示 す。但し実験中に捩れ座屈した結果については省 略した。板厚が薄い試験片ほど予測形状より曲率が 小さく曲げ不足となり、板厚の厚い試験片では逆に 曲げ過ぎの傾向が見られる。板厚10mmの薄い試 験片の場合、基礎実験時より加熱線間の距離が短 く、板厚方向全体に熱が通り、表裏両面での収縮 が発生したために予測形状に達しなかったものと考 えられる。一方板厚16mm,19mmの試験片では、有 効な入熱が表面付近に留まったために比較的良好な 曲げが得られたものと推察できる。但し板厚が厚くな る22mmの試験片では、加工に必要な入熱量を確 保するために、ガス流量、加熱に要する時間共に 多く、その結果加熱線の幅が広がり、他の入熱によ り既に塑性変形した部位に拘束された結果、曲げ 過ぎの傾向となったと考えられる。

本実験では線状加熱のみで円筒加工を行う際、 加熱線垂直方向の計画した曲がりとは逆符号の曲が りが、加熱線方向に発生した。このため加工後の鋼 板形状は厳密な半円筒ではなく、 鞍型形状に近く なった。この結果を加熱線方向(図-2 x方向と加熱 線幅方向(図-2 y方向)との曲率半径の比と板厚との グラフとして図-10に示す。座屈状態に近いと思わ れる板厚 10mmの試験片の結果を除けば、アセチ レンガス・プロパンガス共に板厚の厚い試験片の曲 がりが大きい傾向にある。 これまでの結果により、同一方向の線状加熱によ る円筒加工を行う場合、加熱線直角方向の変形に ついては、板厚が厚くなるほど予測値に比べ実際の 曲がりが大きくなるばかりか、加熱線方向の強い曲 げも発生することが明らかとなった。

図-10各板厚に対するx,y方向の曲率半径の比

6. まとめ

基礎実験結果から、角変形、横収縮及び縦収縮 について近似式を求めた。固有応力方では、角変 形、横収縮及び縦収縮は、入熱量に比例する一つ の収縮力としてあらわされるため、(8),(9)及び (10),(11)式は

 $Ft = DtTE = \alpha Q$ (12) を縦横2方向に分けて表したものと解釈でき、 $\alpha_1 = \alpha_2$ として縦横の収縮は統一して表現できることに なる。実験結果からαの値はガス種により、0.07~ 0.1程度であることが確認されたものの、加熱精度や 計測・解析等で生じる誤差により大きく左右されるた め、追加データによる精度の向上が必要である。角 変形についても、(6),(7)の近似式に示される二つ の定数及び入熱パラメータの範囲について、更なる 追加実験による検証を要する。また両者共に、板厚 や入熱量と加熱線間隔との関係についても検討する 必要がある。

なお、本実験は、(社)日本中小型造船工業会との共 同研究として実施したものである。

参考文献

- 松岡他:新しい外板展開法に基づく板曲実証実験、
 第3回海上技術安全研究所研究発表会講演集
- 2) 松岡:固有応力法による溶接残留応力推定、第 67回船舶技術研究所研究発表会講演集、p197、 (1996)
- 林、松岡、岩田:ぎょう鉄(焼き曲げ)作業の定 量化(その1:作業の分析と因子の抽出)、溶接 学会全国大会講演概要、第65集、134、(1999)
- 4) 第246研究部会:船殻ブロックのデジタル生産技術の基礎研究平成12年度報告書、日本造船研究協会、(2001)

		実測値	計算値	実測値	計算値	計算値	計算値	計算値	解析値	解析值	解析値
ガス種類	板番号	実流量	総発熱	移動速度	理論入熱	板厚	Q/T ²	Q/T	角変化	縱収縮力	横収縮
火口種類		l/h	kJ/h	mm/min	Q, kJ/m	T, mm	(kJ/m)/mm ²	(kJ/m)/mm	10 ⁻³ rad	Ν	10 ⁻³ mm
アセチレン #1200	10-1	1620	86.2		1800	10	18.0	180	11.2	226	46
	16-1	1390	73.9	800	1540	16	6.02	96.3	12.6	104	38
	19-1	1560	83.0	800	1730	19	4.79	91.1	5.45	228	62
	22-1	1860	99.0		2060	22	4.26	93.6	6.69	186	40
	10-1	1660	88.3		2450	10	24.5	245	46.4	330	56
	16-1	1780	94.7	600	2630	16	10.3	164	20.0	240	108
	19-1	1460	77.7	600	2160	19	5.98	114	28.2	260	76
	22-1	1850	98.4		2730	22	5.64	124	12.8	286	54
	10-1	1540	81.9		3410	10	34.1	341	60.2	468	76
	16-1	1210	64.4	400	2680	16	10.5	168	24.7	374	100
	19-1	1440	76.6	400	3190	19	8.84	168	26.4	350	112
	22-1	1820	96.8		4030	22	8.33	183	23.8	344	76
	10-2	2480	132		2750	10	27.5	275	26.3	604	112
	16-2	2450	130	000	2720	16	10.6	170	19.4	284	98
	19-2	2440	130	800	2700	19	7.48	142	22.9	321	142
	22-4	2360	126		2620	22	5.41	119	8.04	196	74
	10-2	2499	133	600	3690	10	36.9	369	57.4	984	148
アセチレン	16-2	2480	132		3660	16	14.3	229	34.2	422	184
#2500	19-2	2550	136		3770	19	10.4	198	25.2	415	96
	22-4	2380	127		3520	22	7.27	160	15.8	334	66
	10-2	2500	133		5540	10	55.4	554	179	1410	224
	16-2	2480	132	100	5500	16	21.5	344	48.1	614	224
	19-2	2420	129	400	5360	19	14.8	282	48.2	544	138
	22-4	2340	124		5190	22	10.7	236	30.3	460	132
	10-4	3440	183		3810	10	38.1	381	37.6	668	380
	16-3	2430	129	000	2690	16	10.5	168	11.9	260	102
	19-5	3430	182	800	3800	19	10.5	200	22.7	451	284
	22-3	3630	193		4020	22	8.31	183	13.6	556	70
	10-4	3580	190		5290	10	52.9	529	206	986	576
アセチレン	16-3	2450	130	600	3620	16	14.1	226	23.3	428	86
アセチレン #4000	19-5	3240	172	600	4790	19	13.3	252	35.64	527	400
	22-3	3650	194		5390	22	11.1	245	30.16	544	96
	10-4	3390	180		7510	10	75.1	751	204.0	1070	612
	16-3	2450	130	400	5430	16	21.2	339	39.16	622	236
	19-5	3530	188	400	7820	19	21.7	412	48.96	794	656
	22-3	3520	187		7800	22	16.1	355	38 36	804	140

表-2 アセチレン基礎実験結果

		実測値	計算値	実測値	計算値	計算値	計算値	計算値	解析値	解析値	解析値
ガス種類	板番号	実流量	総発熱	移動速度	理論入熱	板厚	O/T ²	Q/T	角変化	縱収縮力	横収縮
火口種類		l/h	kJ/h	mm/min	Q, kJ/m	T, mm	(kJ/m)/mm ²	(kJ/m)/mm	10 ⁻³ rad	Ν	mm
プロパン L1000	10-3	990	85.6		1780	10	17.8	178	8.98	95.1	23
	16-4	880	76.1		1590	16	6.21	99.4	7.43	48.9	5
	19-4	890	77.0	800	1600	19	4.43	84.2	7.90	88.2	13
	22-2	1300	112		2340	22	4.83	106	21.5	20.3	47
	10-3	1000	86.5		2400	10	24.0	240	24.6	231	74
	16-4	970	83.9	600	2330	16	9.10	146	15.7	168	36
	19-4	900	77.9	600	2160	19	5.98	114	13.0	101	56
	22-2	1290	112		3100	22	6.40	141	33.8	260	84
	10-3	920	79.6		3320	10	33.2	332	42.6	581	88
	16-4	950	82.2	400	3420	16	13.4	214	27.7	438	112
	19-4	940	81.3	400	3390	19	9.39	178	21.1	246	41
	22-2	1310	113		4720	22	9.75	215	42.1	585	75
	10-5	2560	221		4610	10	46.1	461	7.16	88.4	138
	16-5	2840	246	800	5120	16	20.0	320	33.7	623	51
	19-3	2680	232	800	4830	19	13.4	254	60.3	301	81
	22-5	2650	229		4780	22	9.88	217	59.2	580	116
	10-5	2680	232	600	6440	10	64.4	644	7.72	164	30
プロパン	16-5	2700	234		6490	16	25.4	406	51.1	621	117
L3000	19-3	2810	243		6750	19	18.7	355		データ欠損	
	22-5	2570	222		6180	22	12.8	281	-90.9	514	92
	10-5	2830	245		10200	10	102	1020	12.7	259	149
	16-5	2830	245	400	10200	16	39.8	638	55.2	568	200
	19-3	2880	249	400	10400	19	28.8	547		データ欠損	
	22-5	2530	219		9120	22	18.8	415	189	831	191
	10-6	3730	323		6720	10	67.2	672	0.698	86.5	83
	16-6	2740	237	800	4940	16	19.3	309	37.1	344	99
	19-6	3490	302	800	6290	19	17.4	331	31.3	347	126
	22-6	3480	301		6271	22	13.0	285	23.6	498	93
	10-6	3670	317		8820	10	88.2	882	-0.820	10.8	111
プロパン	16-6	2670	231	600	6420	16	25.1	401	67.8	685	187
L5000	19-6	3510	304	000	8430	19	23.4	444	43.5	563	189
	22-6	3380	292		8120	22	16.8	369	35.7	565	131
	10-6	3750	324		13500	10	135	1350	0.666	108	388
	16-6	2670	231	400	9620	16	37.6	601	73.8	527	261
	19-6	3670	317	400	13200	19	36.6	695	22.8	927	186
1	22-6	3300	285	Г	11900	22	24.6	541	47.5	908	229

表-3 プロパン基礎実験結果

表-4 アセチレン精度実験結果

	実測値	計算値	実測値	計算値		計算値	理論値	予測値	実測値		実測値
板番号	総流量	総発熱	平均速度	理論入熱	板厚	1本毎のQ/T ²	角変形量	曲率半径	曲率半径	曲率半径の比	縱方向曲率半径
	l/h	kJ/h	mm/min	J/m	T, mm	(kJ/m)/mm ²	rad	R, mm	R, mm	実験/予測	R _L , mm
10-1	14420	767	445	28700	10	31.9	0.477	2180	2556	1.17	-27985
16-1	33810	1800	445	67400	16	29.3	0.459	2260	2494	1.10	-34111
19-1	40310	2140	375	95100	19	29.3	0.459	2260	2429	1.07	-24341
22-1	29790	1580	230	114000	22	26.2	0.435	2370	2028	0.856	-16465
10-2	18750	998	640	26000	10	28.9	0.456	2270	座屈		座屈
16-2	33240	1770	445	66300	16	28.8	0.455	2270			
19-2	35290	1880	333	94100	19	29.0	0.457	2270	2101	0.926	-27100
22-4	36170	1920	241	133000	22	30.5	0.468	2220	1903	0.857	-16478
10-4	25650	1360	902	25100	10	27.9	0.448	2310	3286	1.42	-24403
16-3	33860	1800	445	67400	16	29.3	0.459	2260	2166	0.958	-36486
19-5	37380	1990	355	93400	19	28.7	0.455	2280			
22-3	35690	1900	247	128000	22	29.4	0.460	2250	2084	0.926	-26464

表-5 プロパン精度実験結果

	実測値	計算値	実測値	計算値		計算値	理論値	予測値	実験値		実験値
板番号	総流量	総発熱	平均速度	理論入熱	板厚	1本毎のQ/T ²	角変形量	曲率半径	曲率半径	曲率半径の比	縱方向曲率半径
	l∕h	kJ/h	mm/min	J/m	T, mm	(kJ/m)/mm ²	rad	R, mm	R, mm	実験/予測	R _L , mm
10-3	11303	978	400	40700	10	45.2	0.570	1850	座屈		座屈
16-4	29007	2510	400	105000	16	45.6	0.571	1850	2147	1.16	-25333
19-4	31339	2710	333	136000	19	41.9	0.553	1910	1607	0.841	-17083
22-2	32196	2780	248	187000	22	42.9	0.558	1890	1747	0.924	-13432
10-5	19423	1680	700	40000	10	44.4	0.566	1870	座屈		座屈
16-5	33761	2920	400	122000	16	53.0	0.604	1760	1865	1.06	-23906
19-3	36452	3150	368	143000	19	44.0	0.564	1870	1832	0.980	-18372
22-5	34111	2950	249	197000	22	45.2	0.570	1850	データ異常		
10-6	24224	2100	905	38700	10	43.0	0.558	1890	座屈		座屈
16-6	29249	2530	400	105000	16	45.6	0.571	1850			
19-6	38937	3370	392	143000	19	44.0	0.564	1870	1657	0.886	-29261
22-6	38305	3310	275	201000	22	46.1	0.574	1840	1552	0.843	-20741